文档库 最新最全的文档下载
当前位置:文档库 › 用51单片机设计超声波测距系统的设计原理及电路附源程序

用51单片机设计超声波测距系统的设计原理及电路附源程序

用51单片机设计超声波测距系统的设计原理及电路附源程序
用51单片机设计超声波测距系统的设计原理及电路附源程序

基于51单片机的超声波测距仪说明书

引言

超声波测距仪,可应用于汽车倒车、建筑施工工地以及一些工业现场的位置监控,也可用于如液位、井深、管道长度的测量等场合。利用超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制。

一、性能要求

该超声波测距仪,要求测量范围在0.08-3.00m,测量精度1cm,测量时与被测物体无直接接触,能够清晰稳定地显示测量结果。

二、工作原理及方案论证

超声波传感器及其测距原理

超声波是指频率高于20KHz的机械波。用超声波传感器产生超声波和接收超声波,习惯上称为超声波换能器或超声波探头。超声波传感器有发送器和接收器.超声波传感器是利用压电效应的原理将电能和超声波相互转化,即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声振动转换成电信号。

超声波测距的原理一般采用渡越时间法TOF(timeofflight)。首先测出超声波从发射到遇到障碍物返回所经历的时间,再乘以超声波的速度就得到二倍的声源与障碍物之间的距离。

根据要求并综合各方面因素,采用AT89C52单片机作为主控制器,用动态扫描法实现LED数字显示,超声波驱动信号用单片机的定时器完成,超声波测距仪的系统框图如下图所示:

图1 超声波测距仪系统设计框图

三、系统硬件部分

硬件部分主要由单片机系统及显示电路、超声波发射电路和超声波检测接收电路三部分组成。

1.单片机系统及显示电路

单片机采用AT89C52来实现对CX20106A红外接收芯片和TCT40-10系列超声波转换模块的控制。单片机通过P1.1引脚发射脉冲控制超声波的发送,然后单片机不停的检测外中断0口INT0引脚,当INT0引脚的电平由高电平变为低电平时就认为超声波已经返回。计数器所计的数据就是超声波所经历的时间,通过换算就可以得到传感器与障碍物之间的距离。显示电路采用简单实用的4位共阳LED数码管,段码用74LS244驱动,位码用PNP三极管驱动。

单片机系统及显示电路如下图所示:

X T A L 218

X T A L 119A L E 30E A 31P S E N 29R S T 9P 0.0/A D 039P 0.1/A D 138P 0.2/A D 237P 0.3/A D 336P 0.4/A D 435P 0.5/A D 534P 0.6/A D 633P 0.7/A D 732P 1.0/T 21P 1.1/T 2E X 2P 1.23P 1.34P 1.45P 1.56P 1.67P 1.78P 3.0/R X D 10P 3.1/T X D 11P 3.2/I N T 012P 3.3/I N T 113P 3.4/T 014P 3.7/R D 17

P 3.6/W R 16P 3.5/T 115P 2.7/A 1528P 2.0/A 821P 2.1/A 922P 2.2/A 1023P 2.3/A 1124P 2.4/A 1225P 2.5/A 1326P 2.6/A 1427U 1A T 89C 52Q 19012Q 39012Q 49012Q 290121A 021A 141A 261A 382A 0112A 1132A 2152A 3171O E 12O E 191Y 0181Y 1161Y 2141Y 3122Y 092Y 172Y 252Y 33U 274L S 244R 510

510R 14.7K R 24.7K R 34.7K R 44.7K V c c C 13.3u X T 112M S 1C 320p R 810K

C 220p G N D

图2 单片机系统及显示电路

2.超声波发射电路

利用555时基电路振荡产生40kHz的超声波信号,使之与换能器的40kHz固有频率一致。12V电源保证555时基具有足够驱动能力。P1.1为超声波发射控制信号,由单片机控制。发射电路如图3所示:

图3 超声波发射电路原理图

3.超声波检测接收电路

超声波接收电路采用集成电路CX20106A,这是一款红外线检波接收的专用芯片,常用于电视机红外遥控接收器。考虑到红外遥控常用的载波频率38KHz与测距超声波频率40KHz较为接近,可以利用它作为超声波检测电路。实验证明其具有很高的灵敏度和较强的抗干扰能力。适当改变C4的大小,可改变接受电路的灵敏度和抗干扰能力。接收电路如图4所示:

图4 超声波接收电路图

四.系统软件部分

超声波测距程序设计软件部分主要由主程序,超声波发射子程序,超声波接受中断程序及显示子程序组成。下面对超声波测距仪的算法,主程序,超声波发射子程序和超声波接受中断程序逐一介绍。1.超声波测距仪的算法设计

下图示意了超声波测距的原理,即超声波发生器T在某一时刻发出的一个超声波信号,当超声波遇到被测物体后反射回来,就被超声波接收器R所接受。这样只要计算出发生信号到接受返回信号所用的时间,就可算出超声波发生器与反射物体的距离。

距离计算公式:d=s/2=(c*t)/2

*d为被测物与测距器的距离,s为声波的来回路程,c为声速,t为

声波来回所用的时间

2.主程序

主程序框图如右图所示:

主程序首先对系统环境初始化,设置定时

器T0工作模式为16位的定时计数器模式,

置位总中断允许位EA并给显示端口P0和

P2清0。然后调用超声波发生子程序送出

一个超声波脉冲,为避免超声波从发射器

直接传送到接收器引起的直接波触发,需

延迟0.1ms(这也就是测距器会有一个最

小可测距离的原因)后,才打开外中断0接

收返回的超声波信号。由于采用12MHz的

晶振,机器周期为1us,当主程序检测到接收成功的标志位后,将计数器T0中的数(即超声波来回所用的时间)按下式计算即可测得被测物体与测距仪之间的距离,设计时取20℃时的声速为344m/s则有:d=(C*T0)/2=172T0/10000cm(其中T0为计数器T0的计数值)测出距离后结果将以十进制BCD码方式LED,然后再发超声波脉冲重复测量过程。

3.超声波发生子程序和超声波接收中断程序

超声波发生子程序的作用是通过P1.1端口发送超声波发射控制脉冲信号,同时把计数器T0打开进行计时。超声波测距器主程序利用外中断0检测返回超声波信号,一旦接收到返回超声波信号(INT0引脚出现低电平),立即进入中断程序。进入该中断后就立即关闭计时器T0停止计时,并将测距成功标志字赋值1。如果当计时器溢出时还未检测到超声波返回信号,则定时器T0溢出中断将外中断0关闭,并将测距成功标志字赋值2以表示此次测距不成功。

五.软硬件调试及性能

超声波发射和接收采用Φ15的超声波换能器TCT40-10F1(T发射)和TCT40-10S1(R接收),中心频率为40kHz,保持两换能器中心轴线平行并相距4~8cm。

主要性能指标:测距仪能测的范围为0.08~3.00m,测距仪精度1cm。

程序清单

以下是用汇编语言编写的超声波测距控制源程序:

采用MH晶振

显示缓冲单元在40H~43H,使用内存、、用于计算距离用于标志

脉冲输出端口

中断入口程序

主程序

为显示数据存放单元(为最高位)

为位自动重装模式,为位定

时器

初值

初值

;超声波脉冲个数控制(为赋值的一半)

开启测距定时器

收到反射信号时标志位为

;计算距离子程序

;重新开启测距定时器

;测量间隔控制(约)

中断程序

中断,中断一次

启动计时器,用以计算超声波来回时间

开启发超声波用定时器

中断,发超声波用

;超声波发送完毕,关

;开启接收回波中断

外中断,收到回波时进入

;关计数器

;将计数值移入处理单元

;接收成功标志

延时程序

显示程序

为最高位,为最低位,先扫描高位:

;共阳数码管不亮,—距离计算程序计算值×m 近似

最高位为,不点亮

;此高位为,先看最高位是否为不亮

;最高位不亮,次高位也不亮

次高位为,先看次高位是否为不亮

;次高位不亮,次高位也不亮

两字节无符号数乘法程序

四字节两字节无符号数除法程序

附程序

基于51单片机的超声波测距毕业设计(论文)

一设计题目基于51单片机的超声波测距 二设计者 姓名班级学号组号 三、设计思路及框图、原理图 任务:以单片机为核心,设计并制作一超声波测距系统基本要求: 利用时间差测距,不考虑温度变化 用数码管显示测试结果 工作频率:450kHz 测距范围:0.5~10米 测试精度: 10% 发挥部分尽量增大测控范围,提高测试精度 1.系统的硬件结构设计 1.1. 超声波发生电路 发射电路主要由反相器74LS04和超声波发射换能器T构成,单片机P1.0端口输出的450kHz的方波信号一路经一级反向器后送到超声波换能器的一个电极,另一路经两级反向器后送到超声波换能器的另一个电极,用这种推换形式将方波信号加到超声波换能器的两端,可以提高超声波的发射强度。输出端采两个反向器并联,用以提高驱动能力。上位电阻R1O、R11一方面可以提高反向器74LS04输出高电平的驱动能力,另一方面可以增加超声波换能器的阻尼效果,缩短其自由振荡时间。 1.2超声波检测接收电路 采用集成电路CX20106A为超声波接收芯片。实验证明用CX20106A接收超声波(无信号时输出高电平),具有很好的灵敏度和较强的抗干扰能力。适当更改电

容C4的大小,可以改变接收电路的灵敏度和抗干扰能力。 1.3 显示电路 显示电路主要由74ls273芯片驱动,用PNPC8550三级管进行位选,七段共阳极数码管显示。 2.系统的软件结构设计 设计思路 主程序中包括温度补偿子程序,计算子程序,显示子程序。采用汇编编程。首先进行系统初始化。其次利用循环产生4个40KHZ的方波,由输出口进行输出,并开始计时。第三等待中断,若超声波被接收探头捕捉到,那么通过中断可测得

基于51单片机超声波测距仪设计【开题报告】

毕业论文开题报告 电子信息工程 基于51单片机超声波测距仪设计 一、课题研究意义及现状 随着社会的发展,传统的测距方法在很多场合已无法满足人们的需求。例如在井深、液位、管道长度测量等场合。传统的测距方法根本无法完成测量任务。还有在很多要求实时测距的情况下。传统的测距方法也不能很好地完成测量任务。于是一种新的测距方法——超声波测距应运而生。超声波测距仪是根据超声波遇到障碍物反射回来的特性进行测量的。超声波发射器向某一方向发射超声波,在发射同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即中断停止计时。通过不断检测产生波发射后遇到障碍物所反射的回波,从而测出发射超声波和接收到回波的时间差T,然后求出距离L。超声测距是一种非接触式的检测方式,它不受光线、被测对象颜色等影响。超声波传感器结构简单、体积小、信号处理可靠,所以检测比较迅速、方便、计算简单、易于做到实时控制。在移动机器人、汽车安全、海洋测量等上得到了广泛的应用。因此,本课题的研究是非常有实用和商业价值。 随着科学技术的快速发展,超声波测距仪的应用将会越来越广,这是一个蓬勃发展而又有无限前景的技术及产业领域。未来的超声波测距技术将朝着更高精度,更大应用范围,更稳定方向发展,死角问题也能得到解决。超声波测距仪将其通过51单片机来实现,成本低、精度高、操作简单、工作稳定可靠,非常适合于短距离测量定位。51单片机为许多控制提供了高度灵活和低成本的解决办法。充分利用它的片内资源,即可在较少外围电路的情况下构成功能完善的超声波测距系统,有很大的市场开发潜力。 二、课题研究的主要内容和预期目标 本课题主要设计一种基于单片机的超声测距系统。该系统以超声波的传播速度为确定条件,利用发射超声波与反射回波时间差来测量待测距离。课题主要内容包括硬件设计和软件设计。硬件设计主要包括单片机系统,超声波发射电路、超声波检测接收电路、数码管显示电路等。软件部分拟采用单片机C语言编程,便于维护和修改,主要是利用中断完成信号发射和接受中间所耗时间的计算,并进行相关的数据处理以得到准确的距离。本课题要求测量精确、可靠、显示正确。 三、课题研究的方法及措施 先通过上网、图书馆等各种途径,搜索与本课题相关的资料进行大量的阅读,从而从整体上对这个课题进行认识。然后根据查阅的资料作出总体方案的设计框图以及确定本设计的实现方法。本设计总体框图如下:

简单51单片机开发板的电路设计

一、摘要 本文给出了一个简单51单片机开发板的电路设计,完成了其原理图的绘制和PCB图的制作。着重介绍使用protel99SE画出的电路设计原理图,接着是对电路各个模块功能的分析,然后是电路所用主要芯片和其他重要元件的功能介绍以及内部封装和引脚分布,最后介绍用protel99SE画出的PCB板。此开发板具有串口通信、液晶显示、流水灯、扩展、RTC 时钟、复位、外部中断、外部存储、A/D D/A转换、报警、继电器控制等开发功能。 关键字:51单片机开发板 protel99 PCB 二、实验所用元器件及其介绍 、清单

SW-SPDT1自制封装1KΩ电阻150805 2KΩ电阻50805 三极管90152TO-18 HRS4-S-DC5V继电器1自制封装跳线6 LED110805 9针串口1DB9/M 极性电容10uF1.6 104电容40805 30pF电容50805 电池Battery1自制封装响铃1 n口排针4SIP n 晶振12MHZ1XTAL1 外接晶振1XTAL1 主要芯片引脚图和实物图 STC89C52

图(1) STC89C52引脚图 图(2) STC89C52实物图 8255

图 8255引脚图 DS1302 图(1) DS1302引脚图 表 DS1302引脚描述 引脚号符号描述引脚号符号描述 1VCC2备用电源5复位 2X1晶振引脚6 I/O数据输入/输

24C08 图(1) 24C08引脚图 表 24C08功能表

图(2) 24C08 实物图 MAX232 图(1)MAX232引脚图 表各引脚功能及推荐工作条件

51单片机超声波测距程序

//晶振:11.0592 //TRIG:P1.2 ECH0:P1.1 //波特率:9600 #include #include #include #define uchar unsigned char #define uint unsigned int sbit RX=P0^2; sbit TX=P0^3; unsigned int time=0; unsigned int timer=0; float S=0; bit flag =0; void Conut(void) { time=TH0*256+TL0; TH0=0; TL0=0; S=(time*1.87)/100; //算出来是CM if(flag==1) //超出测量 { flag=0; printf("-----\n"); } printf("S=%f\n",S); } void delayms(unsigned int ms) { unsigned char i=100,j; for(;ms;ms--) { while(--i)

{ j=10; while(--j); } } } void zd0() interrupt 1 //T0中断用来计数器溢出,超出测距范围{ flag=1; //中断溢出标志 } void StartModule() //T1中断用来扫描数码管和计800ms启动模块{ TX=1; //800MS启动一次模块 _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); _nop_(); TX=0; } void main(void) { TMOD=0x21; //设T0为方式1,GATE=1; SCON=0x50; TH1=0xFD; TL1=0xFD; TH0=0; TL0=0;

超声波测距仪单片机课设实验资料报告材料

微机原理与单片机系统课程设计 业:专轨道交通信号与控制 级:班1305 交控

姓名:贺云鹏 学号: 201310104 指导教师:建国 交通大学自动化与电气工程学院 30 日 12 2015 年月 超声波测距仪设计设计说明1 设计目的1.1 测量声波在发超声波测距的原理是利用超声波在空气中的传播速度为已知,根据发射和接收的时间差计算出发射点到障碍射后遇到障碍物反射回来的时间,物的实际距离。超声波测距主要应用于倒车提醒、建筑工地、工业现场等的距离测量。 超声波在气体、液体及固体中以不同速度传播,定向性好、能量集中、传输过程中衰减较小、反射能力较强。超声波能以一定速度定向传播、遇障碍物后形成反射,利用这一特性,通过测定超声波往返所用时间就可计算出实际距离,从而实现无接触测量物体距离。超声波测距迅速、方便,且不受光线等因素影响,广泛应用于水文液位测量、建筑施工工地的测量、现场的位置监控、振动仪车辆倒车障碍物的检测、移动机器入探测定位等领域。 1.2 设计方法 本课题包括数据测距模块、显示模块。测距模块包括一个HC-SR04超声波测距模块和一片AT89C51单片机,该设计选用HC-SR04超声波测距模块,通过单片机对超声波进行计时并根据超AT89C51发射和接受超声波,使用HC-SR04.声波在空气中速度为340米每秒的特性计算出距离。显示模块包括一个4位共阳极LED数码管和AT89C51单片机,由AT89C51单片机控制数码管动态显示距离。 1.3 设计要求 采用单片机为核心部件,选用超声波模组,实现对距离的测量,测量距离能够通过显示输出(LED,LCD)。 2 设计方案及原理 2.1超声波测距模块设计

STC89C51单片机学习电路板设计

设计题目:STC89C51单片机学习电路板设计 题目性质:一般设计 指导教师:[04054]吕青 毕业设计(论文)要求及原始数据(资料) 1.课题简介: STC89C51系列单片机具有功能强、价格低的特点,是51系列单片机最好的替代机型。本题目就是为入门该系列单片机设计一个学习电路板,满足学习该型号单片机的需求。 该学习电路板用于C8051F330单片机的学习。该板具有RS232接口、数码管、发光二极管显示、键盘、模拟量输入、蜂鸣器和具有扩展实验接口。设计原则是简单实用。 2.技术参数 1)使用美国Silabs公司STC89C51单片机 2)具有1个RS232接口 3)具有8个数码管(HC595驱动) 4)具有4个按钮 5)具有1路模拟量电压输入 6)ISP下载接口与下载电缆电路 7)具有蜂鸣器与驱动电路 8)供电:AC220V 9)具有8个LED 10)具有功率接口(具有AC220V,1A驱动能力) 11)具有D/A输出 毕业设计(论文)主要工作内容 主要内容 1)了解市场上的各种单片机学习板,制定设计方案。 2)学习STC89C51单片机的数据手册 3)学习STC89C51 单片机的相关参考书 4)学习PROTEL软件 5)学习板原理图设计 6)电路板(PCB)设计 7)调试电路板 8)熟悉STC89C51 单片机的C编译器与编程软件 9)编写C语言的电路板测试程序 10)编写学习使用说明 学生应交出的设计文件(论文) 1论文。要求内容准确,叙述清晰流畅,图文详尽,正文不少于60页,不得有错别字,并符合学校对论文的各项要求。主要内容包括: 1)学习板总体设计概述; 2)学习板结构设计说明(包括总体结构总框图); 3)学习板原理图设计说明(包括硬件电路原理图,用Protel98se画); 4)学习板硬件电路板设计说明(包括PCB板图); 5)学习板软件程序设计说明(包括程序流程图和源程序清单及注释); 6)学习板主要示例子程序设计说明(包括程序流程图和源程序清单及注释); 7)设计难点和遗留问题(包括设计中遇到的难题和解决方法,以及尚未解决的问题和解决的思路);

基于-51单片机的HCSR04超声波测距系统制作

基于51单片机带温度补偿的HC-SR04超声波测距系统 利用从网上购买的HC-SR04超声波模块制作了一个测距装置,HC-SR04自身不带温度补偿功能,所以加上一个使用DS18B20做的温度测量模块。整个系统包括:51单片机最小系统,超声波测距模块、温度测量模块、液晶显示模块。使用了如下主要元器件: 元件说明数量 STC90C516RC 51单片机 1 HC-SR04 超声波测距模块 1 DS18B20 温度测量模块 1 lcd1602 液晶显示模块 1 系统电路图

51单片机最小系统 单片机型号:STC90C516,晶振:12Mhz。自己动手焊接的最小系统板。LCD1602A液晶显示模块:

HC-SR04超声波测距模块 HC-SR04超声波测距模块可提供2cm至400cm的非接触式距离感测功能,测距精度可达3mm;模块自身包括超声波发射器、接收器与控制电路。 实物正反两面图 HC-SR04电气参数: HC-SR04工作原理及说明: 1、给Trig触发控制信号IO端口至少10us的高电平信号; 2、模块自动发送8个40khz的方波,并自动检测是否有信号返回; 3、有信号返回时,Echo回响信号输出端口输出一个高电平,高电平持续的时间就是超声波从发射到 返回的时间; 4、两次测距时间间隔最少在60ms以上,以防止发射信号对回响信号的影响; 超声波时序图 单片机控制HC-SR04超声波测距说明: 原理图中,单片机的P1.7口接HC-SR04的Trig端口,P1.6口接HC-SR04的Echo端口,超声波在传播时碰到障碍物即返回,HC-SR04模块收到回波信号后Echo口输出一个高电平,单片机检测到高电平后即启动计数器开始计数,直到单片机检测到Echo口变成低电平后结束计数,计数器的计数值乘以单片机计数周期就是超声波从发射到接收的往返时间,即距离S=v*t/2; 由于在室温下,声速受温度的影响,其变化关系为:V=334.1+T*0.61(T为当前温度),利用DS18B20

单片机应用_超声波测距器

单片机课程设计 一、需求分析: 超声波测距器,可以应用于汽车倒车、建筑施工工地以及一些工业现场的位置监控,也可用于如液位、井深、管道长度的测量等场合。要求测量围在1m,测量精度1cm,测量时与被测物体无直接接触,能够清晰稳定地显示测量结果。由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求,因此在移动机器人的研制上也得到了广泛的应用。 本文旨在设计一种能对中近距离障碍物进行实时测量的测距装置,它能对障碍物进行适时、适量的测量,起到智能操作,实时监控的作用。 关键词单片机AT82S51 超声波传感器测量距离 二、硬件设计方案 设计思路 超声波传感器及其测距原理 超声波是指频率高于20KHz的机械波。为了以超声波作为检测手段,必须产生超生波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声波换能器或超声波探头。超声波传感器有发送器和接收器,但一个超声波传感器也可具有发送和接收声波的双重作用。超声波传感器是利用压电效应的原理将电能和超声波相互转化,即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声振动转换成电信号。

超声波测距的原理一般采用渡越时间法TOF(time of flight)。首先测出超声波从发射到遇到障碍物返回所经历的时间,再乘以超声波的速度就得到二倍的声源与障碍物之间的距离 测量距离的方法有很多种,短距离的可以用尺,远距离的有激光测距等,超声波测距适用于高精度的中长距离测量。因为超声波在标准空气中的传播速度为340米/秒,由单片机负责计时,单片机使用12.0M晶振,所以此系统的测量精度理论上可以达到毫米级。 由于超声波指向性强,能量消耗缓慢,在介质中传播距离远,因而超声波可以用于距离的测量。利用超声波检测距离,设计比较方便,计算处理也较简单,并且在测量精度方面也能达到要求。 超声波发生器可以分为两类:一类是用电气方式产生超声波,一类是用机械方式产生超声波。本课题属于近距离测量,可以采用常用的压电式超声波换能器来实现。 根据设计要求并综合各方面因素,可以采用AT89S51单片机作为主控制器,用动态扫描法实现LED数字显示,超声波驱动信号用单片机的定时器完成,超声波测距器的系统框图如下图所示: 超声波测距器系统设计框图 主要由单片机系统及显示电路、超声波发射电路和超声波检测接收电路三部分组成。采用AT89S51来实现对CX20106A红外接收芯片和TCT40-10系列超声波转换模块的控制。单片机通过P1.0引脚经反相器来控制超声波的发送,然后单片机不停的检测INT0引脚,当INT0引脚的电平由高电平变为低电平时就认为超声波已经返回。计数器所计的数据就是超声波所经历的时间,通过换算就可以得到传感器与障碍物之间的距离。

51单片机程序超声波模块避障

#include #define uint unsigned int #define uchar unsigned char sbit TX=P3^2;//Trig sbit RX=P1^0;//Echo unsigned int time=0; unsigned long S=0; bit flag =0; void delay(int x) { int i,j; for(i=0;i

{ TX=1; delay(2); TX=0; } void main() { unsigned char i; unsigned int a; TMOD=0x10; EA=1; TH1=0; TL1=0; ET1=1; while(1) { RX=1; StartModule(); for(a=951;a>0;a--) { if(RX==1) { Timer_Count(); } } } }

超声波测距仪的设计说明

题目:超声波测距仪的设计 超声波测距仪的设计 一、设计目的: 以51单片机为主控制器,利用超声波模块HC-SR04,设计出一套可在数码管上实时显示障碍物距离的超声波测距仪。 通过该设计的制作,更为深入的了解51的工作原理,特别是51的中断系统及定时器/计数器的应用;掌握数码管动态扫描显示的方法和超声波传感器测距的原理及方法,学会搭建51的最小系统及一些简单外围电路(LED显示电路)。从中提高电路的实际设计、焊接、检错、排错能力,并学会仿真及软件调试的基本方法。 二、设计要求: 设计一个超声波测距仪。要求: 1.能在数码管上实时显示障碍物的实际距离; 2.所测距离大于2cm小于300cm,精度2mm。 三、设计器材: STC89C52RC单片机 HC-SR04超声波模块 SM410561D3B四位的共阳数码管 9014三极管(4) 按键(1) 电容(30PF2,10UF1) 排阻(10K),万用板,电烙铁,万用表,5V直流稳压电源,镊子,钳子,

导线及焊锡若干,电阻(200欧5)。 四、设计原理及设计方案: (一)超声波测距原理 超声测距仪是根据超声波遇到障碍物反射回来的特性进行测量的。超声波发射器向某一方向发射超声波,在发射同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即中断停止计时。通过不断检测产生波发射后遇到障碍物所反射的回波,从而测出发射超声波和接收到回波的时间差T,然后求出距离L。基本的测距公式为:L=(△t/2)*C 式中 L——要测的距离 T——发射波和反射波之间的时间间隔 C——超声波在空气中的声速,常温下取为344m/s 声速确定后,只要测出超声波往返的时间,即可求得L。 根据本次设计所要求的测量距离的围及测量精度,我们选用的是HC-SR04超声波测距模块。(如下图所示)。此模块已将发射电路和接收电路集成好了,硬件上不必再自行设计繁复的发射及接收电路,软件上也无需再通过定时器产生40Khz的方波引起压电陶瓷共振从而产生超声波。在使用时,只要在控制端‘Trig’发一个大于15us宽度的高电平,就可以在接收端‘Echo’等待高电平输出。单片机一旦检测到有输出就打开定时器开始计时。 当此口变为低电平时就停止计时并读出定时器的值,此值就为此次测距的时间,再根据传播速度方可算出障碍物的距离。 (二)超声波测距模块HC-SR04简要介绍 HC-SR04超声波测距模块的主要技术参数使用方法如下所述: 1. 主要技术参数: ①使用电压:DC5V ②静态电流:小于2mA ③电平输出:高5V

基于51单片机的超声波测距系统

基于51单片机的超声波测距系统 贾源 完成日期:2011年2月22日

目录 一、设计任务和性能指标 (3) 1.1设计任务 (3) 1.2性能指标 (3) 二、超声波测距原理概述 (4) 2.1超声波传感器 (5) 2.1.1超声波发生器 (5) 2.1.2压电式超声波发生器原理 (5) 2.1.3单片机超声波测距系统构成 (5) 三、设计方案 (6) 3.1AT89C2051单片机 (7) 3.2超声波测距系统构成 (8) 3.2.1超声波测距单片机系统 (9) 图3-1:超声波测距单片机系统 (9) 3.2.2超声波发射、接收电路 (9) 图3-1:超声波测距发送接收单元 (10) 3.2.3显示电路 (10) 四.系统软件设计 (11) 4.1主程序设计 (11) 4.2超声波测距子程序 (12) 4.3超声波测距程序流程图 (13) 4.4超声波测距程子序流程图 (14) 五.调试及性能分析 (14) 5.1调试步骤 (14) 5.2性能分析 (15) 六.心得体会 (15) 参考文献 (16) 附录一超声波测系统原理图 (18) 附录二超声波测系统原理图安装图 (19) 附录三超声波测系统原理图PCB图 (20) 附录四超声波测系统原理图C语言原程序 (21) 参考文献 (26)

一、设计任务和性能指标 1.1设计任务 利用单片机及外围接口电路(键盘接口和显示接口电路)设计制作一个超声波测距仪器,用LED数码管把测距仪距测出的距离显示出来。 要求用Protel 画出系统的电路原理图,印刷电路板,绘出程序流程图,并给出程序清单。 1.2性能指标 距离显示:用三位LED数码管进行显示(单位是CM)。 测距范围:25CM到 250CM之间。误差:1%。

51单片机AD89电路设计程序+原理图

AD0809在51单片机中的应用 我们在做一个单片机系统时,常常会遇到这样那样的数据采集,在这些被采集的数据中,大部分可以通过我们的I/O口扩展接口电路直接得到,由于51单片机大部分不带AD转换器,所以模拟量的采集就必须靠A/D或V/F实现。下现我们就来了解一下AD0809与51单片机的接口及其程序设计。 1、AD0809的逻辑结构 ADC0809是8位逐次逼近型A/D转换器。它由一个8路模拟开关、一个地址锁存译码器、一个A/D转换器和一个三态输出锁存器组成(见图1)。多路开关可选通8个模拟通道,允许8路模拟量分时输入,共用A/D转换器进行转换。三态输出锁器用于锁存A/D转换完的数字量,当OE端为高电平时,才可以从三态输出锁存器取走转换完的数据。

2、AD0809的工作原理 IN0-IN7:8条模拟量输入通道 ADC0809对输入模拟量要求:信号单极性,电压围是0-5V,若信号太小,必须进行放大;输入的模拟量在转换过程中应该保持不变,如若模拟量变化太快,则需在输入前增加采样保持电路。 地址输入和控制线:4条 ALE为地址锁存允许输入线,高电平有效。当ALE线为高电平时,地址锁存与译码器将A,B,C三条地址线的地址信号进行锁存,经译码后被选中的通道

的模拟量进转换器进行转换。A,B和C为地址输入线,用于选通IN0-IN7上的一路模拟量输入。通道选择表如下表所示。 C B A 选择的通道 0 0 0 IN0 0 0 1 IN1 0 1 0 IN2 0 1 1 IN3 1 0 0 IN4 1 0 1 IN5 1 1 0 IN6 1 1 1 IN7 数字量输出及控制线:11条 ST为转换启动信号。当ST上跳沿时,所有部寄存器清零;下跳沿时,开始进行A/D转换;在转换期间,ST应保持低电平。EOC为转换结束信号。当EOC为高电平时,表明转换结束;否则,表明正在进行A/D转换。OE为输出允许信号,用于控制三条输出锁存器向单片机输出转换得到的数据。OE=1,输出转换得到的数据;OE=0,输出数据线呈高阻状态。D7-D0为数字量输出线。 CLK为时钟输入信号线。因ADC0809的部没有时钟电路,所需时钟信号必须由外界提供,通常使用频率为500KHZ, VREF(+),VREF(-)为参考电压输入。

基于51单片机的超声波测距仪设计

自动化技术综合实训报告 实训题目: 院 专 班 姓 学 指导教师: 实训地点: 开课时间:

序号 评价内容 分数 序 号 评价内容 分数 1 出勤(10 分) 3 实训任务完成情况(50 分) 2 课题难度分值(10 分) 4 实训总结报告(30 分) 实训总成绩: 94 分 学生姓名: 魏*星 实训评分 指导教师评语: 指导教师(签名): 年 月

目录 第 1章绪论 1.1实训的目和要求 1.2实训课题设计功能描述……………………………………………………… 1.3应解决的问题………………………………………………………………第 2章整体设计方案 2.1设计原理 2.2整体系统设计………………………………………………………………第 3章硬件电路设计 3.1电路原理图 3.2元件清单…………………………………………………………………… 3.3重要电路介绍 3.3.1复位与晶振电路…………………………………………………… 3.3.2超声波发射电路…………………………………………………… 3.3.3超声波接收检测电路……………………………………………… 3.3.4显示电路 第 4章软件设计 4.1系统软件设计 4.2程序流程图 4.3程序设计与调试 第 5章制板焊接调试 5.1仿真结果与 PCB图 5.2焊制电路板、实物运行调试 5.3误差分析与校正讨论 总结与体会 谢词 参考文献 附录

第1章绪论 1.1实训的目的和要求 生产实训是自动化专业本科生在校期间必须进行的主要实践环节之一,是培养学生工程实践能力、提高学生工程素质的一个重要组成部分。作为一名工科学生,将来从事自动化及相关工作,为了让我们能尽早的认识社会实践,了解工业生产,提高自己的动手意识,强化个人素质,增强理论联系实际的观念,学校给我们安排了为期两周的专业实训,让我们学到的理论知识和实践联系到一起,为我们以后的走向社会打下一个坚实的基础。 这次实训的主要目的是让大家进一步了解 AT89 系列单片机的引脚、功能,晶振电路、显示电路和信号输入输出电路的设计,熟悉使用 keil 软件和用汇编语言编程完成各种处理和控制,同时学习使用软件对电路进行设计,对项目进行仿真、调试,以及 PCB 板的制作等,最主要的是了解一个小型项目的研发过程,从项目的提出到项目实现需要怎样一步步来完成,项目完成事应该大概掌握以上要求。 1.2实训课题设计功能描述 我们小组选择的课题是基于 AT89C51 单片机的超声波测距仪设计。 由于超声波指向性强,能量消耗缓慢,在介质中传播距离较远,因而超声波被广泛用于距离的测量。利用超声波检测往往比较迅速、方便,计算简单易于做到实时控制,并且在测量精度方面能达到工业实用的要求,测量时与被测物体无直接接触的特点,使得其具有很大的使用价值。 我们最熟悉的超声波测距的应用是声纳系统,是超声波测距在军事上的终极使用,研制具有更高定位精度的被动测距声纳,以满足水中武器实施全隐蔽攻击的需要;实现超远程的被动探测和识别;研制更适合于浅海工作的潜艇声纳,特别是解决浅海水中目标识别问题;大力降低潜艇自噪声,改善潜艇声纳的工作环境。无庸置疑,未来的超声波测距仪将与自动化智能化接轨,与其他的测距仪集成和融合,形成多测距仪。随着测距仪的技术进步,测距仪将从具有单纯判断功能发展到具有学习功能,最终发展到具有创造力。 除了军事,日常生活和工业上也广泛应用,如:倒车雷达,建筑施工工地以及一些工业现场在液位测量、井深测量、管道长度测量等场合的使用。 1.3设计研究的要求及主要内容应解决的问题 本项目需要通过学习和查阅资料,了解和掌握如下知识: 1. +5V电源原理及设计 2.单片机复位电路工作原理及设计 3.单片机晶振电路工作原理及设计 4.七段 LED显示原理及设计 5.超声波传感器的应用及设计 6.电路的接线 7.AAT89C51单片机的引脚 8.单片机汇编语言及设计

用51单片机实现HC-SR04超声波测距程序

#include //包括一个52标准内核的头文件 #define uchar unsigned char //定义一下方便使用 #define uint unsigned int #define ulong unsigned long sbit Trig = P1^0; //产生脉冲引脚 sbit Echo = P3^2; //回波引脚 sbit test = P1^1; //测试用引脚 uchar code SEG7[10]={~0xC0,~0xF9,~0xA4,~0xB0,~0x99,~0x92,~0x82,~0xF8,~0x80,~0x90};//数码管0-9 uint distance[4]; //测距接收缓冲区 uchar ge,shi,bai,temp,flag,outcomeH,outcomeL,i; //自定义寄存器 bit succeed_flag; //测量成功标志 //********函数声明 void conversion(uint temp_data); void delay_20us(); void main(void) // 主程序 { uint distance_data,a,b; uchar CONT_1; i=0; flag=0; test =0; Trig=0; //首先拉低脉冲输入引脚 TMOD=0x11; //定时器0,定时器1,16位工作方式 TR0=1; //启动定时器0 IT0=0; //由高电平变低电平,触发外部中断 ET0=1; //打开定时器0中断 EX0=0; //关闭外部中断 EA=1; //打开总中断0 while(1) //程序循环 { EA=0; Trig=1; delay_20us(); Trig=0; //产生一个20us的脉冲,在Trig引脚 while(Echo==0); //等待Echo回波引脚变高电平 succeed_flag=0; //清测量成功标志 EX0=1; //打开外部中断 TH1=0; //定时器1清零 TL1=0; //定时器1清零 TF1=0; //

超声波测距仪的设计实现

超声波测距仪的设计实现 摘要 该超声测距系统采用芯片STC89C52作为系统的主控制器,利用NE555作为本系统的脉冲发射源,结合3位7段数码管液晶显示,达到了较大的测试距离和较高的测量精度,并能实时显示且无明显失真。 关键字: 超声波测距实时

第1章设计题目与要求 1.1 设计要求 采用压电式超声波换能器,使用单片机作为控制器,完成超声波测距仪的软硬件设计。 1.2 基本要求: (1)具有反射式超声波测距功能,测量距离0.1m~3.0m; (2)测量距离精度:误差±1cm; (3) 利用LED数码管显示测试距离; (4)实时显示测量的距离,显示格式为:□.□□米

第2章系统总体方案论证 2.1 系统总体方案 题目要求设计一个利用超声波反射原理测量距离的超声波测距仪,并且具有实时同步显示,由此本系统可以划分为发射、接收、显示、主控制模块共四大模块,如图2.1所示: 图2.1系统基本方框图 针对技术指标的需要,为使系统的测量距离更远、精度更高,提高系统的整体完善性,现对以上系统各个功能模块进行一一的方案论证: 2.2 主控制模块 2.2.1 主控制模块概述 主控制器模块其实就是一个简化的嵌入式系统。 嵌入式系统一般指非PC系统,有计算机功能但又不称之为计算机的设备或器材。它是以应用为中心,软硬件可裁减的,适应应用系统对功能、可靠性、成本、体积、功耗等综合性严格要求的专用计算机系统。 嵌入式系统的核心是嵌入式微处理器。 2.2.2 主控制模块方案选择 根据以上知识,考虑到目前市场上比较常用的AVR、61、51三种微控制器,我们有如下三种方案可供选择。 方案一:AVR单片机 AVR单片机种类丰富,有AT tiny、AT90S、ATmeg系列,各个系列又有不同

基于51单片机超声波测距

一设计要求 (1)设计一个以单片机为核心的超声波测距仪,可以应用于汽车倒车、工业现场的位置监控; (2)测量范围在0.50~4.00m,测量精度1cm; (3)测量时与被测物无直接接触,能够清晰稳定地显示测量结果。 二超声波测距系统电路总体设计方案 本系统硬件部分由AT89S52控制器、超声波发射电路及接收电路、温度测量电路、声音报警电路和LCD显示电路组成。汽车行进时LCD显示环境温度,当倒车时,发射和接收电路工作,经过AT89S52数据处理将距离也显示到LCD 上,如果距离小于设定值时,报警电路会鸣叫,提醒司机注意车距。超声波测距器的系统框图如下图所示: 图5 系统设计总框图 由单片机AT89S52编程产生10us以上的高电平,由指定引脚输出,就可以在指定接收口等待高电平输出。一旦有高电平输出,即在模块中经过放大电路,驱动超声波发射探头发射超声波。发射出去的超声波经障碍物反射回来后,由超声波接收头接收到信号,通过接收电路的处理,指定接收口即变为低电平,读取单片机中定时器的值。单片机利用声波的传播速度和发射脉冲到接收反射脉冲的

时间间隔计算出障碍物的距离,并由单片机控制显示出来。 由时序图可以看出,超声波测距模块的发射端在T0时刻发射方波,同时启动定时器开始计时,当收到回波后,产生一负跳变到单片机中断口,单片机响应中断程序,定时器停止计数。计算时间差,即可得到超声波在媒介中传播的时间t,由此便可计算出距离。 图6 时序图 三超声波发射和接收电路的设计 分立元件构成的发射和接收电路容易受到外界的干扰,体积和功耗也比较大。而集成电路构成的发射和接收电路具有调试简单,可靠性好,抗干扰能力强,体积小,功耗低的优点,所以优先采用集成电路来设计收发电路。 3.1 超声波发射电路 超声波发射电路包括超声波产生电路和超声波发射控制电路两部分,可采用软件发生法和硬件方法产生超声波。在超声波的发射电路的设计中,我们采用电路结构简单的集成电路构成发射电路:

51单片机超声波测距程序

//超声波测距,测距范围2cm-400cm; #include #include #define uint unsigned int #define uchar unsigned char sbit trig=P1^0; sbit echo=P3^2; sbit test=P1^1; //测试灯sbit dula=P2^6; sbit wela=P2^7; sbit BEEP=P2^3; uint timeh,timel,distance; uint ge,shi,bai,xiaoshu,flag,time; /*共阴极数码管不带小数点代码表*/

uchar code list[]={ 0x3f , 0x06 , 0x5b , 0x4f , 0x66 , 0x6d ,0x7d , 0x07 , 0x7f , 0x6f , 0x77 , 0x7c , 0x39 , 0x5e , 0x79 , 0x71 }; /*共阴极数码管带小数点代码表*/ uchar code listtwo[] = { 0xbf,0x86,0xdb,0xcf,0xe6, 0xed,0xfd,0x87,0xff,0xef}; /*长延时函数*/ void delay(uint z) { uint x,y; for(x=z;x>0;x--) for(y=100;y>0;y--); }

/*短延时函数*/ void delay20us() { uchar a; for(a=0;a<100;a++); } /*报警函数*/ void beer() { // BEEP=0; delay(10); } /*定时器初始化*/ void initime0() { TMOD=0x01; TH0=0;

基于51单片机的超声波测距仪之倒车雷达作品设计毕业论文

基于51单片机的超声波测距仪之倒车雷达作品设计毕业论文

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

基于51单片机超声波测距仪

基于51单片机超声波测距仪

基于51单片机的超声波测距仪设计 摘要 利用超声波进行测距有许多优点比如不受光强度、色彩和电磁场等外界因素的影响,而且超声波传感器的价位较低、结构也较为简单,超声波以声速传播,方便收发与计算。在汽车倒车雷达、移动机器人的避障、特别是测量距离等许多方面都已有了非常普遍的应用。 本次毕业设计的超声波测距仪是在STC89C51单片机的基础上设计的,在分析和了解了超声波的一些优点和特性后,又查看了利用超声波测距的基本原理。最后决定使用51单片机系统和超声波传感器共同组成。设计的超声波测距仪的硬件部分主要包括电源及复位模块、单片机与超声波模块组成的超声波发射模块、超声波接收模块、LED数码显示模块和扩展报警模块。软件部分主要包括单片机主程序、根据超声波发射与接收计算距离程序、LED距离显示程序、按键控制程序和蜂鸣器报警程序,这样安排使得系统具有模块化的特点。系统容易进行控制,具有可靠地的性能,具有较高的测量精度,最重要的是能对距离进行实时测量。 关键词:单片机,测距仪,超声波,实时测量

Design of Ultrasonic Distance Meter Based on 51 MCM ABSTRACT Using ultrasonic ranging has many advantages for example, from the effects of light intensity, color and electromagnetic field and other external factors and price lower ultrasonic sensors, the structure is simple, ultrasonic sounds velocity, convenient transceiver and calculation. In the car reverse radar, mobile robot obstacle avoidance, especially measuring distance and many other aspects have been very common application. The graduation design of ultrasonic range finder based on STC89C51 MCU design, analysis and understanding of the some advantages and characteristics of ultrasonic and looked at the use of the basic principle of ultrasonic distance measurement. Finally, the composition of the 51 single-chip microcomputer system and ultrasonic sensor is decided.. The design of ultrasonic rangefinder hardware part consists of the power and reset module, SCM and ultrasonic module consists of ultrasonic emission module, ultrasonic receiving module, LED digital display expansion module and alarm module. Software part mainly includes MCU program, according to the ultrasonic transmitting and receiving computing program distance, the distance of LED display program, key control procedures and buzzer alarm procedures, this arrangement enables the system to have the characteristics of modular. The system is easy to control and has the reliable performance, and has the higher accuracy, and the most important is the real-time measurement of the distance. KEY WORDS: Single chip microcomputer,Range finder,Ultrasonic,Real-time measurement

相关文档
相关文档 最新文档