文档库 最新最全的文档下载
当前位置:文档库 › 材料拉伸和压缩试验报告

材料拉伸和压缩试验报告

材料拉伸和压缩试验报告
材料拉伸和压缩试验报告

材料的拉伸压缩实验

【实验目的】

1.研究低碳钢、铸铁的应力——应变曲线拉伸图。

2.确定低碳钢在拉伸时的机械性能(比例极限R p、下屈服强度R eL、强度极限R m、延伸率A、断面收缩率Z等等)。

3. 确定铸铁在拉伸时的力学机械性能。

4.研究和比较塑性材料与脆性材料在室温下单向压缩时的力学性能。

【实验设备】

1.微机控制电子万能试验机;

2.游标卡尺。

3、记号笔

4、低碳钢、铸铁试件

【实验原理】

1、拉伸实验

低碳钢试件拉伸过程中,通过力传感器和位移传感器进行数据采集,A/D转换和处理,并输入计算机,得到F-?l曲线,即低碳钢拉伸曲线,见图1。

对于低碳钢材料,由图1曲线中发现OA直线,说明F正比于?l,此阶段称为弹性阶段。屈服阶段(B-C)常呈锯齿形,表示载荷基本不变,变形增加很快,材料失去抵抗变形能力,这时产生两个屈服点。其中,B'点为上屈服点,它受变形大小和试件等因素影响;B点为下屈服点。下屈服点比较稳定,所以工程上均以下屈服点对应的载荷作为屈服载荷。测定屈服载荷Fs时,必须缓慢而均匀地加载,并应用σs=F s/ A0(A0为试件变形前的横截面积)计算屈服极限。

图1低碳钢拉伸曲线

屈服阶段终了后,要使试件继续变形,就必须增加载荷,材料进入强化阶段。当载荷达到强度载荷F b后,在试件的某一局部发生显著变形,载荷逐渐减小,

直至试件断裂。应用公式σb =F b /A 0计算强度极限(A 0为试件变形前的横截面积)。 根据拉伸前后试件的标距长度和横截面面积,计算出低碳钢的延伸率δ和端面收缩率ψ,即

%100001?-=

l l l δ,%1000

1

0?-=A A A ψ 式中,l 0、l 1为试件拉伸前后的标距长度,A 1为颈缩处的横截面积。 2、压缩实验

铸铁试件压缩过程中,通过力传感器和位移传感器进行数据采集,A/D 转换

和处理,并输入计算机,得到F-?l 曲线,即铸铁压缩曲线,见图2。

对铸铁材料,当承受压缩载荷达到最大载荷F b 时,突然发生破裂。铸铁试件破坏后表明出与试件横截面大约成45?~55?的倾斜断裂面,这是由于脆性材料的抗剪强度低于抗压强度,使试件被剪断。

材料压缩时的力学性质可以由压缩时的力与变形关系曲线表示。铸铁受压时曲线上没有屈服阶段,但曲线明显变弯,断裂时有明显的塑性变形。由于试件承受压缩时,上下两端面与压头之间有很大的摩擦力,使试件两端的横向变形受到阻碍,故压缩后试件呈鼓形。

铸铁压缩实验的强度极限:σb =F b /A 0(A 0为试件变形前的横截面积)。 【实验步骤及注意事项】 1、拉伸实验步骤

(1)试件准备:在试件上划出长度为l 0的标距线,在标距的两端及中部三个位置上,沿两个相互垂直方向各测量一次直径取平均值,再从三个平均值中取最小值作为试件的直径d 0。

(2)试验机准备:按试验机→计算机→打印机的顺序开机,开机后须预热十分钟才可使用。按照“软件使用手册”,运行配套软件。 (3)安装夹具:根据试件情况准备好夹具,并安装在夹具座上。若夹具已安装好,对夹具进行检查。

图2 铸铁压缩曲线

(4)夹持试件:若在上空间试验,则先将试件夹持在上夹头上,力清零消除试件自重后再夹持试件的另一端;若在下空间试验,则先将试件夹持在下夹头上,力清零消除试件自重后再夹持试件的另一端。

(5)开始实验:点击主机小键盘上的试样保护键,消除夹持力;位移清零;按运行命令按钮,按照软件设定的方案进行实验。

(6)记录数据:试件拉断后,取下试件,将断裂试件的两端对齐、靠紧,用游标卡尺测出试件断裂后的标距长度l 1及断口处的最小直径d 1(一般从相互垂直方向测量两次后取平均值)。 2压缩实验步骤

(1)试件准备:用游标卡尺在试件中点处两个相互垂直的方向测量直径d 0,取其算术平均值,并测量试件高度h 0。

(2)试验机准备:按试验机→计算机→打印机的顺序开机,开机后须预热十分钟才可使用。按照“软件使用手册”,运行配套软件。 (3)安装夹具:根据试件情况准备好夹具,并安装在夹具座上。若夹具已安装好,对夹具进行检查。

(4)放置试件:试验力清零;把试件放在压盘中间,通过小键盘调节横梁位置,通过肉眼观察,到上压盘离试件上平面还有一定缝隙时停止。(注意:尽量将试件放在压盘中心,如放偏的话对试验结果甚至是试验机都有影响。) (5)开始实验:位移清零;按运行命令按钮,按照软件设定的方案进行实验。

(6)记录数据:试件压断后,取下试件;记录强度载荷F b 。 二.铸铁F-△l 压缩曲线 1铸铁的极限强度:0/A F b b =σ

2铸铁断口呈不平整状,是典型的脆性断裂;低炭钢断口外围光滑,是塑性变形区域,中部区域才呈现脆性断裂的特征。这表明,铸铁在超屈服应力下,瞬时断开;而低碳钢在超应力的时候,有塑性形变过程,发生颈缩,直到断面面积减小到一定程度时,才瞬时断裂。

【实验数据记录及处理结果】

【实验结论】

1铸铁作为脆性材料,抗拉强度很低,不宜作为抗拉材料。但是其抗压能力强,宜于作为抗压构件的材料。

2低碳钢压缩时的弹性模量和屈服极限与拉伸时大致相同,进入屈服阶段后,试样越压越扁,横截面积不断增大,抗压能力也继续增强,因而得不到压缩时的强度极限。

3低碳钢抗压抗拉能力都很高。适宜于抗压抗拉。

【实验感想】

1通过实验,把课本知识与实践结合起来,更加深刻的理解了材料在拉伸压缩时的性能。

2本次实验锻炼了小组内成员的分工合作与协调能力。较好的锻炼了我们的实践动手能力。

3力学实验中注意安全是非常重要的,这要求我们实验前把该实验的注意事项搞清楚,做好试验的预习。

材料力学实验报告答案解析

材料力学实验报告 评分标准 拉伸实验报告 一、实验目的(1分) 1. 测定低碳钢的强度指标(σs、σb)和塑性指标(δ、ψ)。 2. 测定铸铁的强度极限σb。 3. 观察拉伸实验过程中的各种现象,绘制拉伸曲线(P-ΔL曲线)。 4. 比较低碳钢与铸铁的力学特性。 二、实验设备(1分) 机器型号名称电子万能试验机 测量尺寸的量具名称游标卡尺精度0.02 mm 三、实验数据(2分)

2 铸 铁 上 1 1 5 K N 左 右2 中 1 2 下 1 2 四、实验结果处理(4分) A P s s = σ=300MPa 左右 A P b b = σ=420MPa 左右 % 100 1? - = L L L δ=20~30%左右 % =100 1 0? - A A A ψ=60~75%左右 五、回答下列问题(2分,每题0.5分) 1、画出(两种材料)试件破坏后的简图。 略 2、画出拉伸曲线图。 3、试比较低碳钢和铸铁拉伸时的力学性质。 低碳钢在拉伸时有明显的弹性阶段、屈服阶段、强化阶段和局部变形阶段,而铸铁没有明显的这四个阶段。 4、材料和直径相同而长短不同的试件,其延伸率是否相同?为什么? 相同 延伸率是衡量材料塑性的指标,与构件的尺寸无关。

压缩实验报告 一、实验目的(1分) 1. 测定压缩时铸铁的强度极限σb 。 2. 观察铸铁在压缩时的变形和破坏现象,并分析原因。 二、实验设备 (1分) 机器型号名称电子万能试验机 (0.5分) 测量尺寸的量具名称 游标卡尺 精度 0.02 mm (0.5分) 三、实验数据(1分) 四、实验结果处理 (2分) A P b b = σ =740MPa 左右 五、回答下列思考题(3分) 1.画出(两种材料)实验前后的试件形状。 略 2. 绘出两种材料的压缩曲线。 略 3. 为什么在压缩实验时要加球形承垫? 当试件的两端稍有不平行时,利用试验机上的球形承垫自动调节,可保证压力通过试件的轴线。 4. 对压缩试件的尺寸有何要求?为什么? 310 ≤≤ d h 试件承受压缩时,上下两端与试验机承垫之间产生很大的摩擦力,使试件两端的横向变形受阻,导致测得的抗压强度比实际偏高。试件越短,影响越明显。

材料压缩实验报告

实验三 压缩实验 一、实验目的 1.测定压缩时低碳钢的屈服极限s σ和铸铁的强度极限b σ。 2.观察低碳钢和铸铁压缩时的变形和破坏现象,并进行比较和分析原因。 二、设备和量具 1.手动数显材料试验机sscs-100; 2.游标卡尺。 三、实验原理及步骤 低碳钢和铸铁等金属材料的压缩试样一般制成圆柱形,高h o 与直径d o 之比在1~3 的范围内。目前常用的压缩试验方法是两端平压法。这种压缩试验方法,试样的上下两端与试验机承垫之间会产生很大的摩擦力,它们阻碍着试样上部及下部的横向变形,导致测得的抗压强度较实际偏高。当试样的高度相对增加时,摩擦力对试样中部的影响就变得小了,因此抗压强度与比值h o /d o 有关。由此可见,压缩试验是与试验条件有关的。为了在相同的试验条件下,对不同材料的抗压性能进行比较,应对h o /d o 的值作出规定。实践表明,此值取在1~3的范围内为宜。若小于l ,则摩擦力的影响太大;若大于3,虽然摩擦力的影响减小,但稳定性的影响却突出起来。 低碳钢试样压缩时同样存在弹性极限、比例极限、屈服极限而且数值和拉伸所得的相应数值差不多,但是在屈服时却不象拉伸那样明显。从进入屈服开始,试样塑性变形就有较大的增长,试样截面面积随之增大。由于截面面积的增大,要维持屈服时的应力,载荷也就要相应增大。因此,在整个屈服阶段,载荷也是上升的,在测力盘上看不到指针倒退现象,这样,判定压缩时的P S 要特别小心地注意观察。在缓慢均匀加载下,测力指针是等速转动的,当材料发生屈服时,测力指针的转动将出现减慢,这时所对应的载荷即为屈服载荷

P S。由于指针转动速度的减慢不十分明显,故还要结合自动绘图装置上绘出的压缩曲线中的的拐点来判断和确定P S。 低碳钢的压缩图(即P一△1曲线)如图3—1所示,超过屈服之后,低碳钢试样由原来的圆柱形逐渐被压成鼓形,即如图3—3。继续不断加压,试样将愈压愈扁,但总不破坏。所以,低碳钢不具有抗压强度极限(也可将它的抗压强度极限理解为无限大),低碳钢的压缩曲线也可证实这一点。 图3-1 低碳钢压缩图图3-2 铸铁压缩图 灰铸铁在拉伸时是属于塑性很差的一种脆性材料,但在受压时,试件在达到最大载荷P b前将会产生较大的塑性变形,最后被压成鼓形而断裂。铸铁的压缩图(P一△1曲线)如图3—2所示,灰铸铁试样的断裂有两特点:一是断口为斜断口,如图3—4所示。 图3-3 压缩时低碳钢变形示意图图3-4 压缩时铸铁破坏断口 二是按P b/A0求得的 远比拉伸时为高,大致是拉伸时的 3—4倍。为什 b

实验拉伸与压缩验

实验拉伸与压缩验

————————————————————————————————作者:————————————————————————————————日期:

实验五 拉伸与压缩实验 一、实验目的 1.观察低碳钢和铸铁的拉伸过程,测定其主要机械性能指标屈服极限s σ、强度 极限b σ、延伸率δ和断面收缩率?,比较破坏情况。 2.观察、比较低碳钢和铸铁在压缩时的变形和破坏现象,测定低碳钢压缩时屈 服极限s σ和铸铁的强度极限b σ。 3.绘制拉伸图和压缩图。 二、实验设备、工具与试件 1.CMT5305型电子万能试验机 2.游标卡尺 3.低碳钢、铸铁拉伸件和压缩件 三、实验原理 1.拉伸实验 材料的力学性能屈服极限s σ、强度极限b σ、延伸率δ和断面收缩率?是由拉伸破坏试验来确定的。试验时,利用试验机自动绘制出低碳钢拉伸图和铸铁拉伸图。 图1低碳钢拉伸图 图2铸铁拉伸图 对于低碳钢,当应力基本保持不变,而应变显著增加时,称为屈服阶段,第一次下降的最小载荷为屈服载荷s p ,继续加载测得最大载荷b p 。 试件在达到最大载荷前,伸长变形在标距范围内是均匀分布的。从最大载荷开始,产生局部伸长和颈缩。颈缩出现后截面面积迅速减少,继续拉伸所需要的载荷也变小了,直至断裂。 铸铁试件在变形极小时,就达到了最大载荷,而突然断裂,没有屈服和颈缩

现象。其强度极限远低于低碳钢的强度极限。 2.压缩试验 低碳钢在弹性阶段同样具有比例极限和弹性极限,开始进入屈服阶段后只有很暂短的拐点,该载荷值即为s p 。在强化阶段,压缩图的变化是由于试件的长度不断缩短,横截面不断增大而使试件抗力随之不断增加,得不得极限状态。 所以低碳钢不具有抗压强度极限。 铸铁在拉伸时属于塑性很差的一种脆性材料,但在受压时,试件在达到最大载荷b p 前将会产生较大的塑性变形,最后被压成鼓形而断裂。灰铸铁试件的断裂有两特点:一是断口为斜断口,二是其抗压强度b σ远比拉伸时高,大致是拉伸时 的3~4倍。 图3低碳钢压缩图 图4铸铁压缩图 3.本次实验所用基本公式 0A p s s = σ ; 0A p b b =σ ; 00100001?-=l l l δ ; 001000 10?-=A A A ? 式中:s p -屈服载荷; b p -最大载荷; 1l -试件拉断后标距长; 0l -试件拉断前标距长; 0A -试件原始横截面面积; 1A -试件断裂处横截面面积。

材料力学实验报告册概要

实验日期_____________教师签字_____________ 同组者_____________审批日期_____________ 实验名称:拉伸和压缩试验 一、试验目的 1.测定低碳钢材料拉伸的屈服极限σs 、抗拉强度σb、断后延伸率δ及断 面收缩率ψ。 2.测定灰铸铁材料的抗拉强度σb、压缩的强度极限σb。 3.观察低碳钢和灰铸铁材料拉伸、压缩试验过程中的变形现象,并分析 比较其破坏断口特征。 二、试验仪器设备 1.微机控制电子万能材料试验机系统 2.微机屏显式液压万能材料试验机 3.游标卡尺 4.做标记用工具 三、试验原理(简述) 1

四、试验原始数据记录 1.拉伸试验 低碳钢材料屈服载荷 最大载荷 灰铸铁材料最大载荷 2.灰铸铁材料压缩试验 直径d0 最大载荷 教师签字:2

五、试验数据处理及结果 1.拉伸试验数据结果 低碳钢材料: 铸铁材料: 2.低碳钢材料的拉伸曲线 3.压缩试验数据结果 铸铁材料: 3

4.灰铸铁材料的拉伸及压缩曲线: 5.低碳钢及灰铸铁材料拉伸时的破坏情况,并分析破坏原因 ①试样的形状(可作图表示)及断口特征 ②分析两种材料的破坏原因 低碳钢材料: 灰铸铁材料: 4

6.灰铸铁压缩时的破坏情况,并分析破坏原因 六、思考讨论题 1.简述低碳钢和灰铸铁两种材料的拉伸力学性能,以及力-变形特性曲线 的特征。 2.试说明冷作硬化工艺的利与弊。 3.某塑性材料,按照国家标准加工成直径相同标距不同的拉伸试样,试 判断用这两种不同试样测得的断后延伸率是否相同,并对结论给予分析。 5

七、小结(结论、心得、建议等)6

材料拉伸与压缩试验报告

材料的拉伸压缩实验 【实验目的】 1.研究低碳钢、铸铁的应力——应变曲线拉伸图。 2.确定低碳钢在拉伸时的机械性能(比例极限R p、下屈服强度R eL、强度极限R m、延伸率A、断面收缩率Z等等)。 3. 确定铸铁在拉伸时的力学机械性能。 4.研究和比较塑性材料与脆性材料在室温下单向压缩时的力学性能。 【实验设备】 1.微机控制电子万能试验机; 2.游标卡尺。 3、记号笔 4、低碳钢、铸铁试件 【实验原理】 1、拉伸实验 低碳钢试件拉伸过程中,通过力传感器和位移传感器进行数据采集,A/D转换和处理,并输入计算机,得到F-?l曲线,即低碳钢拉伸曲线,见图1。 对于低碳钢材料,由图1曲线中发现OA直线,说明F正比于?l,此阶段称为弹性阶段。屈服阶段(B-C)常呈锯齿形,表示载荷基本不变,变形增加很快,材料失去抵抗变形能力,这时产生两个屈服点。其中,B'点为上屈服点,它受变形大小和试件等因素影响;B点为下屈服点。下屈服点比较稳定,所以工程上均以下屈服点对应的载荷作为屈服载荷。测定屈服载荷Fs时,必须缓慢而均匀地加载,并应用σs=F s/ A0(A0为试件变形前的横截面积)计算屈服极限。 图1低碳钢拉伸曲线 屈服阶段终了后,要使试件继续变形,就必须增加载荷,材料进入强化阶段。

当载荷达到强度载荷F b后,在试件的某一局部发生显著变形,载荷逐渐减小,直至试件断裂。应用公式σb=F b/A0计算强度极限(A0为试件变形前的横截面积)。 根据拉伸前后试件的标距长度和横截面面积,计算出低碳钢的延伸率δ和端面收缩率ψ,即 % 100 1? - = l l l δ,% 100 1 0? - = A A A ψ 式中,l0、l1为试件拉伸前后的标距长度,A1为颈缩处的横截面积。 2、压缩实验 铸铁试件压缩过程中,通过力传感器和位移传感器进行数据采集,A/D转换和处理,并输入计算机,得到F-?l曲线,即铸铁压缩曲线,见图2。 对铸铁材料,当承受压缩载荷达到最大载荷F b时,突然发生破裂。铸铁试件破坏后表明出与试件横截面大约成45?~55?的倾斜断裂面,这是由于脆性材料的抗剪强度低于抗压强度,使试件被剪断。 材料压缩时的力学性质可以由压缩时的力与变形关系曲线表示。铸铁受压时曲线上没有屈服阶段,但曲线明显变弯,断裂时有明显的塑性变形。由于试件承受压缩时,上下两端面与压头之间有很大的摩擦力,使试件两端的横向变形受到阻碍,故压缩后试件呈鼓形。 铸铁压缩实验的强度极限:σb=F b/A0(A0为试件变形前的横截面积)。 【实验步骤及注意事项】 1、拉伸实验步骤 (1)试件准备:在试件上划出长度为l0的标距线,在标距的两端及中部三个位置上,沿两个相互垂直方向各测量一次直径取平均值,再从三个平均值中取最小值作为试件的直径d0。 (2)试验机准备:按试验机→计算机→打印机的顺序开机,开机后须预热十分钟才可使用。按照“软件使用手册”,运行配套软件。 (3)安装夹具:根据试件情况准备好夹具,并安装在夹具座上。若夹具已 图2 铸铁压缩曲线

材料拉伸与压缩实验报告参考

碳钢与铸铁的拉伸、压缩实验(实验一) 一、实验目的 1、测定碳钢在拉伸时的屈服极限s σ,强度极限b σ,延伸率δ和断面收缩率ψ,测定铸铁拉伸时的强度极限b σ。 2、观察碳钢、铸铁在拉伸过程中的变形规律及破坏现象,并进行比较,使用绘图装置绘制拉伸图(P-ΔL 曲线)。 二、实验设备 微机控制电子万能材料试验机、液压式万能材料试验机、游标卡尺。 三、实验试祥 1. 为使各种材料机械性质的数值能互相比较,避免试件的尺寸和形状对试验结果的影响,对试件的尺寸形状GB6397-86作了统一规定,如图1所示: 图1 用于测量拉伸变形的试件中段长度(标距L 0)与试件直径d 。必零满足L 0/d 0=10或5,其延伸率分别记做和δ10和δ5 2、压缩试样:低碳钢和铸铁等金属材料的压缩试件一般做成很短的圆柱形,避免压弯,一般规定试件高度h 直径d 的比值在下列范围之内: 1≤d h ≤3 为了保证试件承受轴向压力,加工时应使试件两 个端面尽可能平行,并与试件轴线垂直,为了减少 两端面与试验机承垫之间的摩擦力,试件两端面应 进行磨削加工,使其光滑。 四、实验原理 图2为试验机绘出的碳钢拉伸P-△L 曲线图, 拉伸变形ΔL 是整个试件的伸长,并且包括机器本身 的弹性变形和试件头部在夹头中的滑动,故绘出的 曲线图最初一段是曲线,流动阶段上限B ‘受变形速度和试件形式影响,下屈服点B 则比较稳定,工程上均以B 点对应的载荷作为材料屈服时的载荷P S ,以试样的初始横截面积A0除PS ,即得屈服极限: 0A Ps S =σ 图2

屈服阶段过后,进入强化阶段,试样又恢复了承载能力,载荷到达最大值P b ,时,试样某一局部的截面明显缩小,出现“颈缩”现象,这时示力盘的从动针停留在P b 不动,主动针则迅速倒退表明载荷迅速下降,试样即将被拉断。以试样的初始横截面面积A 。除P b 得强度极限为 0A P b b =σ 延伸率δ及断面收缩率φ的测定,试样的标距原长为L 0拉断后将两段试样紧密地对接在一起,量出拉断后的标距长为L 1延伸率应为 % 100001?-=l l l δ 断口附近塑性变形最大,所以L 1的量取与断口的部位有关,如断口发生于L ο的两端或在L ο之外,则试验无效,应重做,若断口距L 。的一端的距离不在标距长度的中央31 区域内,要采用断口移中的办法;以度量试件位断后的标距,设两标点CC 1之间共有10格,断口靠近左段,如图3,从临近断口的第一刻线d 起,向右取10/2=5格,记作a ,这就相当于把断口摆在标距中央,再看a 点到C 1点有多少格,就由a 点向左取相同的格数,记作b , 令L ˊ表示C 至b 的长度,L ’表示b 至a 的长度,则L ′+2L ‘′的长度中包含的格数等于 标距长度内的格数10,即 L ′+2L ‘′=L 1。 图3 试样拉断后,设颈缩处的最小横截面面积为A 1,由于断口不是规则的圆形,应在两个相互垂直的方向上量取最小截面的直径,以其平均值计算A 1,然后按下式计算断面收缩率: 010100%ψA -A =?A 铸铁试件在变形极小时,就达到最大载荷P b 而突然发生断裂。没有屈服和颈缩现象,其强度极限远小于低碳钢的强度极限。 图4为低碳钢试件的压缩图,在弹性阶段和屈服阶段,它与拉伸时的形状基本上是一致 图4 图5

低碳钢和铸铁拉伸和压缩试验

低碳钢和铸铁拉伸压缩实验报告 摘要:材料的力学性能也称为机械性质,是指材料在外力作用下表现的变形、破坏等方面的特性。它是由试验来测定的。工程上常用的材料品种很多,下面我们以低碳钢和铸铁为主要代表,分析材料拉伸和压缩时的力学性能。 关键字:低碳钢 铸铁 拉伸压缩实验 破坏机理 一.拉伸实验 1. 低碳钢拉伸实验 拉伸实验试件 低碳钢拉伸图 在拉伸实验中,随着载荷的逐渐增大,材料呈现出不同的力学性能:

低碳钢拉伸应力-应变曲线 (1)弹性阶段(Ob段) 在拉伸的初始阶段,ζ-ε曲线(Oa段)为一直线,说明应力与应变成正比,即满足胡克定理,此阶段称为线形阶段。线性段的最高点则称为材料的比例极限(ζ p ),线性段的直线斜率即为材料的弹性摸量E。 线性阶段后,ζ-ε曲线不为直线(ab段),应力应变不再成正比,但若在整个弹性阶段卸载,应力应变曲线会沿原曲线返回,载荷卸到零时,变形也完全 消失。卸载后变形能完全消失的应力最大点称为材料的弹性极限(ζ e ),一般对于钢等许多材料,其弹性极限与比例极限非常接近。 (2)屈服阶段(bc段) 超过弹性阶段后,应力几乎不变,只是在某一微小范围内上下波动,而应变却急剧增长,这种现象成为屈服。使材料发生屈服的应力称为屈服应力或屈服极 限(ζ s )。 当材料屈服时,如果用砂纸将试件表面打磨,会发现试件表面呈现出与轴线成45°斜纹。这是由于试件的45°斜截面上作用有最大切应力,这些斜纹是由于材料沿最大切应力作用面产生滑移所造成的,故称为滑移线。 (3)强化阶段(ce段) 经过屈服阶段后,应力应变曲线呈现曲线上升趋势,这说明材料的抗变形能力又增强了,这种现象称为应变硬化。 若在此阶段卸载,则卸载过程的应力应变曲线为一条斜线(如d-d'斜线),其斜率与比例阶段的直线段斜率大致相等。当载荷卸载到零时,变形并未完全消失,应力减小至零时残留的应变称为塑性应变或残余应变,相应地应力减小至零时消失的应变称为弹性应变。卸载完之后,立即再加载,则加载时的应力应变关系基本上沿卸载时的直线变化。因此,如果将卸载后已有塑性变形的试样重新进行拉伸实验,其比例极限或弹性极限将得到提高,这一现象称为冷作硬化。 在硬化阶段应力应变曲线存在一个最高点,该最高点对应的应力称为材料的 强度极限(ζ b ),强度极限所对应的载荷为试件所能承受的最大载荷F b 。 (4)局部变形阶段(ef段) 试样拉伸达到强度极限ζ b 之前,在标距范围内的变形是均匀的。当应力增 大至强度极限ζ b 之后,试样出现局部显著收缩,这一现象称为颈缩。颈缩出现后,使试件继续变形所需载荷减小,故应力应变曲线呈现下降趋势,直至最后在f点断裂。试样的断裂位置处于颈缩处,断口形状呈杯状,这说明引起试样破坏的原因不仅有拉应力还有切应力。 (5)伸长率和断面收缩率 试样拉断后,由于保留了塑性变形,标距由原来的L变为L1。用百分比表示的比值 δ=(L1-L)/L*100% 称为伸长率。试样的塑性变形越大,δ也越大。因此,伸长率是衡量材料塑性的指标。 原始横截面面积为A的试样,拉断后缩颈处的最小横截面面积变为A1,用百分比表示的比值

金属材料的拉伸与压缩实验

机械学基础实验 指导书 力学实验中心 金属材料的拉伸与压缩实验 1.1 金属材料的拉伸实验 拉伸实验是材料力学实验中最重要的实验之一。任何一种材料受力后都要产生变形,变形到一定程度就可能发生断裂破坏。材料在受力——变形——断裂的这一破坏过程中,不仅有一定的变形能力,而且对变形和断裂有一定的抵抗能力,这些能力称为材料的力学机械性能。通过拉伸实验,可以确定材料的许多重要而又最基本的力学机械性能。例如:弹性模量E 、比例极限R p 、上和下屈服强度R eH 和R eL 、强度极限R m 、延伸率A 、收缩率Z 。除此而外,通过拉伸实验的结果,往往还可以大致判定某种其它机械性能,如硬度等。 我们以两种材料——低碳钢,铸铁做拉伸试验,以便对于塑性材料和脆性材料的力学机械性能进行比较。 这个实验是研究材料在静载和常温条件下的拉断过程。利用电子万能材料试验机自动绘出的载荷——变形图,及试验前后试件的尺寸来确定其机械性能。 试件的形式和尺寸对实验的结果有很大影响,就是同一材料由于试件的计算长度不同,其延伸率变动的范围就很大。例如: 对45#钢:当L 0=10d 0时(L 0为试件计算长度,d 0为直径),延伸率A 10=24~29%,当L 0=5d 0时,A 5=23~25%。 为了能够准确的比较材料的性质,对拉伸试件的尺寸有一定的标准规定。按国标GB/T228-2002、GB/P7314-2005的要求,拉伸试件一般采用下面两种形式: 图1-1 1. 10倍试件; 圆形截面时,L 0=10d 0 矩形截面时,L 0=11.30S 2. 5倍试件 圆形截面时,L 0=5d 矩形截面时, L 0=5.650S = 045 S d 0——试验前试件计算部分的直径;

金属拉伸实验报告

金属拉伸实验报告 【实验目的】 1、测定低碳钢的屈服强度R Eh 、R eL及R e 、抗拉强度R m、断后伸长率A和断面收缩率Z。 2、测定铸铁的抗拉强度R m和断后伸长率A。 3、观察并分析两种材料在拉伸过程中的各种现象(包括屈服、强化、冷作硬化和颈缩等现象),并绘制拉伸图。 4、比较低碳钢(塑性材料)与铸铁(脆性材料)拉伸机械性能的特点。 【实验设备和器材】 1、电子万能试验机WD-200B型 2、游标卡尺 3、电子引伸计 【实验原理概述】 为了便于比较实验结果,按国家标准 GB228—76中的有关规定,实验材料要按上述标准做成比例试件,即: 圆形截面试件: L 0 =10d (长试件) 式中: L --试件的初始计算长度(即试件的标距); --试件的初始截面面积; d --试件在标距的初始直径 实验室里使用的金属拉伸试件通常制成标准圆形截面试件,如图1所示

图1拉伸试件 将试样安装在试验机的夹头中,然后开动试验机,使试样受到缓慢增加的拉力(应根据材料性能和试验目的确定拉伸速度),直到拉断为止,并利用试验机的自动绘图装置绘出材料的拉伸图(图2-2所示)。应当指出,试验机自动绘图装置绘出的拉伸变形ΔL主要是整个试样(不只是标距部分)的伸长,还包括机器的弹性变形和试样在夹头中的滑动等因素。由于试样开始受力时,头部在夹 头的滑动较大,故绘出的拉伸图最初一段是曲线。 1、低碳钢(典型的塑性材料) 当拉力较小时,试样伸长量与力成正比增加,保持直线关系,拉力超过F P 后拉伸曲线将由直变曲。保持直线关系的最大拉力就是材料比例极限的力值F P。 在F P的上方附近有一点是F c,若拉力小于F c而卸载时,卸载后试样立刻恢复原状,若拉力大于F c后再卸载,则试件只能部分恢复,保留的残余变形即为塑性变形,因而F c是代表材料弹性极限的力值。 当拉力增加到一定程度时,试验机的示力指针(主动针)开始摆动或停止不动,拉伸图上出现锯齿状或平台,这说明此时试样所受的拉力几乎不变但变形却在继续,这种现象称为材料的屈服。低碳钢的屈服阶段常呈锯齿状,其上屈服点B′受变形速度及试样形式等因素的影响较大,而下屈服点B则比较稳定(因此工程上常以其下屈服点B所对应的力值F eL作为 材料屈服时的力值)。确定屈服力值时,必须注 意观察读数表盘上测力指针的转动情况,读取测 力度盘指针首次回转前指示的最大力F eH(上屈 服荷载)和不计初瞬时效应时屈服阶段中的最小 (a)低碳钢拉伸曲线图(b)铸铁拉伸曲线图 图2-2 由试验机绘图装置绘出的拉伸曲线图

包装用缓冲材料动态压缩实验~实验报告

运输包装实验报告 (二)包装缓冲材料动态压缩试验 天津科技大学110611 一、 实验目的 通过缓冲材料动态冲击实验掌握材料动态冲击的 实验过程与方法,学习实验设备的构成、实验的 操作方法;掌握s m G σ-曲线的绘制及动态缓冲曲 线的使用。 二、 实验设备及材料 1. 包装冲击试验机DY-2 2. 电子分析天平 PB203-N 3. 实验纪录仪器与装置 4. 发泡缓冲材料EPE 三、 试验样品 试验样品的数量:5 厚度(压缩之前)的测量: A1组:48.62 mm A2组:49.96mm A3 组:48.44mm

A4组:48.26mm A5组:47.81mm A6组:52.55mm A7组:49.8mm 以A4组详述:测量标准的已知参量: d0=8.32mm d1=23.1mm d2=24.64mm 四角的厚度分别为: d1=9.33mm d2=7.87mm d3=9.70mm d4=8.47mm d均=(9.33+7.87+9.70+8.47)/4=8.84mm 压缩前试样的厚度为: T=23.1+24.64+8.84-8.32=48.26mm 压缩之后测量标准的已知参量: d0=8.32mm d1=29.12mm d2=24.0mm 四、试验方法 1.实验室的温湿度条件 实验室的温度:21摄氏度 实验室的湿度:35% 2.实验样品的预处理

将实验材料放置在试验温湿度条件下24小时以上3.实验步骤 (1)将试验样品放置在式烟机的底座上,并使其中心与重锤的中心在同一垂线上。适当 的固定试验样品,固定时应不使实验样品 产生变形。 (2)使试验机的重锤从预定的跌落高度(760mm)冲击实验样品,连续冲击五次, 每次冲击脉冲的间隔不小于一分钟。记录 每次冲击加速度-时间历程。实验过程中, 若未达到5次冲击时就已确认实验样品发 生损坏或丧失缓冲能力时则中断实验。4.冲击试验结束3分钟后,按原来方法测量试验样品的厚度作为材料动态压缩实验后的厚度 T实验步骤 d (1)将试验样品放置在式烟机的底座上,并使其中心与重锤的中心在同一垂线上。适当 的固定试验样品,固定时应不使实验样品

材料力学拉伸实验报告

材料的拉伸压缩实验 徐浩20 机械一班 一、实验目的 1.观察试件受力和变形之间的相互关系; 2.观察低碳钢在拉伸过程中表现出的弹性、屈服、强化、颈缩、断裂等物 理现象。观察铸铁在压缩时的破坏现象。 3.测定拉伸时低碳钢的强度指标(s 、b )和塑性指标(、)。测定 压缩时铸铁的强度极限b。 二、实验设备 1.微机控制电子万能试验机; 2.游标卡尺。 三、实验材料 拉伸实验所用试件(材料:低碳钢)如图所示, d l0 l 四、实验原理 低碳钢试件拉伸过程中,通过力传感器和位移传感器进行数据采集,A/D转换和处理,并输入计算机,得到F-l曲线,即低碳钢拉伸曲线,见图2。 对于低碳钢材料,由图2曲线中发现OA直线,说明F 正比于l,此阶段称为弹性阶段。屈服阶段(B-C)常呈锯齿形,表示载荷基本不变,变形增加很快,材料失去抵抗变形能力,这时产生两个屈服点。其中,B点为上屈服点,它受变形大小和试件等因素影响;B点为下屈服点。下屈服点比较稳定,所以工程上均以下屈服点对应的载荷作为屈服载荷。测定屈服载荷Fs时,必须缓慢而均匀地加载,并应用s=F s/ A0(A0为试件变形前的横截面积)计算屈服极限。

图2 低碳钢拉伸曲线 屈服阶段终了后,要使试件继续变形,就必须增加载荷,材料进入强化阶段。当载荷达到强度载荷F b 后,在试件的某一局部发生显著变形,载荷逐渐减小,直至试件断裂。应用公式b =F b /A 0计算强度极限(A 0为试件变形前的横截面积)。 根据拉伸前后试件的标距长度和横截面面积,计算出低碳钢的延伸率和端 面收缩率,即 %100001?-= l l l δ,%1000 1 0?-=A A A ψ 式中,l 0、l 1为试件拉伸前后的标距长度,A 1为颈缩处的横截面积。 五、实验步骤及注意事项 1、拉伸实验步骤 (1)试件准备:在试件上划出长度为l 0的标距线,在标距的两端及中部三 个位置上,沿两个相互垂直方向各测量一次直径取平均值,再从三个平均值中取最小值作为试件的直径d 0。 (2)试验机准备:按试验机计算机打印机的顺序开机,开机后须预热十分钟才可使用。按照“软件使用手册”,运行配套软件。 (3)安装夹具:根据试件情况准备好夹具,并安装在夹具座上。 (4)夹持试件:若在上空间试验,则先将试件夹持在上夹头上,力清零消除试件自重后再夹持试件的另一端;若在下空间试验,则先将试件夹持在下夹头上,力清零消除试件自重后再夹持试件的另一端。 (5)开始实验:消除夹持力;位移清零;按运行命令按钮,按照软件设定的方案进行实验。 (6)记录数据:试件拉断后,取下试件,将断裂试件的两端对齐、靠紧,用游标卡尺测出试件断裂后的标距长度l 1及断口处的最小直径d 1(一般从相

实验二金属材料地压缩试验1

实验二金属材料的压缩试验 实验时间:设备编号:温度:湿度一、实验目的 二、实验设备和仪器 三、实验数据及处理 材料 直径d o(mm)高度 l(mm) L d o 截面积A0 (mm 2 ) 屈服载荷 F s (K N) 最大载荷 F b (K N) 1 2 平均 低碳钢铸铁

载荷一变形曲线(F—△l曲线)及结果 材料低碳钢铸铁F—△l曲线 断口形状 实验结果屈服极限ós=屈服极限ób= 四、问题讨论 (1)观察铸铁试样的破坏断口,分析破坏原因; (2)公析比较两种材料拉伸和压缩性质的异同。

金属村翻盖的压缩试验 原始试验数据记录 实验指导老师: 200 年月日

实验四金属扭破坏实验、剪切弹性模量测定 实验时间:设备编号:温度:湿度一、实验目的 二、实验设备和仪器 三、实验数据及处理 弹性模量E= 泊松比μ= 实验前 材料标距 L0(mm) 直径d0(mm)平均极惯 性矩I p (mm4) 最小抗扭 截面模量 W T (mm3)截面I 截面II 截面III 1 2 平均 1 2 平均 1 2 平均 低碳钢铸铁

低碳钢钢剪切弹性模量测定 扭矩T(K N)扭转角(rad)扭转角度增量(rad)△φT0= T1 T2 T0 T3 T4 T5 △T= 理论值相对误差 截荷-变形曲线(F-△l曲线及结果) 材料低碳钢铸铁 T—φ曲线 断口形状 实验记录屈服扭矩T s 破坏扭矩T b 破坏扭矩T b 实验结果屈服极限t s 强度极限t b

四、问题讨论 (1)为什么低碳钢试样扭转破坏断面与横截面重合,而铸铁试样是与试样轴线成450螺旋断裂面? (2)根据低碳钢和铸铁拉伸、压缩、扭转试验的强度指标和断口形貌,分析总结两类材料的抗拉、抗压、抗剪能力。

实验二低碳钢和铸铁的压缩实验

实验二金属材料(低碳钢和铸铁)的压缩实验 一、实验目的 (1)比较低碳钢和铸铁压缩变形和破坏现象。 (2)测定低碳钢的屈服极限σs和铸铁的强度极限σb。 (3)比较铸铁在拉伸和压缩两种受力形式下的机械性能、分析其破坏原因。 二、验仪器和设备 (1)万能材料试验机。 (2)游标卡尺。 三、试件介绍 根据国家有关标准,低碳钢和铸铁等金属材料的压缩试件一般制成圆柱形试件。低碳钢压缩试件的高度和直径的比例为3:2,铸铁压缩试件的高度和直径的比例为2:1。试件均为圆柱体。 四、实验原理及方法 压缩实验是研究材料性能常用的实验方法。对铸铁、铸造合金、建筑材料等脆性材料尤为合适。通过压缩实验观察材料的变形过程、破坏形式,并与拉伸实验进行比较,可以分析不同应力状态对材料强度、塑性的影响,从而对材料的机械性能有比较全面的认识。 压缩试验在压力试验机上进行。当试件受压时,其上下两端面与试验机支撑之间产生很大的摩擦力,使试件两端的横向变形受到阻碍,故压缩后试件呈鼓形。摩擦力的存在会

影响试件的抗压能力甚至破坏形式。为了尽量减少摩擦力的影响,实验时试件两端必须保证平行,并与轴线垂直,使试件受轴向压力。另外。端面加工应有较高的光洁度。 低碳钢压缩时也会发生屈服,但并不象拉伸那样有明显的屈服阶段。因此,在测定Ps 时要特别注意观察。在缓慢均匀加载下,测力指针等速转动,当材料发生屈服时,测力指针转动将减慢,甚至倒退。这时对应的载荷即为屈服载荷Ps。屈服之后加载到试件产生明显变形即停止加载。这是因为低碳钢受压时变形较大而不破裂,因此愈压愈扁。横截面增 ,因此也得不到强度极大时,其实际应力不随外载荷增加而增加,故不可能得到最大载荷P b ,所以在实验中是以变形来控制加载的。 限 b 前出现较明显的变形然后破裂,此时试验机测力铸铁试件压缩时,在达到最大载荷P b 指针迅速倒退,从动针读取最大载荷P 值,铸铁试件最后略呈故形,断裂面与试件轴线大 b 约呈450。 图2—2 低碳钢压缩图铸铁压缩图 五、实验步骤 (1)试验机准备。根据估算的最大载荷,选择合适的示力度盘(量程)按相应的操作规程进行操作。 (2)测量试件的直径和高度。测量试件两端及中部三处的截面直径,取三处中最小一处的平均直径计算横截面面积。 (3)将试件放在试验机活动台球形支撑板中心处。 (4)开动试验机,使活动台上升,对试件进行缓慢均匀加载,加载速度为0.5mm/min。对于低碳钢,要及时记录其屈服载荷,超过屈服载荷后,继续加载,将试件压成鼓形即可停

拉伸实验报告

拉伸实验报告 篇一:拉伸试验报告 ABANER 拉伸试验报告 [键入文档副标题] [键入作者姓名] [选取日期] [在此处键入文档的摘要。摘要通常是对文档内容的简短总结。在此处键入文档的摘要。摘要通常是对文档内容的简短总结。] 拉伸试验报告 一、试验目的 1、测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度与塑性性能 2、测定低碳钢的应变硬化指数和应变硬化系数 二、试验要求: 按照相关国标标准(GB/T228-XX:金属材料室温拉伸试验方法)要求完成试验测量工作。 三、引言 低碳钢在不同的热处理状态下的力学性能是不同的。为了测定不同热处理状态的低碳钢的力学性能,需要进行拉伸试验。

拉伸试验是材料力学性能测试中最常见试验方法之一。试验中的弹性变形、塑性变形、断裂等各阶段真实反映了材料抵抗外力作用的全过程。它具有简单易行、试样制备方便等特点。拉伸试验所得到的材料强度和塑性性能数据,对于设计和选材、新材料的研制、材料的采购和验收、产品的质量控制以及设备的安全和评估都有很重要的应用价值和参考价值 通过拉伸实验测定低碳钢在退火、正火和淬火三种不同热处理状态下的强度和塑形性能,并根据应力-应变曲线,确定应变硬化指数和系数。用这些数据来进行表征低碳钢的力学性能,并对不同热处理的低碳钢的相关数据进行对比,从而得到不同热处理对低碳钢的影响。 拉伸实验根据金属材料室温拉伸试验方法的国家标准,制定相关的试验材料和设备,试验的操作步骤等试验条件。 四、试验准备内容 具体包括以下几个方面。 1、试验材料与试样 (1)试验材料的形状和尺寸的一般要求 试样的形状和尺寸取决于被试验金属产品的形状与尺寸。通过从产品、压制坯或铸件切取样坯经机加工制成样品。但具有恒定横截面的产品,例如型材、棒材、线材等,和铸造试样可以不经机加工而进行试验。

压缩试验实验报告

压缩试验(一) 班级:姓名:学号: 一、实验目的:测定压缩试验用土的物理指标ρ、ω,确定d s 为压缩试样做准备,熟悉压缩试验的原理。 二、实验仪器设备:测定ρ、ω的仪器,天平、铝盒、环刀、烘箱、托盘、削土刀等。 三、测定ρ、ω的实验数据以及e 0 的计算 1、ρ的测定: (1)测出环刀的容积V ,在天平上称环刀质量m 1。 (2)取直径和高度略大于环刀的原状土样或制备土样。 (3)环刀取土:在环刀内壁涂一薄层凡士林,将环刀刃口向下放在土样上,随即将环刀垂直下压,边压边削,直至土样上端伸出环刀为止。将环刀两端余土削去修平(严禁在土面上反复涂抹),然后擦净环刀外壁。 (4)将取好土样的环刀放在天平上称量,记下环刀与湿土的总质量m 2 (5)计算土的密度:按下式计算 V m m V m 1 2-== ρ (6)重复以上步骤进行两次平行测定,其平行差不得大于0.03g/cm 3 ,取其算术平均值。 (7)实验记录 环刀法测得的数据填入下表中 2、ω的测定: (1)取代表性试样,粘性土为15—30g,砂性土、有机质土为 50g,放入质量为m 0的称量盒

内,立即盖上盒盖,称湿土加盒总质量m 1,精确至0.01g. (2)打开盒盖,将试样和盒放入烘箱,在温度105——1100C 的恒温下烘干。烘干时间与土的类别及取土数量有关。粘性土不得少于8小时;砂类土不得少于6小时;对含有机质超过10%的土,应将温度控制在65——700C 的恒温下烘至恒量。 (3)将烘干后的试样和盒取出,盖好盒盖放入干燥器内冷却至室温,称干土加盒质量m 2为,精确至0.01g 。 (4)计算含水率:按下式计算 %1000 22 1?--== m m m m m m w s w (5)重复以上步骤进行两次平行测定,其平行差不得大于0.03g/cm 3 ,取其算术平均值。 允许平行差值应符合下表规定。 (6)实验记录 将实验得到的数据填入下表 3、e 0 的计算 首先,d s 已经被测出为2.72,则e 0 的计算公式为 1 )1(0-+= ρ ρωω s d e

金属拉伸实验报告

金属拉伸实验报告 【实验目得】 1、测定低碳钢得屈服强度REh 、R eL及Re、抗拉强度R m、断后伸长率A与断面收缩率Z。 2、测定铸铁得抗拉强度R m与断后伸长率A。 3、观察并分析两种材料在拉伸过程中得各种现象(包括屈服、强化、冷作硬化与颈缩等现象),并绘制拉伸图。 4、比较低碳钢(塑性材料)与铸铁(脆性材料)拉伸机械性能得特点。【实验设备与器材】 1、电子万能试验机WD-200B型 2、游标卡尺 3、电子引伸计 【实验原理概述】 为了便于比较实验结果,按国家标准GB228—76中得有关规定,实验 材料要按上述标准做成比例试件,即:?圆形截面试件: L 0 =10d (长 试件)?式中: L --试件得初始计算长度(即试件得标距);? -— 试件得初始截面面积;? d 0 —-试件在标距内得初始直径?实验室里使用得金属拉伸试件通常制成标准圆形截面试件,如图1所示 图1拉伸试件

将试样安装在试验机得夹头中,然后开动试验机,使试样受到缓慢增加得拉力(应根据材料性能与试验目得确定拉伸速度),直到拉断为止,并利用试验机得自动绘图装置绘出材料得拉伸图(图2-2所示)。应当指出,试验机自动绘图装置绘出得拉伸变形ΔL 主要就是整个试样(不只就是标距部分)得伸长,还包括机器得弹性变形与试样在夹头中得滑动等因素。由于试样开始受力时,头部在夹 头内得滑动较大,故绘出得拉伸图最初一段就是曲线。 1、低碳钢(典型得塑性材料) 当拉力较小时,试样伸长量与力成正比增加,保持直线关系,拉力超过F P后拉伸曲线将由直变曲。保持直线关系得最大拉力就就是材料比例极限得力值F P . 在FP 得上方附近有一点就是Fc ,若拉力小于F c而卸载时,卸载后试样立刻恢复原状,若拉力大于F c 后再卸载,则试件只能部分恢复,保留得残余变形即为塑性变形,因而Fc就是代表材料弹性极限得力值。 当拉力增加到一定程度时,试验机得示力指针(主动针)开始摆动或停止不动,拉伸图上出现锯齿状或平台,这说明此时试样所受得拉力几乎不变但变形却在继续,这种现象称为材料得屈服。低碳钢得屈服阶段常呈锯齿状,其上屈服点B ′受变形速度及试样形式等因素得影响较大,而下屈服点B 则比较稳定(因此工程上常以其下屈服点B 所对应得力值F eL 作为材料屈服时得力值)。确定屈服力值时,必须注意观察读数表盘上测力指针得转动情况,读取测力度盘指针首次回转前指示得最大力F eH (上屈服荷载)与不计初瞬时效应时屈服阶段中得最小力F eL (下屈服荷载)或首次停止转动指示得恒定力F eL (下屈服荷载),将其分别除以试样得原始横截面积(S0)便可得到上屈服强度R e H与下屈服强度Re L。即 Re H = F e H /S0 R e L = F e L /S 0 屈服阶段过后,虽然变形仍继续增大,但力值也随之增加,拉伸曲线又继续上升,这说明材料又恢复了抵抗变形得能力,这种现象称为材料得强化。在强化阶段内,试样得变形主要就是塑性变形,比弹性阶段内试样得变形大得多,在达到最大力F m之前, 试样标距范围内得变形就是均 (a)低碳钢拉伸曲线图 (b)铸铁拉伸曲线图 图2-2 由试验机绘图装置绘出得拉伸曲线图 图2-3 低碳钢得冷作硬化

材料在拉伸与压缩时的力学性能-3

§2-3 材料在拉伸与压缩时的力学性能 材料的力学性能:也称机械性能。通过试验揭示材料在受力过程中所表现出的与试件几何尺寸无关的材料本身特性。如变形特性,破坏特性等。研究材料的力学性能的目的是确定在变形和破坏情况下的一些重要性能指标,以作为选用材料,计算材料强度、刚度的依据。因此材料力学试验是材料力学课程重要的组成部分。 此处介绍用常温静载试验来测定材料的力学性能。 1. 试件和设备 标准试件:圆截面试件,如图2-14:标距l 与直径的比例分为,d d l 10=,; d l 5=板试件(矩形截面):标距l 与横截面面积的比例分为,A A l 3.11=,A l 65.5=; 试验设备主要是拉力机或全能机及相关的测量、记录仪器。 详细介绍见材料力学试验部分。国家标准《金属拉伸试验方法》(如GB228-87)详细规定了实验 方法和各项要求。 2. 低碳钢拉伸时的力学性能 低碳钢是指含碳量在0.3%以下的碳素钢, 如A 3钢、16Mn 钢。 1)拉伸图(P —ΔL ),如图2-15所示。 弹性阶段(oa ) 屈服(流动)阶段(bc ) 强化阶段(ce )由于P —ΔL 曲线与试样 的尺寸有关,为了消除试件尺寸的影响,可采用 应力应变曲线,即εσ?曲线来代替P —ΔL 曲 线。进而试件内部出现裂纹,名义应力下跌, 至f 点试件断裂。 σ对低碳钢来说,s σ,b σ是衡量材料强度的重要指标。 2)εσ?曲线图,如图2-16所示,其各特征点的含义为: oa 段:在拉伸(或压缩)的初始阶段应力σ与应变ε为直线关系直至a 点,此时a 点所对应的

应力值称为比例极限,用P σ表示。它是应力与应变成正比例的最大极限。当P σσ≤ 则有 εσE = (2-5) 即胡克定律,它表示应力与应变成正比,即有 αε σtan == E E 为弹性模量,单位与σ相同。 当应力超过比例极限增加到b 点时, 关系偏离直线,此时若将应力卸至 零,则应变随之消失(一旦应力超过b 点,卸载后,有一部分应变不能消除),此b 点的应力定义为弹性极限ε?σe σ。 e σ是材料只出现弹性变形的极限值。 bc 段:应力超过弹性极限后继续加载, 会出现一种现象,即应力增加很少或不增 加,应变会很快增加,这种现象叫屈服。开始发生屈服的点所对应的应力叫屈服极限s σ。又称屈服强度。在屈服阶段应力不变而应变不断增加,材料似乎失去了抵抗变形的能力,因此产生了显著的塑性变形(此时若卸载,应变不会完全消失,而存在残余变形)。所以s σ是衡量材料强度的重要指标。 表面磨光的低碳钢试样屈服时,表面将出现与轴线成45°倾角的条纹,这是由于材料内部晶格相对滑移形成的,称为滑移线,如图2-17所示。 ce 段:越过屈服阶段后,如要让试 件继续变形,必须继续加载,材料似乎 强化了,ce 段即强化阶段。应变强化阶 段的最高点(e 点) 所对应的应力称为强度极限b σ。 它表示材料所能承受的最大应力。过e 点后,即应力达到强度极限后,试件局部发生剧烈收缩的现象,称为颈缩,如图2-18所示。 3)延伸率和截面收缩率 为度量材料塑性变形的能力,定义 延伸率为

材料拉伸压缩实验报告

材料的拉伸压缩实验 一、实验目的 1.观察试件受力和变形之间的相互关系; 2.观察低碳钢在拉伸过程中表现出的弹性、屈服、强化、颈缩、断裂等物 理现象;观察铸铁在压缩时的破坏现象。 3.测定拉伸时低碳钢的强度指标(σs、σb)和塑性指标(δ、ψ);测定压缩 时铸铁的强度极限σb。 4.学习、掌握电子万能试验机的使用方法及工作原理。 二、实验设备 1.微机控制电子万能试验机; 2.游标卡尺。 三、实验材料 拉伸实验所用试件(材料:低碳钢)如图1所示,压缩实验所用试件(材料:铸铁)如图2所示: 图1 拉伸试件图2 压缩试件 四、实验原理 1、拉伸实验 低碳钢试件拉伸过程中,通过力传感器和位移传感器进行数据采集,A/D转换和处理,并输入计算机,得到F-?l曲线,即低碳钢拉伸曲线,见图3。 对于低碳钢材料,由图3曲线中发现OA直线,说明F正比于?l,此阶段称为弹性阶段。屈服阶段(B-C)常呈锯齿形,表示载荷基本不变,变形增加很快,材料失去抵抗变形能力,这时产生两个屈服点。其中,B'点为上屈服点,它受变形大小和试件等因素影响;B点为下屈服点。下屈服点比较稳定,所以工程上均以下屈服点对应的载荷作为屈服载荷。测定屈服载荷Fs时,必须缓慢而均匀地

加载,并应用σs =F s / A 0(A 0为试件变形前的横截面积)计算屈服极限。 图3 低碳钢拉伸曲线 屈服阶段终了后,要使试件继续变形,就必须增加载荷,材料进入强化阶段。当载荷达到强度载荷F b 后,在试件的某一局部发生显著变形,载荷逐渐减小,直至试件断裂。应用公式σb =F b /A 0计算强度极限(A 0为试件变形前的横截面积)。 根据拉伸前后试件的标距长度和横截面面积,计算出低碳钢的延伸率δ和端面收缩率ψ,即 %100001?-= l l l δ,%1000 1 0?-=A A A ψ 式中,l 0、l 1为试件拉伸前后的标距长度,A 1为颈缩处的横截面积。 2、压缩实验 铸铁试件压缩过程中,通过力传感器和位移传感器进行数据采集,A/D 转换 和处理,并输入计算机,得到F-?l 曲线,即铸铁压缩曲线,见图4。 对铸铁材料,当承受压缩载荷达到最大载荷F b 时,突然发生破裂。铸铁试件破坏后表明出与试件横截面大约成45?~55?的倾斜断裂面,这是由于脆性材料 图4 铸铁压缩曲线

相关文档
相关文档 最新文档