文档库 最新最全的文档下载
当前位置:文档库 › 整流变压器的参数计算

整流变压器的参数计算

整流变压器的参数计算
整流变压器的参数计算

变压器参数计算

变压器参数计算 一.电磁学计算公式推导: 1.磁通量与磁通密度相关公式: Ф= B * S ⑴ Ф----- 磁通(韦伯) B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯S ----- 磁路的截面积(平方米) B = H * μ⑵ μ----- 磁导率(无单位也叫无量纲) H ----- 磁场强度(伏特每米) H = I*N / l ⑶ I ----- 电流强度(安培) N ----- 线圈匝数(圈T) l ----- 磁路长路(米) 2.电感中反感应电动势与电流以及磁通之间相关关系式: EL =⊿Ф/ ⊿t * N ⑷

EL = ⊿i / ⊿t * L ⑸ ⊿Ф----- 磁通变化量(韦伯) ⊿i ----- 电流变化量(安培) ⊿t ----- 时间变化量(秒) N ----- 线圈匝数(圈T) L ------- 电感的电感量(亨) 由上面两个公式可以推出下面的公式: ⊿Ф/ ⊿t * N = ⊿i / ⊿t * L 变形可得: N = ⊿i * L/⊿Ф 再由Ф= B * S 可得下式: N = ⊿i * L / ( B * S ) ⑹ 且由⑸式直接变形可得: ⊿i = EL * ⊿t / L ⑺ 联合⑴⑵⑶⑷同时可以推出如下算式: L =(μ* S )/ l * N2 ⑻ 这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素) 3.电感中能量与电流的关系: QL = 1/2 * I2 * L ⑼ QL -------- 电感中储存的能量(焦耳) I -------- 电感中的电流(安培) L ------- 电感的电感量(亨)

桥式整流电路计算

桥式整流电路计算 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

桥式整流电路计算 桥式整流属于全波整流,它不是利用副边带有中心抽头的变压器,用四个二极管接成电桥形式,使在电压V 2 的正负半周均有电流流过负载,在负载形成单方向的全波脉动电压。 桥式整流电路计算主要参数: 单相全波整流电路图 利用副边有中心抽头的变压器和两个二极管构成如下图所示的全波整流电路。从图中可见正负半周都有电流流过负载,提高了整流效率。 全波整流的特点: 输出电压V O 高;脉动小;正负半周都有电流供给负载,因而变压器得到充分利用,效率较高。 主要参数: 桥式整流电路电感滤波原理 电感滤波电路利用电感器两端的电流不能突变的特点,把电感器与负载串联起来,以达到使输出电流平滑的目的。从能量的观点看,当电源提供的电流增大(由电源电压增加引起)时,电感器L把能量存储起来;而当电流减小时,又把能量释放出来,使负载电流平滑,电感L有平波作用 桥式整流电路电感滤波优点:整流二极管的导电角大,峰值电流小,输出特性较平坦。 桥式整流电路电感滤波缺点:存在铁心,笨重、体积大,易引起电磁干扰,一般只适应于低电压、大电流的场合。 例10.1.1桥式整流器滤波电路如图所示,已知V 1 是220V交流电源,频率为 50Hz,要求直流电压V L =30V,负载电流I L =50mA。试求电源变压器副边电压v 2 的有效 值,选择整流二极管及滤波电容。 桥式整流电路电容滤波电路 图分别是单相桥式整流电路图和整流滤波电路的部分波形。这里假设t<0时,电容器C已经充电到交流电压V 2 的最大值(如波形图所示)。 结论1:由于电容的储能作用,使得输出波形比较平滑,脉动成分降低输出电压的平均值增大。 结论2:从图可看出,滤波电路中二极管的导电角小于180o,导电时间缩短。因此,在短暂的导电时间内流过二极管很大的冲击电流,必须选择较大容量的二极管。 在纯电阻负载时: 有电容滤波时: 结论3:电容放电的时间τ=R L C越大,放电过程越慢,输出电压中脉动(纹波)成分越少,滤波效果越好。取τ≥(3~5)T/2,T为电源交流电压的周期。 整流电路输出电压计算 对于整流电压的输出电压大小,大家一定不陌生。很多人会说,输出平均值全波倍,半波倍的交流有效。但是在设计中,我们常常发现一个事实,例如在半波整流后,

桥式整流电路计算

桥式整流电路计算 桥式整流属于全波整流,它不是利用副边带有中心抽头的变压器,用四个二极管接成电桥形式,使在电压V2的正负半周均有电流流过负载,在负载形成单方向的全波脉动电压。 桥式整流电路计算主要参数: 单相全波整流电路图 利用副边有中心抽头的变压器和两个二极管构成如下图所示的全波整流电路。从图中可见正负半周都有电流流过负载,提高了整流效率。 全波整流的特点: 输出电压V O高;脉动小;正负半周都有电流供给负载,因而变压器得到充分利用,效率较高。 主要参数: 桥式整流电路电感滤波原理 电感滤波电路利用电感器两端的电流不能突变的特点,把电感器与负载串联起来,以达到使输出电流平滑的目的。从能量的观点看,当电源提供的电流增大(由电源电压增加引起)时,电感器L把能量存储起来;而当电流减小时,又把能量释放出来,使负载电流平滑,电感L有平波作用

桥式整流电路电感滤波优点:整流二极管的导电角大,峰值电流小,输出特性较平坦。 桥式整流电路电感滤波缺点:存在铁心,笨重、体积大,易引起电磁干扰,一般只适应于低电压、大电流的场合。 例10.1.1桥式整流器滤波电路如图所示,已知V1是220V交流电源,频率为50Hz,要求直流电压V L=30V,负载电流I L=50mA。试求电源变压器副边电压v2的有效值,选择整流二极管及滤波电容。

桥式整流电路电容滤波电路 图10.5分别是单相桥式整流电路图和整流滤波电路的部分波形。这里假设t<0时,电容器C已经充电到交流电压V2的最大值(如波形图所示)。 结论1:由于电容的储能作用,使得输出波形比较平滑,脉动成分降低输出电压的平均值增大。

可控硅整流电路计算题

例8.1有一电阻性负载要求0~24V连续可调的直流电压,其最大负载电流,若由交流电网220V供电与用整流变压器降至60V供电,都采用单相 半波可控整流电路,是否都能满足要求?并比较两种方案所选晶闸管的导通角、额定电压、额定电流值以及电源和变压器二次侧的功率因数和对电源的容量要求等有何不同、两种方案哪种更合理(考虑2倍裕量)? 解(1)采用220V电源直接供电,当时 采用整流变压器降至60V供电,当时 所以只要适当调节角,上述两种方案都能满足输出0~24V直流电压的要求。 (2)采用220V电源直接供电,因为,其中在输出最大 时,,,则计算得, 晶闸管承受的最大电压为 考虑2倍裕量,晶闸管额定电压 由式(8.20)知流过晶闸管的电流有效值是 ,其中,, 则 考虑2倍裕量,则晶闸管额定电流应为

因此,所选晶闸管的额定电压要大于622V,额定电流要大于107A。 电源提供的有功功率 电源的视在功率 电源侧功率因数 (3)采用整流变压器降至60V供电,已知,,由公式可解得 晶闸管承受的最大电压为 考虑2倍裕量,则晶闸管额定电压 流过晶闸管的最大电流有效值是 考虑2倍裕量,则晶闸管额定电流应为

因此,所选晶闸管的额定电压要大于169.8V,额定电流要大于65.5A。 电源提供的有功功率 电源的视在功率 则变压器侧的功率因数 例8.2单相桥式全控整流电路带大电感负载,,,计算当时,输出电压、电流的平均值以及流过晶闸管的电流平均值和有效值 以及流过晶闸管的电流平均值和有效值。若负载两端并接续流二极管,如图8.15所示,则输出电压、电流的平均值又是多少?流过晶闸管和续流二极管的平均值和有效值又是多少?并画出这两种情况下的电压、电流波形。 解(1)不接续流二极管时的电压、电流波形如图8.16(a)所示,由于是大电感负载,故由式(8.36)和式(8.27)可得 因负载电流是由两组晶闸管轮流导通提供的,故由式(8.38)知,流过晶闸管的电流平均值和有效值为

电解铝用大型整流变压器额定参数计算示例

有载调压整流变压器额定参数计算示例 项目示例:包头铝业ZHSFPTB-113200/220自耦有载调压整流变 包头铝业股份有限责任公司三期电解铝清洁生产、扩大合金产能、节能技改项目,工程建设厂址为包头铝业股份有限责任公司电解三公司。该工程利用原电解三公司空闲场地及现有的共用辅助设施,采用一次规划、分步实施的方案,先行建设4 万吨电解铝,两年内,逐步改造为 13.8 万吨,项目投资 81420 万元。企业自筹资金。 电解铝生产工艺选用240KA中间加料预焙阳极电解槽技术。新建两栋电解厂房内安装 218台240KA中间下料预焙阳极电解槽,并采用电解烟气密闭机器集气氧化铝吸附干法净化技术。 此项目供电系统按年产140Kt电解铝用电负荷考虑,全厂最大负荷为 203430KW。确定220KV系统主接线采用双母线系统,两回路220KV电源进线,整流所选择四组调压-整流变压器及整流器。辅助电力变压器二台。 技术要求: 1.网侧电压U1=220kV(+7.5%,-5%);当电网电压为220kV-5%时,保证机组直流额定输出电压仍保 持1050VDC,电网电压220kV+7.5%时不过激磁,且能长期运行。 3. 单机最高直流空载电压Udi0=1200 V;单机直流额定电压 UdN=1050V; 4. 单机直流额定电流 IdN=2×45kA; 5.整流变最大分接总额定阻抗:14~16%; 6.单机脉波数:P=12;总脉波为:12X4=48;主变采用两个独立铁芯。主变一次侧设移相线圈,移相 角:±3.75°、±11.25°共4台; 7.调变补偿绕组电压9.5kV,容量20000kVA; 8.有载粗细调压:粗调5级,细调16级,调压级数共79级;调压范围:5%~105%; 9.额定总损耗:不大于950kW; 10.冷却方式:OFAF;饱和电抗器调压深度70V; 11.调变的联结组别为YN a0 d11,主变的联结组别为ZN y0-y6/d11-d5; 12. 调变、主变(含饱和电抗器)采用分箱合体结构;调变与主变之间采用油-油套管联结; 13. 绕组的绝缘水平:网侧LI950AC395;阀侧AC6;中性点LI325AC140; 额定参数计算: 一、单机最高直流空载电压Udi0、阀侧交流线电压U2; 【验证性计算,在很多项目中只给出Udn,Udi0需自行计算;】 这个数值包括五个部分。即 1)额定直流电压U dN; 2)各种电抗压降; 3)各种损耗对应的电阻压降; 4)电网电压波动百分数;

经验整流电路简单的计算公式

整流二极管可用半导体锗或硅等材料制造。硅整流二极管的击穿电压高,反向漏电流小,高温性能良好。通常高压大功率整流二极管都用高纯单晶硅制造。这种器件的结面积较大,能通过较大电流(可达上千安),但工作频率不高,一般在几十千赫以下。整流二极管主要用于各种低频整流电路。 整流电路分类: 单向、三相与多项整流电路; 还可分为半波、全波、桥式整流电路; 又可分为可控与不可控;当全部或部分整流元件为可控硅(晶闸管)时称可控整流电路 (一)不可控整流电路 1、单向二极管半波整流电路 半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低;因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。 输出直流电压U=0.45U2 流过二极管平均电流I=U/RL=0.45U2/RL 二极管截止承受的最大反向电压是Um反=1.4U2 2、单向二极管全波整流电路 因此称为全波整流,全波整流不仅利用了正半周,而且还巧妙地利用了负半周,从而大大地提高了整流效率(Usc=0.9e2,比半波整流时大一倍) 另外,这种电路中,每只整流二极管承受的最大反向电压,是变压器次级电压最大值的两倍,因此需用能承受较高电压的二极管。 输出直流电压U=0.9U2

流过二极管平均电流只是负载平均电流的一半,即流过负载的电流I=0.9U2/RL流过二极管电流I=0.45U2/RL 二极管截止时承受2.8U2的反向电压 因此选择二极管参数的依据与半波整流电路相比有所不同,由于交流正负两个半周均有电流流过负载,因此变压器的利用率比半波整流高。 二极管全波整流的另一种形式即桥式整流电路,是目前小功率整 流电路最常用的整流电路。 3、二极管全波整流的结论都适用于桥式整流电路,不同点仅是每个二 极管承受的反向电压比全波整流小了一半。 桥式电路中每只二极管承受的反向电压等于变压器次级电压的最大值,比全波整洗电路小一半! U=0.9U2 流过负载电流I=0.9U2/RL 流过二极管电流I=0.45U2/RL 二极管截止承受反向电压U=1.4U2 另外,在高电压或大电流的情况下,如果手头没有承受高电压或整定大电滤的整流元件,可以把二极管串联或并联起来使用。 图5-7 示出了二极管并联的情况:两只二极管并联、每只分担电路总电流的一半,三只二极管并联,每只分担电路总电流的三分之一。总之,有几只二极管并联,"流经每只二极管的电流就等于总电流的几分之一。但是,在实际并联运用时",由于各二极管特性不完全一致,不能均分所通过的电流,会使有的管子困负担过重而烧毁。因此需在每只二极管上串联一只阻值相同的小电阻器,使各并联二极管流过的电流接近一致。这种均流电阻R 一般选用零点几欧至几十欧的电阻器。电流越大,R应选得越小。

整流变压器的参数计算

整流变压器的参数计算 晶闸管变流设备一般都是通过变压器与电网连接的,因此其工作频率为工频初级电压即 为交流电网电压.经过变压器的耦合,晶闸管主电路可以得到一个合适的输入电压,是晶闸 管在较大的功率因数下运行.变流主电路和电网之间用变压器隔离,还可以抑制由变流器进 入电网的谐波成分,减小电网污染.在变流电路所需的电压与电网电压相差不多时,有时会 采用自耦变压器;当变流电路所需的电压与电网电压一致时,也可以不经变压器而直接与电 网连接,不过要在输入端串联"进线电抗器"以减少对电网的污染. 变压器的参数计算之前,应该确定负载要求的直流电压和电流,确定变流设备的主电路 接线形式和电网电压.先选择其次级电压有效值U2,U2数值的选择不可过高和过低,如果 U2过高会使得设备运行中为保证输出直流电压符合要求而导致控制角过大,使功率因数变 小;如果U2过低又会在运行中出现当α=αmin时仍然得不到负载要求的直流电压的现象.通 常次级电压,初级和次级电流根据设备的容量,主接线结构和工作方式来定.由于有些主接 线形式次级电流中含有直流成分,有的又不存在,所以变压器容量(视在功率)的计算要根 据具体情况来定. 5.5.1 变压器次级相电压U2的计算 整流器主电路有多种接线形式,在理想情况下,输出直流电压Ud与变压器次级相电压U2有以下关系 BUVdKUKU2= (5.39) 其中KUV为与主电路接线形式有关的常数;KB为以控制角为变量的函数,设整流器在控 制角α=0和控制角不为0时的输出电压平均值分别为Ud0和Udα,则KUV= Ud0/ U2,KB=Ud α/Ud0. 在实际运行中,整流器输出的平均电压还受其它因素的影响,主要为: (1)电网电压的波动.一般的电力系统,电网电压的波动允许范围在+5%~-10%,令 ε为电压波动系数,则ε在0.9~1.05之间变化,这是选择U2的依据之一.考虑电网电压最 低的情况,设计中通常取ε=0.9~0.95. (2)整流元件(晶闸管)的正向压降.在前面对整流电路的分析中,没有考虑整流元 件的正向压降对输出电压的影响,实际上整流元件要降掉一部分输出电压,设其为UT.由 于整流元件与负载是串联的,所以导通回路中串联元件越多,降掉的电压也就越多.令

电力变压器的详细技术参数

电力变压器技术参数详解 变压器在规定的使用环境和运行条件下,主要技术数据一般都都标注在变压器的铭牌上。主要包括:额定容量、额定电压及其分接、额定频率、绕组联结组以及额定性能数据(阻抗电压、空载电流、空载损耗和负载损耗)和总重。 A、额定容量(kVA):额定电压.额定电流下连续运行时,能输送的容量。 B、额定电压(kV):变压器长时间运行时所能承受的工作电压.为适应电网电压变化的需要,变压器高压侧都有分接抽头,通过调整高压绕组匝数来调节低压侧输出电压. C、额定电流(A):变压器在额定容量下,允许长期通过的电流. D、空载损耗(kW): 当以额定频率的额定电压施加在一个绕组的端子上,其余绕组开路时所吸取的有功功率。与铁心硅钢片性能及制造工艺、和施加的电压有关. E、空载电流(%): 当变压器在额定电压下二次侧空载时,一次绕组中通过的电流.一般以额定电流的百分数表示. F、负载损耗(kW): 把变压器的二次绕组短路,在一次绕组额定分接位置上通入额定电流,此时变压器所消耗的功率. G、阻抗电压(%):把变压器的二次绕组短路,在一次绕组慢慢升高电压,当二次绕组的短路电流等于额定值时,此时一次侧所施加的电压.一般以额定电压的百分数表示. H、相数和频率:三相开头以S表示,单相开头以D表示。中国国家标准频率f为50Hz。国外有60Hz的国家(如美国)。 I、温升与冷却:变压器绕组或上层油温与变压器周围环境的温度之差,称为绕组或上层油面的温升.油浸式变压器绕组温升限值为65K、油面温升为55K。冷却方式也有多种:油浸自冷、强迫风冷,水冷,管式、片式等。 J、绝缘水平:有绝缘等级标准。绝缘水平的表示方法举例如下:高压额定电压为35kV级,低压额定电压为10kV级的变压器绝缘水平表示为 LI200AC85/LI75AC35,其中LI200表示该变压器高压雷电冲击耐受电压为200kV,工频耐受电压为85kV,低压雷电冲击耐受电压为75kV,工频耐受电压为35kV.奥克斯高科技有限公司目前的油浸变压器产品的绝缘水平为

整流变压器原理

整流变压器工作原理及特点介绍 整流变压器的原理 整流变压器和普通变压器的原理相同。变压器是根据电磁感应原理制成的一种变换交流电压的设备。变压器一般有初线和次级两个互相独立绕组,这两个绕组共用一个铁芯.变压器初级绕组接通交流电源,在绕组内流过交变电流产生磁势,于是在闭合铁芯中就有交变磁通。初、次级绕组切割磁力线,在次级就能感应出相同频率的交流电。变压器的初,次级绕组的匝数比等于电压比。如一个变压器的初级绕组是440匝,次级是220匝。初级输入电压为220V,在变压器的次就能得到110V的输出电压。有的变压器可以有多个次级绕组和抽头,这样就可以获得多个输出电压了。 整流变压器的特点 与整流器组成整流设备以便从交流电源取得直流电能的变压器。整流设备是现代工业企业最常用的直流电源,广泛用于直流输电、电力牵引、轧钢、电镀、电解等领域。 整流变压器的原边接交流电力系统,称网侧;副边接整流器,称阀侧。整流变压器的结构原理和普通变压器相同,但因其负载整流器与一般负载不同而有以下特点: (1)整流器各臂在一个周期内轮流导通,导通时间只占一个周期一部分,所以,流经整流臂的电流波形不是正弦波,而是接近于断续的矩形波;原、副绕组中的电流波形也均为非正弦波。图中所示为三相桥式Y/Y接法时的电流波形。用晶闸管整流时,滞后角越大,电流起伏的陡度也越大,电流中谐波成分也越多,这将使涡流损耗增大。由于副绕组的导电时间只占一个周期的一部分,故整流变压器利用率降低。与普通变压器相比,在相同条件下,整流变压器的体积和重量都较大。 1

(2)普通变压器原、副边功率相等(忽略损耗),变压器的容量就是原绕组(或副绕组)的容量。但对于整流变压器,其原、副绕组的功率有可能相等,也可能不等(当原、副边电流波形不同时,例如半波整流),故整流变压器的容量是原、副边视在功率的平均值,称为等值容量,即式中S1为原边视在功率,S2为副边视在功率。 (3)与普通变压器相比,整流变压器的耐受短路电动力的能力必须严格符合要求。因此,如何使产品具有短路动稳定性,是设计、制造中的重要课题。 电化学工业----这是应用整流变最多的行业,电解有色金属化合物以制取铝、镁、铜及其它金属;电解食盐以制取氯碱;电解水以制取氢和氧。 牵引用直流电源----用于矿山或城市电力机车的直流电网。由于阀侧接架空线,短路故障较多,直流负载变化辐度大,电机车经常起动,造成不同程度的短时过载。为此这类变压器的温升限值和电流密度均取得较低。阻抗比相应的电力变压器大30%左右。 传动用直流电源----主要用来为电力传动中的直流电机供电,如轧钢机的电枢和励磁。 直流输电用----这类整流变压器的电压一般在110kV以上,容量在数万千伏安。需特别注意对地绝缘的交、直流叠加问题。 此外还有电镀用或电加工用直流电源,励磁用直流电源,充电用及静电除尘用直流电源等。 整流变压器的使用原因 应用整流变最多的化学行业中,大功率整流装置也是二次电压低,电流很大,因此很大,因此它们在很多方面与电炉变是类似的,即前所述的结构特征点,整流变压器也同样具备。整流变压器最大的特点是二次电流不是正弦交流了,由于后续整流元件的单向导通特征,各 2

整流电路计算

桥式整流属于全波整流,它不是利用副边带有中心抽头的变压器,用四个二极管接成电桥形式,使在电压V2的正负半周均有电流流过负载,在负载形成单方向的全波脉动电压。 桥式整流电路计算主要参数: 单相全波整流电路图 利用副边有中心抽头的变压器和两个二极管构成如下图所示的全波整流电路。从 图中可见,正负半周都有电流流过负载,提高了整流效率。 全波整流的特点: 输出电压V O高;脉动小;正负半周都有电流供给负载,因而变压器得到充 分利用,效率较高。 主要参数:

桥式整流电路电感滤波原理 电感滤波电路利用 电感器两端的电流不能突变的特点,把电感器与负载串联起来,以达到使输出电流平滑的目的。从能量的观点看,当电源提供的电流增大(由电源电压增加引起)时,电感器L把能量存储起来;而当电流减小时,又把能量释放出来,使负载电流平滑,电感L有平波作用 桥式整流电路电感滤波优点:整流二极管的导电角大,峰值电流小,输出特性较平坦。 桥式整流电路电感滤波缺点:存在铁心,笨重、体积大,易引起电磁干扰, 只适应于低电压、大电流的场合。

例10.1.1桥式整流器滤波电路如图所示,已知V1是220V交流电源,频率为50Hz, 直流电压V L=30V,负载电流I L=50mA。试求电源变压器副边电压v2的有效值,选择整流二极管及滤波电容。

桥式整流电路电容滤波电路 图10.5分别是单相桥式整流电路图和整流滤波电路的部分波形。这里假设‘ 、 t<0时,电容器C已经充电到交流电压V2的最大值(如波形图所示)。 结论1:电容的储能作用,使得输出波形比较平滑,脉动成分降低输出电压的平均值增大。

《整流变压器简介》word版

整流变压器简介、用途、工作原理及操作方法 整流变压器整流变压器是整流设备的电源变压器。整流设备的特点是原方输入电流,而副方通过整流原件后输出直流。变流是整流、逆流和变频三种工作方式的总称,整流是其中应用最广泛的一种。作为整流装置电源用的变压器称为整流变压器。工业用的整流直流电源大部分都是由交流电网通过整流变压器与整流设备而得到的。 整流变压器是整流设备的电源变压器。整流设备的特点是原边输入交流,而副边输出通过整流元件后输出直流。作为整流装置电源用的变压器称为整流变压器。工业用的整流直流电源大部分都是由交流电网通过整流变压器与整流设备而得到的。 整流变压器是专供整流系统的变压器。 功能: 1.是供给整流系统适当的电压; 2.是减小因整流系统造成的波形畸变对电网的污染。 用途广泛用于照明、机床电器、机械电子设备、医疗设备、整流装置等。产品性能均能满足用户各种特殊要求。 一、电化学工业 这是应用整流变最多的行业,电解有色金属化合物以制取铝、镁、铜及其它金属;电解食盐以制取氯碱;电解水以制取氢和氧。 二、牵引用直流电源 用于矿山或城市电力机车的直流电网。由于阀侧接架空线,短路故障较多,直流负载变化辐度大,电机车经常起动,造成不同程度的短时过载。为此这类变压器的温升限值和电流密度均取得较低。阻抗比相应的电力变压器大30%左右。 三、传动用直流电源

主要用来为电力传动中的直流电机供电,如轧钢机的电枢和励磁。 四、直流输电用 这类整流变压器的电压一般在110kV以上,容量在数万千伏安。需特别注意对地绝缘的交、直流叠加问题。 此外还有电镀用或电加工用直流电源,励磁用直流电源, 充电用及静电除尘用直流电源等。 工作原理 整流变压器应用整流变最多的化学行业中,大功率整流装置也 是二次电压低,电流很大,因此它们在很多方面与电炉变是类 似的,即前所述的结构特征点,整流变压器也同样具备。整流 变压器最大的特点是二次电流不是正弦交流了,由于后续整流 元件的单向导通特征,各相线不再同时,流有负载电流而是软 流导电,单方向的脉动电流经滤波装置变为直流电,整流变压 器的二次电压,https://www.wendangku.net/doc/948916611.html,/电流不仅与容量连接 组有关,如常用的三相桥式整流线路,双反量带平衡电抗器的 整流线路,对于同样的直流输出电压、电流所需的整流变压器 的二次电压和电流却不相同,因此整流变压器的参数计算是以 整流线路为前提的,一般参数计算都是从二次侧开始向一次侧 推算的。 由于整流变绕组电流是非正弦的含有很多高次谐波,为了减小 对电网的谐波污染,为了提高功率因数,必须提高整流设备的 脉波数,这可以通过移相的方法来解决。移相的目的是使整流 变压器二次绕组的同名端线电压之间有一个相位移。 移相方法 移相方法就是二次侧采用量、角联结的两个绕组,可以使整流 电炉的脉波数提高一倍。 10kv干式整流变压器 对于大功率整流设备,需要脉波数也较多,脉波数为18、24、 36 https://www.wendangku.net/doc/948916611.html,/等应用的日益增多,这就必须在

桥式整流电压计算

整流电路将交流电压变换成单向脉动的电压,为了改善电压的脉动程度,得到较平直的直流电压,以满足电子设备的需要,常在整流电路输出端接上滤波电路。 滤波电路主要由电容、电感元件组成,从本篇的电容滤波电路开始,分三篇分别介绍这几种滤波电路。如下图所示,在桥式整流电路负载两端并联一个电容器C,利用电容C的充放电作用,可以使负载上得到的电压较为平直。 当输入电压u2u2正半周时,如果u2>u C u2>uC,二极管VD1、VD3导通(参看《二极管单相整流电路:桥式整流工作原理及桥式整流组件(硅堆)》的单相桥式整流电路图),电流流过负载R L RL的同时,也对电容C充电,忽略二极管的正向管压降,电容C两端的电压u C uC和输入电压u2u2相同,并充电到最大值2√u22u2,当u2u2按正弦规律连续下降时,在接负载R L RL的情况下,开始时u C uC也是按u2u2的规律下降;但是,由于u2u2的下降速度大于u C uC的下降速度,所以下降到u2u C|u2|>uC时,如上图,VD2、VD4开始导通,此时电容C放电停止,u2u2重新对电容充电,使u C uC按正弦规律充电到最大值2√u22u2,然后u2u2下降到|u2|

变压器参数计算(精)

Page 6 of 6 条件:INPUT :120V/60HZ OUTPUT : 30VDC@1.17A FULL WAVE RECTIFIER 12VDC @500mA FULL WAVE RECTIFIER 温升≤ 600C 电压调整率≤ 10% 解答: 1、原理图 2、交 /直流功率、电流、电压的转换 A 、功率 SEC#1DC 次级第二绕组交流输出功率 : PSEC#2=PDC x 1.57=1.57x 0.5x12=9.42W 次级交流输出总功率 : P总 =( PSEC#1+PSEC#2x2=(55.1+9.42x2=129.04W B 、电流次级第一绕组电流应为双臂电流 : I=0.82719 x 2=1.654A 次级第二绕组电流应为双臂电流 : I=0.3535 x 2=0.707A C 、电压 3、

4、 Sc D Wa 故有 (2d 2h 2d 2h 2当当转换系数K 0=交流输出功率/直流输出功率 转换系数K 1=次级交流电流/次级直流电流 次级第一绕组单臂电流 : K1=IAC /IDC IAC =0.707 x 1.17=0.82917ALT82- T8428A 次级第二绕组单臂电流 : K1' =IAC /IDC IAC ' =0.707 x 0.5=0.3535A转换系数K 2=次级交流电压/次级直流电压 次级第一绕组交流电压 : K2=UAC /UDC UAC =1.11 x 30=33.3V 次级第二绕组交流电压 : K2=UAC /UDC UAC ' =1.11 x 12=13.32V

当 5、 N SEC#1=145T SEC#2: 13.32X108= 4.44x60 xNSEC x1.5x104x 5.74=2301.7x104 N SEC#2=58T 6、电流的计算 A 次级反射到初级的电流 I 2’=Isec#1 NSEC#1/NPRI +Isec#2 NSEC#2/NPRI =1.654x145/523+0.707x58/523=0.536A B 铁损电流 铁的重量 G=p x Sc x Lc=7.65 x(8.5-4.4/2 x 2.8 x 0.97 x3.14 x (8.5+4.4/2 x 10-3 =0.863KG 因 1KG 铁片它的损耗为 3W, 所以磁环的铁损为 3X 0.863=2.59W 磁环的铁损电流 I=2.59/120=21.6MA

经验整流电路简单的计算公式

经验整流电路简单的计 算公式 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-ZZT18】

整流二极管可用半导体锗或硅等材料制造。硅整流二极管的击穿电压高,反向漏电流小,高温性能良好。通常高压大功率整流二极管都用高纯单晶硅制造。这种器件的结面积较大,能通过较大电流(可达上千安),但工作频率不高,一般在几十千赫以下。整流二极管主要用于各种低频整流电路。 整流电路分类: 单向、三相与多项整流电路; 还可分为半波、全波、桥式整流电路; 又可分为可控与不可控;当全部或部分整流元件为可控硅(晶闸管)时称可控整流电路 (一)不可控整流电路 1、单向二极管半波整流电路 半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低;因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。 输出直流电压U= 流过二极管平均电流 I=U/RL=RL 二极管截止承受的最大反向电压是 Um反= 2、单向二极管全波整流电路 因此称为全波整流,全波整流不仅利用了正半周,而且还巧妙地利用了负半周,从而大大地提高了整流效率(Usc=,比半波整流时大一倍) 另外,这种电路中,每只整流二极管承受的最大反向电压,是变压器次级电压最大值的两倍,因此需用能承受较高电压的二极管。 输出直流电压U=

流过二极管平均电流只是负载平均电流的一半,即流过负载的电流I=RL流过二极管电流I=RL 二极管截止时承受的反向电压 因此选择二极管参数的依据与半波整流电路相比有所不同,由于交流正负两个半周均有电流流过负载,因此变压器的利用率比半波整流高。 二极管全波整流的另一种形式即桥式整流电路,是目前小功率整 流电路最常用的整流电路。 3、二极管全波整流的结论都适用于桥式整流电路,不同点仅 是每个二极管承受的反向电压比全波整流小了一半。 桥式电路中每只二极管承受的反向电压等于变压器次级电压的最大值,比全波整洗电路小一半! U= 流过负载电流I=RL 流过二极管电流I=RL 二极管截止承受反向电压U= 另外,在高电压或大电流的情况下,如果手头没有承受高电压或整定大电滤的整流元件,可以把二极管串联或并联起来使用。 图5-7 示出了二极管并联的情况:两只二极管并联、每只分担电路总电流的一半,三只二极管并联,每只分担电路总电流的三分之一。总之,有几只二

4-牵引整流变压器设计公式.(SB

有关城市轨道交通用牵引整流变压器设计公式 目前由于全国许多城市的地下铁道和城市轨道交通为了降低电网中的谐波、减小干扰污染,均采用24脉波的整流电源,即在整流装置中使用高压网侧线圈分别不同移相的两台整流变压器,在与各自相应的整流器联结整流后并联供电,以实现24脉波。 ㈠ 24脉波整流用外延三角形移相整流变压器的结构形式与矢量图 整流变压器的高压网侧为并联的两组线圈,每组线圈均为外延三角形结构,移相+7.5°(或-7.5°)。低压阀侧线圈为两个轴向分裂的线圈:一个为三角形联结,一个为星形联结。 高压网侧线圈的接线图及矢量图见图1: 左移相右移相 图 1 ㈡移相α°时高压网侧各线圈的电压等参数的计算

1.移相线圈电压 L L y U U U ?=?=ααsin 3 2 120sin sin (1) 式中,L U - 高压网侧线电压 V ; y U - 高压网侧移相线圈电压 V 。 当 5.7=α时,L y U U ?=15072.0 2.主线圈电压 () ()[]() L L L z U U U U ?-?=?--=???? ? ??--=ααααα 30sin 2sin 60sin 32120sin sin 60sin (2) 当 5.7=α时,L z U U ?=76537.0 3.实际移相角的计算 ?? ? ? ??+=-y z y W W W tg 3231 α ??? ? ??+=-y z y W W W tg 231 α (3) 式中,α - 高压网侧实际的移相角; y W - 移相线圈匝数; z W - 主线圈匝数。 4.当移相角 5.7=α时,变压器高压网侧线圈励磁时的实际匝伏电压计算 y L t W U e ??= 35.7sin 2 (4) 或 ( ) z L t W U e 5.7sin 35.7cos ?-?= (5) 5.低压阀侧三角形联结线圈及星形联结线圈的匝数选取 由于相关的机械行业标准对于牵引用整流变压器的两组低压阀侧线圈(三角形联结 线圈,星形联结线圈)空载线电压的不平衡度有不得大于0.3%的规定,所以在选取低压阀侧线圈(三角形联结线圈,星形联结线圈)的匝数时,尽量使两种线圈的匝数比接近3。

经验:整流电路简单的计算公式

整流二极管可用半导体锗或硅等材料制造。硅整流二极管得击穿电压高,反向漏电流小,高温性能良好。通常高压大功率整流二极管都用高纯单晶硅制造。这种器件得结面积较大,能通过较大电流(可达上千安),但工作频率不高,一般在几十千赫以下。整流二极管主要用于各种低频整流电路。 整流电路分类: 单向、三相与多项整流电路; 还可分为半波、全波、桥式整流电路; 又可分为可控与不可控;当全部或部分整流元件为可控硅(晶闸管)时称可控整流电路 (一)不可控整流电路 1、单向二极管半波整流电路 半波整说就是以"牺牲"一半交流为代价而换取整流效果得,电流利用率很低;因此常用在高电压、小电流得场合,而在一般无线电装置中很少采用。 输出直流电压U=0、45U2 流过二极管平均电流I=U/RL=0、45U2/RL 二极管截止承受得最大反向电压就是Um反=1、4U2 2、单向二极管全波整流电路 因此称为全波整流,全波整流不仅利用了正半周,而且还巧妙地利用了负半周,从而大大地提高了整流效率(Usc=0、9e2,比半波整流时大一倍) 另外,这种电路中,每只整流二极管承受得最大反向电压,就是变压器次级电压最大值得两倍,因此需用能承受较高电压得二极管。 输出直流电压U=0、9U2 流过二极管平均电流只就是负载平均电流得一半,即流过负载得

电流I=0、9U2/RL流过二极管电流I=0、45U2/RL 二极管截止时承受2、8U2得反向电压 因此选择二极管参数得依据与半波整流电路相比有所不同,由于交流正负两个半周均有电流流过负载,因此变压器得利用率比半波整流高。 二极管全波整流得另一种形式即桥式整流电路,就是目前小功率整 流电路最常用得整流电路。 3、二极管全波整流得结论都适用于桥式整流电路,不同点仅 就是每个二极管承受得反向电压比全波整流小了一半。 桥式电路中每只二极管承受得反向电压等于变压器次级电压得最大值,比全波整洗电路小一半! U=0、9U2 流过负载电流I=0、9U2/RL 流过二极管电流I=0、45U2/RL 二极管截止承受反向电压U=1、4U2 另外,在高电压或大电流得情况下,如果手头没有承受高电压或整定大电滤得整流元件,可以把二极管串联或并联起来使用。 图5-7 示出了二极管并联得情况:两只二极管并联、每只分担电路总电流得一半,三只二极管并联,每只分担电路总电流得三分之一。总之,有几只二极管并联,"流经每只二极管得电流就等于总电流得几分之一。但就是,在实际并联运用时",由于各二极管特性不完全一致,不能均分所通过得电流,会使有得

高频变压器计算步骤

高频变压器计算 (CCM模式) 反激式DC/DC变换电路 电路基本参数: Vo1=15V Io1=0.4A Vo2=-10V Io2=0.4A Vs=15V(范围10V~20V) Po=10W 设定参数: 1.电路工作频率(根据UC3843的特性,初步确定为50KHz),电路效率为G=75% 2.反激式变换器的工作模式CCM 3.占空比确定(Dmax=0.4) 4.磁芯选型(EE型) 设计步骤 (1)选择磁芯大小 Pin=Po/G=10/0.75=13.3W(查表),选择EE19磁芯 (2)计算导通时间 Dmax=0.4,工作频率fs=50KHz ton=8us (3)选择工作时的磁通密度 根据所选择的磁芯EE19(PC40材料)Ae=22mm2,Bmax=0.22T (4)计算原边匝数 Np=(Vs*ton)/(Bmax*Ae)=(10*8)/(0.22*22)=16.52,取整16 (5)计算副边绕组 以输出电压为15V为例进行计算,设整流二极管及绕组的压降为1V 15+1=16V 原边绕组每匝伏数=Vs/Np=10/16=0.625V/匝 副边绕组匝数Ns1=16/0.625=25.6,取整26 (6)计算选定匝数下的占空比;辅助输出绕组匝数 新的每匝的反激电压为:16/26=0.615V ton=(Ts*0.615)/(0.625+0.615)=9.92us 占空比D=9.92/20=0.496 对于10V直流输出,考虑绕组及二极管压降1V后为11V Ns2=11/0.615=17.88,取整17 (7)初级电感,气隙的计算 在周期Ts内的平均输入电流Is=Pin/Vs=13.3/10=1.33A 导通时间内相应的平均值为Iave=(Is*Ts)/ton=1.33*20/9.92=2.68A 开关管导通前的电流值Ip1=Iave/2=2.68/2=1.34A 开关管关闭前的电流值Ip2=3Ip1=1.34*3=4.02A 初级电感量Lp=Vs*&t/&i=10*9.92/2.68=37.01uH 气隙长度Lg=(u0*Np^2*Ae)/Lp=0.19mm

变压器参数计算公式

高频变压jlm器参数计算1.电磁学计算公式推导: 1.磁通量与磁通密度相关公式: Ф = B * S (A) ⑴ Ф ----- 磁通(韦伯) B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高 斯 S ----- 磁路的截面积(平方米) B = H * μ ⑵ μ ----- 磁导率(无单位也叫无量纲) H ----- 磁场强度(伏特每米) H = I*N / l ⑶ I ----- 电流强度(安培) N ----- 线圈匝数(圈T) l ----- 磁路长路(米) 2.电感中反感应电动势与电流以及磁通之间相关关系式: E L =⊿Ф / ⊿t * N ⑷ E L = ⊿i / ⊿t * L ⑸ ⊿Ф ----- 磁通变化量(韦伯) ⊿i ----- 电流变化量(安培) ⊿t ----- 时间变化量(秒) N ----- 线圈匝数(圈T) L ------- 电感的电感量(亨) 由上面两个公式可以推出下面的公式: ⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得: N = ⊿i * L/⊿Ф 再由Ф = B * S 可得下式: N = ⊿i * L / ( B * S ) ⑹ 且由⑸式直接变形可得: ⊿i = E L * ⊿t / L ⑺联合⑴⑵⑶⑷同时可以推出如下算式: L =(μ* S )/ l * N2 ⑻ 这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素) 3.电感中能量与电流的关系:

Q L = 1/2 * I2 * L ⑼ Q L -------- 电感中储存的能量(焦耳) I -------- 电感中的电流(安培) L ------- 电感的电感量(亨) 4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数比与占空比的关系式: N1/N2 = (E1*D)/(E2*(1-D)) ⑽ N1-------- 初级线圈的匝数(圈) E1-------- 初级输入电压(伏特) N2-------- 次级电感的匝数(圈) E2-------- 次级输出电压(伏特) 2.根据上面公式计算变压器参数: 1.高频变压器输入输出要求: 输入直流电压: 200--- 340 V 输出直流电压: 23.5V 输出电流: 2.5A * 2 输出总功率: 117.5W 2.确定初次级匝数比: 次级整流管选用V RRM =100V正向电流(10A)的肖特基二极管两个,若初次级匝数比大则功率所承受的反压高匝数比小则功率管反低,这样就有下式: N1/N2 = V IN(max) / (V RRM * k / 2) ⑾ N1 ----- 初级匝数 V IN(max) ------ 最大输入电压 k ----- 安全系数 N2 ----- 次级匝数 Vrrm ------ 整流管最大反向耐压 这里安全系数取0.9 由此可得匝数比N1/N2 = 340/(100*0.9/2) ≌ 7.6 3. 计算功率场效应管的最高反峰电压: Vmax = V in(max) + (Vo+Vd)/ N2/ N1 ⑿ V in(max) ----- 输入电压最大值 Vo ----- 输出电压 Vd ----- 整流管正向电压 Vmax = 340+(23.5+0.89)/(1/7.6) 由此可计算功率管承受的最大电压: Vmax ≌525.36(V) 4.计算PWM占空比: 由⑽式变形可得:

高频变压器参数计算

高频变压器参数计算 一.电磁学计算公式推导: 1.磁通量与磁通密度相关公式: Ф = B * S⑴ Ф----- 磁通(韦伯) B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯S ----- 磁路的截面积(平方米) B = H * μ⑵ μ----- 磁导率(无单位也叫无量纲) H ----- 磁场强度(伏特每米) H = I*N / l⑶ I ----- 电流强度(安培) N ----- 线圈匝数(圈T) l ----- 磁路长路(米) 2.电感中反感应电动势与电流以及磁通之间相关关系式:EL =⊿Ф / ⊿t * N⑷ EL = ⊿i / ⊿t * L⑸ ⊿Ф----- 磁通变化量(韦伯) ⊿i ----- 电流变化量(安培) ⊿t ----- 时间变化量(秒) N ----- 线圈匝数(圈T)

L ------- 电感的电感量(亨) 由上面两个公式可以推出下面的公式: ⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得: N = ⊿i * L/⊿Ф 再由Ф = B * S可得下式: N = ⊿i * L / ( B * S )⑹ 且由⑸式直接变形可得: ⊿i = EL * ⊿t / L⑺ 联合⑴⑵⑶⑷同时可以推出如下算式: L =(μ* S )/ l * N2⑻ 这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素) 3.电感中能量与电流的关系: QL = 1/2 * I2 * L⑼ QL -------- 电感中储存的能量(焦耳) I -------- 电感中的电流(安培) L ------- 电感的电感量(亨) 4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数比与占空比的关系式: N1/N2 = (E1*D)/(E2*(1-D))⑽ N1 -------- 初级线圈的匝数(圈) E1 -------- 初级输入电压(伏特) N2 -------- 次级电感的匝数(圈) E2 -------- 次级输出电压(伏特) 二.根据上面公式计算变压器参数: 1.高频变压器输入输出要求: