文档库 最新最全的文档下载
当前位置:文档库 › 物流配送问题中贪心算法与动态规划法的分析与应用

物流配送问题中贪心算法与动态规划法的分析与应用

物流配送问题中贪心算法与动态规划法的分析与应用
物流配送问题中贪心算法与动态规划法的分析与应用

SCIENTIST 33

计算机自诞生以来,发展迅速,在社会中的各个领域都得到了广泛的应用。使用计算机快速处理问题成为当今社会发展的需要。笔者运用计算机知识为现实问题提供一些意见和建议。笔者在今年“双十一”期间亲身经历了爆仓问题,发现物体配送效率低下,“双十一”期间物流速度极慢,形式十分严峻。据官方所提供的数据,买家每秒创建订单数额达到17.5万笔,有些货物甚至预计 需要1个月左右的时间才能配送完毕。

对于现今的物流配送,人们大多选择第三方物流。当货物运送到某地区时,物流公司的将货物囤积在一处,再通过快递员将快递送往千家万户。笔者在此希望对快递员的派送路线进行合理化选择,以最短路程,最小时间完成货物的配送。

以城市中的快递配送为例,现简化模型如下:快递员在某地区配送快递,快递公司(货物囤积地)位于O 点,快递员需要派送6份快递,分别送往A,B,C,D,E,F 六个地点,每两个地点之间的距离已标出,快递员如

何快速规划路线,以最短路径、最小时间完成快递的配送,这不仅可以节约劳动力提高工作效率,也会使网购用户收货速度更快。

图1

在具体代码实现中配送需求地映射为编号:O—0,

A—1,B—2,C—3,D—4,E—5,F—6;

城市之间的距离用二维数组来表示,记为D[i][j],如:D[0][1]表示O 与A 之间的距离,于是D[0][1]=6;设置flag[][],初始为0,表示此变量未被访问(配送需求地未到达过),若被访问(已到达过配送完毕)则修改为1。

本文中笔者选择贪心算法、动态规划法来解决这一实际问题。

1 贪心算法

贪心算法(Greedy algorithm)是一种对某些动态规划中求优秀解的简单、迅速的算法,以当前情况为基础根据某个标准作最优选择,而不考虑整体情况,省去大量时间。

贪心算法在解决问题的策略上缺点是目光短浅,只根据当前已有的信息就做出选择,而且一旦做出了选择,不管将来有什么结果,这个选择都不会改变。换言之,贪心算法并不是从整体最优考虑,它所做出的选择只是在某种意义上的局部最优。这种局部最优选择并不总能获得整体最优解,但通常能获得近似最优解。但由于其处理问题简单高效、节省空间,非常适合实际问题的解决。

现在我们通过来解决这一问题,采用最近邻点策略:从某地点(初始为快递公司,即O 点)出发,每次在没有到过的中选择距离当前所在地中最近的一个,直到经过了所有的配送需求地,完成了所有配送任务,最后回到快递公司,即O 点。

贪心算法具体求解流程如下:1)了解要求送达地点的的数量与各地点之间的距离。2)重复以下两步直至已全部送达:(1)循环遍历找到与当前出发地点最近的未到达过的配送需求地;(2)以当前找到的(最近一次找到的)送达地点为出发地点,重复步骤(1)。3)回到出发地点。

在本题中贪心算法选择路线经过如下:快递员从O 点选择较近的A 点作为目的地。到达后选择距离当前出发点A 较近的点,O 点当前已访问,选择B 点。而后依次按照此规则选择配送需求点,当所有快递配送完毕返回O 点,即快递公司所在地。路线为O->A->B->C->D->E->F->O。路程为44。

从本例中也可以看出,贪心算法简单便捷,对于问题的解决有很大的帮助。同时我们清楚地看出,使用贪心算法只能考虑当前的选择,当面对复杂的整体问题

物流配送问题中贪心算法与动态规划法的分析与应用

徐西啸

山东省莱芜市第一中学,山东莱芜 271100

摘 要 计算机的应用触及到了生活的各个方面,它的优点之一就在于强大的计算处理能力上,这也正是物流领

域配送路线的问题所需要的。如何选择最佳路线,如何节约物流运输成本,即选择配送的最短路线,我们可以通过贪心算法和动态规划算法来做决定。本文对于中国现今发展蓬勃的电子商务的线下运输问题提出了见解,以一个简化的模型介绍了贪心算法以及动态规划法的应用,为线下运输问题提出了解决方案,有着十分重要的现实意义。关键词 物流问题;最短路径;最小时间;贪心算法;动态规划

中图分类号 TP3 文献标识码 A 文章编号 2095-6363(2016)18-0033-02

作者简介:徐西啸,山东省莱芜市第一中学。

SCIENTIST

34

时,贪心算法未必能给出最优解只求出了近似最优解。

2 动态规划算法

动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。如本问题的简化模型有许多可以把货物送达的可行解,但我们希望找到能实现最短路程最小时间的最优解。

动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。

如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。

在利用动态规划求解的过程中值得注意的就是是否包含最优子结构,简单来讲就是一个问题的最优解是不是包含着子问题的最优解。利用求解子问题的最优解最后得到整个问题的最优解,这是利用动态规划求解问题的基本前提。

动态规划的求解过程主要分为如下的四步:1)描述最优解的结构;2)递归定义最优解的值;3)按自底向上的方式计算最优解的值;4)由计算出的结果构造一个最优解。

在本快递配送问题的简单模型中求解过程具体如下:假设从顶点O 出发,令sum 表示从顶点O 出发经过

图中各个顶点,即配送需求地一次且仅一次最后回到出

发点的最短路径长度。

2.1 描述最优解的结构

要使得从O(以0表示出发处O 节点)点出发配送完毕回到O (以7表示返回处O 节点,D[7][k]=D[0][k])点的路程最短,令f(i)为到第i 个节点的最短距离,则f(7)=min{D[7][1],D[7][5],D[7][6]},用同样的方法可以求得f(1),f(5),f(6)等。

2.2 递归定义最优解的值

f(i)=min(f(j)+D[i][j]),其中j 表示与i 边有连接的节点。

2.3 按自底向上的方式计算每个节点的最优值

此时我们就得利用递归公式分别求解f(0),f(1),f(2)…f(7),这样最终便能得到最终的解。

2.4 由计算出的结果构造一个最优解

本模型最终解为路线为O (0)->A (1)->B (2)->C (3)->D(4)->E(5)->F(6)->O(7)。路程为44。

动态规划算法关键在于解决了重复计算的问题,大大提高了代码运行效率。总体来说,动态规划算法就是一系列以空间换取时间的算法。

3 结论

中国电商业发展十分迅速,但长期以来,线下运输物流配送速度为人所诟病,笔者认为应该有着更高效的配送方式。本文主要利用贪心算法和动态规划算法来进行求解,快速而准确地得出流配送的近似最佳或最佳路线选择,节约物流运输成本,提高消费者满意度,对快递公司派发快递的路线考虑有很强的现实参考意义。

4.2 混合组织检修

在进行混合组织维修的过程中,首先需要对设备的混合组织性质进行基础的分析。然后对维修过程中的重点以及难点进行集中式的处理。并采用多种不同的方案让电力设备维修体系得到优化。但是,某些企业却不能够很好的将这种方式消化,拥为己用。某些企业在采用集中维修模式后,不能达到预期的维修效果。其主要表现在设备维修的环境复杂,其电力故障也逐步多样化。尤其是在集成电路全面应用的今天,其电力故障具有很强的多变性。企业需要慢慢的过渡集中与分散组织这两种不同的维修模式,不能盲目的运用不适合该企业发展的维修管理模式,不能操之过急,需要在逐渐过渡的过程中,找出检修方式的不足,并设计方案进行具有针对性的弥补。而且还具有集中维修管理方式的优点。在对企业的电力设备进行维修时,可以采用集中管理的模式。在设备维修计划管理的过程中,其同样需要加强电力设备的日常维护工作。可以采用多种不同的方式对电力设备的组织层进行相应的管理。并时刻做好电力设备检修的技术人员安排。最终让设备维修计划管理的效率得到良好的提升。

4.3 加强现场管理维修

在进行电力设备维修的过程中,需要对现场维修

在电力设备的维修过程中,需要两人一组进行安全监督维修。如果出现单独一人维修的现象,要及时进行管理和劝阻。在现场维修管理的过程中,还要不断加强技术维修人员的专业性,对于较为陈旧的设备需要采用科学合理的方式进行设备的二次管理。从而让维修成本大幅度的降低。最终达到理想的管理效果。

5 结论

电力设备维修计划的优化管理研究十分关键,其能够让电力设备的维修效率得到全面性的提升。在进行电力维修的过程中,首先需要对其电力维修内容进行全面性的分析,然后采用多种不同的方式对电力维修中的故障进行全面的诊断。最后还要结合电力维修准则,制定出相应的电力维修策略,最终达到良好的电力维修效果。

参考文献

[1]李福森.电力设备维修计划优化管理研究[J].民营科技,

2015(11):109.

[2]赵芳.电力设备维修计划优化的讨论[J].科技创新与应用,

2014(34):148.

[3]李晓琳,刘磊,杨杰.探讨电力设备维修计划的优化管理

[J].科技展望,2015(9).

[4]徐剑中,杨跃平,潘明波.电力设备维修计划优化管理研究

[J].电子技术与软件工程,2013(15):128.

动态规划与回溯法解决0-1背包问题

0-1背包动态规划解决问题 一、问题描述: 有n个物品,它们有各自的重量和价值,现有给定容量的背包,如何让背包里装入的物品具有最大的价值总和? 二、总体思路: 根据动态规划解题步骤(问题抽象化、建立模型、寻找约束条件、判断是否满足最优性原理、找大问题与小问题的递推关系式、填表、寻找解组成)找出01背包问题的最优解以及解组成,然后编写代码实现。 原理: 动态规划与分治法类似,都是把大问题拆分成小问题,通过寻找大问题与小问题的递推关系,解决一个个小问题,最终达到解决原问题的效果。但不同的是,分治法在子问题和子子问题等上被重复计算了很多次,而动态规划则具有记忆性,通过填写表把所有已经解决的子问题答案纪录下来,在新问题里需要用到的子问题可以直接提取,避免了重复计算,从而节约了时间,所以在问题满足最优性原理之后,用动态规划解决问题的核心就在于填表,表填写完毕,最优解也就找到。 过程: a) 把背包问题抽象化(X1,X2,…,Xn,其中 Xi 取0或1,表示第i个物品选或不选),V i表示第i个物品的价值,W i表示第i个物品的体积(重量); b) 建立模型,即求max(V1X1+V2X2+…+VnXn); c) 约束条件,W1X1+W2X2+…+WnXn (V2X2+V3X3+…+VnXn)+V1X1;

分治、贪心、动态规划算法要点复习

分治法 1 分割成独立的子问题 2 递归解决子问题 3 合并求得初始问题的解 动态规划算法 1.描述最优解的结构特征 2.定义最优解决方案的递归形式 3.以自底向上的方式计算最优解决方案的值 4.从计算信息构造出最优解决方案 贪婪算法步骤 1.确定问题的优化结构 2.得到递归解 3.证明某个最优选择是贪婪选择 4.贪婪选择将产生唯一一个非空子问题 5.用递归算法实现贪婪策略 6.将递归算法转换为迭代算法 贪婪算法设计 1. 通过作出某种贪婪选择,将初始优化问题转换为唯一的一个子问题来求解 2. GREEDY CHOICE(证明贪婪选择) 作出该贪婪选择后,可以保证初始优化问题存在最优解3.OPTIMAL SUBSTRUCTURE(证明优化基础) 贪婪选择+唯一子问题=最优解 贪婪算法正确性 1. 贪婪选择特性(局部最优导致全局最优) 2. 优化基础的特性(贪婪选择+唯一子问题的最优解?初始问题的最优解) 作业选择 ?贪婪选择特性 存在最优解包含贪婪选择,即Sij在选择最先完成的作业am ?优化基础 If an optimal solution to subproblem Sij includes activity ak ? it must contain optimal solutions to Sik and Skj Solution to Sij=(Solution to Sik)∪{ak}∪(Solution to Skj)动态规划解) Similarly, am + optimal solution to Smj ? optimal sol. Solution to Sij = {am} ∪(Solution to Smj) (贪婪选择解) 动态规划与贪婪算法比较 ?Dynamic programming –每步选择–选择与子问题解相关 –自底向上,即从规模下的子问题逐步求解规模大的子问题?Greedy algorithm –首先作出贪婪选择–求解贪婪选择后产生的唯一子问题–后续贪婪选择与前面的选择有关,但与子问题的解无关 –自顶向下,问题规模逐步缩小 动态规划和分治法 ?子问题非独立 –子问题求解依赖其子问题的解 –分治法通过递归方式解决性质相同的子问题 –动态规划每次解决一个子问题,并将结果存储在表格中4 ?适合优化问题 –通过适当的选择来获得问题的最优解 –找到具有最优解决方案及其最优值:装配线排程方案以及该方案的生产时间 –导致最优的解决方案可能不止一个 ? (允许负权值边) –如果从源顶点s没有可抵达的负权值回路,返回‘真’)(其余的返回‘假’,无解 –遍历所有的边|V–1|次,每次对每条边执行一次缩短运算–对图进行拓扑排序)(依据拓扑排序对边进行缩短操作 于每一个顶点, 对始于该顶点的每条边进行缩短操作) (DGA中没有负权值回路, 因此存在最短路径) – (不存在负权值边界) – (S: 集合中顶点的最短路径已经确定) (Q: V – S, 极小优先队列) ? (d[v]) (Q中的值是最短路径的估计) ?重复的从Q中选择具有最短估计距离的顶点进行处理 The Ford-Fulkerson Method(不断的增大流, 直到达到流的极大值)(通过剩余流和剩余流图实现) 增量算法(An Incremental Algorithm) Alg.: GREEDY-ACTIVITY-SELECTOR(s, f, n) 1. A ← {a1} 2. i ← 1 3. for m ← 2 to n 4. do if sm ≥ fi ? activity am is compatible with ai 5. then A ← A ∪ {am} 6. i ← m ? ai is most recent addition to A 7. return A 动态规划: 装配线排程 e1 + a1,1 if j = 1 f1[j] = min(f1[j - 1] + a1,j ,f2[j -1] + t2,j-1 + a1,j) if j ≥ 2 矩阵链相乘 m[i,j]=0 if i = j min{m[i,k]+m[k+1,j]+pi-1pkpj} if i < j Matrix-Chain-Order(p) 1. n ←length[p]-1; 2. for i ←1 to n 3. m[i, i] ←0; 4. for l ←2 to n 5. for i ←1 to n –l +1 6. j ←i + l -1; 7. m[i, j] ←∞; 8. for k ←i to j -1 9. q ←m[i, k] + m[k+1, j] + pI-1pkpj; 10. if q < m[i, j] 11. m[i, j] ←q; 12. s[i, j] ←k; 13. return m and s 最长共同子序列 LCS-Length(X,Y) 1. m ←length[X]; 2. n ←length[Y]; 3. for i ←1 to m 4. c[i, 0] ←0; 5. for j ←0 to n 6. c[0, j] ←0;

动态规划算法原理与的应用

动态规划算法原理及其应用研究 系别:x x x 姓名:x x x 指导教员: x x x 2012年5月20日

摘要:动态规划是解决最优化问题的基本方法,本文介绍了动态规划的基本思想和基本步骤,并通过几个实例的分析,研究了利用动态规划设计算法的具体途径。关键词:动态规划多阶段决策 1.引言 规划问题的最终目的就是确定各决策变量的取值,以使目标函数达到极大或极小。在线性规划和非线性规划中,决策变量都是以集合的形式被一次性处理的;然而,有时我们也会面对决策变量需分期、分批处理的多阶段决策问题。所谓多阶段决策问题是指这样一类活动过程:它可以分解为若干个互相联系的阶段,在每一阶段分别对应着一组可供选取的决策集合;即构成过程的每个阶段都需要进行一次决策的决策问题。将各个阶段的决策综合起来构成一个决策序列,称为一个策略。显然,由于各个阶段选取的决策不同,对应整个过程可以有一系列不同的策略。当过程采取某个具体策略时,相应可以得到一个确定的效果,采取不同的策略,就会得到不同的效果。多阶段的决策问题,就是要在所有可能采取的策略中选取一个最优的策略,以便得到最佳的效果。动态规划是一种求解多阶段决策问题的系统技术,可以说它横跨整个规划领域(线性规划和非线性规划)。在多阶段决策问题中,有些问题对阶段的划分具有明显的时序性,动态规划的“动态”二字也由此而得名。动态规划的主要创始人是美国数学家贝尔曼(Bellman)。20世纪40年代末50年代初,当时在兰德公司(Rand Corporation)从事研究工作的贝尔曼首先提出了动态规划的概念。1957年贝尔曼发表了数篇研究论文,并出版了他的第一部著作《动态规划》。该著作成为了当时唯一的进一步研究和应用动态规划的理论源泉。在贝尔曼及其助手们致力于发展和推广这一技术的同时,其他一些学者也对动态规划的发展做出了重大的贡献,其中最值得一提的是爱尔思(Aris)和梅特顿(Mitten)。爱尔思先后于1961年和1964年出版了两部关于动态规划的著作,并于1964年同尼母霍思尔(Nemhauser)、威尔德(Wild)一道创建了处理分枝、循环性多阶段决策系统的一般性理论。梅特顿提出了许多对动态规划后来发展有着重要意义的基础性观点,并且对明晰动态规划路径的数

解0-1背包问题的动态规划算法

关于求解0/1背包问题的动态规划算法 摘要:本文通过研究动态规划原理,提出了根据该原理解决0/1背包问题的方法与算法实现, 并对算法的正确性作了验证.观察程序运行结果,发现基于动态规划的算法能够得到正确的决策方案且比穷举法有效. 关键字:动态规划;0/1背包;约束条件;序偶;决策序列;支配规则 1、引 言 科学研究与工程实践中,常常会遇到许多优化问题,而有这么一类问题,它们的活动过程可以分为若干个阶段,但整个过程受到某一条件的限制。这若干个阶段的不同决策的组合就构成一个完整的决策。0/1背包问题就是一个典型的在资源有限的条件下,追求总的收益最大的资源有效分配的优化问题。 对于0/1背包问题,我们可以这样描述:设有一确定容量为C 的包及两个向量C ’=(S 1,S 2,……,S n )和P=(P 1,P 2,……,P N ),再设X 为一整数集合,即X=1,2,3,……,N ,X 为SI 、PI 的下标集,T 为X 的子集,那么问题就是找出满足约束条件∑S i 〈=C ,使∑PI 获得最大的子集T 。在实际运用中,S 的元素可以是N 个经营项目各自所消耗的资源,C 可以是所能提供的资源总量,P 的元素可是人们从各项项目中得到的利润。 0/1背包问题是工程问题的典型概括,怎么样高效求出最优决策,是人们关心的问题。 2、求解问题的动态规划原理与算法 2.1动态规划原理的描述 求解问题的动态规划有向前处理法向后处理法两种,这里使用向前处理法求解0/1背包问题。对于0/1背包问题,可以通过作出变量X 1,X 2,……,X N 的一个决策序列来得到它的解。而对于变量X 的决策就是决定它是取0值还是取1值。假定决策这些X 的次序为X n ,X N-1,……,X 0。在对X 0做出决策之后,问题处于下列两种状态之一:包的剩余容量是M ,没任何效益;剩余容量是M-w ,效益值增长了P 。显然,之后对X n-1,Xn-2,……,X 1的决策相对于决策X 所产生的问题状态应该是最优的,否则X n ,……,X 1就不可能是最优决策序列。如果设F j (X )是KNAP (1,j ,X )最优解的值,那么F n (M )就可表示为 F N (M )=max(f n (M),f n-1(M-w n )+p n )} (1) 对于任意的f i (X),这里i>0,则有 f i (X)=max{f i-1(X),f i-1(X-w i )+p i } (2) 为了能由前向后推而最后求解出F N (M ),需从F 0(X )开始。对于所有的X>=0,有F 0(X )=0,当X<0时,有F 0(X )等于负无穷。根据(2),可求出0〈X 〈W 1和X 〉=W 1情况下F 1(X )的值。接着由(2)不断求出F 2,F 3,……,F N 在X 相应取值范围内的值。 2.2 0/1背包问题算法的抽象描述 (1)初始化各个元素的重量W[i]、效益值P[i]、包的最大容量M ; (2)初始化S0; (3)生成S i ;

贪心算法与动态规划的比较

贪心算法与动态规划的比较 【摘要】介绍了计算机算法设计的两种常用算法思想:贪心算法与动态规划算法。通过介绍两种算法思想的基本原理,比较两种算法的联系和区别。通过背包问题对比了两种算法的使用特点和使用范围。 【关键字】动态规划;贪心算法;背包问题 1、引言 为了满足人们对大数据量信息处理的渴望,为解决各种实际问题,计算机算法学得到了飞速的发展,线性规划、动态规划、贪心策略等一系列运筹学模型纷纷运用到计算机算法学中,产生了解决各种现实问题的有效算法。虽然设计一个好的求解算法更像是一门艺术而不像是技术,但仍然存在一些行之有效的、能够用于解决许多问题的算法设计方法,你可以使用这些方法来设计算法,并观察这些算法是如何工作的。一般情况下,为了获得较好的性能,必须对算法进行细致的调整。但是在某些情况下,算法经过调整之后性能仍无法达到要求,这时就必须寻求另外的方法来求解该问题。本文针对部分背包问题和0/ 1 背包问题进行分析,介绍贪心算法和动态规划算法的区别。 2、背包问题的提出 给定n种物品( 每种物品仅有一件) 和一个背包。物品i的重量是w i,其价值为p i,背包的容量为M。问应如何选择物品装入背包,使得装入背包中的物品的总价值最大,每件物品i的装入情况为x i,得到的效益是p i*x i。 ⑴部分背包问题。在选择物品时,可以将物品分割为部分装入背包,即0≤x i≤1 ( 贪心算法)。 ⑵0/ 1背包问题。和部分背包问题相似,但是在选择物品装入时要么不装,要么全装入,即x i = 1或0。( 动态规划算法) 。 3、贪心算法 3.1 贪心算法的基本要素 能够使用贪心算法的许多例子都是最优化问题,每个最优化问题都包含一组限制条件和一个优化函数,符合限制条件的问题求解方案称为可行解;使优化函数取得最佳值的可行解称为最优解。此类所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到(这是贪心算法与动态规划的主要区别) 。 3.2贪心策略的定义 贪心策略是指从问题的初始状态出发,通过若干次的贪心选择而得出最优值( 或较优解) 的一种解题方法。贪心策略总是做出在当前看来是最优的选择,也就是说贪心策略并不是从整体上加以考虑,它所做出的选择只是在某种意义上的局部最优解,而许多问题自身的特性决定了该问题运用贪心策略可以得到最优解或较优解。(注:贪心算法不是对所有问题都能

经典算法——动态规划教程

动态规划是对最优化问题的一种新的算法设计方法。由于各种问题的性质不同,确定最优解的条件也互不相同,因而动态规划的没计法对不同的问题,有各具特色的表示方式。不存在一种万能的动态规划算法。但是可以通过对若干有代表性的问题的动态规划算法进行讨论,学会这一设计方法。 多阶段决策过程最优化问题 ——动态规划的基本模型 在现实生活中,有一类活动的过程,由于它的特殊性,可将过程分成若干个互相联系的阶段,在它的每一阶段都需要作出决策,从而使整个过程达到最好的活动效果。因此各个阶段决策的选取不能任意确定,它依赖于当前面临的状态,又影响以后的发展。当各个阶段决策确定后,就组成一个决策序列,因而也就确定了整个过程的一条活动路线。这种把一个问题看做是一个前后关联具有链状结构的多阶段过程就称为多阶段决策过程,这种问题称为多阶段决策最优化问题。 【例题1】最短路径问题。图中给出了一个地图,地图中每个顶点代表一个城市,两个城市间的连线代表道路,连线上的数值代表道路的长度。现在,想从城市A到达城市E,怎样走路程最短,最短路程的长度是多少? 【分析】把从A到E的全过程分成四个阶段,用k表示阶段变量,第1阶段有一个初始状态A,两条可供选择的支路ABl、AB2;第2阶段有两个初始状态B1、 B2,B1有三条可供选择的支路,B2有两条可供选择的支路……。用dk(x k,x k+1)表示在第k阶段由初始状态x k到下阶段的初始状态x k+1的路径距离,Fk(x k)表示从第k阶段的x k到终点E的最短距离,利用倒推方法求解A到E的最短距离。具体计算过程如下: S1:K=4,有:F4(D1)=3,F4(D2)=4,F4(D3)=3 S2: K=3,有: F3(C1)=min{d3(C1,D1)+F4(D1),d3(C1,D2)+F4(d2)}=min{8,10}=8 F3(C2)=d3(C2,D1)+f4(D1)=5+3=8 F3(C3)=d3(C3,D3)+f4(D3)=8+3=11 F3(C4)=d3(C4,D3)+f4(D3)=3+3=6

01背包问题动态规划详解

动态规划是用空间换时间的一种方法的抽象。其关键是发现子问题和记录其结果。然后利用这些结果减轻运算量。 比如01背包问题。 因为背包最大容量M未知。所以,我们的程序要从1到M一个一个的试。比如,开始任选N件物品的一个。看对应M的背包,能不能放进去,如果能放进去,并且还有多的空间,则,多出来的空间里能放N-1物品中的最大价值。怎么能保证总选择是最大价值呢?看下表。 测试数据: 10,3 3,4 4,5 5,6 c[i][j]数组保存了1,2,3号物品依次选择后的最大价值. 这个最大价值是怎么得来的呢?从背包容量为0开始,1号物品先试,0,1,2,的容量都不能放.所以置0,背包容量为3则里面放4.这样,这一排背包容量为 4,5,6,....10的时候,最佳方案都是放4.假如1号物品放入背包.则再看2号物品.当背包容量为3的时候,最佳方案还是上一排的最价方案c为4.而背包容量为5的时候,则最佳方案为自己的重量5.背包容量为7的时候,很显然是5加上一个值了。加谁??很显然是7-4=3的时候.上一排c3的最佳方案是4.所以。 总的最佳方案是5+4为9.这样.一排一排推下去。最右下放的数据就是最大的价值了。(注意第3排的背包容量为7的时候,最佳方案不是本身的6.而是上一排的9.说明这时候3号物品没有被选.选的是1,2号物品.所以得9.) 从以上最大价值的构造过程中可以看出。 f(n,m)=max{f(n-1,m), f(n-1,m-w[n])+P(n,m)}这就是书本上写的动态规划方程.这回清楚了吗?

下面是实际程序: #include int c[10][100]; int knapsack(int m,int n) { int i,j,w[10],p[10]; for(i=1;ic[i-1][j]) c[i][j]=p[i]+c[i-1][j-w[i]]; else c[i][j]=c[i-1][j]; }

贪心算法详解分析

贪心算法详解 贪心算法思想: 顾名思义,贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。当然,希望贪心算法得到的最终结果也是整体最优的。虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。如单源最短路经问题,最小生成树问题等。在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。 贪心算法的基本要素: 1.贪心选择性质。所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。 动态规划算法通常以自底向上的方式解各子问题,而贪心算法则通常以自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题。 对于一个具体问题,要确定它是否具有贪心选择性质,必须证明每一步所作的贪心选择最终导致问题的整体最优解。 2. 当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。问题的 最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。 贪心算法的基本思路: 从问题的某一个初始解出发逐步逼近给定的目标,以尽可能快的地求得更好的解。当达到算法中的某一步不能再继续前进时,算法停止。 该算法存在问题: 1. 不能保证求得的最后解是最佳的; 2. 不能用来求最大或最小解问题; 3. 只能求满足某些约束条件的可行解的范围。 实现该算法的过程: 从问题的某一初始解出发; while 能朝给定总目标前进一步do 求出可行解的一个解元素; 由所有解元素组合成问题的一个可行解; 用背包问题来介绍贪心算法: 背包问题:有一个背包,背包容量是M=150。有7个物品,物品可以分割成任意大小。要 求尽可能让装入背包中的物品总价值最大,但不能超过总容量。

动态规划之01背包问题(最易理解的讲解)

01背包问题,是用来介绍动态规划算法最经典的例子,网上关于01背包问题的讲解也很多,我写这篇文章力争做到用最简单的方式,最少的公式把01背包问题讲解透彻。 01背包的状态转换方程f[i,j] = Max{ f[i-1,j-Wi]+Pi( j >= Wi ), f[i-1,j] } f[i,j]表示在前i件物品中选择若干件放在承重为j 的背包中,可以取得的最大价值。 Pi表示第i件物品的价值。 决策:为了背包中物品总价值最大化,第i件物品应该放入背包中吗? 题目描述: 有编号分别为a,b,c,d,e的五件物品,它们的重量分别是2,2,6,5,4,它们的价值分别是6,3,5,4,6,现在给你个承重为10的背包,如何让背包里装入的物品具有最 首先要明确这张表是从右到左,至底向上生成的。 为了叙述方便,用e10单元格表示e行10列的单元格,这个单元格的意义是用来表示只有物品e时,有个承重为10的背包,那么这个背包的最大价值是6,因为e物品的重量是4,背包装的了,把e装进去后价值为6。然后是e9单元格表示背包承重9,只有物品e, e装进去后,背包价值为6,接着是e8, e7单元格,一直到e3单元格表示背包承重3,但物品e承重4,装不了,所以e3=0, 对于d10单元格,表示只有物品e,d时,承重为10的背包,所能装入的最大价值,是10,因为物品e,d这个背包都能装进去。对于承重为9的背包,d9=10,是怎么得出的呢? 根据01背包的状态转换方程,需要考察两个值, 一个是f[i-1,j],对于这个例子来说就是e9的值6,另一个是f[i-1,j-Wi]+Pi; 在这里, f[i-1,j]表示我有一个承重为9的背包,当只有物品e可选时,这个背包能装入的最大价值 f[i-1,j-Wi]表示我有一个承重为4的背包(等于当前背包承重减去物品d的重量),当只有物品e可选时,这个背包能装入的最大价值 f[i-1,j-Wi]就是指单元格e4值为6,Pi指的是d物品的价值,即4 由于f[i-1,j-Wi]+Pi = 6 + 4 = 10 大于f[i-1,j] = 6,所以物品d应该放入承重为9的背包,所以d9=10.

动态规划算法和贪心算法的比较与分析

动态规划算法和贪心算法的比较与分析 1、最优化原理 根据一类多阶段问题的特点,把多阶段决策问题变换为一系列互相联系的单阶段问题,然后逐个加以解决。解决这类问题的最优化原理:一个过程的最优决策具有这样的性质,即无论其初始状态和初始决策如何,其今后诸策略对以第一个决策所形成的状态作为初始状态的过程而言,必须构成最优策略。简而言之,一个最优策略的子策略,对于它的初态和终态而言也必是最优的。 2、动态规划 2.1 动态规划算法 动态规划是运筹学的一个分支,与其说它是一种算法,不如说它是一种思维方法更贴切。因为动态规划没有固定的框架,即便是应用到同一道题上,也可以建立多种形式的求解算法。许多隐式图上的算法,例如求单源最短路径的Dijkstra算法、广度优先搜索算法,都渗透着动态规划的思想。还有许多数学问题,表面上看起来与动态规划风马牛不相及,但是其求解思想与动态规划是完全一致的。因此,动态规划不像深度或广度优先那样可以提供一套模式,需要的时候,取来就可以使用。它必须对具体问题进行具体分析、处理,需要丰富的想象力去建立模型,需要创造性的思想去求解。 动态规划算法的基本思想是将待求解问题分解成若干子问题,先求解子问题,然后从这些子问题的解得到原问题的解。值得注意的是,用动态规划法求解的问题,经分解后得到的子问题往往不是互相独立的。 最优化原理是动态规划的基础。任何一个问题,如果失去了这个最优化原理的支持,就不可能用动态规划方法计算。能采用动态规划求解的问题都要满足两个条件:①问题中的状态必须满足最优化原理;②问题中的状态必须满足无后效性。 所谓无后效性是指下一时刻的状态只与当前状态有关,而和当前状态之前的状态无关,当前的状态是对以往决策的总结。 2.2 动态规划算法的基本要素

实验项目三 用蛮力法、动态规划法和贪心法求解背包问题

实验项目三 用蛮力法、动态规划法和贪心法求解0/1 背包问题 实验目的 1、学会背包的数据结构的设计,针对不同的问题涉及到的对象的数据结构的设计也不同; 2、对0-1背包问题的算法设计策略对比与分析。 实验内容: 0/1背包问题是给定n 个重量为{w 1, w 2, … ,wn }、价值为{v 1, v 2, … ,vn }的物品和一个容量为C 的背包,求这些物品中的一个最有价值的子集,并且要能够装到背包中。 在0/1背包问题中,物品i 或者被装入背包,或者不被装入背包,设xi 表示物品i 装入背包的情况,则当xi =0时,表示物品i 没有被装入背包,xi =1时,表示物品i 被装入背包。根据问题的要求,有如下约束条件和目标函数: 于是,问题归结为寻找一个满足约束条件式1,并使目标函数式2达到最大的解向量X =(x 1, x 2, …, xn )。 背包的数据结构的设计: typedef struct object { int n;//物品的编号 int w;//物品的重量 int v;//物品的价值 }wup; wup wp[N];//物品的数组,N 为物品的个数 int c;//背包的总重量 1、蛮力法 蛮力法是一种简单直接的解决问题的方法,常常直接基于问题的描述和所涉及的概念定义。蛮力法的关键是依次处理所有的元素。 用蛮力法解决0/1背包问题,需要考虑给定n 个物品集合的所有子集,找出所有可能的子集(总重量不超过背包容量的子集),计算每个子集的总价值,然后在他们中找到价值最大的子集。 所以蛮力法解0/1背包问题的关键是如何求n 个物品集合的所有子集,n 个物品的子集有2的n 次方个,用一个2的n 次方行n 列的数组保存生成的子集,以下是生成子集的算法: ?????≤≤∈≤∑=)1(}1,0{1n i x C x w i n i i i (式1) ∑=n i i i x v 1max (式2)

背包问题-贪心法和动态规划法求解

实验四“0-1”背包问题 一、实验目的与要求 熟悉C/C++语言的集成开发环境; 通过本实验加深对贪心算法、动态规划算法的理解。 二、实验内容: 掌握贪心算法、动态规划算法的概念和基本思想,分析并掌握“0-1”背包问题的求解方法,并分析其优缺点。 三、实验题 1.“0-1”背包问题的贪心算法 2.“0-1”背包问题的动态规划算法 说明:背包实例采用教材P132习题六的6-1中的描述。要求每种的算法都给出最大收益和最优解。 设有背包问题实例n=7,M=15,,(w0,w1,。。。w6)=(2,3,5,7,1,4,1),物品装入背包的收益为:(p0,p1,。。。,p6)=(10,5,15,7,6,18,3)。求这一实例的最优解和最大收益。 四、实验步骤 理解算法思想和问题要求; 编程实现题目要求; 上机输入和调试自己所编的程序; 验证分析实验结果; 整理出实验报告。 五、实验程序

// 贪心法求解 #include #include"iomanip" using namespace std; //按照单位物品收益排序,传入参数单位物品收益,物品收益和物品重量的数组,运用冒泡排序 void AvgBenefitsSort(float *arry_avgp,float *arry_p,float *arry_w ); //获取最优解方法,传入参数为物品收益数组,物品重量数组,最后装载物品最优解的数组和还可以装载物品的重量 float GetBestBenifit(float*arry_p,float*arry_w,float*arry_x,float u); int main(){ float w[7]={2,3,5,7,1,4,1}; //物品重量数组 float p[7]={10,5,15,7,6,18,3}; //物品收益数组 float avgp[7]={0}; //单位毒品的收益数组 float x[7]={0}; //最后装载物品的最优解数组 const float M=15; //背包所能的载重 float ben=0; //最后的收益 AvgBenefitsSort(avgp,p,w); ben=GetBestBenifit(p,w,x,M); cout<

贪婪算法在排课问题中分析与应用

贪婪算法在排课问题中分析与应用 摘要:排课问题是教学管理中重要的问题,对教学质量起到十分重要的影响。随着计算机和信息技术的快速发展,通过合理的算法编制排课系统是十分合适的。本文通过排课问题算法的分析,选择贪婪算法来解决排课问题。通过实验表明,目前的算法能够很好的解决排课问题,对问题的解决的复杂度大大降低,使得排课变得十分简单和高效。 关键字:排课,贪婪算法,优先级 1、绪论 在高校日常管理中,教学计划是重要的组成部分。而教学计划的重要体现方式之一就是排课表,其在教学管理中的地位和作用不可低估,课表的管理对教学管理是起到基础和重要的作用。因此排课问题是教学管理中重要的问题,对教学质量起到十分重要的影响。 由于上课约束条件多,课表的编制十分复杂,是一个耗时耗力的工作。目前随着高校人数的越来越多,其很难用手工去编制课表,其工作时间长,工作量大和繁琐的编制过程是一般人很难驾驭的。随着计算机和信息技术的快速发展,通过合理的算法编制排课系统是十分合适的。通过计算机算法的求解来对问题进行抽象和解决。 2、排课算法算法简介 目前对于排课问题的算法较多,主要有蚁群算法、模拟退火算法、遗传算法、整数规划法和贪婪算法等。 (1)蚁群算法 蚁群算法就是将模拟蚂蚁的活动,对参数设置较少。这种算法具备较强的全局搜索能力,但其效率较低,且容易出现停滞[1]。 (2)模拟退火算法 这个算法被较多的学者用来解决排课问题,它是模拟退火的现象,对自然事物进行抽象而来。其比较适合约束条件较少的问题。如果约束条件少,其很快就能获得最优解。但这种算法的参数选择较难,且资源开销大[2]。 (3)遗传算法 遗传算法是基于自然选择和生物遗传的全局优化策略。其优点在于在非线性问题上能够表现出全局最优,可以并行处理而且算法效率相对较高[3]。 但遗传算法本身较为复杂,由于排课问题的约束条件较多,其算法的效率较低,如果排课要求十分严格的话,很有可能造成找不到解。 (4)整数规划法 整数规划法来解决排课问题计算量很大,只适合规模较小排课问题,对于规模较大的,至今都很难找到一个可行算法。 (5)贪婪算法 贪婪算法是指在解决问题的时候,不会考虑整体最优,而是采取局部最优的思想进行最优思想[4]。也就是说,该算法将解决问题分解为每一个步骤,根据其难易程度进行解决,通过满足局部最优的方式来尽可能的获得最满意的解决。虽然在某些情况下,贪婪算法并不能得到最优解,但能得到相对满意的解。 3、排课问题综述 (1)排课原则 排课问题的本质是一个优化问题,是对教师、上课课程、上课时间和上课地点等因素的优化。其目的就是将全校所开设课程在有限的时间和地点下进行合理的安排,确保教学的顺利进行,以达到最优的效果。 为了能够产出一张满意合格的排课表,在排课中要满足一些约束条件。我们将一些约束

算法分析与程序设计动态规划及回溯法解背包问题

动态规划法、回溯法解0-1背包问题 2012级计科庞佳奇 一、问题描述与分析 1.动态规划算法通常用于求解具有某种最优性质的问题。在这类问题中,可能会 有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案。 不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。这就是动态规划法的基本思路。具体的动态规划算法多种多样,但它们具有相同的填表格式。 多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状态的转移,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义,称这种解决多阶段决策最优化问题的方法为动态规划方法。任何思想方法都有一定的局限性,超出了特定条件,它就失去了作用。同样,动态规划也并不是万能的。适用动态规划的问题必须满足最优化原理和无后效性。1.最优化原理(最优子结构性质)最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足最优化原理又称其具有最优子结构性质。2.无后效性将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又称为无后效性。3.子问题的重叠性动态规划将原来具有指数级时间复杂度的搜索算法改进成了具有多项式时间复杂度的算法。其中的关键在于解决冗余,这是动态规划算法的根本目的。动态规划实质上是一种以空间换时间的技术,它在实现的过程中,不得不存储产生过程中的各种状态,所以它的空间复杂度要大于其它的算法。 01背包是在M件物品取出若干件放在空间为W的背包里,每件物品的体积为W1,W2……Wn,与之相对应的价值为P1,P2……Pn。求出获得最大价值的方案。 2.回溯法(探索与回溯法)是一种选优搜索法,按选优条件向前搜索,以达到目 标。但当探索到某一步时,发现原先选择并不优或达不到目标,就退回一步重新选择,这种走不通就退回再走的技术为回溯法,而满足回溯条件的某个状态的点称为“回溯点”。 在包含问题的所有解的解空间树中,按照深度优先搜索的策略,从根结点出发深度探索解空间树。当探索到某一结点时,要先判断该结点是否包含问题的解,如果包含,就从该结点出发继续探索下去,如果该结点不包含问题的解,则逐层向其祖先结点回溯。(其实回溯法就是对隐式图的深度优先搜索算法)。若用回溯法求问题的所有解时,要回溯到根,且根结点的所有可行的子树都要已被搜索遍才结束。

算法分析与设计选修课-贪心算法应用研究

武汉理工大学 算法设计与分析论文题目:贪心算法应用研究 姓名:吴兵 学院:信息工程 专业班级:电子133 学号: 1409721303131 任课教师:张小梅

目录 摘要 (1) 1.绪论 (2) 2贪心算法的基本知识概述 (3) 2.1 贪心算法定义 (3) 2.2 贪心算法的基本思路及实现过程 (3) 2.3贪心算法的核心 (3) 2.4贪心算法的基本要素 (4) 2.5 贪心算法的理论基础 (6) 2.6 贪心算法存在的问题 (7) 3贪心算法经典应用举例 (8) 3.1删数问题 (8) 3.2 汽车加油问题 (10) 3.3会场安排问题 (12) 4.总结 (16) 5.参考文献 (17)

摘要 在求最优解问题的过程中,依据某种贪心标准,从问题的初始状态出发,直接去求每一步的最优解,通过若干次的贪心选择,最终得出整个问题的最优解,这种求解方法就是贪心算法。从贪心算法的定义可以看出,贪心法并不是从整体上考虑问题,它所做出的选择只是在某种意义上的局部最优解,而由问题自身的特性决定了该题运用贪心算法可以得到最优解。贪心算法所作的选择可以依赖于以往所作过的选择,但决不依赖于将来的选择,也不依赖于子问题的解,因此贪心算法与其它算法相比具有一定的速度优势。如果一个问题可以同时用几种方法解决,贪心算法应该是最好的选择之一。本文讲述了贪心算法的含义、基本思路及实现过程,贪心算法的核心、基本性质、特点及其存在的问题。并通过贪心算法的特点举例列出了以往研究过的几个经典问题,对于实际应用中的问题,也希望通过贪心算法的特点来解决。 关键词:贪心算法最小生成树多处最优服务次序问题删数问题

01背包问题动态规划详解及C++代码

0/1背包问题动态规划详解及C++代码 1. 问题描述 给定一个载重量为C的背包 有n个物品 其重量为wi 价值为vi 1<=i<=n 要求:把物品装入背包 并使包内物品价值最大2. 问题分析 在0/1背包问题中 物体或者被装入背包 或者不被装入背包 只有两种选择。循环变量i j意义 前i个物品能够装入载重量为j的背包中 数组c意义 c[i][j]表示前i个物品能装入载重量为j的背包中物品的最大价值 若w[i]>j 第i个物品不装入背包 否则 若w[i]<=j且第i个物品装入背包后的价值>c[i-1][j] 则记录当前最大价值 替换为第i个物品装入背包后的价值 其c++代码如下 #include using namespace std; void KANPSACK_DP(int c[50][50], int w[50], int v[50], int n, int C) { for(int i = 0; i <= C; i ++) { c[0][i] = 0; } for(int i = 1; i <= n; i ++) { c[i][0] = 0; for(int j = 1; j <= C; j ++) { if(w[i] <= j) { if(v[i] + c[i - 1][j - w[i]] > c[i - 1][j]) c[i][j] = v[i] + c[i - 1][j - w[i]]; else c[i][j] = c[i - 1][j]; } else c[i][j] = c[i - 1][j]; } } } void OUTPUT_SACK(int c[50][50], int x[50], int w[50], int n, int C) { for(int k = n; k >= 2; k --) { if(c[k][C] == c[k-1][C]) x[k] = 0; else { x[k] = 1; C = C - w[k];

动态规划和贪心的区别

动态规划和贪心算法的区别 动态规划法的基本思路: 动态规划是通过拆分问题,定义问题状态和状态之间的关系,使得问题能够以递推的方式去解决。此算法常用于求解某种最优性质的问题。在这类问题中,可能会有许多可行解。每一个解都对应于一个值,我们希望找到具有最优值的解。动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的。若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次。如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间。我们可以用一个表来记录所有已解的子问题的答案,消除递归过程中产生的大量重叠子问题。不管该子问题以后是否被用到,只要它被计算过,就将其结果填入表中。 贪心算法的基本思想: 在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,贪心算法所得出的解是一系列局部最优的选择。 把求解的问题分成若干个子问题,对每一子问题求解,得到子问题的局部最优解,把子问题的解局部最优解合成原来解问题的一个解。为了解决问题,需要寻找一个构成解的候选对象集合,起初,算法选出的候选对象的集合为空。接下来的每一步中,根据选择函数,算法从剩余候选对象中选出最有希望构成解的对象。如果集合中加上该对象后不可行,那么该对象就被丢弃并不再考虑;否则就加到集合里。每一次都扩充集合,并检查该集合是否构成解。 由以上可知:在贪心算法中,作出的每步贪心决策都无法改变,因为贪心策略是由上一步的最优解推导下一步的最优解,而上一部之前的最优解则不作保留。并且,每一步的最优解一定包含上一步的最优解。 而在动态规划算法中,全局最优解中一定包含某个局部最优解,但不一定包含前一个局部最优解,因此需要记录之前的所有最优解。动态规划的关键是状态

动态规划算法举例分析

动态规划算法 1. 动态规划算法介绍 基本思想是将待求解问题分解成若干子问题,先求解子问题,最后用这些子问题带到原问题,与分治算法的不同是,经分解得到的子问题往往是不是相互独立,若用分治则子问题太多。 2. 适用动态规划算法问题的特征 (1)最优子结构 设计动态规划算法的第一步骤通常是要刻画最优解的结构。当问题的最优解包含了其子问题的最优解时,称该问题具有最优子结构性质。问题的最优子结构性质提供了该问题可用动态规划算法求解的重要线索。 在动态规划算法中,问题的最优子结构性质使我们能够以自底向下的方式递归地从子问题的最优解逐步构造出整个问题的最优解。同时,它也使我们能在相对小的子问题空间中考虑问题。 (2)重叠子问题 可用动态规划算法求解的问题应具备的另一基本要素是子问题的重叠性质。在用递归算法自顶向下解此问题时,每次产生的子问题并不总是新问题,有些子问题被反复计算多次。动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题只解一次,而后将其解保存在一个表格中,当再次需要解此子问题时,只有简单地用常数时间查看一下结果。通常,不同的子问题个数随输入问题的大小呈多项式增长。因此,用动态规划算法通常只需要多项式时间,从而获得较高的解题效率。 (3)备忘录方法

动态规划算法的一个变形是备忘录方法。备忘录方法也是一个表格来保存已解决的子问题的答案,在下次需要解此子问题时,只要简单地查看该子问题的解答,而不必重新计算。与动态规划算法不同的是,备忘录方法的递归方式是自顶向下的,而动态规划算法则是自底向上递归的。因此,备忘录方法的控制结构与直接递归方法的控制结构相同,区别在于备忘录方法为每个解过的子问题建立了备忘录以备需要时查看,避免了相同子问题的重复求解。 备忘录方法为每个子问题建立一个记录项,初始化时,该记录项存入一个特殊的值,表示该子问题尚未求解。在求解过程中,对每个待求的子问题,首先查看其相应的记录项。若记录项中存储的是初始化时存入的特殊值,则表示该子问题是第一次遇到,则此时计算出该子问题的解,并保存在其相应的记录项中。若记录项中存储的已不是初始化时存入的特殊值,则表示该子问题已被计算过,其相应的记录项中存储的是该子问题的解答。此时,只要从记录项中取出该子问题的解答即可。 3. 基本步骤 a 、找出最优解的性质,并刻画其结构特征。 b 、递归地定义最优值。 c 、以自底向上的方式计算出最优值。 d 、根据计算最优值时得到的信息构造一个最优解。(可省) 例1-1 [0/1背包问题] [问题描述] 用贪心算法不能保证求出最优解。在0/1背包问题中,需要对容量为c 的背包进行装载。从n 个物品中选取装入背包的物品,每件物品i 的重量为i w ,价 值为 i v 。对于可行的背包装载,背包中物品的总重量不能超过背包的容量,最佳 装载是指所装入的物品价值最高,即∑=n i i i x v 1 取得最大值。约束条件为 c x w n i i i ≤∑=1 , {}() n i x i ≤≤∈11,0。

相关文档
相关文档 最新文档