文档库 最新最全的文档下载
当前位置:文档库 › MDK-ARM armcc编译器——用pragma编译命令禁止诊断信息输出的方法

MDK-ARM armcc编译器——用pragma编译命令禁止诊断信息输出的方法

MDK-ARM armcc编译器——用pragma编译命令禁止诊断信息输出的方法
MDK-ARM armcc编译器——用pragma编译命令禁止诊断信息输出的方法

Controlling compiler diagnostic messages with pragmas

5.3 Controlling compiler diagnostic messages with pragmas

Pragmas let you suppress, enable, or change the severity of specific diagnostic messages from within your code.

For example, you can suppress a particular diagnostic message when compiling one specific function.

Note

You can also use options to suppress or change the severity of messages, but the change applies for the entire compilation.

Diagnostic messages use the pragma state in place at the time they are generated. If you use pragmas to control a message in your code, you must be aware of when that message is generated. For example, the following code is intended to suppress the diagnostic message 177 (“Function was declared but never referenced”) for the dummy function:

#include

#pragma push

#pragma diag_suppress 177

static int dummy(void)

{

printf("This function is never called.");

return 1;

}

#pragma pop

main(void){

printf("Hello world!\n");

}

The intention of the programmer is to push the current pragma state to the stack, suppress diagnostic message 177 when compiling the dummy function, then restore the original pragma state before continuing with compilation.

However, message 177 is only generated after all functions have been processed. Therefore, the message is generated after pragma pop restores the pragma state, and message 177 is not suppressed.

Removing pragma push and pragma pop would correctly suppress message 177, but would suppress messages for all unreferenced functions rather than just the dummy function. Related concepts

5.2 Options that change the severity of compiler diagnostic messages

5.4 Prefix letters in compiler diagnostic messages

5.5 Compiler exit status codes and termination messages

5.6 Compiler data flow warnings

Related reference

5.1 Severity of compiler diagnostic messages

9.75 #pragma diag_default tag[,tag,...]

9.76 #pragma diag_error tag[,tag,...]

9.77 #pragma diag_remark tag[,tag,...]

9.78 #pragma diag_suppress tag[,tag,...]

9.79 #pragma diag_warning tag[, tag, ...]

9.92 #pragma pop

9.93 #pragma push

7.41 --diag_error=tag[,tag,...]

7.42 --diag_remark=tag[,tag,...]

7.43 --diag_style=arm|ide|gnu compiler option

7.44 --diag_suppress=tag[,tag,...]

7.45 --diag_suppress=optimizations

7.46 --diag_warning=tag[,tag,...]

7.47 --diag_warning=optimizations

Copyright ? Keil, An ARM Company. All rights reserved.

#pragma diag_suppress tag[,tag,...]

9.78 #pragma diag_suppress tag[,tag,...]

This pragma disables all diagnostic messages that have the specified tags.

Diagnostic messages are messages whose message numbers are postfixed by -D , for example, #550-D .

#pragma diag_suppress behaves analogously to #pragma diag_error , except that the compiler suppresses the diagnostic messages having the specified tags rather than setting them to have Error severity.

Syntax

#pragma diag_suppress tag[,tag,...]

Where:

tag[,tag,...]

is a comma-separated list of diagnostic message numbers specifying the messages to be suppressed.

Related reference 7.15 --brief_diagnostics, --no_brief_diagnostics 7.41 --diag_error=tag[,tag,...] 7.42 --diag_remark=tag[,tag,...] 7.43 --diag_style=arm|ide|gnu compiler option 7.44 --diag_suppress=tag[,tag,...] 7.45 --diag_suppress=optimizations 7.46 --diag_warning=tag[,tag,...] 7.167 --wrap_diagnostics, --no_wrap_diagnostics 7.47 --diag_warning=optimizations 7.55 --errors=filename 7.162 -W 9.76 #pragma diag_error tag[,tag,...] 9.77 #pragma diag_remark tag[,tag,...] 7.133 --remarks 5 Compiler Diagnostic Messages Copyright ? Keil, An ARM Company. All rights reserved.

Page 1of 1Compiler User Guide: #pragma diag_suppress tag[,tag,...]

#pragma diag_default tag[,tag,...]

9.75 #pragma diag_default tag[,tag,...] This pragma returns the severity of the diagnostic messages that have the specified tags to the severities that were in effect before any pragmas were issued. Diagnostic messages are messages whose message numbers are postfixed by -D , for example, #550-D .

Syntax

#pragma diag_default tag[,tag,...]

Where:

tag[,tag,...]

is a comma-separated list of diagnostic message numbers specifying the messages whose severities are to be changed.

At least one diagnostic message number must be specified.

Examples

// not #included deliberately

#pragma diag_error 223

void hello(void)

{

printf("Hello ");

}

#pragma diag_default 223

void world(void)

{

printf("world!\n");

}

Compiling this code with the option --diag_warning=223 generates diagnostic messages to report that the function printf() is declared implicitly.

The effect of #pragma diag_default 223 is to return the severity of diagnostic message 223 to Warning severity, as specified by the --diag_warning command-line option.

Related concepts

5.3 Controlling compiler diagnostic messages with pragmas

Related reference

9.76 #pragma diag_error tag[,tag,...]

9.77 #pragma diag_remark tag[,tag,...]

9.78 #pragma diag_suppress tag[,tag,...]

9.79 #pragma diag_warning tag[, tag, ...] 7.46 --diag_warning=tag[,tag,...] Copyright ? Keil, An ARM Company. All rights reserved.

Page 1of 1Compiler User Guide: #pragma diag_default tag[,tag,...]

gcc编译器使用简明指南

gcc编译器使用简明指南 gcc对文件的处理需要经过预处理->编译->汇编->链接的步骤,从而产生一个可执行文件,各部分对应不同的文件类型,具体如下: file.c c程序源文件 file.i c程序预处理后文件 file.cxx c++程序源文件,也可以是https://www.wendangku.net/doc/965719279.html, / file.cpp / file.c++ file.ii c++程序预处理后文件 file.h c/c++头文件 file.s 汇编程序文件 file.o 目标代码文件 gcc [选项]文件列表 -ansi 强制完全ANSI一致 -c 仅编译或汇编,生成目标代码文件,将.c、.i、.s等文件生成.o文件,其余文件被忽略 -S 仅编译,不进行汇编和链接,将.c、.i等文件生成.s文件,其余文件被忽略 -E 仅预处理,并发送预处理后的.i文件到标准输出,其余文件被忽略 -o file 创建可执行文件并保存在file中,而不是默认文件a.out -g 产生用于调试和排错的扩展符号表,用于GDB调试,切记-g和-O通常不能一起使用 -w 取消所有警告 -W 给出更详细的警告 -O [num]优化,可以指定0-3作为优化级别,级别0表示没有优化 -x language 默认为-x none,即依靠后缀名确定文件类型,加上-x lan确定后面所有文件类型,直到下一个-x出现为止 -D macro[=]类似于源程序里的#define,在-D macro中的macro可被源程序识别,例如gcc -D NUM -D FILE=\"bbs.txt\" hello.c -o hello,第一个-D选项定义宏NUM,在程序中可以使用#ifdef来检查是否被设置,第二个-D定义宏FILE,在源程序中可用 -U macro 类似于源程序开头定义#undef macro,也就是取消源程序中的某个宏定义

C语言习题集(预处理命令篇)

第六章预处理命令 6.1 选择题 1.下面叙述中正确的是()。 A. 带参数的宏定义中参数是没有类型的 B. 宏展开将占用程序的运行时间 C. 宏定义命令是C语言中的一种特殊语句 D. 使用#include命令包含的头文件必须以“.h”为后缀 2.下面叙述中正确的是()。 A. 宏定义是C语句,所以要在行末加分号 B. 可以使用#undef命令来终止宏定义的作用域 C. 在进行宏定义时,宏定义不能层层嵌套 D. 对程序中用双引号括起来的字符串内的字符,与宏名相同的要进行置换 3.在“文件包含”预处理语句中,当#include后面的文件名用双引号括起时,寻找被包含文件的方式为()。 A. 直接按系统设定的标准方式搜索目录 B. 先在源程序所在目录搜索,若找不到,再按系统设定的标准方式搜索 C. 仅仅搜索源程序所在目录 D. 仅仅搜索当前目录 4.下面叙述中不正确的是()。 A. 函数调用时,先求出实参表达式,然后带入形参。而使用带参的宏只是进行简单的 字符替换 B. 函数调用是在程序运行时处理的,分配临时的内存单元。而宏展开则是在编译时进 行的,在展开时也要分配内存单元,进行值传递 C. 对于函数中的实参和形参都要定义类型,二者的类型要求一致,而宏不存在类型问 题,宏没有类型 D. 调用函数只可得到一个返回值,而用宏可以设法得到几个结果 5.下面叙述中不正确的是()。 A. 使用宏的次数较多时,宏展开后源程序长度增长。而函数调用不会使源程序变长 B. 函数调用是在程序运行时处理的,分配临时的内存单元。而宏展开则是在编译时进 行的,在展开时不分配内存单元,不进行值传递 C. 宏替换占用编译时间 D. 函数调用占用编译时间 6.下面叙述中正确的是( )。 A. 可以把define和if定义为用户标识符 B. 可以把define定义为用户标识符,但不能把if定义为用户标识符 C. 可以把if定义为用户标识符,但不能把define定义为用户标识符 D. define和if都不能定义为用户标识符 7.下面叙述中正确的是()。 A.#define和printf都是C语句 B.#define是C语句,而printf不是 C.printf是C语句,但#define不是 D.#define和printf都不是C语句

c语言中预编译指令的应用

#if #ifdef和#ifndef的用法和区别 #if #ifdef和#ifndef用法 移位运算符的优先级高于条件运算符,重载是不能改变运算符优先级的,这点要注意,所以代码应当像下面这样调整,写宏的时候一定要注意优先级,尽量用括号来屏蔽运算符优先级。#define MAXIMUM(x,y) ((x)>(y)?(x):(y)) #define MINIMUM.... #include #define MAX #define MAXIMUM(x,y) x>y?x:y #define MINIMUM(x,y) x

gcc编译器的下载和安装教程_华清远见

gcc编译器的下载和安装教程 今天分享的教程是gcc编译器的下载和安装教程,大家可以跟着教程一起来实现他! Linux下变成的源码要运行,必须先转成二进制的机器码。此时就需要编译器,Linux系统下的Gcc(GNU C Compiler)是GNU推出的功能强大、性能优越的多平台编译器,是GNU的代表作品之一。gcc是可以在多种硬体平台上编译出可执行程序的超级编译器,其执行效率与一般的编译器相比平均效率要高20%~30%。 Gcc编译器能将C、C++语言源程序通过编译、连接成可执行文件,如果没有给出可执行文件的名字,gcc将生成一个名为a.out的文件。 比如,下面这段源码(文件名叫做test.c)。 #include int main(void) { printf("Hello, world!\n"); return 0; } 编译则使用gcc命令,gcc命令提供了非常多的命令选项。 一. 常用编译命令选项 假设源程序文件名为test.c。 1. 无选项编译链接 用法:#gcc test.c 作用:将test.c预处理、汇编、编译并链接形成可执行文件。这里未指定输出文件,默认输出为a.out,如果需要执行,内核中必须支持该文件的格式,默认一般都是elf可执行程序 2. 选项 -o 用法:#gcc test.c -o test 作用:将test.c预处理、汇编、编译并链接形成可执行文件test。-o选项用来指定输出文件的文件名。 3. 选项 -E

用法:#gcc -E test.c -o test.i 作用:将test.c预处理输出test.i文件,预处理其实就是处理#预处理符号,比如#include, #define, #if, #ifdef, #error等 4. 选项 -S 用法:#gcc -S test.i 作用:将预处理输出文件test.i汇编成test.s文件。汇编语言对应汇编指令,默认gcc编译成x86指令,如果需要编译arm架构的,就必须使用交叉工具链 5. 选项 -c 用法:#gcc -c test.s 作用:将汇编输出文件test.s编译输出test.o文件,二进制文件就是101010机器码 6. 无选项链接 用法:#gcc test.o -o test 作用:将编译输出文件test.o链接成最终可执行文件test。 如果需要修改Ubuntu的gcc版本,可以看一下你的Ubuntu安装了哪些版本的gcc 用命令:ls /usr/bin/gcc* -l 显示是 lrwxrwxrwx 1 root root 7 2017-08-14 15:17 /usr/bin/gcc -> gcc-4.6 -rwxr-xr-x 1 root root 302104 2017-09-17 05:43 /usr/bin/gcc-4.6 由上面显示可以看出默认安装的是gcc-4.6,现在来改成gcc-4.7 $ sudo apt-get install gcc-4.7 $ sudo apt-get install g++-4.7 删除gcc-4.6的软连接文件/usr/bin/gcc。(只是删除软连接) 命令:sudo rm /usr/bin/gcc 然后建一个软连接,指向gcc-4.7。 命令:sudo ln -s /usr/bin/gcc-4.7 /usr/bin/gcc 然后可以通过命令:gcc -v 查看版本

gcc语言编译原理_CompilingBinaryFilesUsingACompiler

Making plain binary?les using a C compiler(i386+) Cornelis Frank April10,2000 I wrote this article because there isn’t much information on the Internet concerning this topic and I needed this for the EduOS project. No liability is assumed for incidental or consequential damages in connection with or arising out of use of the information or programs contained herein. So if you blow up your computer because of my bad“English”that’s your problem not mine. 1Which tools do you need? An i386PC or higher. A Linux distribution like Red Hat or Slackware. GNU GCC compiler.This C compiler usually comes with Linux.To check if you’re having GCC type the following at the prompt: gcc--version This should give an output like: 2.7.2.3 The number probably will not match the above one,but that doesn’t really matter. The binutils for Linux. NASM Version0.97or higher.The Netwide Assembler,NASM,is an80x86assembler designed for portability and modularity.It supports a range of object?le formats,including Linux‘a.out’and ELF,NetBSD/FreeBSD,COFF,Microsoft16-bit OBJ and Win32.It will also output plain binary?les.Its syntax is designed to be simple and easy to understand, similar to Intel’s but less complex.It supports Pentium,P6and MMX opcodes,and has macro capability. Normally you don’t have NASM on your system.Download it from: https://www.wendangku.net/doc/965719279.html,/pub/Linux/devel/lang/assemblers/ A text editor like pico or emacs.

gcc命令行详解

gcc命令行详解 1、gcc包含的c/c++编译器 gcc、cc、c++、g++ gcc和cc是一样的,c++和g++是一样的,一般c程序就用gcc编译,c++程序就用g++编译 2、gcc的基本用法 gcc test.c这样将编译出一个名为a.out的程序 gcc test.c -o test这样将编译出一个名为test的程序 -o参数用来指定生成程序的名字 3、为什么会出现undefined reference to 'xxxxx'错误? 首先这是链接错误,不是编译错误,也就是说如果只有这个错误,说明你的程序源码本身没有问题,是你用编译器编译时参数用得不对,你没有指定链接程序要用到得库,比如你的程序里用到了一些数学函数,那么你就要在编译参数里指定程序要链接数学库,方法是在编译命令行里加入-lm 4、-l参数和-L参数 -l参数就是用来指定程序要链接的库,-l参数紧接着就是库名,那么库名跟真正的库文件名有什么关系呢?-lname,在连接时,装载名字为“libname.a”的函数库:-lm表示连接名为“libm.a”的数学函数库。就拿数学库来说,他的库名是m,他的库文件名是libm.so,很容易看出,把库文件名的头lib和尾.so去掉就是库名了 好了现在我们知道怎么得到库名,当我们自已要用到一个第三方提供的库名字libtest.so,那么我们只要把libtest.so拷贝到/usr/lib里,编译时加上-ltest参数,我们就能用上libtest.so库了(当然要用libtest.so库里的函数,我们还需要与libtest.so配套的头文件) 放在/lib和/usr/lib和/usr/local/lib里的库直接用-l参数就能链接了,但如果库文件没放在这三个目录里,而是放在其他目录里,这时我们只用-l参数的话,链接还是会出错,出错信息大概是:“/usr/bin/ld: cannot find -lxxx”,也就是链接程序ld在那3个目录里找不到libxxx.so,这时另外一个参数-L就派上用场了,比如常用的X11的库,它在/usr/X11R6/lib目录下,我们编译时就要用-L/usr/X11R6/lib -lX11参数,-L参数跟着的是库文件所在的目录名。再比如我们把libtest.so放在/aaa/bbb/ccc目录下,那链接参数就是 -L/aaa/bbb/ccc -ltest 另外,大部分libxxxx.so只是一个链接,以RH9为例,比如libm.so它链接到/lib/libm.s o.x,/lib/libm.so.6又链接到/lib/libm-2.3.2.so, 如果没有这样的链接,还是会出错,因为ld只会找libxxxx.so,所以如果你要用到xxxx 库,而只有libxxxx.so.x或者libxxxx-x.x.x.so,做一个链接就可以了 ln -s libxxxx-x.x.x.so libxxxx.so 手工来写链接参数总是很麻烦的,还好很多库开发包提供了生成链接参数的程序,名字一般叫xxxx-config,一般放在/usr/bin目录下,比如 gtk1.2的链接参数生成程序是gtk-config,执行gtk-config --libs就能得到以下输出"- L/usr/lib -L/usr/X11R6/lib -lgtk -lgdk -rdynamic

编译预处理

第九章编译预处理 9.1 选择题 【题9.1】以下叙述中不正确的是。 A)预处理命令行都必须以#号开始 B)在程序中凡是以#号开始的语句行都是预处理命令行 C)C程序在执行过程中对预处理命令行进行处理 D)以下是正确的宏定义 #define IBM_PC 【题9.2】以下叙述中正确的是。 A)在程序的一行上可以出现多个有效的预处理命令行 B)使用带参的宏时,参数的类型应与宏定义时的一致 C)宏替换不占用运行时间,只占编译时间 D)在以下定义中C R是称为“宏名”的标识符 #define C R 045 【题9.3】请读程序: #define ADD(x) x+x main() { int m=1,n=2,k=3; int sum=ADD(m+n)*k; printf(“sum=%d”,sum); } 上面程序的运行结果是。 A)sum=9 B)sum=10 C)sum=12 D)sum=18 【题9.4】以下程序的运行结果是。 #define MIN(x,y) (x)<(y)?(x):(y) main() { int i=10,j=15,k; k=10*MIN(i,j); printf(“%d\n”,k); } A)10 B)15 C)100 D)150 【题9.5】在宏定义#define PI 3.14159中,用宏名PI代替一个。 A)常量B)单精度数C)双精度数D)字符串

【题9.6】以下程序的运行结果是。 #include #define FUDGE(y) 2.84+y #define PR(a) printf(“%d”,(int)(a)) #define PRINT1(a) PR(a); putchar(‘\n’) main() { int x=2; PRINT1(FUDGE(5)*x); } A)11 B)12 C)13 D)15 【题9.7】以下有关宏替换的叙述不正确的是。 A)宏替换不占用运行时间B)宏名无类型 C)宏替换只是字符替换D)宏名必须用大写字母表示 【题9.8】C语言的编译系统对宏命令的处理是。 A)在程序运行时进行的 B)在程序连接时进行的 C)和C程序中的其它语句同时进行编译的 D)在对源程序中其它成份正式编译之前进行的 【题9.9】若有宏定义如下: #define X 5 #define Y X+1 #define Z Y*X/2 则执行以下printf语句后,输出结果是。 int a; a=Y; printf(“%d\n”,Z); printf(“%d\n”,--a); A)7 B)12 C)12 D)7 6 6 5 5 【题9.10】若有以下宏定义如下: #define N 2 #define Y(n) ((N+1)*n) 则执行语句z=2*(N+Y(5));后的结果是。 A)语句有错误B)z=34 C)z=70 D)z无定值 【题9.11】若有宏定义:#define MOD(x,y) x%y 则执行以下语句后的输出为。 int z,a=15,b=100; z=MOD(b,a); printf(“%d\n”,z++);

1、GCC编译器的使用

linux下gcc编译器的使用 1、文件后缀名 .c C 源程序 .C C++ 源程序 .cc C++ 源程序 .cxx C++ 源程序 .m Objective –C源程序 .i 预处理过的c源程序 .ii 预处理过的C++源程序 .s 组合语言源程序 .S 组合语言源程序 .h 头文件 .o 目标文件 .a 存档文件 2、GCC常用选项 -c 通知GCC取消链接步骤,即编译源码并在最后生成目标文件; -Dmacro定义指定的宏,使它能够通过源码中的#ifdef进行检验 #define -static 指定程序编译时采用静态编译的方法; -E 不经过编译预处理程序的输出而输送至标准输出; -g获得有关调试程序的详细信息,它不能与-o选项联合使用; -Idirectory在包含文件搜索路径的起点处添加指定目录; -llibrary提示链接程序在创建最终可执行文件时包含指定的库; -O、-O2、-O3将优化状态打开,该选项不能与-g选项联合使用; -S要求编译程序生成来自源代码的汇编程序输出; -v启动所有警报; -Wall发生警报时取消编译操作,即将警报看作是错误; -Werror在发生警报时取消编译操作,即把报警当作是错误; -w 禁止所有的报警。 目前Linux下最常用的C语言编译器是GCC(GNU Compiler Collection),它是GNU项目中符合ANSI C标准的编译系统,能够编译用C、C++和Object C等语言编写的程序。GCC不仅功能非常强大,结构也异常灵活。最值得称道的一点就是它可以通过不同的前端模块来支持各种语言,如Java、 Fortran、Pascal、Modula-3和Ada等。开放、自由和灵活是Linux的魅力所在,而这一点在GCC上的体现就是程序员通过它能够更好地控制整个编译过程。

C中的预处理命令

C中的预处理命令是由ANSIC统一规定的,但它不是C语言的本身组成部分,不能直接对它们进行编译,因为编译程序无法识别它们。必须对程序进行通常的编译(包括词法和语法分析,代码生成,优化等)之前,先对程序中这些特殊的命令进行“预处理”,例如:如果程序中用#include命令包含一个文件“stdio.h”,则在预处理时,将stdio.h文件中的实际内容代替该命令。经过预处理后的程序就像没有使用预处理的程序一样干净了,然后再由编译程序对它进行编译处理,得到可供执行的目标代码。现在的编译系统都包括了预处理,编译和连接部分,在进行编译时一气呵成。我们要记住的是预处理命令不是C语言的一部分,它是在程序编译前由预处理程序完成的。 C提供的预处理功能主要有三种:宏定义,文件包含,条件编译。它们的命令都以“#”开头。 一,宏定义:用一个指定的标识符来代表一个字符串,它的一般形式为: #define 标识符字符串 #define PI 3.1415926 我们把标识符称为“宏名”,在预编译时将宏名替换成字符串的过程称为“宏展开”,而#define 是宏定义命令。 几个应该注意的问题: 1,是用宏名代替一个字符串,也就是做简单的置换,不做正确性检查,如把上面例子中的1写为小写字母l,预编译程序是不会报错的,只有在正式编译是才显示出来。 2,宏定义不是C语句,不必在行未加分号,如果加了分号则会连分号一起置换。 3,#define语句出现在程序中函数的外面,宏名的有效范围为定义命令之后到本源文件结束,通常#define命令写在文件开头,函数之前,作为文件的一部分,在此文件范围内有效。4,可以用#undef命令终止宏定义的作用域。如: #define PI 3.1415926 main(){ } #undef PI mysub(){ } 则在mysub中PI 不代表3.1415926。 5,在进行宏定义时,可以引用已定义的宏名,可以层层置换。 6,对程序中用双撇号括起来的字符串内的字符,即使与宏名相同,也不进行置换。 7,宏定义是专门用于预处理命令的一个专有名词,它与定义变量的含义不同,只做字符替换不做内存分配。 带参数的宏定义,不只进行简单的字符串替换,还进行参数替换。定义的一般形式为:#define 宏名(参数表)字符串 如:#define S(a,b) a*b,具体使用的时候是int area; area=(2,3); 对带参数的宏定义是这样展开置换的:在程序中如果有带参数的宏(如area=(2,3)),则按#define命令行中指定的字符串从左到右进行置换。如果串中包含宏中的形参(如a,b),则将程序语句中的相关参数(可以是常量,变量,或表达式)代替形参。如果宏定义中的字符串中的字符不是参数字符(如上*),则保留,这样就形成了置换的字符串。 带参数的宏与函数有许多相似之处,在调用函数时也是在函数名后的括号内写实参,也要求实参与形参的数目相等,但它们之间还有很大的不同,主要有: 1,函数调用时,先求出实参表达式的值,然后代入形参,而使用带参的宏只是进行简单的字符替换。

linux 编译器gcc

1.8 Linux 上的C/C++ 编译器和调试器 https://www.wendangku.net/doc/965719279.html,/man/linux_tsinghua/compiler.html ?运行 gcc/egcs ?gcc/egcs 的主要选项 ?gdb ?gdb 的常用命令 ?gdb 使用范例 ?其他程序/库工具 (ar, objdump, nm, size, strings, strip, ...) 1.8.1 运行 gcc/egcs Linux 中最重要的软件开发工具是 GCC。GCC 是 GNU 的 C 和 C++ 编译器。实际上,GCC 能够编译三种语言:C、C++ 和 Object C(C 语言的一种面向对象扩展)。利用 gcc 命令可同时编译并连接 C 和 C++ 源程序。 #DEMO#: hello.c 如果你有两个或少数几个 C 源文件,也可以方便地利用 GCC 编译、连接并生成可执行文件。例如,假设你有 两个源文件 main.c 和 factorial.c 两个源文件,现在要编译生成一个计算阶乘的程序。 清单 factorial.c ----------------------- #include #include int factorial (int n) { if (n <= 1) return 1; else return factorial (n - 1) * n; } ----------------------- ----------------------- 清单 main.c ----------------------- #include #include

实验三 vi编辑器及GCC编译器的使用

实验三vi编辑器及GCC编译器的使用 【实验目的】 一、掌握文本编辑器vi的使用方法 二、了解GNU gcc编译器 三、掌握使用GCC编译C语言程序的方法 【实验内容】 一、vi的三种工作模式: 1、命令模式: 执行相关文本编辑命令 2、输入模式: 输入文本 3、末行模式: 实现查找、替换、保存、多文件操作等等功能 二、进入vi,直接在Shell提示符下键入vi [文件名称],如果该文件在当前目录不存在,则vi创建之。 三、退出vi 1、在命令模式下输入“: wq”,保存文件并退出vi 2、若不需要保存文件,输入“: q” 3、若文件已修改,但不保存,输入“:

q!”强制退出vi 4、其它一些不常用的方法在此省略。 四、命令模式下的常用编辑命令 1、启动vi后,进入的是vi的命令模式 2、按i键,进入输入模式,可以进行文本的编辑,在输入模式下,按esc 键,可切换回命令模式 i: 光标位置不变,可在光标左侧插入正文 a: 光标位置向后退一格,可在光标左侧插入正文 o: 在光标所在行的下一行增添新行 O: 在光标所在行的上一行增添新行 I: 光标跳到当前行的开头 A: 光标跳到当前行的末尾 3、光标的移动 k、j、h、l分别等同于上、下、左、右箭头键 Ctrl+b,向上翻一页

Ctrl+f,向下翻一页 nH,将光标移到屏幕的第n行 nL,将光标移到屏幕的倒数第n行 4、删除文本 nX,删除光标所指向的后n个字符 D,删除光标右侧的所有字符(包括光标所指向的字符)db,删除光标左侧的全部字符 ndd,删除当前行和当前行以后的n行内容 5、粘贴和复制 p,将缓冲区的内容粘贴到当前字符的右侧 P,将缓冲区的内容粘贴到当前字符的左侧 yy,复制当前行到内存缓冲区 nyy,复制n行内容到内存缓冲区 6、搜索字符串 /str1,正向搜索字符串str1 n,继续搜索 ?str2,反向搜索字符串str2 7、撤销和重复 u,撤销前一条命令的执行结果 .,重复最后一条命令

《Linux操作系统》实验十-UNIX gcc编译器的使用与编程环境

《Linux操作系统》 实验报告 实验十:UNIX gcc编译器的使 用与编程环境

一、实验目的 (1)掌握gcc和g++的用法; (2)了解目标代码、库函数的使用; (3)掌握静态库和共享库的构造与使用; (4)掌握多模块和多语言联合开发方法; (5)掌握make命令和Makefile文件的使用。 二、实验环境 一台装有Windows操作系统PC机,上装有虚拟机系统VMWare,实验过程通过VMWare系统启Linux系统工作。 三、实验内容与实验过程及分析 一、C/C++编程 1、C语言版“Hello World” 用vi编辑一个名为hello.c的文件,其内容为 #include main() { printf(”Hello World! C\n”); } 编译并执行程序。 编译方法为: cc hello.c // 生成可执行程序 a.out cc –o hello hello.c // 生成可执行程序hello cc –c hello.c //生成目标文件hello.o cc –S hello.c //生成汇编语言程序hello.s 执行程序: ./a.out #执行当前目录内,刚编译生成的a.out程序 ./hello #执行当前目录内,刚编译生成的hello程序

2、组合编程 设有C语言文件f1.c,内容为: #include f1(int arg){ printf(”f1: you passed %d\n”,arg); } C语言文件f2.c。内容为: #include f2(char *arg){ printf(”f2: you passed %s\n”,arg); } C语言文件m.c。内容为: #include main(){ f1(16); f2(”Hello World!”); } 请使用vi编辑并生成以上程序,分别用以下方法编译,观察生成文件或运行生成的可执行程序: cc –c f1.c f2.c #生成 f1.o 和 f2.o cc –S f1.c f2.c # 生成 f1.s 和 f2.s;可用vi或cat查看它们的内容cc –o mp m.c f1.c f2.c # 生成mp,执行方法为:./mp cc –o m m.c f1.o f2.o # 生成m,执行方法为:./m

C#中的预处理指令

3.9.1排除和包含代码 或许最常用的预处理器指令就是用于控制什么时候以及如何包含代码的指令。举个例子来说,要使代码能够同时由C# 2.0和之前的C# 1.2版本编译器进行编译,可以使用一个预处理器指令,在遇到1.2编译器的时候,就排除C# 2.0特有的代码。我们的tic-tac-toe例子和代码清单 3-52对此进行了演示。 代码清单3-52遇到C# 1.x编译器的时候排除C# 2.0代码

在这个例子中,调用了System.Console.Clear()方法,这是只有2.0 CLI才支持的方法。使用#if和#endif预处理器指令,这一行代码就只有在定义了预处理器符号CSHARP2的前提下才会编译。 预处理器指令的另一个应用是适应不同平台之间的差异,比如用WINDOWS和LINUX #if指令将Windows和Linux特有的API包围起来。开发者经常用这些指令来取代多行注释 (/*...*/),因为它们更容易通过定义恰当的符号或者通过一次搜索/替换来移除。预处理器指令最后一个常见的用途是调试。如果用一个#if DEBUG指令将调试代码包围起来,那么在大多数IDE中,都能在最终的发布版本中移除这些代码。IDE默认将DEBUG符号用于调试编译,将RELEASE符号用于发布版本。 为了处理else-if条件,可以在#if指令中使用#elif指令,而不是创建两个完全独立的#if块,如代码清单3-53所示。 代码清单3-53使用#if、#elif和#endif指令 #if LINUX ... #elif WINDOWS ... #endif 输出3-28展示了在使用Mono编译器的前提下,如何实现相同的功能。

最新GCC编译器选项及优化提示

G C C编译器选项及优 化提示

GCC编译器选项及优化提示 GCC编译器选项及优化提示2010-08-01 19:41很多弟兄可能都很关心如何优化编译自己的程序,虽然本人不赞成"骨灰"玩法,却也不得不承认这是掌握gcc的绝佳途径; 因此献上此帖,以供各位玩家参考,绝对原创噢 = 大多数程序和库在编译时默认的优化级别是"2"(使用gcc选项:"-O2")并且在Intel/AMD平台上默认按照i386处理器来编译。 如果你只想让编译出来的程序运行在特定的平台上,就需要执行更高级的编译器优化选项,以产生只能运行于特定平台的代码。 一种方法是修改每个源码包中的Makefile文件,在其中寻找CFLAGS和CXXFLAGS变量(C和C++编译器的编译选项)并修改它的值。 一些源码包比如binutils,gcc,glibc等等,在每个子文件夹中都有Makefile文件,这样修改起来就太累了! 另一种简易做法是设置CFLAGS和CXXFLAGS环境变量。大多数configure 脚本会使用这两个环境变量代替Makefile文件中的值。 但是少数configure脚本并不这样做,他们必须需要手动编辑才行。 为了设置CFLAGS和CXXFLAGS环境变量,你可以在bash中执行如下命令(也可以写进.bashrc以成为默认值): export CFLAGS="-O3-march="&&CXXFLAGS=$CFLAGS 这是一个确保能够在几乎所有平台上都能正常工作的最小设置。

"-march"选项表示为特定的cpu类型编译二进制代码(不能在更低级别的cpu上运行), Intel通常是: pentium2,pentium3,pentium3m,pentium4,pentium4m,pentium- m,prescott,nocona 说明:pentium3m/pentium4m是笔记本用的移动P3/P4;pentium-m是迅驰I/II代笔记本的cpu; prescott是带SSE3的P4(以滚烫到可以煎鸡蛋而闻名);nocona则是最新的带有EMT64(64位)的P4(同样可以煎鸡蛋) AMD通常是:k6,k6-2,k6-3,athlon,athlon-tbird,athlon-xp,athlon-mp,opteron,athlon64,athlon-fx 用AMD的一般都是DIYer,就不必解释了吧。 如果编译时没有抱怨"segmentation fault,core dumped",那么你设定的"-O"优化参数一般就没什么问题。 否则请降低优化级别("-O3"-"-O2"-"-O1"-取消)。 个人意见:服务器使用"-O2"就可以了,它是最安全的优化参数(集合);桌面可以使用"-O3"; 不鼓励使用过多的自定义优化选项,其实他们之间没什么明显的速度差异(有时"-O3"反而更慢)。 编译器对硬件非常敏感,特别是在使用较高的优化级别的时候,一丁点的内存错误都可能导致致命的失败。 所以在编译时请千万不要超频你的电脑(我编译关键程序时总是先降频然的)。

c语言预处理命令之条件编译(ifdefelseendifif等)

C语言预处理命令之条件编译(#ifdef,#else,#endif,#if等) 预处理过程扫描源代码,对其进行初步的转换,产生新的源代码提供给编译器。可见预处理过程先于编译器对源代码进行处理。 在C语言中,并没有任何内在的机制来完成如下一些功能:在编译时包含其他源文件、定义宏、根据条件决定编译时是否包含某些代码。要完成这些工作,就需要使用预处理程序。尽管在目前绝大多数编译器都包含了预处理程序,但通常认为它们是独立于编译器的。预处理过程读入源代码,检查包含预处理指令的语句和宏定义,并对源代码进行响应的转换。预处理过程还会删除程序中的注释和多余的空白字符。 预处理指令是以#号开头的代码行。#号必须是该行除了任何空白字符外的第一个字符。#后是指令关键字,在关键字和#号之间允许存在任意个数的空白字符。整行语句构成了一条预处理指令,该指令将在编译器进行编译之前对源代码做某些转换。下面是部分预处理指令: 指令用途 #空指令,无任何效果 #include包含一个源代码文件 #define定义宏 #undef取消已定义的宏 #if如果给定条件为真,则编译下面代码 #ifdef如果宏已经定义,则编译下面代码 #ifndef如果宏没有定义,则编译下面代码 #elif如果前面的#if给定条件不为真,当前条件为真,则编译下面代码 #endif结束一个#if……#else条件编译块 #error停止编译并显示错误信息 一、文件包含 #include预处理指令的作用是在指令处展开被包含的文件。包含可以是多重的,也就是说一个被包含的文件中还可以包含其他文件。标准C编译器至少支持八重嵌套包含。

预处理过程不检查在转换单元中是否已经包含了某个文件并阻止对它的多次包含。这样就可以在多次包含同一个头文件时,通过给定编译时的条件来达到不同的效果。例如: #defineAAA #include"t.c" #undefAAA #include"t.c" 为了避免那些只能包含一次的头文件被多次包含,可以在头文件中用编译时条件来进行控制。例如: /*my.h*/ #ifndefMY_H #defineMY_H …… #endif 在程序中包含头文件有两种格式: #include #include"my.h" 第一种方法是用尖括号把头文件括起来。这种格式告诉预处理程序在编译器自带的或外部库的头文件中搜索被包含的头文件。第二种方法是用双引号把头文件括起来。这种格式告诉预处理程序在当前被编译的应用程序的源代码文件中搜索被包含的头文件,如果找不到,再搜索编译器自带的头文件。 采用两种不同包含格式的理由在于,编译器是安装在公共子目录下的,而被编译的应用程序是在它们自己的私有子目录下的。一个应用程序既包含编译器提供的公共头文件,也包含自定义的私有头文件。采用两种不同的包含格式使得编译器能够在很多头文件中区别出一组公共的头文件。

多文件结构和编译预处理命令

多文件结构和编译预处理命令 C++完整的源程序一般由三部分构成:类的定义,类成员的实现,主函数 在较大的项目中,常需要多个源文件(即多个编译单元),c++要求一个类的定义必须在使用该类的编译单元中。因此,把类的定义写在头文件中。 (重点)一个项目至少分三个文件:类定义文件(.h)、类实现文件(.cpp)、类的使用文件(.cpp) (重点)对于复杂的程序:每个类都有单独的类定义和类实现。这样做的好处:可以对不同的文件进行单独编写、编译,最后链接,同时利用类的封 装性,在程序的调试和修改时只对其中某一个类的定义和实现修改,其余保持不动。 预处理指令声明中出现的注释以及一行单独一个#符号的情况在预编译处理过程中都会被 忽略掉。 宏定义在c++中依然使用,但最好的方式是在类型说明语句中用const修饰来取代宏定义。(重点)大型程序中,往往需要使用很多头文件,因此要发现重复包含并不容易。要解决这个问题,我们可以在头文件使用条件编译。(三种方式) 表1是所有预处理指令和意义 指令意义 #define 定义宏 #undef 取消定义宏 #include 包含文件 #ifdef 其后的宏已定义时激活条件编译块 #ifndef 其后的宏未定义时激活条件编译块 #endif 中止条件编译块 #if 其后表达式非零时激活条件编译块 #else 对应#ifdef, #ifndef, 或#if 指令 #elif #else 和#if的结合 #line 改变当前行号或者文件名 #error 输出一条错误信息 #pragma 为编译程序提供非常规的控制流信息 宏定义 #define指令定义宏,宏定义可分为两类:简单宏定义,带参数宏定义。 简单宏定义有如下一般形式: #define 名字替换文本 它指示预处理器将源文件中所有出现名字记号的地方都替换为替换文本,替换文本可以是任

gcc编译器 CFLAGS 标志参数说明

gcc编译器 CFLAGS 标志参数说明2012-11-14 15:10:28 分类:LINUX CFLAGS = -g -O2 -Wall -Werror -Wno-unused 编译出现警告性错误unused-but-set-variable,变量定义但没有使用,解决方法: 增加CFLAGS 或CPPFLAGS参数如下: CPPFLAGS=" -Werror -Wno-unused-but-set-variable" || exit 1 Gcc总体选项列表 后缀名所对应的语言 -S只是编译不汇编,生成汇编代码 -E只进行预编译,不做其他处理 -g在可执行程序中包含标准调试信息 -o file把输出文件输出到file里 -v打印出编译器内部编译各过程的命令行信息和编译器的版本 -I dir在头文件的搜索路径列表中添加dir目录 -L dir在库文件的搜索路径列表中添加dir目录 -static链接静态库 -llibrary连接名为library的库文件 ·“-I dir” 正如上表中所述,“-I dir”选项可以在头文件的搜索路径列表中添加dir目录。由于Linux 中头文件都默认放到了“/usr/include/”目录下,因此,当用户希望添加放置在其他位置的头文件时,就可以通过“-I dir”选项来指定,这样,Gcc就会到相应的位置查找对应的目录。 比如在“/root/workplace/Gcc”下有两个文件: #include int main() { printf(“Hello!!\n”); return 0; } #include

这样,就可在Gcc命令行中加入“-I”选项: [root@localhost Gcc] Gcc hello1.c –I /root/workplace/Gcc/ -o hello1 这样,Gcc就能够执行出正确结果。 小知识 在include语句中,“<>”表示在标准路径中搜索头文件,““”” 表示在本目录中搜索。故在上例中,可把hello1.c的“#include” 改为“#include “my.h””,就不需要加上“-I”选项了。 ·“-L dir” 选项“-L dir”的功能与“-I dir”类似,能够在库文件的搜索路径列表中添加dir目录。 例如有程序hello_sq.c需要用到目录“/root/workplace/Gcc/lib”下的一个动态库 libsunq.so,则只需键入如下命令即可: [root@localhost Gcc] Gcc hello_sq.c –L /root/workplace/Gcc/lib –lsunq –o hello_sq 需要注意的是,“-I dir”和“-L dir”都只是指定了路径,而没有指定文件,因此不能在 路径中包含文件名。 另外值得详细解释一下的是“-l”选项,它指示Gcc去连接库文件libsunq.so。由于在Linux 下的库文件命名时有一个规定:必须以lib三个字母开头。因此在用-l选项指定链接的库 文件名时可以省去lib三个字母。也就是说Gcc在对”-lsunq”进行处理时,会自动去链接 名为 libsunq.so的文件。 (2)告警和出错选项 Gcc的告警和出错选项如表3.8所示。 Gcc总体选项列表 选项含义 -ansi 支持符合ANSI标准的C程序 -pedantic 允许发出ANSI C标准所列的全部警告信息 -pedantic-error 允许发出ANSI C标准所列的全部错误信息 -w 关闭所有告警 -Wall 允许发出Gcc提供的所有有用的报警信息 -werror 把所有的告警信息转化为错误信息,并在告警发生时终止编译过程 下面结合实例对这几个告警和出错选项进行简单的讲解。 如有以下程序段: #include void main() { long long tmp = 1; printf(“This is a bad code!\n”);

相关文档