文档库 最新最全的文档下载
当前位置:文档库 › 针灸防治心肌缺血再灌注损伤的线粒体通路研究进展

针灸防治心肌缺血再灌注损伤的线粒体通路研究进展

针灸防治心肌缺血再灌注损伤的线粒体通路研究进展
针灸防治心肌缺血再灌注损伤的线粒体通路研究进展

线粒体与细胞凋亡

万方数据

万方数据

万方数据

线粒体与细胞凋亡 作者:周艺群, 谷志远, ZHOU Yi-qun, GU Zhi-yuan 作者单位:浙江大学医学院附属口腔医院口腔颌面外科,浙江,杭州,310006 刊名: 解剖科学进展 英文刊名:PROGRESS OF ANATOMICAL SCIENCES 年,卷(期):2006,12(1) 被引用次数:14次 参考文献(17条) 1.樊廷俊;夏兰;韩贻仁线粒体与细胞凋亡[期刊论文]-生物化学与生物物理学报 2001(01) 2.赵云罡;徐建兴线粒体,活性氧和细胞凋亡[期刊论文]-生物化学与生物物理进展 2001(02) 3.蔡循;陈国强;陈竺线粒体跨膜电位与细胞凋亡[期刊论文]-生物化学与生物物理进展 2001(01) 4.Hortelano S;Dallaporte B;Zamzami N Nitric oxide induces apoptosis via triggering mitochondrial permeability transition[外文期刊] 1997(2-3) 5.Marchetti P;Hirsch T;Zamzami N Mitochondrial permeability transition triggers lymphocyte apoptosis 1996(11) 6.Marchetti P;Castodo M;Susin SA Mitochondrial permeability transition is a central coordinating event of apoptosis[外文期刊] 1996(03) 7.Susin SA;Zamzami N;Castedo M Bcl-2 inhibits the mitochondrial release of an apoptogenic protease [外文期刊] 1996(04) 8.Chou JJ;Li H;Salvesen GS Solution structure of BID,an intracellular amplifier of apoptotic signaling[外文期刊] 1999 9.Ji HB;Zhai QW;Liu XY Transcription regulation of bcl-2gene 2000(02) 10.Tsujimoto Y;Shimizu S Bcl-2 family:Life or death switch 2000(01) 11.Zamzami N;Susin SA;Marchetti P Mitochondrial control of nuclear apoptosis 1996(04) 12.Ruth MK;Ella BW;Douglas RG The release of cytochrome c from apoptosis[外文期刊] 1997(5303) 13.Narita M;Shimizu S;ItoT Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondrial 1998(25) 14.Cosulich SC;Savory PJ;Clarke PR Bcl-2 regulates amplification of caspase activation by cytochrome C[外文期刊] 1999(03) 15.Bossy-Wetzel E;Green DR Caspases induce cytochrome C release from mitochondria by activating cytosolic factors[外文期刊] 1999(25) 16.Sutton VR;Davis JE;Cancilla M Initiation of apoptosis by granzyme B requires direct cleavage of bid,but not direct granzyme B-mediated caspase activation[外文期刊] 2000(10) 17.Stoka V;Turk B;Schendel SL Lysosomal protease pathways to apoptosis.Cleavage of bid,not pro-caspases,is the most likely route[外文期刊] 2001(05) 本文读者也读过(10条) 1.杨胜细胞凋亡机制简述[期刊论文]-科技信息(学术版)2007(26) 2.冯俊奇.李秀兰.白人骁.FENG Jun-qi.LI Xiu-lan.BAI Ren-xiao细胞凋亡机制研究进展[期刊论文]-国际生物医学工程杂志2006,29(1)

心肌缺血再灌注损伤

心肌缺血再灌注损伤的发生机制和防治研究进展 1 9 6 0年J e n n i n g s等,第一次提出心肌缺血再灌注损伤的概念,证实再灌注会引起心肌超微结构不可逆坏死,并逐渐引起医学界的高度重视。缺血心肌恢复再灌注后,病情反而恶化,引起超微结构、功能、代谢及电生理方面发生进一步的损伤,是由于在缺血损伤的基础上再次引起的损伤,因此称为缺血.再灌注损伤( i s e h e m i a — r e p e r f u s i o n i n j u r y ,I R I ) k 2 J 。临床上表现为闭塞的冠状动脉再通、梗死区血液灌流重建后一段时间内,有的病例发生血压骤降、心功能不全、心律失常甚至猝死等一系列病情反而恶化的现象。因此, I R I 的发生机制与防治越来越引起人们的关注,并一直试图寻找能对 I R I 产生确切保护作用的药物。现就 I R I的发生机制和防治的研究进展作一综述。 1 . 心肌缺血再灌注损伤的发生机制 目前,缺血再灌注损伤发生的机制尚未完全阐明,研究表明自由基、钙超载、心肌纤维能量代谢障碍、中性粒细胞、血管内皮细胞、细胞黏附分子与细胞凋亡等均可能参与缺血再灌注损伤。 1 . 1 氧自由基( F R) 生成正常细胞内有自由基清除剂超氧化物歧化酶( S O D),使氧自由基转变为过氧化氢,后者又通过触酶及谷胱甘肽过氧化物酶的作用还原为水和分子氧,故小量氧自由基不造成损伤。再灌注时产生的大量氧自由基不能被清除,其中包括非脂质氧自由基和脂质氧自由基,如超氧阴离子、羟自由基、过氧化氢等。缺血再灌注后,它可与各种细胞成分,如膜磷脂、蛋白质、核酸等发生反应,造成细胞结构损伤和功能代谢障碍。C a s t e d o 等在动物实验中发现,再灌注后细胞内膜脂质过氧化增强,形成多种生物活性物质,如血栓素、前列腺素等,促进再灌注损伤。 1 9 8 6年,M u r r y等,首次在犬缺血/再灌注模型实验中发现反复短暂缺血发作可使心肌在随后持续性缺血中得到保护,从而提出了缺血预适应( I P C) 心脏保护的概念,为缺血心肌的保护及其机制探讨开辟了崭新的领域。自由基可能参与了预适应保护的触发机制。Z h o n g等证明预适应过程中产生的低浓度自由基对延迟心肌缺血再灌注损伤有保护作用。冉擘力等从细胞水平证明早期产生的氧自由基能诱导延迟保护作用产生,其机制可能是通过早期氧化反应一方面改变S O D形态结构而提高酶的活性,诱导延迟相S O D合成增加,另一方面诱导热休克蛋白信使核糖核酸转录和持续合成,保护心肌细胞对抗细胞外氧自由基的损伤;氧化氮合酶( N O S ) 产生的一氧化氮能有效对抗氧自由基的损害,延迟期心肌 N O S活性增加。延迟保护作用增强,其机制可能是氧自由基诱导了后期 N O S信使核糖核酸转录和合成增加,因为在缺血等应激状态下,氧化氮能够调控心脏基因的表达。总之,热休克蛋白、抗氧化酶和 N O S等不是孤立地对抗氧自由基损伤,而是有机地结合起来发挥作用。 1 . 2 钙超载。生理状态下,胞浆内钙浓度约为 l 0-7 m o l / L ,而细胞外及胞浆内的钙储存系统( 如内质网和线粒体) 中钙浓度为1 0 -3m o l /L 。正常状态下,细胞通过一系列转运机制可以保持这种巨大的浓度梯度,以维持细胞内低钙状态。但是再灌注后,钙离子向线粒体转移,导致线粒体功能障碍;钙离子浓度升高,可激活多种酶( 如激活膜磷脂酶 A , )同时促使心

心肌缺血再灌注损伤介绍和实验设计

心肌缺血再灌注损伤介绍和实验设计 Ⅰ.心肌缺血再灌注损伤: 它是指缺血心肌组织恢复血流灌注时,导致再灌注区心肌细胞及局部血管网显著的病理生理变化,这些变化共同作用可促使进一步的组织损伤。那这里的关键词就是缺血心肌组织。那为什么会产生缺血的心肌组织呢?这就与临床上的疾病有关了。一些心脏疾病,比如急性心肌梗死、冠心病等他们会使心脏发生缺血的症状,其基本的生理过程就是心肌缺血。 Ⅱ.心肌缺血的危害: 心肌缺血:指单位时间内的冠脉血流量减少,供给组织的氧量也减少,缺血必定存在缺氧表明缺血缺氧。心肌缺血比单纯性心肌缺氧无血流障碍要严重,因为前者除了缺氧的影响之外,缺血组织也不能获得足够的营养物质又不能及时清除各种代谢产物带来的有害影响。 一、心肌缺血的原因主要分为两种情况:1是冠脉血流量的绝对不足。这种情况是由自身疾病产生的,主要包括冠状动脉阻塞,冠状动脉痉挛。2是冠脉血流量的相对不足:包括供氧降低或耗氧增加,比如高原高空或通风不良的矿井吸入氧减少;肺通气或换气功能障碍,可致血氧含量降低红细胞数量和血红蛋白含量减少等。 二、缺血对心肌的危害主要包括以下几个方面:1是心肌收缩能力降低。2是导致心肌舒张功能降低。3是心肌组织的血流动力学发生改变,比如说血流的阻力增加等。4是心肌电生理的变化,比如说静息点位降低,传导速度减慢;室颤阈降低等。5是导致心肌形态学的改变。当然还有其他的危害,在这里就不一一列举了。 由于心肌缺血存在这么多的危害,临床上针对这一疾病采取了再灌注治疗方法,但随之而来的又是另外一个临床问题:缺血再灌注损伤。 下面具体介绍一下心肌缺血再灌注损伤。心肌缺血再灌注损伤英文缩写为MIRI,最早由詹宁斯等于1960年提出,发现其临床表现为再灌注心律失常、心肌顿抑、心肌能量代谢障碍等现象。随后又有学者在临床手术中也证实了这一观点,发现在冠脉搭桥术完成后,心肌坏死进一步加重的现象。接着布朗沃尔德教

心肌缺血再灌注

大鼠心肌缺血/再灌注损伤 【实验目的】 1.复制大鼠在体与离体心肌缺血/再灌注损伤模型; 2.观察缺血/再灌注过程中心功能的变化 【实验动物】成年Wistar 大鼠(体重200-300g) 【仪器药品】 电子天平,肾形盘,动物呼吸机,BL-420F记录装置,眼科开睑器,微血管钳,组织镊,眼科镊,组织剪,眼科剪,眼科止血钳,止血钳,动脉夹,眼科缝合针,1号及00缝合线。Langedroff灌流装置。 20%乌拉坦,1ml注射器,5ml 注射器,纱布块 实验1 在体模型 【实验步骤】 1.实验采用体重200-300g健康雄性Wistar大鼠,20%乌拉坦腹腔注射麻醉(0.5ml/100g); 2.颈胸部备皮及手术,分离气管及右侧颈总动脉 3.气管插管连接呼吸机(呼吸肌参数:潮气量9ml,呼吸比=3:2,呼吸频率55~60) 4.经右侧颈总动脉逆行插管至左心室, 再经BL-420F软件输入计算机,(一通道描记心 电,(右上黄、右下黑、左下红)二通道描记心室内压,三通道描记微分)持续监测心脏左心室内压力及心电的变化情况 5. 沿胸骨左侧剪开2,3肋骨,开睑器开胸暴露心脏;寻找冠状动脉左前降支,穿线备 用; 6.采用结扎5min后再放开5min两次,造成缺血预处置;采用结扎30mim再放开30min 复制缺血/再灌注模型; 思考题: 1.如何判定缺血模型复制成功 2.如何判定有再灌注损伤发生

实验2 离体模型 【实验步骤】 (1) 大鼠称重,腹腔注射20%乌拉坦(0.5ml/100g)麻醉,仰卧固定于鼠板,上腹部及前胸部剪毛。 (2) 舌下/阴茎背静脉注入1%肝素(0.05ml/100g)后,切开胸腹部皮肤,用剪刀横行剪开腹腔,向上剪断隔膜,沿两侧肋骨向上平行剪开,翻起前胸壁,把心脏及胸膈周围的结缔组织拨到一侧,充分暴露心脏。 (3) 用镊子提起心脏根部,暴露出主动脉和肺动脉,在距主动脉起始部0.5cm处用手术剪切断血管,迅速取出心脏至于4℃生理盐水平皿中使之停搏。 (4) 经主动脉将心脏悬挂在灌流装置上,用丝线结扎固定,打开灌流液行逆向灌流,待心脏恢复自主跳动,小心减去心脏周围附着组织。 (5)用眼科剪剪去左心耳,通过左心耳经房室瓣插入左心室一乳胶球囊,球囊连接一个内充生理盐水的导管,导管经三通管和换能器与BL-420F连接。 (6) 在BL-420F仪的监测下,通过向球囊内注入一定量的生理盐水是左心室的舒张末压调整在0~10mmHg之间。 (7)连接心电导线,心尖、右心耳和地线,一通道设置记录, (8) 预灌流10~20分钟,观察心率,二通道记录心室内压、三通道取微分记录±dp/dtmax 等心动指标,同时描记ECG,待上述各指标平衡后开始以下实验。 心肌缺血-再灌注损伤 (1) 心脏用正常灌流液预灌流15分钟后完全停灌40分钟,然后恢复灌流20分钟,观察心脏在正常,停灌初期和再灌期的心功能变化。 (2) 分别收集正常灌流时,再灌流后3分钟时的心脏冠脉流出液1ml,测定其中乳酸脱氢酶的活性。 思考题: 1.如何判定缺血模型复制成功 2.如何判定有再灌注损伤发生

心肌缺血再灌注损伤机制的研究进展

心肌缺血再灌注损伤机制的研究进展 摘要急性心肌梗死是临床常见急症重症,及时、有效的恢复心肌的血液灌注,挽救“濒死”的心肌是抢救成功的关键,因此探索缺血再灌注损伤的机制,减轻或防止再灌注损伤的发生,是临床的重要课题。本文综述了心肌缺血再灌注损伤发生机制研究领域的最新进展。 关键词心肌缺血再灌注;氧自由基;钙超载;中性白细胞;血管内皮细胞;一氧化氮;细胞黏附因子;细胞凋亡 急性心肌梗死(AMI)是临床常见急症重症,及时、有效的恢复心肌的血液灌注,挽救“濒死”的心肌是抢救成功的关键。探索心肌再灌注损伤(MRI)的机制,减轻或防止再灌注损伤的发生,是临床的重要课题。至今为止MRI的机制还没有完全清楚,目前主要认为与氧自由基、钙超载、活化的中性白细胞、心肌纤维能量代谢障碍、血管内皮细胞、一氧化氮、细胞黏附因子和细胞凋亡等都可能参与MRI的发病过程。[1、2] 1氧自由基与心肌缺血再灌注损伤 生理情况下,细胞内存在的抗氧化物质可以及时清除自由基,对机体并无有害影响。当组织细胞缺血、缺氧时,由于活性氧生成过多或机体抗氧化能力不足,可引起氧化应激反应,造成膜流动性与钙离子通透性增加,破坏膜结构完整性,钙跨膜内流与超负荷导致细胞损伤甚至死亡。氧化应激是缺血组织再灌注的特征之一。而且应用自由基清除剂辅酶Q10[3]可以减轻缺血再灌区细胞的损伤。 2钙超载与心肌缺血再灌注损伤 近年研究表明,细胞内Ca2+超载在心肌缺血再灌注损伤发病机制中起中心作用。钙超载可以造成线粒体功能障碍,激活磷脂酶类,使细胞膜及细胞器膜结构受到损伤。还可激活蛋白酶,促进细胞膜和结构蛋白的分解,同时促进氧自由基的生成。激活某些ATP酶和核酶,加速ATP消耗,引起染色体损伤。Ca2+超载还可引起再灌注心律失常。心肌缺血再灌注损伤的始动环节是能量代谢障碍,而直接损伤原因则是自由基,其结果导致细胞内钙超载,并形成恶性循环。钙超载

氧自由基与心肌缺血再灌注损伤

缺血性心脏病是导致人类死亡的主要原因,在治疗上,早期成功恢复心肌再灌注是改善临床转归的最有效方法。但缺血心肌恢复血流的过程可造成损伤,这一现象称为心肌缺血/再灌注损伤(myocardial ischemia/reperfusion injury,MI/RI)[1 2]。而氧自由基(oxygen free radical,OFR)也是心血管疾病时诱导心肌细胞死亡的重要因素之一[3]。在正常生理条件下,细胞内存在抗氧化物质可以及时清除OFR,使自由基的生成与降解处于动态平衡,对机体无害,而在心肌缺血再灌注损伤情况下,由于OFR生成过多或机体抗氧化能力不足,引发氧化应激反应,介导心肌损伤[4 5]。本研究重点阐述OFR与心肌缺血再灌注损伤之间的关系。 1 OFR合成、清除及生物学作用 自由基(free radical)是指具有一个不配对电子的原子和原子团的总称。由氧诱发的自由基称为OFR,主要包括超氧阴离子(O-2)、过氧化氢(H2O2)和羟自由基(OH)[6]。H2O2本身并非自由基而是一种活性氧(reactive oxygen species,ROS),但它与OFR的产生有密切关系,易接收一个电子生成羟自由基(OH)。正常情况下OH不能形成,因为OH的形成要求O-2及H2O2同时存在。当O-2及H2O2在组织中过剩, O-2及H2O2在金属离子及金属离子复合物的催化下发生Haber Weiss反应,生成氧化性更强的OH。OH是十分不稳定的氧化物,几乎与细胞内所有的有机物反应,破坏核酸、蛋白质、氨基酸和脂类化合物,从而损害细胞功能[7]。在生理情况下,氧通常是通过细胞色素氧化酶系统接收4个电子还原生成H2O,同时释放能量,但也有1%~2%的氧接收1个电子生成O-2,或再接收1个电子生成H2O2。O-2寿命极短,可通过连锁反应产生OH,H2O2能直接或间接促进细胞膜脂质过氧化。 自由基反应的扩展较广,但生物体内存在一套完整的抗氧化酶和抗氧化剂系统,可以及时清除它们,所以对机体无害。抗氧化酶包括超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GSH PX)和过氧化氢酶(CA T)。它们存在于胞浆和线粒体中,其重要意义在于降低H2O2浓度,保护细胞不受强毒性OFR OH的损伤。抗氧化剂包括存在于细胞质的维生素E 和维生素A;细胞外液中的半胱氨酸、抗坏血酸、谷胱甘肽;存在胞浆中的还原型谷胱甘肽(GSH)和还原型病理辅酶Ⅱ(NADPH)等。在OFR清除系统功能降低或丧失,生成系统活性增强,一旦恢复组织血液供应和氧供,OFR便大量产生与急剧堆积,从而造成心肌细胞急性或慢性损伤[8]。特异靶向抑制NADPH氧化酶可以减弱心血管氧化应激[9]。 2 OFR在心肌缺血再灌注损伤中的作用及地位 目前关于心肌缺血再灌注损伤的发病机制有许多假设和报道,主要与心肌再灌注时与OFR损伤、细胞内Ca2+超载、心肌细胞能量代谢障碍[10]、微血管损伤和粒细胞浸润以及心肌细胞的凋亡等作用有关。MI/RI时OFR合成增多主要与线粒体单电子还原、黄嘌呤氧化酶形成增多、儿茶酚胺自氧化增强、细胞内钙超载以及中性粒细胞呼吸暴发等有关[11]。由于OFR产生过多以及抗氧化酶类活性下降,引发链式脂质过氧化反应,损伤细胞膜、细胞器乃至细胞核酸,导致细胞坏死凋亡。应用外源性OFR清除剂及抗氧化剂则能降低组织中OFR浓度,促进心功能恢复,表明OFR在心肌缺血再灌注损伤中起着重要作用。 3 OFR与脂质生物膜

线粒体与细胞凋亡

线粒体与细胞凋亡 苑金香(潍坊学院生物系山东潍坊261043) 摘要 细胞凋亡是一种由基因控制的自主性死亡过程。近年来研究发现,线粒体在细胞凋亡过程中起重要作用,它可以通过改变膜通透性、释放凋亡活性物质等介导细胞凋亡。 关键词 线粒体 细胞凋亡 线粒体作为真核细胞能量代谢中心已为人熟知,然而近年来的研究发现,线粒体在细胞的另一重要生理活动 细胞凋亡中还扮演着重要角色。细胞凋亡即细胞程序性死亡(programmed cell death),是一种由基因编程调控的细胞主动自杀过程,细胞凋亡在胚胎发育、机体内环境的稳定、细菌和病毒感染细胞的清除过程中起重要作用,许多疾病的发生与细胞凋亡失控有关,而线粒体在细胞凋亡过程中起着重要作用。 1 线粒体膜的通透性改变与细胞凋亡 线粒体起着启动细胞凋亡的重要作用,其主要机制与线粒体渗透性转换孔(mitochondrial permeability transi tion pore,mtPTP)开放有关,mtPTP位于线粒体内膜和外膜的交界处,是一种由多种蛋白组成的复合体。mtPTP参与调节线粒体基质中的Ca2+、pH值电荷等,维持线粒体内环境的稳定性,保持氧化还原通路的畅通。mtPTP平时允许不大于0.15 104的小分子物质通过。当线粒体内Ca2+超载、自由基对线粒体膜造成氧化损伤,或者是能量产生下降时,均可引起mtPTP开放。在细胞凋亡发生早期,线粒体膜mtPTP打开,线粒体内膜电位( m)降低,一方面使得线粒体内的死亡促进因子(deathe-promoting factor,DPF)释放出来,促进凋亡的进行;另一方面,又使得细胞质进入线粒体基质,由此引起膜质子的转运异常,导致线粒体处于高渗状态,线粒体基质扩张,细胞骨架蛋白受压,直接导致细胞凋亡。 2 线粒体释放物与细胞凋亡 研究发现,线粒体内含有许多促死亡因子,包括细胞色素C,凋亡诱导因子(apoptosis-inducing factor,AIF),胱冬酶原及其他线粒体蛋白等。这些因子从线粒体中释放出来以后,以不同的方式参与到细胞凋亡的过程,影响细胞凋亡的进程。 2.1 细胞色素C的释放与细胞凋亡 1996年德克萨斯西南医学院研究中心王晓东研究小组发现细胞色素C参与细胞凋亡的过程。当细胞受凋亡信号刺激后,细胞色素C能迅速从线粒体释放到胞浆中,在细胞色素C含量丰富的细胞中,细胞将进入快速凋亡机制,释放出来的细胞色素C参与激活凋亡的酶通路,细胞内仍有许多未释放的细胞色素C,它们维持电子传递和有氧呼吸,从而产生足够的ATP,为细胞凋亡提供足够的能量。而在细胞色素C含量较少的细胞中,由于细胞色素C的大量释放,使电子传递链受阻,ATP产量骤减,无法提供足够的能量,因而使细胞走向与凋亡完全不同的坏死过程。 72h,凋亡细胞数从6.65%增加到16.42%;若处理96h 后,凋亡细胞数从4.71%增加到21.94%,这说明染料木黄酮可诱导前裂腺癌细胞的凋亡,通过这种办法可预防前列腺癌的发生。 另外,许多不同种类的化学物质(如亚硝胺类、杂环胺类、多环氮氢化物和糖醛核呋喃等)、外界微生物的侵袭、高温和放射线等化学的、物理的和生物的因素是影响癌细胞的生长和凋亡的外源性调节因素。还有一些常规使用的肿瘤化疗药物(如顺铂、维甲酸、羟基脲等)和 射线都可诱导多种肿瘤细胞凋亡。 4 结论 在正常机体内,细胞增殖和细胞凋亡处于一种动态平衡。故癌的发生和细胞的生与死密切相关。一方面,细胞的过度增殖导致了癌的发生,一些化学预防剂抑制癌发生的一个重要机制就是抑制细胞增殖;另一方面,细胞凋亡过程的失调也是癌发生的另一原因。研究细胞凋亡与癌发生的关系,进而诱导细胞凋亡对癌的预防具有重要的意义。 参考文献 1 Davis JN et al.Nutr Cancer,1998,32:123 131. 2 Li M et al.Cancer Epidemiol Biom Prev,2000,9(6):545 550. 3 方福德等.分子生物学前沿技术.北京医科大学、中国协 和医科大学联合出版社,1998,76 174. 4 贾旭东.细胞增殖和细胞凋亡和癌的发生和预防.国外 医学卫生学分册,2001,28(2):65 68. (B H) 17 2003年第38卷第5期 生 物 学 通 报

细胞凋亡的途径

按照起始caspase的不同,可将哺乳细胞的凋亡分为三种基本的途径。 一种称为外在途径(extrinsic pathway),由细胞表面的死亡受体如Fas和肿瘤坏死因 子受体家族(tumour necrosis factor receptor,TNF-R)引发; 另一种称为内在途径(intrinsic pathway)或线粒体途径(mitochondrial pathway),由许多应激条件、化学治疗试剂和药物所起始(Nicholson, 1999;Denault和Salvesen,2003); 第三种途径是内质网应激所导致的caspase-12的活化,从而导致凋亡。 细胞凋亡的途径 摘要细胞凋亡是机体维持自身稳定的一种基本生理机制,是有许多基因产物及细胞因子参与的一种有序的细胞自我消亡形式。通过细胞凋亡,机体可消除损伤、衰老与突变的细胞来维持自身的稳态平衡和各种器官及系统的正常功能。由于细胞凋亡是一种复杂的生理及病理现象,所以在其发生的3个阶段中涉及不同的信号转导途径及其调控。 关键词细胞凋亡线粒体内质网caspase家族NO 疾病 细胞凋亡(apoptosis)是一种有序的或程序性的细胞死亡方式,是受基因调控的细胞主动性死亡过程,是细胞核受某些特定信号刺激后进行的正常生理应答反应,然后凋亡的细胞将被吞噬细胞吞噬。经研究发现,不管是单细胞生物还是多细胞生物,细胞凋亡被称为细胞程序性死亡(programmed cell death,PCD)[1]。是因为细胞死亡往往受到细胞内的某种遗传机制决定的“死亡程序”控制的。也会因为它的失调,机体也会失去稳定性,引发人类疾病如肿瘤、免疫系统等疾病[2]。由于它保证多细胞生物的健康生存过程中的重要性,引起了人们对其途径的广泛深入的研究,成为目前生命科学研究的热点之一。但其凋亡的途径不是很清楚,本文从多个方面概述了细胞凋亡途径。 1 细胞凋亡形态学上的特征 细胞凋亡(apoptosis)是1972年由Kerr教授根据形态学特征最先提出的[3],主要强调的是这种细胞凋亡是自然界中的生理学过程,是受基因调控的主动的生理性细胞自杀行为。

心肌缺血再灌注损伤的机制研究进展

? 文献综述 ? 63 心肌缺血再灌注损伤(myocardial ischemic reperfusion in j ury ,MIRI )指心肌缺血恢复血流供应后,造成代谢功能障碍及结构损伤加重的现象[1]。MIRI 是临床上常见的疾病,其病理过程与冠状动脉血管形成术,冠状动脉重建术,心脏移植等术后并发症密切相关[2]。MIRI 涉及的机制复杂,尚有待更深入的研究阐述。近年来,由于电生理学、基因组学和蛋白组学等技术的应用,对MIRI 机制的研究也获得了一定的进步,其主要机制概述如下:1 氧自由基与MIRI 自由基(free radical ),又称游离基,指在外层电子轨道上具有不配对的单个电子、原子、原子团或分子的总称[3] 。由机体内氧诱发化学性质活泼的自由基称为氧自由基,包括羟自由基和超氧阴离子。生理状态下自由基存在较少,在细胞缺血时,其氧自由基清除能力下降[4]。当组织恢复血液供应时,触发氧自由基“爆增”并累积,攻击自身和周围细胞,造成损伤[5]。自由基损伤细胞膜,致其结构破坏造成心肌酶溢漏;自由基氧化破坏机体蛋白,改变蛋白酶表面结构使功能受损;自由基诱导遗传物质DNA 、RNA 断键或破损,影响核酸正常功能[6]。自由基可导致心律失常,心肌损伤,细胞凋亡等事件[7]。2 炎症反应与MIRI MIRI 发生时心脏组织内皮结构受损触发功能障碍,而中性粒细胞趋集、黏附血管内皮是炎症“级联”反应的诱发阶段[8] 。激活的中性粒细胞合成释放肿瘤坏死因子、IL-1、IL-6 等炎症介质,介导其他炎症细胞共同攻击心肌组织[9] 。此外,白细胞浸润在MIRI 中涉及的主要机制为,MIRI 使细胞膜受损和膜磷脂降解,具有很强趋化作用的白三烯等代谢产物增多,使更多白细胞循环浸润,对心肌细胞造成多次损伤。MIRI 时,心肌缺血细胞生成大量的促炎介质如补体C 5a 、LPS 、IL-8等,激活并诱导心肌细胞多种黏附如ICAM-1,ICAM-2等分子表达[10]。膜表面的黏附分子作为受体和配体介导白细胞与内皮细胞、心肌细胞的黏附,并为炎性浸润提供物质基础。3 钙超载与MIRI 由于细胞内钙浓度显著升高并造成心脏功能代谢障碍的现象称为钙超载(Ca 2+ 超载)[11] 。生理条件下,钙浓度稳态维持着正常心功能。当心肌缺血时,钠泵功能障碍,Na + 与Ca 2+ 的交换紊乱,使细胞内Ca 2+大量积累,触发线粒体功能障碍、钙泵障碍等[12]。Ca 2+超载与细胞损伤有相关性。其可引起:①减少线粒体ATP 生成。②激活钙依赖性降解酶,损伤细胞结构。③诱导自由基生成,损害心肌细胞。④促使 Ca 2+与CaM 结合,影响细胞内信号转导。⑤引起心律失常。 4 能量代谢障与MIRI MIRI 发生时,心肌细胞依赖无氧代谢途径供能,但其生成ATP 的能力有限。而ATP 的明显不足会触发一系列代谢的异常和紊乱:①依赖性ATP 的细胞膜泵活性下降,膜电位改变。②Ca 2+内流增加,激活膜磷酶导致缺血性肌挛缩,并产生氧自由基进一步损害细胞。③酸中毒,破坏细胞的生存环境。④严重阻碍ATP 的生成[13]。研究表明,能量代谢障碍可造成有关基因及蛋白表达的异常,同时细胞内的ATP 含量是触发细胞凋亡促进因素之一。5 细胞凋亡与MIRI 细胞凋亡,又称程序性细胞死亡,指由促凋亡因素触发细胞内死亡程序而发生的细胞死亡过程[14]。细胞凋亡调控着机体中细胞稳态,并摒除体内有害的细胞、无功能的细胞、突变的细胞以及受损的细胞。而过度活跃的细胞凋亡进程会加重MIRI 病情。MIRI 中的细胞凋亡的机制涉及的凋亡途径多种途径,以多方式、多水平的交叉联系,构成复杂的信号通路网络。线粒体途径、细胞因子信号转导途径、JAK-STAT 途径、LOX-1通路、MAPKs 通路等均可介导心肌MIRI 发生发展,造成的心肌细胞凋亡。提示抗凋亡作用或特异性对抗有关信号通路是治疗MIRI 的有效措施之一。6 小 结 综上所述,心肌缺血再灌注损伤(MIRI )的发生机制涉及多因素的复杂过程,需要广大科研攻关者更全面、更深入的科学研究,积极寻求更有效的防治措施,为MIRI 造福。近年来,随着科学技术的不断发展,在基因调控、细胞凋亡、信号转导等角度的深层次研究也在逐步开展,期待对MIRI 机制研究取得重要的突破。 参考文献 [1] 赵亚玲,敖虎山.心肌缺血再灌注损伤的研究进展[J].中国循环杂 志,2011,26(5):396-398. [2] C astedo E,Segovia J,Escudero C,et a1.Ischemia-reperfusion in j ury during experimental heart transplantation. Evaluation of trimetazidine's cytoprotective effect[J].Rev Esp Cardiol. 2005,58(8):941-950. [3] C hen AF,Chen DD,Daiber A,et a1.Free radical biology of the cardiovascular system[J].Clin Sci (Lond),2012,123(2):73-91.[4] V al ko M,Leibf r itz D,Moncol J,et a1.Free radicals and antioxidants in normal physiological functions and human disease [J].Int J Biochem Cell Biol, 2007,39(1):44-84. [5] D r?ge W.Free radicals in the physiological control of cell function[J].Physiol Rev, 2002,82(1):47-95. [6] 林灼锋,李校坤,孟娟.活性氧自由基对心肌细胞损伤效应研究[J]. 心肌缺血再灌注损伤的机制研究进展 邓海英* 赖为国 (钦州市第二人民医院药剂科,广西 钦州 535099) 【摘要】冠心病严重危害人类的生命健康,主要临床表现为心绞痛或心肌梗死。心肌缺血后再获取血液供应,常会出现心律失常、梗死面积扩大、心功能低下等心肌细胞损伤现象,即心肌缺血再灌注损伤(MIRI )。国内外研究表明MIRI 发生机制较为复杂,目前认为与再灌注后机体氧自由基攻击,炎症反应浸润,Ca 2+超载,能量代谢障碍、细胞凋亡进程等有关。现对MIRI 的机制及治疗的研究进展综述如下。本文通过归纳并总结有关MIRI 研究进展的国内外文献,对MIRI 的机制做出综述。【关键词】心肌缺血再灌注;损伤;机制 中图分类号:R542.2 文献标识码:A 文章编号:1671-8194(2013)01-0063-02 *通讯作者:E-mail: denghaiying2012@https://www.wendangku.net/doc/995913908.html,

心肌缺血再灌注损伤的发病机制.

心肌缺血再灌注损伤的发病机制 摘要21世纪是PCI的时代,PCI的发展与推广降低了ST段(STEMI)及非ST抬高(NSTEMI)性心肌梗死患者死亡率[1,2]、缩小了梗死的面积[3]、改善了左室的收缩功能[1,4],但是这种不断进步发展的PCI技术却不能显现出该技术当初刚用于临床时的降低心肌梗死患者的死亡率。因为研究人员们发现,某些患者就算开通了梗死的冠状动脉相关血管支配的心肌梗死面积却没有如人所愿的大大降低,心肌梗死的面积在开通冠脉后仍然在进展。因为研究人员发现缺血期的心肌在各种因素的作用下已经发生了损伤,心肌的再灌注有可能加重了缺血期心肌的损伤程度,对细胞或者细胞器造成了新的损伤,我们称之为再灌注损伤(reperfusion injury)。本文主要此种损伤的可能发生机制进行综述。 关键词心肌再灌注损伤心肌缺血心肌梗死炎症自由基线粒体渗透性转换孔 一、心肌再灌注损伤病理生理 心肌再灌注损伤(myocardial reperfusion injury)指的是缺血的心肌组织恢复血运后可能对心肌造成的进一步损伤[2,3]。但是缺血再灌注引起的心肌损伤的确切病理生理机制仍没有研究清楚。其中一个很重要的因素就是目前所建立使用的心肌缺血-再灌注模型本身就是一个问题,因为我们知道心肌的缺血分很多种,其中最常见也是最凶险的一类便是ST段抬高型心肌梗死,现流行的线栓建模法被广泛应用,但心肌梗死的过程却没有线栓法阻断冠脉引起的心肌组织坏死及再灌注损伤如此简单,根据欧美国家的指南[4,5],将心肌梗死分为五型,从这五种分型可以发现简单的结扎、再通冠脉造成的心肌梗死模型也不过是其中分型的一型,其它四型或者更多的类型心肌在缺血及再灌注时发生的确切变化仍然没有研究清楚的,因为我们至今没有发现哪一种干预措施可以非常有效的缩小心肌梗死后心肌坏死的进展。但是自50多年前,Jennings等[6]第一次从犬的缺血后再灌注的心脏组织中发现

线粒体和细胞凋亡

无论从原始的生物线虫到高级的哺乳动物乃至人类,还是从生物体外周器官到中枢神经系统,细胞凋亡都广泛存在。它作为生命的基本现象之一,可以发生在生理或病理条件下[1]。最初人们仅从形态学表现的特征上加以认识,如胞膜对称性丧失、染色质凝集、细胞皱缩、DNA破碎、线粒体肿胀和凋亡小体形成。随着科学的发展,人们开始发现线粒体在细胞凋亡中的起着重要的作用。随着对细胞凋亡研究的深入,人们对线粒体与体细胞凋亡的关系有了新的认识。

2.1细胞凋亡的概念 细胞凋亡是细胞程序性死亡(programmed cell death, PCD)是一种细胞自身有基因控制的主动性死亡过程,其形态特征为核染色体固缩、DNA片段化、胞质浓缩、胞膜皱缩并形成凋亡小体,生化上表现为DNA梯形条带。而最新研究表明人类许多疾病都与其相关,如爱滋病、神经变性性疾病、骨髓发育不全综合征、酒精中毒性肝病、缺血性损伤, 尤其宫内窘迫所致胎儿缺血缺氧性脑损伤。神经细胞的凋亡,更是目前关的焦点,凋亡程度与胎儿乃至新生儿的脑发育、智力发育密切相关[2]。而科学家们发现,用溴化乙锭除去线粒体DNA(mtDNA)诱导一株人成纤维细胞凋亡,表明线粒体在细胞凋亡中起作用[3]。现在认为,细胞凋亡有胞核和胞质两条途径,随着对细胞凋亡研究的深入,人们对线粒与体细胞凋亡的关系有了新的认识。 2.2细胞凋亡与细胞坏死区别 细胞凋亡是细胞受基因调控的一种自然死亡过程,同细胞生长分化一样是生命活动中重要的细胞学事件。细胞凋亡与坏死不同,是一种细胞遵循自身程序结束其生命的主动的细胞学过程,对机体清除衰老或受损细胞具有重要意义[4]。细胞凋亡与坏死在形态特征上有明显的区别,凋亡细胞表现为染色质固缩,常聚集于核周边,呈境界分明的颗粒块状或新月形小体;细胞浆浓缩,密度增高;细胞核裂解为碎片,而线粒体形态结构保持完整(凋亡细胞细胞膜和线粒体的动态变化)。坏死是一种由多种刺激所引起的非特异性细胞死亡。如补体作

细胞凋亡途径

细胞的凋亡 凋亡抑制蛋白(inhibitors of apoptosis , IAPs)是细胞内一类独特的抗凋亡蛋白家族,包括XIAP,c-IAP1,c-IAP2,神经元凋亡抑制蛋白(NIAP) ,ML-IAP, Apollon和survivin。IAPs通过在体外或体内抑制不同的caspases而抗细胞凋亡。与其他的可抑制上游 caspases的蛋白不同, IAPs是唯一的内源性 caspase 抑制物【1】。 Survivin(生存素)是凋亡抑制蛋白家族中的成员,是迄今发现最强的凋亡抑制因子,于1997年由耶鲁大学Alfieri【2】等用效应细胞蛋白酶受体1(effector-cell protease receptor 1, ERP-1)在人类基因库的杂交中分离出来,Survivin大量表达于胚胎及婴幼儿组织中,在正常的分化组织中几乎检测不到【3】,然而却在60余种肿瘤细胞株和大部分人体肿瘤组织过度表达。 1.Survivin的分子结构 IAP家族蛋白一般在N末端含有 2~3个串联的含有 Cys/ His的保守冠状病毒IAP重复序列结构域(Baculovirus IAP Repeat, BIR),发挥着极为重要的凋亡抑制作用。IAPs家族发挥抗凋亡作用的机理是通过BIR功能区之间的连接序列直接与Caspases家族蛋白结合,抑制细胞凋亡的发生。多数IAPs的C末端还含有一个环指状结构域(RING-finger domain)能够与两个锌原子形成配位键。这一锌指结构对于IAPs家族蛋白抗凋亡的功能密切相关。只有包含BIR2功能区的IAPs蛋白分子才具有结合和抑制死亡蛋白酶的功能,单一BIR1, BIR3或环指结构以及它们的任意组合蛋白体均无此效应。 Ambrosini 等【4】测定并绘出了Survivin基因完整的基因图谱,全长14796 bp,位于距离端粒约3%的位置。Survivin 基因与EPR-1 基因的编码区序列高度互补,位于染色体17q25的同一基因族,含有3个内含子和4个外显子,编码产生1个由142个氨基酸组成的胞浆蛋白,分子量约为16. 5kD。Survivin只含有一个BIR区域,C末端有一个α卷曲螺旋结构,不含环指状结构域【5】。 Survivin是唯一具有剪接异构体的IAP基因,一个是序列中缺少外显子3的survivin-ΔEX3;另一个是把部分内含子2作为隐蔽的外显子的survivin-2B。两者序列的改变导致了相应蛋白质结构和功能发生了显著变化,survivin-ΔEX3仍保留抗凋亡特性,survivin-2B抗凋亡功能则显著下降[6]。2004年Badran A等[7]发现survivin的另一新剪接异构体survivin-3B,survivin-3B 含有5个外显子,比survivin多3B外显子, survivin-3B包含单一的BIR,这对于其抗调亡作用致关重要。最近,包含两个外显子,3'为197bp的内含子的survivin-2α发现【8】。其终止密码在第2内含子,编码产生74个氨基酸的蛋白质。survivin的剪接异构体的功能尚不清楚,初步认为survivin-ΔEX3与线粒体依赖性凋亡通路有关,另外,证实survivin-2α能减弱survivin的抗凋亡活性[7]。 Survivin的异构体如图1。

线粒体与细胞凋亡研究进展

·综述· 线粒体与细胞凋亡研究进展 曾凯星1 1.中山大学药学院,广州,510006 【摘要】线粒体是细胞凋亡的执行者。当线粒体受到内外环境因素的影响时,会造成线粒体通透性转运孔持续开放,细胞色素C的释放、Caspase蛋白的激活以及活性氧的作用。本文阐述了三者变化的多种机制,同时也论述了Bcl-2家族和AIF因子在凋亡过程中的调节作用机制,为寻找肿瘤靶点提供机遇。【关键词】线粒体;细胞凋亡;线粒体通透性转运孔;细胞色素C;Caspase Study Progress of Mitochondria and Apoptosis Kai-xing ZENG1 1.School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 51006, China Abstract: Mitochondria are the executors of apoptosis. When the mitochondria are affected internal and external environmental factors, can cause mitochondrial permeability transition pore remain open, release of cytochrome C and activation of Caspase protein. This paper describes the various mechanisms of the three variations, but also discusses the Bcl-2 family and AIF factor regulating mechanism during apoptosis, these mechanisms provides an opportunity to find tumor targets. Keywords: Mitochondria; Cell apoptosis; mitochondrion permeability transition pore; Cytochrome C; Caspase

线粒体与细胞凋亡

线粒体与细胞凋亡 细胞凋亡是一种由基因控制的、细胞自主的、有序的死亡过程,与多种疾病的发生、发展均有直接或间接的关系。线粒体作为细胞内一类重要的细胞器,除了可以为生命的存在提供能量外,还参与了包括细胞凋亡在内的多种生理过程的发生。但是,对于线粒体和细胞凋亡之间的关系并不明确。因此,文章对两者之间可能存在的联系进行了总结和综述。 标签:线粒体;细胞凋亡;线粒体融合蛋白 细胞凋亡的紊乱与疾病的发生、发展有着直接或间接的关系:当细胞凋亡不足时,可能发生恶性肿瘤疾病或自身免疫性疾病等;而当凋亡过度时,则可能导致神经元退行性疾病、病毒感染等。总之,细胞凋亡的失调与疾病的发生密切相关。 1 细胞凋亡的基本概念及意义 生物体内的细胞是不可能永久性存在的,死亡是这些细胞的必然结局。然而,有些细胞的死亡是生理性的,有些则属于病理性死亡。目前,人类对细胞死亡的分类主要分为细胞凋亡与细胞坏死两种类型。近年来对细胞凋亡方面的研究越来越成为生理学、病理学等医学研究的热点。 细胞凋亡的过程大体上可以分为4个部分:凋亡信号的转导、凋亡基因的激活、凋亡的启动以及凋亡细胞的清除。如若这一系列过程中的任何一个环节出现了问题,就有可能导致疾病的发生。 2 细胞凋亡的重要相关因子 细胞凋亡的过程是多基因联合调控的过程,包括Bcl-2家族、Caspase家族、P53基因等联合发挥作用。随着医学的发展,人们对多种细胞的凋亡过程有了一定的认识:细胞的凋亡机制大致分为氧化损伤(即自由基的作用)、钙稳态失衡以及线粒体损伤三种。 许多生理性的死亡信号和病理性的细胞损伤都会产生程序性的细胞凋亡。细胞凋亡的途径主要有两条:一条是通过细胞外信号,激活细胞内的凋亡酶Caspase;另一条是通过线粒体途径释放凋亡酶激活因子从而激活Caspase。 细胞凋亡最典型的特征之一就是细胞内的特异性蛋白水解酶--胱天蛋白酶Caspase的激活。Caspase在细胞凋亡的执行中处于中心地位,其家族属于半胱天冬蛋白酶,相当于线虫中的ced-3。现有研究已经证实,细胞的凋亡过程本质上是Caspase蛋白水解酶不可逆的水解底物而进行的级联放大反应。 目前,尚未完全明确的是Caspase引起细胞凋亡的全部过程是如何发挥作用

相关文档
相关文档 最新文档