文档库 最新最全的文档下载
当前位置:文档库 › 013-普通物理学讲座之十三——由万有引力定律推导行星椭圆轨道

013-普通物理学讲座之十三——由万有引力定律推导行星椭圆轨道

013-普通物理学讲座之十三——由万有引力定律推导行星椭圆轨道
013-普通物理学讲座之十三——由万有引力定律推导行星椭圆轨道

普通物理学讲座之十三——由万有引力定律推导行星椭圆

轨道

作者:Michaelexe

有了前面的知识,我们可以完成当年牛顿爵士的一大成就——有万有引力定律推导行星椭圆轨道。

我们先来推导椭圆的极坐标方程。

把极点选在椭圆的一个焦点上,让极轴沿着椭圆的长轴指向远离另一焦点的方向,如图。

按照定义,椭圆是到两焦点的距离之和等于常数(设这常数为2a)的点的轨迹。椭圆的方程应为

(这里设两焦点间的距离为2c)。

在上一方程中,先把左边的第一项r移到右边,再取两边的平方消去根号,我们得到

由此又可得到

这里

这样我们得到了椭圆的极坐标方程

采用极坐标

其中,(万有引力定律),。

这里M是太阳的质量,m是行星的质量,G是万有引力常数。行星的运动方程可以写成

(详见第8讲)

这里k=GM。后一方程两边乘以r得

这说明面积速度为常数

(常数)

再来考察方程

(13-1)

记u=1/r,则从

可得

我们有

方程(13-1)化成

这是一个二阶常系数线性微分方程。容易看出它的一个特解是

。于是这个方程的一般解为

这式又可写成

其中

于是有

这里

我们得到了圆锥曲线的一般方程

因为旋转中的行星不会跑到无穷远去,它的轨道应该是一个椭圆。

常微分 用万有引力定律推导开普勒三定律

万有引力推导开普勒定律 万有引力定律的阐明: 任意两个质点由通过连心线方向上的力相互吸引。该引力大小与它们质量的乘积成正比,与它们距离的平方成反比,与两物体的化学组成和其间介质种类无关。 开普勒定律的阐明: ①椭圆定律:所有行星绕太阳的轨道都是椭圆,太阳在椭圆的一个焦点上。 ②面积定律:行星和太阳的连线在相等的时间间隔内扫过相等的面积。 ③所有行星绕太阳一周的恒星时间()的平方与它们轨道长半轴(ai)的立 方成比例,即 一、开普勒第二定律导引: 由于太阳超重于行星,我们可以假设太阳是固定的。用方程式表示为: ; 其中,是太阳作用于行星的万有引力、是行星的质量、是太阳的质量、是行星相对于太阳的位移向量、是的单位向量。 牛顿第二定律声明:物体受力后所产生的加速度,和其所受的浮力成正比, 和其质量成反比。用方程式表示: 。 合并这两个方程式: (1) 思考位置向量,随时间微分一次可得到速度向量,再微分一次则 可得到加速度向量: 在这里,我们用到了单位向量微分方程式:

, 。(2) 合并方程式 (1) 与 (2) ,可以得到向量运动方程式: 取各个分量,我们得到两个常微分方程式,一个是关于径向加速度,另一个是关于切向加速度: ,(3) 。(4) 导引开普勒第二定律只需切向加速度方程式。试想行星的角动量。 由于行星的质量是常数,角动量随时间的导数为: 。 角动量也是一个运动常数,即使距离与角速度都可能会随时间变化。从 时间到时间扫过的区域: 。 行星太阳连线扫过的区域面积相依于间隔时间。 所以,开普勒第二定律是正确的。 二、开普勒第一定律导引: 设定。这样,角速度是: 。 随时间微分与随角度微分的关系为: 。 随时间微分径向距离:

大学物理学第二章课后答案

习题2 选择题 (1) 一质点作匀速率圆周运动时, (A)它的动量不变,对圆心的角动量也不变。 (B)它的动量不变,对圆心的角动量不断改变。 (C)它的动量不断改变,对圆心的角动量不变。 (D)它的动量不断改变,对圆心的角动量也不断改变。 [答案:C] (2) 质点系的内力可以改变 (A)系统的总质量。 (B)系统的总动量。 (C)系统的总动能。 (D)系统的总角动量。 [答案:C] (3) 对功的概念有以下几种说法: ①保守力作正功时,系统内相应的势能增加。 ②质点运动经一闭合路径,保守力对质点作的功为零。 ③作用力与反作用力大小相等、方向相反,所以两者所作功的代数和必为零。 在上述说法中: (A)①、②是正确的。 (B)②、③是正确的。 (C)只有②是正确的。 (D)只有③是正确的。 [答案:C] 填空题 (1) 某质点在力i x F )54( (SI )的作用下沿x 轴作直线运动。在从x=0移动到x=10m 的过程中,力F 所做功为 。 [答案:290J ] (2) 质量为m 的物体在水平面上作直线运动,当速度为v 时仅在摩擦力作用下开始作匀减速运动,经过距离s 后速度减为零。则物体加速度的大小为 ,物体与水平面间的摩擦系数为 。 [答案:2 2 ;22v v s gs ] (3) 在光滑的水平面内有两个物体A 和B ,已知m A =2m B 。(a )物体A 以一定的动能E k 与静止的物体B 发生完全弹性碰撞,则碰撞后两物体的总动能为 ;(b )物体A 以一定的动能E k 与静止的物体B 发生完全非弹性碰撞,则碰撞后两物体的总动能为 。

[答案:2; 3 k k E E ] 在下列情况下,说明质点所受合力的特点: (1)质点作匀速直线运动; (2)质点作匀减速直线运动; (3)质点作匀速圆周运动; (4)质点作匀加速圆周运动。 解:(1)所受合力为零; (2)所受合力为大小、方向均保持不变的力,其方向与运动方向相反; (3)所受合力为大小保持不变、方向不断改变总是指向圆心的力; (4)所受合力为大小和方向均不断变化的力,其切向力的方向与运动方向相同,大小恒定;法向力方向指向圆心。 举例说明以下两种说法是不正确的: (1)物体受到的摩擦力的方向总是与物体的运动方向相反; (2)摩擦力总是阻碍物体运动的。 解:(1)人走路时,所受地面的摩擦力与人的运动方向相同; (2)车作加速运动时,放在车上的物体受到车子对它的摩擦力,该摩擦力是引起物体相对地面运动的原因。 质点系动量守恒的条件是什么?在什么情况下,即使外力不为零,也可用动量守恒定律近似求解? 解:质点系动量守恒的条件是质点系所受合外力为零。当系统只受有限大小的外力作用,且作用时间很短时,有限大小外力的冲量可忽略,故也可用动量守恒定律近似求解。 在经典力学中,下列哪些物理量与参考系的选取有关:质量、动量、冲量、动能、势能、功? 解:在经典力学中,动量、动能、势能、功与参考系的选取有关。 一细绳跨过一定滑轮,绳的一边悬有一质量为1m 的物体,另一边穿在质量为2m 的圆柱体的竖直细孔中,圆柱可沿绳子滑动.今看到绳子从圆柱细孔中加速上升,柱体相对于绳子以匀加速度a 下滑,求1m ,2m 相对于地面的加速度、绳的张力及柱体与绳子间的摩擦力(绳轻且不可伸长,滑轮的质量及轮与轴间的摩擦不计). 解:因绳不可伸长,故滑轮两边绳子的加速度均为1a ,其对于2m 则为牵连加速度,又知2m 对绳子的相对加速度为a ,故2m 对地加速度, 题图 由图(b)可知,为 a a a 12 ① 又因绳的质量不计,所以圆柱体受到的摩擦力f 在数值上等于绳的张力T ,由牛顿定律,

高中万有引力教案.doc

高中万有引力教案【篇一:高中物理《万有引力定律的应用》教案(1)】 万有引力定律的应用 【教育目标】 一、知识目标 1.了解万有引力定律的重要应用。 2.会用万有引力定律计算天体的质量。 3.掌握综合运用万有引力定律和圆周运动等知识分析具体问题的基 本方法。 二、能力目标 通过求解太阳、地球的质量,培养学生理论联系实际的能力。 三、德育目标 利用万有引力定律可以发现未知天体,让学生懂得理论来源于实践,反过来又可以指导实践的辩证唯物主义观点。 【重点、难点】 一、教学重点 对天体运动的向心力是由万有引力提供的理解 二、教学难点 如何根据已有条件求中心天体的质量 【教具准备】 太阳系行星运动的挂图和flash 动画、ppt 课件等。 【教材分析】 这节课通过对一些天体运动的实例分析,使学生了解:通常物体之 间的万有引力很小,常常觉察不出来,但在天体运动中,由于天体 的质量很大,万有引力将起决定性作用,对天文学的发展起了很大 的推动作用,其中一个重要的应用就是计算天体的质量。 在讲课时,应用万有引力定律有两条思路要交待清楚. 1.把天体(或卫星)的运动看成是匀速圆周运动,即 f 引=f 向,用于计算天体(中心体)的质量,讨论卫星的速度、角速度、周期及 半径等问题. 2.在地面附近把万有引力看成物体的重力,即 f 引=mg. 主要用于计算涉及重力加速度的问题。这节内容是这一章的重点,这是万有引力定律在实际中的具体应用.主要知识点就是如何求中心体质量及其他应用,还是可发现未知天体的方法。

【教学思路设计】 本节教学是本章的重点教学章节,用万有引力定律计算中心天体的 质量,发现未知天体显示了该定律在天文研究上的重大意义。 本节内容有两大疑点:为什么行星运动的向心力等于恒星对它的万 有引力?卫星绕行星运动的向心力等于行星对它的万有引力?我的 设计思想是,先由运动和力的关系理论推理出行星(卫 星)做圆周运动的向心力来源于恒星(行星)对它的万有引力,然 后通过理论推导,让学生自行应用万有引力提供向心力这个特点来 得到求中心天体的质量和密度的方法,并知道在具体问题中主要考 虑哪些物体间的万有引力;最后引导阅读相关材料了解万有引力定 律在天文学上的实际用途。 本节课我采用了“置疑-启发—自主”式教学法。教学中运用设问、提问、多媒体教学等综合手段,体现教师在教学中的主导地位。同 时根据本节教材的特点,采用学生课前预习、查阅资料、课堂提问;师生共同讨论总结、数理推导、归纳概括等学习方法,为学生提供 大量参与教学活动的机会,积极思维,充分体现教学活动中学生的 主体地位。 【教学过程设计】 一、温故知新,引入新课 教师:1、物体做圆周运动的向心力公式是什么? 2、万有引力定律的内容是什么,如何用公式表示? 3、万有引力和重力的关系是什么?重力加速度的决定式是什么? 【引导学生观看太阳系行星运动挂图和flash 动画】 教师:根据前面我们所学习的知识,我们知道了所有物体之间都存 在着相互作用的万有引力,而且这种万有引力在天体这类质量很大 的物体之间是非常巨大的。那么为什么这样巨大的引力没有把天体 拉到一起呢? 【设疑过渡】 教师:由运动和力的关系来解释:因为天体都是运动的,比如恒星 附近有一颗行星,它具有一定的速度,根据牛顿第一定律,如果不 受外力,它将做匀速直线运动。现在它受到恒星对它的万有引力, 将偏离原来的运动方向。这样,它既不能摆脱恒星的控制远离恒星,也不会被恒星吸引到一起,将围绕恒星做圆周运动。此时,行星做 圆周运动的向心力由恒星对它的万有引力提供。 本节课我们就来学习万有引力在天文学上的应用。

万有引力定律公式总结

万有引力公式 线速度 角速度 向心加速度 向心力 两个基本思路 1.万有引力提供向心力:r m r n m ma r T m r m r v m r M G ωππω======22222 2244m 2.忽略地球自转的影响: mg R GM =2 m (2 g R GM =,黄金代换式) 一、测量中心天体的质量和密度 测质量: 1.已知表面重力加速度g ,和地球半径R 。(mg R GM =2m ,则G gR M 2= ) 2.已知环绕天体周期T 和轨道半径r 。(r T m r Mm G 2224π= ,则2 3 24GT r M π=) 3.已知环绕天体的线速度v 和轨道半径r 。(r v m r Mm G 22=,则G r v M 2=) 4.已知环绕天体的角速度ω和轨道半径r 。(r m r Mm G 2 2ω=,则G r M 32ω=) 5.已知环绕天体的线速度v 和周期T 。(T r v π2=,r v m r M G 22m =,联立得G T M π2v 3=) 测密度: 已知环绕天体的质量m 、周期T 、轨道半径r 。中心天体的半径R ,求中心天体的密度ρ 解:由万有引力充当向心力

r T m r Mm G 2224π= 则2 324GT r M π= ——① 又3 3 4R V M πρρ? == ——② 联立两式得:3 23 3R GT r πρ= 当R=r 时,有2 3GT π ρ= 二、星球表面重力加速度、轨道重力加速度问题 1.在星球表面: 2 R GM mg =(g 为表面重力加速度,R 为星球半径) 2.离地面高h: 2 ) (h R GM g m += '(g '为h 高处的重力加速度) 联立得g'与g 的关系: 2 2 )('h R gR g += 三、卫星绕行的向心加速度、速度、角速度、周期与半径的关系 1.ma r M G =2m ,则2 a r M G =(卫星离地心越远,向心加速度越小) 2.r v m r Mm G 2 2=,则r GM v = (卫星离地心越远,它运行的速度越小) 3.r m r Mm G 22ω=,则3r GM =ω(卫星离的心越远,它运行的角速度越小) 4.r T m r Mm G 22 24π=,则GM T 3 2r 4π= (卫星离的心越远,它运行的周期越大)

《大学物理》第二章答案

习题二 1 一个质量为得质点,在光滑得固定斜面(倾角为)上以初速度运动,得方向与斜面底边得水平线平行,如图所示,求这质点得运动轨道. 解: 物体置于斜面上受到重力,斜面支持力、建立坐标:取方向为轴,平行斜面与轴垂直方向为轴、如图2-2、 题2-2图 方向: ① 方向: ② 时 由①、②式消去,得 2 质量为16 kg 得质点在平面内运动,受一恒力作用,力得分量为=6 N,=-7 N,当=0时,0,=-2 m·s-1,=0.求 当=2 s时质点得 (1)位矢;(2)速度. 解: (1) 于就是质点在时得速度 (2) 3 质点在流体中作直线运动,受与速度成正比得阻力(为常数)作用,=0时质点得速度为,证明(1) 时刻得速度为=;(2) 由0到得时间内经过得距离为 =()[1-];(3)停止运动前经过得距离为;(4)证明当时速 答: (1)∵ 分离变量,得 即 ∴ (2) (3)质点停止运动时速度为零,即t→∞, 故有 (4)当t=时,其速度为 即速度减至得、 4一质量为得质点以与地得仰角=30°得初速从地面抛出,若忽略空气阻力,求质点落地时相对抛射时得动量得增量. 解: 依题意作出示意图如题2-6图 题2-6图

在忽略空气阻力情况下,抛体落地瞬时得末速度大小与初速度大小相同,与轨道相切斜向下, 而抛物线具有对轴对称性,故末速度与轴夹角亦为,则动量得增量为 由矢量图知,动量增量大小为,方向竖直向下. 5 作用在质量为10 kg得物体上得力为N,式中得单位就是s,(1)求4s后,这物体得动量与速度得变化,以及力给予物体得冲量.(2)为了使这力得冲量为200 N·s,该力应在这物体上作用多久,试就一原来静止得物体与一个具有初速度m·s-1得物体,回答这两个问题. 解: (1)若物体原来静止,则 ,沿轴正向, 若物体原来具有初速,则 于就是 , 同理, , 这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得得动量得增量(亦即冲量)就一定相同,这就就是动量定理. (2)同上理,两种情况中得作用时间相同,即 亦即 解得,(舍去) 6一颗子弹由枪口射出时速率为,当子弹在枪筒内被加速时,它所受得合力为 F =()N(为常数),其中以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受得冲量.(3)求子弹得质量. 解: (1)由题意,子弹到枪口时,有 ,得 (2)子弹所受得冲量 将代入,得 (3)由动量定理可求得子弹得质量 证毕. 7 设.(1) 当一质点从原点运动到时,求所作得功.(2)如果质点到处时需0、6s,试求平均功率.(3)如果质点得质量为1kg,试求动能得变化. 解: (1)由题知,为恒力, ∴ (2) (3)由动能定理, 8 如题2-18图所示,一物体质量为2kg,以初速度=3m·s-1从斜面点处下滑,它与斜面得摩擦力为8N,到达点后压缩弹簧20cm后停止,然后又被弹回,求弹簧得劲度系数与物体最后能回到得高度. 解: 取木块压缩弹簧至最短处得位置为重力势能零点,弹簧原 长处为弹性势能零点。则由功能原理,有

高中物理万有引力定律(教学设计)

高中物理必修二第六章第三节 【教材分析】 万有引力定律是本章的核心,从内容性质与地位上看,本节内容是对上一节“太阳与行星间的引力”的进一步外推,即:从天体运动推广到地面上任何物体的运动;又是下一节掌握万有引力理论在天文学上应用的学习的基础。本节重点内容是理解万有引力定律的推导思路和过程,掌握万有引力定律的内容及表达公式,知道万有引力定律得出的意义,知道任何物体间都存在着万有引力,且遵循相同的规律。本节难点是物体间距离的理解。另外本节内容还注重是对学生“科学方法”教育和“情感态度与价值观”的教育:使学生认识科学研究过程中根据事实和分析推理进行猜想、假设和检验的重要性,培养学生的推理能力、概括能力和归纳总结能力;本节结合“月—地检验”,经历思维程序“提出问题→猜想与假设→理论分析→实验观测→验证结论”培养学生探究思维能力;使学生学习科学家们坚持不懈、勇往直前和一丝不苟的工作精神,培养学生良好的学习习惯和善于探索的思维品质。 【学情分析】 上节内容中,学生用所学的“圆周运动”、“开普勒行星运动定律”和“牛顿运动定律”知识,经历了一系列科学探究过程,得出了太阳与行星间的引力特点,学生对天体运动的研究产生了极大的兴趣和求知欲。本节课教师再引导学生从太阳与行星间引力的规律出发,根据类比事实将“平方反比关系”的作用力进行猜想,假设和推广,从太阳对行星的引力到地球对月球的引力,再到任意物体间的吸引力都满足“平方反比的关系”。学生会带着好奇和探究意识以及必要的检验论证,一路探究下去,最终得出万有引力定律。使学生在理解掌握万有引力定律的基础上,培养了探究思维能力和良好的思维品质,为学生终身发展打下基础。 【教学流程】 【教学目标】 一、知识与技能 1.理解万有引力定律的推导思路和过程。

万有引力定律的建立过程及意义

万有引力定律的建立过程及意义 万有引力定律的发现,是17世纪自然科学最伟大的成果之一。苹果的落地引起了牛顿科学的遐想,在通过大量数学计算后推导出了著名万有引力定律。 然而万有引力定律的确立,却并非牛顿一个人的功劳。在牛顿研究万有引力之前,已有不少人从事这个问题的研究,如第谷、开普勒。此外和牛顿同时代的科学家,如胡克、哈雷、惠更斯、伦恩等,对万有引力定律的建立也有贡献。正如牛顿本人所说:“我之所以有这样的成就,因为我是站在巨人们的肩膀上的。” 丹麦天文学家第谷花费多年时间进行观测行星,编制了篇幅庞大、高度精确的星表。而后德国数学家、天文学家、物理学家开普勒对第谷的星表进行整理研究,最终提出了行星运动三定律。这些对于牛顿提出万有引力定律具有至关重要的作用。此外,惠更斯的向心力公式,胡克、哈雷、伦恩重力问题的研究都给予了牛顿不少启发。 1665-1666年,因为瘟疫流行,牛顿从剑桥大学回到家乡。而看到苹果偶然落地引发了牛顿思考引力问题。之后1684年,牛顿做了《论运动》的演讲,明确叙述了向心力定律,证明了椭圆轨道运动的平方反比关系。此后不久,又在一篇关于物体在均匀介质中的运动的论文中定义了质量概念,并探讨了引力与质量的关系。这些将牛顿引向了万有引力定律的发现。 牛顿设想了从高山上平抛一个铅球的理想实验,他认为当发射速度足够大时,铅球将可能绕地球运动而不再落回地面,指出月球也可以由于重力或者其他力的作用使其偏离直线形成围绕地球的运转。牛顿通过一个靠近地面的“小月球”的运动的思想实验,论证了“使月球保持在它轨道上的力就是我们通常称的为‘重力’的那个力。” 接着,牛顿根据向心力公式和开普勒三定律推导了平方反比关系。牛顿证明,由面积速度定律可以得出物体受中心力的作用,由轨道定律可以得出物体这个中心力是吸引力,由周期定律可以得出这个吸引力与半径的平方成反比。并且通过同磁力的类比,得出“这些指向物体的力应与这些物体的性

人教版必修二《万有引力定律》教案

人教版必修二《万有引力定律》教案万有引 力定律》 教学设计

2012-03-09 万有引力定律 教学设计 【教材分析】 通过学习太阳与行星间的引力,探究地球与月球、地球与地面上的物体之间的作用力是否与太阳与行星间的作用力是同一性质的力,从而得出了万有引力定律。由万有引力定律得到的一系列科学发现,不仅验证了万有引力定律的正确性,而且表明了自然界和自然规律是可以被认识的。万有引力定律是所有有质量的物体之间普遍遵循的规律,引力常量的测定不仅验证了万有引力定律的正确性,而且使得万有引力定律能进行定量计算,显示出真正的实用价值。 教学过程中的关键是对万有引力定律公式的理解,知道公式的适用条件。教学中可灵活采用教学方法以便加深对知识的理解,比如讲授法、讨论法等。 教学重点万有引力定律的理解及应用. 教学难点万有引力定律的推导过程. 课时安排1课时 三维目标 知识与技能 1、了解万有引力定律得出的思路和过程. 2、理解万有引力定律的含义并掌握用万有引力定律计算引力的方法. 3、记住引力常量G并理解其内涵. 过程与方法 1、了解并体会科学研究方法对人们认识自然的重要作用. 2、认识卡文迪许实验的重要性,了解将直接测量转化为间接测量这一科学研究中普遍采用的重要方法. 情感态度与价值观 通过牛顿在前人的基础上发现万有引力的思想过程,说明科学研究的长期性、连续性及艰巨性。 【教学过程】 导入新课(故事导入) 1666年夏末一个温暖的傍晚,在英格兰林肯郡乌尔斯索普,一个腋下夹着一本书的年轻人走进他母亲家的花园里,坐在一颗树下,开始埋头读他的书.当他翻动书页时,他头顶的树枝中有样东西晃动起来,一只历史上最著名的苹果落了下来,打在23岁的伊萨克·牛顿的头上.恰巧在那天,牛顿正苦苦思索着一个问题:是什么力量使月球保持在环绕地球运行的轨道上,以及使行星保持在其环绕太阳运行的轨道上?为什么这只打中他脑袋的苹果会坠落到地上?(如下图所示)正是从思考这一问题开始,他找到了这些问题的答案——万有引力定律. 这节课我们将共同“推导”一下万有引力定律.

第四章行星的运动

第四章行星的运动 一、行星的视运动及其解释 1 内行星的视运动及其解释 相对于地球轨道,轨道半径小的水星和金星称为“(地)内行星” 轨道半径大的火星、木星、土星、天王星和海王星称为“(地)外行星” 内行星常在黎明前出现于东方(“晨星”),或在黄昏后出现于西方(“昏星”) 内行星与太阳的角距离总是在一定范围内变化 行星相对于恒星背景的移动,其路径在黄道附近 2 内行星视运动分类 由于内行星和地球在各自轨道上绕太阳公转,内行星的公转速度比地球的快,且它们的轨道面有一定的夹角,因此,从地球上观测到内行星相对于恒星的视运动呈现出(上合前后)向东“顺行”、(下合前后)向西“逆行”,以及顺逆转折时的“留”,视运动路径呈折圈形状。顺行:自西向东运行,与地球公转方向相同,顺行时间长 逆行:自东向西运行,与地球公转方向相反,逆行时间短 留:由顺行转逆行或由逆行转顺行的转折点 3 内行星视运动的特殊点 合:当行星与太阳的黄经相等时称为“合”,行星在太阳前方称为下合,太阳在行星前方称为上合 大距:当行星与太阳角距达到最大时称为“大距”,在太阳之东称为“东大距”,在太阳之西称为“西大距” 内行星视运动的运行周期:上合(1)——(顺行)——东大距——(顺行)——留——(逆行)——下合——(逆行)——留——(顺行)——西大距——(顺行)——上合(2) 4 凌日 在下合时,若内行星又恰好过黄道面,地球上的观测者可以看到它从太阳圆面前经过,日面上出现一个移动的小黑点,这一现象称为“凌日” 内行星凌日发生的必要条件:内行星和地球都位于轨道交点附近 怎样安全地观察凌日现象? 不能在没有保护措施的情况下通过普通望远镜和天文望远镜观看太阳 接物镜滤片:将一块高质量的滤片放在普通望远镜或天文望远镜的物镜上。 白屏投影:距离望远镜或天文望远镜一定距离放置一块白色屏幕,让光线照在白屏上 5 外行星的视运动及其解释 外行星的轨道大于地球轨道,其视运动除了有顺行、逆行、留和折圈路径等跟内行星视运动相似特征外,还有一些自己的特征:只有“上合”,没有“下合”;与太阳的角距没有“大距”限制;没有“凌日);没有明显的相位变化 冲日:外行星与太阳的地心黄经相差180°时,称为“冲日”或“冲” 大冲:由于行星轨道都是椭圆,因此每次冲时,外行星与地球的距离都不相同,距离最小的冲称为“大冲” 方照:外行星与太阳的地心黄经相差90°时,称为“方照”。 行星在太阳之东称为“东方照”,行星中午升起,日落时位于中天附近,上半夜可见于西方天空 行星在太阳之西为“西方照”,行星子夜升起,日出时位于中天附近,下半夜可见于东方天空 外行星视运动的运行周期:合(1)——(顺行)——东方照——(顺行)——留——(逆行)——冲——(逆行)——留——(顺行)——西方照——(顺行)——合(2) 6 行星的会合周期 地球上观测到的行星运动实际上是行星公转和地球公转的复合运动,常称为“会合运动”。地球上观测到行星的连续两次上合或冲的时间间隔,称为“会合周期” 会合周期等不等行星的公转周期?不等于。公转周期应该为相对于遥远恒星背景来计量公转一圈的时间间隔——“恒星周期” 思考 地内行星和地外行星的视运动有哪些不同之处? 二、行星的轨道根数和星历表 1 轨道根数 长半轴a: 轨道椭圆长轴的一半,表示轨道大小 偏心率e : 对于椭圆轨道0

高中物理公式大全全集万有引力

五、万有引力 1、开普勒三定律: ⑴开普勒第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上 ⑵开普勒第二定律(面积定律):太阳和行星的连线在相等的时间内扫过相等的面积 ⑶开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等 对T 1、T 2表示两个行星的公转周期,R 1、R 2表示两行星椭圆轨道的半长轴,则周期定律可表示为32 312221R R T T = 或k T R =3 3,比值k 是与行星无关而只与太阳有关的恒量 【注意】:⑴开普勒定律不仅适用于行星,也适用于卫星,只不过此时k T R =33 ‘ ,比值k ’ 是 由行星的质量所决定的另一恒量。 ⑵行星的轨道都跟圆近似,因此计算时可以认为行星是做匀速圆周运动 ⑶开普勒定律是总结行星运动的观察结果而总结归纳出来的规律,它们每一条都 是经验定律,都是从观察行星运动所取得的资料中总结出来的。 例题:飞船沿半径为R 的圆周绕地球运动,其周期为T ,如果飞船要返回地面,可在轨道上的某一点A 处,将速率降低到适当数值,从而使飞船沿着以地心为焦点的椭圆轨道运动,椭圆和地球表面在B 点相切,如图所示,如果地球半径为R 0,求飞船由A 点到B 点所需要的时间。 解析:依开普勒第三定律知,飞船绕地球做圆周(半长轴和半短轴相等的特殊椭圆)运动时,其轨道半径的三次方跟周期的平方的比值,等于飞船绕地球沿椭圆轨道运动时,其半长轴的三次方跟周期平方和比值,飞船椭圆轨道的半长轴为 2 R R +,设飞船沿椭圆轨道运动的周期一、知识网络 二、 画龙点睛 概念

从开普勒定律到万有引力定律

从开普勒定律到牛顿万有引力定律 [摘要]:在高中阶段甚至大学的普通物理中,从开普勒三定律到万有引力定律的推导都是在简化之后的圆轨道上进行的。本文从椭圆轨道出发,推导出了万有引力定律。 [关键词]:万有引力定律、开普勒定律、行星运动、椭圆轨道、极坐标 [正文] 高中阶段,由于缺少数学知识,从开普勒定律到万有引力的推导只能在简化之后的圆轨道上进行。甚至大学阶段,普通物理的教材中,也采用了这个方法。本文力图从原始的椭圆轨道入手,导出万有引力定律。当然,这个过程不可能不涉及高等数学的知识。首先我们做一个准备工作,然后再集中考虑推导的过程。如果“准备”中的知识已完全清楚,则可以直接考虑定律的推导了。 第一部分 准备 一、极坐标中的椭圆方程 椭圆定义为到定点的距离与到定直线的距离之比为常数e 的点的集合。 如图1所示,在极坐标中,Ox 为极轴l 是垂直于极轴的定直线,它与O 点的距离为p 。由椭圆的定义可知: e r p r =+θ cos 整理可得: θ cos 1e pe r -= (1) 二、极坐标中的位置矢量 x O θ 图1 l r

极坐标中,r 表示从原点到曲线上一点的距离,如果我们以原点O 为参考,则r 实际上只表示出了位置矢量的大小。为了明确其方向,我们沿着r 所在的直线做出单位矢量i 作为径向单位向量。另外,将i 旋转2 π 得到j 作为横向单位向量。显然物体的位置矢量可表示为: ri =r (2) 上式中等号右边的r 表示的是位矢的大小,i 表示的位矢的方向。但是应当注意的是,不管是r 还是i ,都不一定是常量。这和直角坐标系中的单位向量是常量是有区别的。 另外,r 和i 都是θ的函数,在运动学中θ又是时间t 的函数。所以,r 和i 都是时间t 的函数,所以我们也可以说位置矢量r 是时间的函数。 在这里,我们必须清楚的是,极坐标中的矢量表示和用极坐标表示函数关系并不完全是一回事。若用极坐标表示数量关系,我们只需要用标量式()θr r =即可,在表示矢量时,我们不得不在这个基础上加上了单位向量i 。 三、极坐标中的速度和加速度 下面我们先求单位向量对时间的导数。 在图3中,以Ox 方向为x 轴,O 为原点,垂直Ox 向上为y 轴建立直角坐标系,用ξ、 η表示沿x 轴、y 轴的单位向量,则i 、j 可分别表示为: θηθξsin cos +=i x 图3 r i j θd θ O Δi θd x O θ 图2 r i j

大学物理第二章习题及答案

大学物理第二章习题及 答案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第二章 牛顿运动定律 一、选择题 1.下列说法中哪一个是正确的( ) (A )合力一定大于分力 (B )物体速率不变,所受合外力为零 (C )速率很大的物体,运动状态不易改变 (D )质量越大的物体,运动状态越不易改变 2.用细绳系一小球,使之在竖直平面内作圆周运动,当小球运动到最高点时( ) (A )将受到重力,绳的拉力和向心力的作用 (B )将受到重力,绳的拉力和离心力的作用 (C )绳子的拉力可能为零 (D )小球可能处于受力平衡状态 3.水平的公路转弯处的轨道半径为R ,汽车轮胎与路面间的摩擦因数为μ,要使汽车不致于发生侧向打滑,汽车在该处的行驶速率( ) (A )不得小于gR μ (B )不得大于gR μ (C )必须等于 gR μ2 (D )必须大于 gR μ3 4.一个沿x 轴正方向运动的质点,速率为51 s m -?,在0=x 到m 10=x 间受到一个如图所示的y 方向的力的作用,设物体的质量为1. 0kg ,则它到达m 10=x 处的速率为( ) (A )551s m -? (B )1751 s m -? (C )251s m -? (D )751 s m -? 5.质量为m 的物体放在升降机底板上,物体与底板的摩擦因数为μ,当升降机以加速度a 上升时,欲拉动m 的水平力至少为多大( ) (A )mg (B )mg μ(C ))(a g m +μ (D ))(a g m -μ

6 物体质量为m ,水平面的滑动摩擦因数为μ,今在力F 作用下物体向右方运动,如下图所示,欲使物体具有最大的加速度值,则力F 与水平方向的夹角θ应满足( ) (A )1cos =θ (B )1sin =θ (C )μθ=tg (D )μθ=ctg 二、简答题 1.什么是惯性系什么是非惯性系 2.写出任一力学量Q 的量纲式,并分别表示出速度、加速度、力和动量的量纲式。 三、计算题 2.1质量为10kg 的物体,放在水平桌面上,原为静止。先以力F 推该物体,该力的大小为20N ,方向与水平成?37角,如图所示,已知物体与桌面之前的滑动摩擦因数为 0.1,求物体的加速度。 2.2质量M=2kg 的物体,放在斜面上,斜面与物体之间的滑动摩擦因数 2.0=μ,斜面仰角?=30α,如图所示,今以大小为19.6N 的水平力F 作用于m , 求物体的加速度。 题2.2

第四节万有引力理论的成就备课备课教案

第三章第三节万有引力定律的应用教学设计 课标分析: 本节课是在学习了万有引力定律的基础上,应用万有引力定律求解天体的质量和发现新的天体等,让学生感受万有引力定律经受了实践的检验及其取得的巨大成功,进而理解万有引力理论的巨大作用和价值。 教材分析: 本节内容是这一章的重点,是万有引力定律在实际中的具体应用,利用万有引力定律除了可求出中心天体的质量外,还可发现未知天体。本节是“应用+检验”性的内容,着重讲清应用思路,通过本节课的学习,重点要使学生深刻体会科学定律对人类探索未知世界的作用,激起学生对科学探究的兴趣,培养学生热爱科学的情感。 学生分析: 学生要运用已有的概念和知识以及力和运动之间的关系,根据实际问题建立合理的物理模型,通过归纳总结、逻辑推理来解决问题。 教学目标: 知识与技能: 1、了解万有引力定律在天文学上的重要应用。 2、会用万有引力定律计算天体的质量。 过程与方法: 1、理解运用万有引力定律处理天体问题的思路、方法,体会科学定律的意义。 2、了解万有引力定律在天文学上的重要应用,理解并运用万有引力定律处理问题的思路方法。 情感、态度与价值观: 1、通过测量天体的质量、预测未知天体的学习活动,体会科学研究方法对人类认识自然的重要作用,体会万有引力定律对人类探索和认识未知世界的作用。 2、通过对天体运动规律的认识,了解科学发展的曲折性,感悟科学是人类进步的动力。 教学重难点: 重点:运用万有引力定律和圆周运动公式计算天体的质量。 难点:在具体的天体运动中应用万有引力定律解决问题。 教学安排:1课时 教学方法:问题驱动法、小组合作互动探究法 教学资源:多媒体课件、学生学习学案 教学过程:

行星地轨道及位置地数学解法.doc

实用文案 行星的轨道和位置的数学解法 作者:石磊a,林川 b 指导教师:乐经良 C 教授 a : 上海交通大学电子信息与电气工程学院F0303032 班 (5030309885) , 电话: 54740807 b : 上海交通大学电子信息与电气工程学院F0303032 班 (5030309880) , 电话: 54741769 c : 上海交通大学理学院数学系 摘要:本文主要涉及常微分方程及对微分方程的建模与求解,数值积分的计算;利用多种微 分方程的数值方法求解得到行星运行的参数和位置。研究基于压缩映象的求根方法和微 分方程的 Runge-Kutte 法。特别对 Runge-Kutte 法进行较深入的讨论。并通过数值方法解微分 方程得到的行星位置演示水星和冥王星的运行轨道,编制软件。 关键词:微分方程数值方法Runge–Kutte法 问题的重述 17 世纪初,在丹麦天文学家 T.Brache 观察工作的基础上, Kepler 提出了震惊当时科学界的 行星运行三大定律: 1.行星运行的轨道是以太阳为一个焦点的椭圆; 2.从太阳指向某一行星的线段在单位时间内扫过的面积相等; 3.行星运行周期的平方与其运行轨道椭圆长轴的立方之比值是不随行星而改变的常数。 对这三条定律的分析和研究导致 Newton 发现了著名的万有引力定律,而同时,应用万有 引力定律, Kepler 的行星运行三大定律得到了理论上的推导。 数学模型 设太阳中心所在位置为复平面之原点O,在时刻t ,行星位于 Z (t ) re i(4.1)所表示的点P。这里r r (t),(t ) 均是t的函数,分别表示Z (t ) 的模和辐角。 于是行星的速度为 dZ dr e i ire i d e i dr ir d dt dt dt dt dt 其加速度为

万有引力定律教案_物理_教学设计_人教版资料讲解

万有引力定律教案_物理_教学设计_人教版

万有引力定律教学设计 (张格丽宝鸡中学 721013) 【教材版本】 新课标人教版高中物理必修2第六章第3节 【设计理念】 1.本课设计中,力求为学生创造一个良好的学习探究场所,课堂中教师不再是一个主讲者,而是课堂教学的组织者和参与者,和学生一起去感受、认识、探索、分析、概括。 2.科学探究既是学生的学习目标,又是重要的教学方式之一。引导学生对问题的学习、探究,养成良好的评价习惯,在取得成功喜悦的同时,培养学生分析问题、发现不足、纠正错误的严谨的科学态度。让学生知道解决物理问题常采用这种方法,即提出问题,猜想和假设,实验、检验,得出结论。 【教材分析】 万有引力定律的发现过程犹如一部壮丽的科学史诗,它歌颂了前辈科学家的科学精神,也展现了科学发展过程中科学家们富有创造性而又严谨的科学思维,是发展学生思维能力难得的好材料,本节课内容充分利用这些材料发展学生的科学思维能力。教科书在尊重历史事实的前提下,通过一些逻辑思维的铺垫,让学生以自己现有的知识基础身于历史的背景下,经历一次“发现”万有引力的过程: 收集于网络,如有侵权请联系管理员删除

从上述物理学史进程中,可以看出《万有引力定律》这节内容是对上两节课教学内容的进一步推演,并与之构成本章的第一单元内容。同时,本节内容也是下节课 教学内容的基础,是本章 的教学重点,在高中物理中占有重要地位。 【学情分析】 1.原有认知发展分析 从知识结构来看,在学习万有引力定律前,学生已经对力、重力、向心力、太阳对行星的引力、加速度、重力加速度(即自由落体运动的加速度)、向心加速度等概念有了较好的理解,并且掌握了自由落体运动和圆周运动等运动规律,能熟练运 用牛顿运动定律解决动力学问题。已经 完全具备深入探究和学习万有引力定律的能力。 2.原有知识结构分析 从知识建构的历史进程来看,在上一节中学生经历了太阳与行星间引力的探究过程,其中向学生渗透了发现问题、提出问题、猜想假设、推理论证等方法思想,依照学生的认知心理特点,同时根据上节课“说一说”中的问题,很容易在他们脑中形成这样一个问题:太阳与行星间引力规律是否适用于我们与地球间的相互作用?从而为我们进一步演绎万有引力定律“发现之旅”, 确定了转接点,也引入本节新课内容。 3.非认知因素分析 收集于网络,如有侵权请联系管理员删除

行星地轨道和位置地数学解法

行星的轨道和位置的数学解法 作者:石磊a ,林川b 指导教师:乐经良C 教授 a : 上海交通大学电子信息与电气工程学院F0303032班(5030309885) , 电话:54740807 b : 上海交通大学电子信息与电气工程学院F0303032班(5030309880) , 电话:54741769 c : 上海交通大学理学院数学系 摘要:本文主要涉及常微分方程及对微分方程的建模与求解,数值积分的计算;利用多种微分方程的数值方法求解得到行星运行的参数和位置。研究基于压缩映象的求根方法和微分方程的Runge-Kutte 法。特别对Runge-Kutte 法进行较深入的讨论。并通过数值方法解微分方程得到的行星位置演示水星和冥王星的运行轨道,编制软件。 关键词:微分方程 数值方法 Runge – Kutte 法 问题的重述 17世纪初,在丹麦天文学家T.Brache 观察工作的基础上,Kepler 提出了震惊当时科学界的行星运行三大定律: 1. 行星运行的轨道是以太阳为一个焦点的椭圆; 2. 从太阳指向某一行星的线段在单位时间内扫过的面积相等; 3. 行星运行周期的平方与其运行轨道椭圆长轴的立方之比值是不随行星而改变的常数。 对这三条定律的分析和研究导致Newton 发现了著名的万有引力定律,而同时,应用万有引力定律,Kepler 的行星运行三大定律得到了理论上的推导。 数学模型 设太阳中心所在位置为复平面之原点O ,在时刻t ,行星位于 θi re t Z =)( (4.1) 所表示的点P 。这里)(),(t t r r θθ==均是t 的函数,分别表示)(t Z 的模和辐角。 于是行星的速度为 ?? ? ??+=+=dt d ir dt dr e dt d ire e dt dr dt dZ i i i θθθθθ 其加速度为

万有引力定律的推导及完美之处

万有引力定律的推导及完美之处 现在由开普勒第一定律来求行星所受的力的量值。既然轨道为椭圆,我们就可把轨道方程写为 1cos P r e θ=+ 或1cos e P P μθ=+ 把这关系式1cos e P P μθ=+代入比耐公式 2222()d F h d m μμμθ+=- ,就得到 222222 22()d mh h m F mh d P P r μμμμθ=-+=-=- 这表明行星所受力是引力,且与距离平方成反比。 乍一看来,似乎不需要开普勒第三定律就已经能推出胡克的万有引力公式。其实不然,我们并不能把 22h m F P r =-化成22k m F r =-,因为式22h m F P r =-中的h 和P 对每一个行星来讲都具有不同的数值(2r h θ=,1r μ=,P 为椭圆曲线正焦弦长度的一半),而式中的2k 是一个与行星无关的常数。 开普勒第一定律:行星绕太阳作椭圆运行,太阳位于椭圆的一个焦点上。 开普勒第二定律:行星和太阳之间的连线,在相等的时间内所扫过的面积相等。 开普勒第三定律:行星公转的周期的平方和轨道半长轴的立方成正比。 为了能把22h m F P r =-化为 22k m F r =-,就得利用开普勒第三定律,由行星公转的周期得 22324T P a h π= 虽然h 和P 都是和行星有关的常数,但根据开普勒第三定律中2 3T a 是与行星无关的常数,可以得到2P h (或2 h P )是一个与行星无关的常数(即跟行星质量无关,而是由太阳决定了行 星轨道的性质)。因而可以令22h k P =,我们就可以把22h m F P r =-化为 22k m F r =-, 即 2222h m k m F P r r =-=-

大学物理2-1第二章(质点动力学)习题答案

习 题 二 2-1 质量为m 的子弹以速率0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度大小随时间的变化关系; (2)子弹射入沙土的最大深度。 [解] 设任意时刻子弹的速度为v ,子弹进入沙土的最大深度为s ,由题意知,子弹所受的阻力 f = - kv (1) 由牛顿第二定律 t v m ma f d d == 即 t v m kv d d ==- 所以 t m k v v d d -= 对等式两边积分 ??-=t v v t m k v v 0d d 0 得 t m k v v -=0ln 因此 t m k e v v -=0 (2) 由牛顿第二定律 x v mv t x x v m t v m ma f d d d d d d d d ==== 即 x v mv kv d d =- 所以 v x m k d d =- 对上式两边积分 ??=- 00 0d d v s v x m k

得到 0v s m k -=- 即 k mv s 0 = 2-2 质量为m 的小球,在水中受到的浮力为 F ,当它从静止开始沉降时,受到水的粘滞阻力为f =kv (k 为常数)。若从沉降开始计时,试证明小 球在水中竖直沉降的速率v 与时间的关系为 ??? ? ??--= -m kt e k F mg v 1 [证明] 任意时刻t 小球的受力如图所示,取向下为y 轴的正方向,开始沉降处为坐标原点。由牛顿第二定律得 t v m ma f F mg d d ==-- 即 t v m ma kv F mg d d ==-- 整理得 m t kv F mg v d d =-- 对上式两边积分 ??=--t v m t kv F mg v 00 d d 得 m kt F mg kv F mg -=---ln

相关文档
相关文档 最新文档