文档库 最新最全的文档下载
当前位置:文档库 › 富水性软弱Ⅵ级围岩段隧道开挖支护施工技术

富水性软弱Ⅵ级围岩段隧道开挖支护施工技术

富水性软弱Ⅵ级围岩段隧道开挖支护施工技术
富水性软弱Ⅵ级围岩段隧道开挖支护施工技术

浅埋软弱围岩隧道变形控制

浅埋软弱围岩隧道变形控制 摘要:本文以宁安铁路钟鸣2#隧道为例,重点阐述在浅埋软弱围岩隧道施工,通过各种技术措施对围岩变形进行控制的方法。 关键词:隧道,浅埋,软弱围岩,变形控制 abstract: this article to ning an railway chiming 2 # tunnel as an example, focuses on the shallow buried tunnel in weak rock construction, through various technical measures to control surrounding rock deformation method. key words: tunnel, shallow buried and weak surrounding rock, deformation control. 中图分类号:u452.1+2 文献标识码:a文章编号:2095-2104(2013)引言 在高铁建设过程中,出现了越来越多的地质条件复杂,浅埋软弱围岩的高风险隧道。由于这些浅埋地层的埋藏比较浅,大多是强风化破碎的围岩,地质条件变化较大,围岩应力分布复杂,且开挖断面大,造成了隧道施工过程中,施工难度增大,初支变形复杂和隧道整体稳定难以控制的情况,隐含着很多坍塌等安全隐患。本文以钟鸣2#隧道为研究对象,阐述在浅埋软弱围岩隧道施工过程中如何采取对策减小初支变形,确保施工安全的方法。 1 工程概况 钟鸣2#隧道位于宁安铁路铜陵境内,双线全长798m,施工里程为dk140+830~dk141+628。隧道穿越地层主要为含砾粉质黏土及泥质

软弱围岩公路隧道开挖支护施工过程研究 张力

软弱围岩公路隧道开挖支护施工过程研究张力 发表时间:2018-07-19T16:08:29.393Z 来源:《建筑模拟》2018年第8期作者:张力[导读] 在进行公路隧道开挖施工时,需要重点考虑软弱围岩问题。随着我国工程建设的不断发展,需要深入分析软弱围岩隧道施工过程中开挖支护产生的影响,并提出针对性的改进措施,保证隧道工程的施工稳定和施工安全。杭州铁藤道路工程有限公司浙江杭州 310000摘要:在进行公路隧道开挖施工时,需要重点考虑软弱围岩问题。随着我国工程建设的不断发展,需要深入分析软弱围岩隧道施工过程中开挖支护产生的影响,并提出针对性的改进措施,保证隧道工程的施工稳定和施工安全。关键词:软弱围岩;公路隧道;开挖支护;施工过程研究 1导言 在国际岩石力学学会中,软弱围岩的定义为强度低、风化、破碎的岩层的统称。在隧道工程建设中,普遍存在这一类岩层,其中开挖施工的科学性与合理性决定了整个工程的安全与稳定,因此必须对此予以重视。目前,在隧道工程建设规模越来越大,软弱围岩问题在我国各领域中又有所涉及,对于软弱围岩隧道开挖支护施工过程的研究价值也越来越高。 2软弱围岩熔炉隧道开挖支护施工在进行隧道开挖作业时,首先要将围岩的保护工作落实到位,并进行动态施工。隧道施工时,要做好保护工作,避免围岩强度受到影响。动态施工时,地质条件和地质力学情况会出现变化,所采取的开挖支护施工方法也需要进行相应的调整。当前,支护方法已经从单一支护逐步向联合支护和多次支护的方向发展,特别是在预应力锚索施工技术出现后,软弱围岩隧道的支护施工质量得到了显著的提升。可以充分调动深部围岩的强度,并和浅部支护岩体共同作用后,提升隧道的围岩的稳定性。 2.1影响隧道稳定性的因素 在隧道工程施工过程中,砂页岩和碳质页岩是对围岩造成破坏的主要因素,分别为岩体自身因素、外力作用因素、地质作用因素。其中,岩体自身因素指的是受时间因素、外力因素的影响,岩石产生了风化碎裂,降低了围岩凝聚力,一旦渗入水分,将直接影响岩体结构的整体强度。尤其是在互层岩体强度分布不均匀时,受温度因素的影响,岩层间也会出现分裂滑动。外力作用因素指的是受外力的影响出现应力作用增大、软化作用变大、应力分布均匀性降低等问题,加剧岩体破坏严重度,在断层的影响下出现剪碎和挤压等情况,导致节理发育岩体受砂页岩互层岩体和不均匀碳质页岩之间的强度影响增大。隧道碳质页岩与砂页岩互层是破坏围岩的主要因素。 2.2隧道围岩公路隧道开挖支护施工过程模拟本工程隧道总施工长度为1.17km,IV类围岩占隧道总施工长度的73%,II类围岩占总施工长度的10%,V类围岩占到了8%,大部分软弱围岩为IV类围岩,并且IV类围岩占比最大。因此,结合本工程的实际情况,主要模拟分析IV围岩的开挖支护施工。本工程在进行施工时,选用短台阶分布法来进行作业,以1~1.5m作为一个循环进尺,并使用光爆法进行开挖,安排仰拱紧跟。隧道仰拱施工时,要先进行二衬施工,只有这样才能使初期支护过程中快速形成封闭受力结构。在对边界条件进行确定时,选用比较先进的3D-σ三维有限元商用程序,可以非常直观地对填土施工、挖掘施工、支护施工、地层改良施工等进行模拟。施工模拟流程如下:开始→建立有限元模型、确定有限元模型、确定格中计算参数→施工各阶段模拟计算→保存计算结果→后处理→结束。在利用模型对隧道开挖进行假定以后,洞室初始应力发生变化后围岩会出现形变,导致支护结构产生变形。在进行隧道开挖作业时,要重点分析结构自重作用下的初始应力,对于温度应力和构造应力则可以不予考虑。采用六面体等参元模拟分析围岩结构的稳定性,然后利用壳体单元模拟混凝土喷射施工。锚杆结构的稳定性利用锚杆单元进行分析。隧洞后侧和前侧分别进行单向约束,隧洞垂直方式要对顶面和地面进行约束,地层需要进行模拟的厚度为80m,长度为47m,宽度为80m,一共模拟了6080个单元,模拟节点为26841个。通过现场经验和现场测量确定围岩和支护的物理力学指标,经过计算后,证明III类围岩的弹性模量值为1500MPa,泊松比为0.35,比重为27kN/m3。采用混凝土材料和土体材料作为隧道支护材料,在对岩土材料抗剪强度进行计算时,使用莫尔-库伦屈服准则进行计算,将内摩擦角和粘聚力作为判断是否进入到塑性区域的主要参考依据。在模拟数值时,需充分考虑围岩介质的复杂性、介质分布开挖工序和施工方法,此外还要分析开挖面推进时的空间效应,可以非常直观地模拟出地层和支护的施工情况,具有较高的数据处理能力。在进行施工模拟时,首先对隧道进行全断面开挖,开挖施工长度为15m,第2步和第3步进行上台阶的开挖,从第6步开始到第13步进行下台阶的开挖,每次开挖为1m,上台阶和下台阶的距离为3m。第13步为后期初期支护内力。各部分施工过程中拱顶下沉如图1所示。底板隆起和开挖进尺关系图如图2所示。 图1 拱顶下沉和开挖进尺关系曲线

隧道开挖及支护安全技术交底(新编版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 隧道开挖及支护安全技术交底 (新编版) Safety management is an important part of enterprise production management. It promotes the progress of enterprise work and promotes economic efficiency.

隧道开挖及支护安全技术交底(新编版) 一、隧道开挖施工安全 (1)所有进洞人员必须带安全帽。施工人员尤其是喷射手和注浆作业人员,按规定带好防护用品。 (2)开挖人员到达工作面时,先检查工作面的安全状态和周边环境的安全状态。开挖采用机械配合人工进行,施工中要注意施工人员严禁在挖掘机大臂下活动,挖掘机开挖时要有专人指挥,以防止挖掘机司机视野受限,挖掘机臂碰撞初期支护表面以及临时支撑体系。 (3)黄土隧道开挖过程中,为确保施工安全,严格控制循环进尺,及时施作支护体系。同时加强围岩的监控量测,关注围岩变形情况,使所有不安全因素均处于受控状态中。 (4)各种运输设备严禁人料混装,洞内运输设立专职联络员;

进入隧道的内燃机械与车辆,选用带净化装置的柴油机;装载料具时,不超出装载限界,装运型钢钢架、钢管等长料具时,捆扎牢固。 (5)机械装碴时,断面满足装载机械安全运转,设置专人指挥,以免机械碰断电线或碰坏已做好的初期支护,确保安全。在洞口处设置缓行标志,必要时安排人员指挥交通。运输车辆在使用前详细检查,不带病工作。行驶车辆保持一定间距,洞内道路加强养护。洞内倒车与转向,做到开灯、鸣笛或有人指挥。 二、隧道初期支护施工安全 (1)施工期间,现场施工负责人会同质检工程师对各部支护进行定期检查。在不良地质段,每班责成专人检查。在锚喷体系的监控量测中发现支护体系变形、异常开裂等险情时,应及时报告现场管理人员和相关领导,并采取补救措施。当险情危急时,应立即将人员撤出危险区。喷层面要平顺,以免应力集中,出现喷层开裂。 (2)构件支撑的立柱不得置于虚碴或浮土上,立柱底面应设垫板或垫梁。暂停施工时,应将支护直抵开挖面。 (3)锚杆的质量、长度,喷砼的质量、厚度,以及钢架的安装

隧道软弱围岩(断层)专项施工方案

石山隧道进口软弱围岩(断层)专项施工方案 一、编制依据 1、xxx合同段工程施工总承包招标文件及设计文件、两阶段施工图设计等; 2、国家、交通部现行的公路工程建设施工规范、设计规范、验收标准、安全规范等; 3、国家及福建省相关法律、法规及条例等; 4、现场踏勘收集到的地形、地质、气象和其它地区性条件等资料; 5、近年来高速公路等类似施工经验、施工工法、科技成果; 6、福建省高速公路标准化建设指南和施工要点; 7、我单位拥有的国家级、部级工法、科技成果和长期从事高等级公路建设所积累的丰富施工经验。 二、工程概况 1、工程概况 我部承建的石山隧道0.5座,为分离式双洞隧道,隧道全长855.8m,为长隧道,左洞长854.1m,右洞长857.5m。隧道进出口均位于平面曲线内,进口左右线曲线半径分别为R左=3000m和R右=2850m;隧道纵坡坡率/坡长:左洞为0.7%/854.1m,右洞0.7%/857.5m;隧道进口设计桩号:左洞为ZK63+572,右洞为YK63+565;进口设计高程:左洞为586.69m,右洞为586.64m。。 2、地形、地貌 隧址区属剥蚀低山地貌,隧道轴线大致呈南北走向,地形呈波状起伏,起伏较大,隧道最大埋深约为160m,地表植被较发育,覆盖层较薄。进口侧山坡自然坡度25~30°,出口侧山坡自然坡度35~40°。 3、地层岩性 本隧址场区表层多为第四系残坡积土,一般厚度3-6m,冲沟底部及陡坎略薄些,下伏侏罗系南园组(J3n)凝灰熔岩及其风化层。

隧道洞身围岩为侏罗系南园组(J3n)的凝灰熔岩,属较硬-坚硬岩,岩体一般较完整,对隧道洞身围岩的稳定较有利,据地质调绘及钻孔揭露隧道区主要发育有3条裂隙带及断裂构造带,对隧道围岩不利,影响隧道围岩级别,隧道开挖时,围岩稳定性较差,易产生塌方掉块,应加强支护和监测措施,各段的具体评价见隧道纵断面图。 拟建隧道最大埋深约160m,深部围岩主要为微风化凝灰熔岩,节理裂隙发育较少-较发育,较有利于地应力的释放和调整,但钻孔中未见有岩芯饼化等高应力作用现象,综合临近泉三高速公路等工程经验分析,本隧道在隧洞区内出现高地应力的可能性不大。 隧址区未见有矿体分布,不会产生瓦斯等有害气体。但施工中粉尘可能较大,施工中应注意粉尘污染监测工作,并做好通风工作。 4、地质构造及地震动参数 根据《厦门至沙县高速公路(安溪至沙县)泉州段线路工程地震安全性评价》,线路地震设防烈度属于6度区,测区内50年超越概率10%的平均土质条件下峰值加速度为0.05g,中硬土场地动反应谱特征周期为0.45s,区域地质相对稳定,建议抗震设计按《公路工程抗震设计规范》(JTJ004-89)规范执行。 5、水文地质条件 隧道位于当地侵蚀基准面之上,山坡坡体起伏较大,隧道地表水系不发育,仅部分冲沟底部见有小水流。隧址区四周地形较陡,一般坡度25-35°,地形切割较强烈,降雨后地表水沿坡排泄迅速,无有利地表水蓄积之地形。 地下水按埋藏条件及赋存介质不同主要有:①基岩风化网状裂隙水:赋存于碎块状强风化岩~中风化岩层的网状裂隙中。隧道区岩性为侏罗系南园组(J3n)凝灰熔岩,碎块状强风化岩层裂隙较发育,富水性及导水性相对较强,接受大气降水的补给,厚度相对较小,勘察期间水量较贫乏,对洞身围岩及开挖影响较小,主要对隧道进、出口及浅埋段围岩的施工有影响。②基岩裂隙水:洞身围岩主要为微风化凝灰熔岩,主要受节理裂隙等控制,受大气降水的补给和基岩风化裂隙水的补给,向山体附近的沟谷中排泄,富水性一般较差,节理密集带相对较富水,但本隧道3条节理带宽度小,故地下水贫乏。

浅埋偏压软弱围岩隧道施工控制浅埋偏压软弱围岩隧道施工控制(参考模板)

浅埋偏压软弱围岩隧道施工控制浅埋偏压软弱围岩隧道施 工控制 具体介绍铁路双线隧道浅埋偏压软弱围岩的施工工 摘要:本文结合金温铁路麻芝川隧道工程实例,艺和施工控制,为浅埋偏压软弱围岩隧道洞口的施工提供了很好的借鉴。 关键词:铁路隧道浅埋偏压软弱围岩施工控制 1 前言随着我国高速铁路发展规模日益扩大,地质条件日趋复杂,标准化的要求不断提高,铁路隧道施工技术要求也就越来越高。一般情况下隧道洞口位置的地质情况较差,主要不良地质表现为顺层偏压、覆盖层薄、土质松散、边坡失稳,围岩体结构承载力差,若处理不当易发生塌方、冒顶、边仰坡塌滑风险事件。麻芝川隧道是金温铁路的重点工程之一,进口地段就属这类情况。 2 工程概况 2.1 概述麻芝川隧道进口段位于浙江省温州市泽雅镇。隧道起迄里程为 DK168+673~DK171+515,全长 2842m。隧道全部位于左偏曲线上,纵坡为单面下坡,坡率为 4.0‰。按新奥法设计,采用复合式衬砌。 2.2 工程地质麻芝川隧道地处剥蚀丘陵区,地形起伏,植被茂盛,山体自然坡度 25~45°,局部可见基岩裸露。进出口均有混凝土或沥青路面的乡村公路通达。隧道区地层分布较简单,基岩多有出露。地表出露第四系人工填土层 Qml、第四系残坡积层 Qel+dl,下伏侏罗系上统西山头组 J3x 流纹质玻屑凝灰岩。地下水为松散岩类孔隙水和火山碎石屑岩

类基岩裂隙水。区内地表流水活跃,地下水不发育,影响隧道的地下水主要为构造裂隙水。隧道区地处副热带季风气候区,气候温和,雨量充沛,四季分明。雨量充沛,年降雨量达 1723.0 毫米,4~9 月最集中。化学环境作用等级为 H2,地震动峰值加速度为 0.05g,地震动反应谱特征周期为 0.35s。隧道进口进口工程特点

隧道开挖施工方法及施工要点讲解

隧道开挖施工方法及施工要点讲解 1、全断面开挖法 全断面开挖法就是按照设计轮廓一次爆破成形,然后修建衬砌的施工方法。 适用条件: (1)I~IV级围岩,在用于Ⅳ级围岩时,围岩应具备从全断面开挖到初期支护前这段时间内,保持其自身稳定的条件。 (2)有钻孔台车或自制作业台架及高效率装运机械设备。 (3)隧道长度或施工区段长度不宜太短,根据经验一般不应小于lkm,否则采用大型机械化施工,其经济性较差。隧道机械化施工,有三条主要作业线,见表 施工特点: (1)开挖断面与作业空间大、干扰小; (2)有条件充分使用机械,减少人力; (3)工序少,便于施工组织与管理,改善劳动条件; (4)开挖一次成形,对围岩扰动少,有利于围岩稳定。 施工工序流程图:隧道全断面开挖施工工序流程见图1-1

施工要点: (1)配备钻爆台车或多功能台架及高效率装运机械设备,由于开挖断面大,围岩相对稳定性降低,且每循环相对工作量较大,要求具有较强的开挖、出碴和相应的支护能力。 各工序使用的机械设备务求配套。以缩短循环作业时间,合理采用平行交叉作业工序,提高施工进度。 (2)利用深孔爆破增加循环进尺,控制周边眼间距及角度改善光面爆破效果,减少超欠挖。 (3)及时施做初期支护,摸清开挖面前方地质情况,及时准备好应急措施,围岩条件变化时及时调整施工方法,以确保施工安全。 (4)有条件时采用导洞超前的开挖方法,合理组织施工保证隧道施工安全。 (5)二次衬砌及时施作,Ⅰ~Ⅱ级围岩二次衬砌距掌子面距离≤200m,Ⅲ级围岩≤80m。 (6)在软弱破碎围岩中使用全断面开挖时,应加强辅助施工方法设计与检查,加强动态量测与监控。 施工图片:

软弱围岩公路隧道开挖支护技术研究

软弱围岩公路隧道开挖支护技术研究 发表时间:2018-03-13T15:18:37.960Z 来源:《防护工程》2017年第31期作者:杨贵佳 [导读] 随着当前社会经济的快速发展,各类交通工程项目的发展也获得了较多的实践机会。 中交三公局桥梁隧道工程有限公司北京 101117 摘要:随着当前社会经济的快速发展,各类交通工程项目的发展也获得了较多的实践机会。在此过程中关于软弱围岩公路隧道工程施工中,涉及的隧道开挖支护施工,也引起了工程施工人员及研究人员的注意。软弱围岩公路隧道如何良好的推进工程施工进度,并且保障工程的施工质量,成为当前施工人员及研究人员长期研究的问题。文章以湖北省黄阳公路筠山隧道软弱围岩施工为背景,针对软弱围岩公路隧道开挖支护施工总结的经验,进行简要的技术分析和研究。 关键词:软弱围岩;隧道;开挖支护 公路隧道工程在施工发展中软弱围岩现象较为常见,软弱围岩现象的出现较之常规地质现状较好的工地,其在施工中存在危险性高,施工工艺复杂的现状。因此在公路隧道工程的施工中,关于软弱围岩的处理技术落实,也成为当前工程项目施工发展中主要面临的问题。笔者结合案例内容,针对当前软弱围岩公路隧道开挖支护施工过程,进行简要的剖析研究。 1 案例介绍 湖北省黄阳公路筠山隧道为一座分离式长隧道,左洞ZK23+875-ZK26+030,长2155m,右洞YK23+880-YK26+120,长2240m。左洞Ⅴ级围岩225米,Ⅳ级围岩1930米;右洞Ⅴ级围岩290米,Ⅳ级围岩1950米。筠山隧道左幅进口设25m明洞、出口设5米明洞;右幅进口设25m明洞、出口设20米明洞,左右幅进口洞门均采用削竹式,左右幅出口洞门均采用端墙式,衬砌结构形式采用复合式衬砌的暗洞形式。线路设计中YK24+070-YK24+140段存在断层,地质围岩破碎带长50m-80m,断层破碎带两侧岩体破碎,但呈松散碎块状,胶结性差,整体稳定性差。 2 该案例工程开挖支护施工中存在的问题 该公路隧道工程在开挖支护前期,进行了详细的地质勘察作业,其中主要存在的问题为:围岩结构稳定性差、水文信息丰富、围岩结构呈现断层破碎。上述问题的出现,对于施工工艺的选择,以及工程进度的推进,都造成了一定的影响。笔者针对该类问题在工程项目中的具体体现,进行简要的分析研究。 2.1围岩结构稳定性差 地质勘察中该项目隧道开挖区域围岩,呈现为碎裂状整体的稳定性较差,因此定义其围岩为软弱围岩。破碎状态的软弱围岩在施工中,其施工程序较多并且存在较大的安全隐患,如施工中存在的塌方隐患和内滑坡隐患。此外具体工程施工工序主要涉及支护工序、加固工序、补强工序等,并且由于各工序之间存在一定的施工周期现状,因此该项目的施工周期也较长。 2.2水文信息丰富 该公路隧道项目施工地区地表水与地下水信息丰富,地表水主要为常规降雨形成的流动性水库水系。地下水主要集中于围岩破碎区域,从水势作用以及水位高度分析,地表水对于工程影响较小。地下水则由于水位现状,其对于工程施工造成了较大的影响。主要体现为施工中需设立地下水排水系统,并且由于外部隧道口受地表水冲刷渗透严重,排水系统在设计中也存在较多工序问题。 2.3围岩结构呈现断层破碎 该公路隧道施工区域中软弱围岩结构呈现为断层碎裂状态,断层碎裂状态相较于非断层类的碎裂围岩,其施工中存在分段支护工序。并且由于其为断层碎裂围岩,具体施工中危险性较大,如施工中震动过大则易引发内部塌陷现状,对于施工人员的生命安全,造成了较大的影响。因此在实际施工中对于工艺施工要求较高,根据整体工程项目进行分析,围岩断层破碎现状主要造成的影响为:施工周期较长,施工工艺选择存在一定的局限性。 3 针对该案例工程支护开挖施工的工艺流程 软弱围岩公路隧道在开挖支护施工中,其工艺流程的选择与地质现状,以及地质结构关系重大。基于该项目施工中的地质现状及地质结构现状,笔者设计了如下工艺流程,如:设计模拟→测量放线→钻炮眼及爆破作业→出渣→初期支护加固→分段锚喷支护→注浆补强加固→挂钢筋网→设立排水与截水系统。针对上述工艺流程内容,笔者进行简要的分析研究。 3.1设计模拟 该公路隧道工程在施工之前进行了详细的地质勘察作业,因此具备完善的基础数据。基于当前勘察现状,公路隧道工程开挖支护施工的首道工序即为:设计模拟作业。具体落实中首先根据原始勘察数据进行工程施工设计,之后通过应用三维有限元软件,模拟工程项目围岩及山体现状,并输入模拟开挖支护施工工序。以此评估工程设计是否合理有效,并且针对其中存在的问题,进行对应的设计优化。设计模拟测试结束无问题,则进行具体的项目施工。 3.2测量放线 设计模拟完成进行施工工地的测量放线,通过施工设计图纸针对施工面,进行实地测量以及施工位置的放线。常规作业中通过白灰落线的方式,进行施工区域的划定。并且在测量放线中标定施工的具体参数,如一期工程的施工深度施工宽度等参数,确保后期施工中施工的准确性和合理性。部分隧道施工在前期测量放线施工时,同时进行明洞部分施工。 3.3钻炮眼及爆破作业 测量放线结束针对划定区域,按照设计施工图纸进行炮眼钻进。钻进作业中需注重炮眼数量,以及炮眼的尺寸和深度。以确保炸药物质能够良好的放入,并且确保炸药投放量符合工艺设计要求。钻炮眼作业结束,将炸药放置于炮眼内部。放置结束进行引线的连接,之后进行人员撤回。撤回结束进行爆破作业,通过炸药爆破进行隧道的初步开挖施工。 3.4开挖及出渣 炸药爆破作业完成首次开挖之后,通过人工挖掘以及机械挖掘的方式,进行隧道的开挖作业。当前在实际发展中常用的隧道开挖技术

隧道洞身开挖支护方案

隧道洞身开挖支护方案 1.方案目的 明确隧道开挖支护作业的工艺流程、操作要点和相应的工艺标准,指导现场施工,保证安全和质量。 2、编制依据 1、施工合同文件 2、设计文件 3、施工组织设计 4、同类施工经验 3、编制范围 Nakettiya隧道及Bambarenda隧道洞身开挖支护施工。 4、施工工艺及方法 洞身开挖支护包括:超前支护、洞身开挖、初期支护。 4.1暗洞开挖初支施工工艺 4.1.1开挖方法 暗洞用台阶法开挖。采用挖机开挖,人工配合修整,自卸车运渣。

开挖透视图 开挖步骤图

开挖初支施工工序正面示意图 施工工序纵断面示意图 边墙锚杆 钢拱架间距为

施工步骤: 第1步:施作超前支护后,开挖上台阶,施作上台阶初期支护; 第2步:开挖左右侧下台阶并施作初期支护; 第3步:开挖隧底并施作仰拱初期支护封闭成环。 4.1.2台阶法施工工艺流程图 台阶法施工工艺流程如下: 4.1.3超前支护施工 4.1.2.1支护体系 方案中没有考虑洞口段施工时已施工的超前大管棚。隧道共有二种支护体系: ①第一类超前支护体系 采用I型CHS42.4×3.2钢花管超前注浆加固地层。钢花管外插角10°~15°,3.5m长,环向间距为0.4m,纵向间距2.4m。在拱部168°范围设置。

I 型超前支护纵断面示意图 ②第二类超前支护体系 采用II 型CHS42.4×3.2配合I 型CHS42.4×3.2钢花管超前注浆加固地层。II 型钢花管外插角30°~35°,3.5m 长,环向间距为0.4m ,纵向间距2.4m 。在拱部168°范围设置。I 型及II 型钢花管错开布置。 II 型配合I 型超前小导管超前支护纵断面示意图 I 型CHS42.4××3.2钢花管 I

隧道软弱围岩安全快速施工的基本原则及施工方法探讨

隧道软弱围岩安全快速施工的基本原则及施工方法探讨 摘要:本文首先阐述了隧道软弱围岩安全快速施工的意义,然后探讨了隧道软弱围岩安全快速施工的基本原则,最后研究了隧道软弱围岩安全快速施工的方法,具有一定理论价值和实用价值,供大家借鉴参考。 关键词:隧道;软弱围岩;安全快速施工 Abstract: This paper expounds the weak rock tunnel the meaning of rapid construction safety, and then discusses the weak rock tunnel safely and quickly the basic principles of the construction, and finally the weak rock tunnel safe the construction method of fast, has certain theory value and practical value for your reference. Key words: tunnel; weak rock; rapid construction safety 1隧道软弱围岩安全快速施工的意义 隧道安全快速施工对我国铁路建设具有重要意义,尤其是软弱围岩隧道的安全快速施工,其意义尤为重要,主要表现在以下2个方面: 1)工程工期的要求。隧道的建设由于工作面少,作业空间狭窄,施工速度慢,往往成为铁路建设的控制性节点工程。而软弱围岩隧道,由于围岩稳定性差、变形不易控制、容易发生塌方等安全事故,导致其施工工序复杂,施工速度极其缓慢,严重影响和制约着工程的工期。 2)自身稳定性的要求。变形速度快、变形时间长是软弱围岩的基本特性,这也就意味着施工速度越慢时,围岩暴露时间越长,隧道发生的变形越大,所需的加固措施也变得越强。因此,软弱围岩隧道的施工很容易陷入如图1所示的恶性循环。 图1软弱围岩隧道施工易出现的恶性循环 Fig.1 A vicious circle of the construction of weak surrounding rock tunnel 2隧道软弱围岩安全快速施工的基本原则 “预支护、快挖、快支、快闭合”是软弱围岩隧道安全快速施工的基本原则。 1)预支护是在开挖前,针对开挖后预计的变形实态,事前采取的控制变形的对策,预支护的目的是控制掌子面前方先行位移和挤出位移。

软弱围岩隧道安全施工技术

软弱围岩隧道安全施工技术 摘要:介绍软弱围岩对隧道施工的影响,结合工程实践,详细 地介绍了隧道安全施工控制的方法和措施,阐述了施工方法的特点、施工工艺等,对类似隧道施工有一定的参考价值。 关键词:软弱;隧道;施工 abstract: the weak surrounding rock of tunnel construction, engineering practice, and detailed description of the tunnel construction safety control methods and measures, described the characteristics of the construction methods, construction techniques, etc., similar to the tunneling of some reference value. key words: weak; tunnel; construction 中图分类号:文献标识码:a 文章编号:2095-2104(2012) 1.前言 软弱围岩由于其本身的地质特性,一般力学指标低,岩性松散、承载力差,压缩性高,遇到有岩隙水的作用时,就容易引起隧道施工时产生较大的沉降变形,造成安全隐患。同时,工后沉降过大也会对运营使用和处理带来很大的困难。所以,在软弱围岩地段时,需要特别注意隧道施工方法的选择和正确的处理措施。软弱围岩隧道的施工方法,主要有台阶法和双侧壁导坑法、crd法、环形开挖 留核心土法等。双侧壁导坑法和crd法限制了大型施工机械的使用,降低了工效;工序多,相互干扰大,施工进度缓慢,且临时施工支

隧道支护施工

隧道支护施工 本标段隧道支护包括加强支护、初期支护及临时支护。其中加强支护包括水平超前钢花桩、超前水平锚杆、大管棚、钢架及锁脚锚杆;系统支护包括喷砼、钢筋网及系统锚杆;临时支护包括喷砼、钢筋网、水平和侧壁锚杆及工字钢架。 1、长管棚施工 进洞辅助施工措施的好坏、强弱是本项工程成败的关键。长管棚是对付隧道不良地质的有效手段,适合特殊困难地带,如极破碎岩体、塌方体、岩堆体等地段。当然在堆积碎石土中因块状碎石含量较多,管棚施工相对来说有一定的难度,容易造成管棚偏位,施工时注意以下方面:做套拱时尽量少破坏坡脚,避免引起边坡失稳,管棚的长度要求拱腰侧的第一根深入坚硬围岩3米,由于围岩松散,施工时要求钻进速度不应冒进,减低转速,防止钻杆在外力作用下偏位。遇到孤石更应减速,不得强行对钻杆施加压力。下管时遇到塌空现象较严重时,可先注浆固化,再钻进,反复多次。 (1)大管棚设计 本线在隧道进出口明暗交界处设计超前大管棚。 设计参数: ①导向钢管规格:φ127×4mm;长管棚:φ108×6mm. ②管距:环向间距50cm; ③倾角:外插角1°~2°,可根据实际情况作调整; ④注浆材料:1:1水泥浆,水玻璃;

⑤设置范围:拱部121度15分40秒范围; ⑥长度:16,28m。 (2)大管棚施工 a、搭钻孔平台安装钻机 为方便钻机施工,明洞拱部土质开挖采用环形开挖,拱部核心土高度留至暗洞开挖外轮廓线下1.0m,以核心土为钻机基本平台,搭设脚手架调整钻机高度。钻孔从拱顶向两侧间隔钻孔,两台钻机同时作业,钻孔由高孔位向低孔位进行随着孔位高度的降低,降低核心土平台高度。 平台支撑于稳固的地基上,脚手架连接要牢固、稳定,防止在施钻时钻机产生不均匀下沉、摆动、位移而影响钻孔质量。 钻机定位:钻机要求与已设定好的孔口管方向平行,必须精确核定钻机位置。用经全站仪、挂线、钻杆导向相结合的方法,反复调整,确保钻机钻杆轴线与孔口管轴线相吻合。 b、钻孔 ①为了便于安装钢管,钻头直径采用φ127mm。 ②岩质较好的可以一次成孔。钻进时产生坍孔、卡钻时,需补注浆后再钻进。 ③钻机开钻时,低速低压,待成孔10m后可根据地质情况逐渐调整钻速及风压。 ④钻进过程中经常用测斜仪测定其位置,并根据钻机钻进的状态判断成孔质量,及时处理钻进过程中出现的事故。

软弱围岩施工方法

软弱围岩施工方法 乌鞘岭隧道的软弱围岩以Ⅴ、Ⅵ级围岩为主,主要集中在四条断层破碎带位置和进洞位置处,断层物质主要由断层泥砾及碎裂岩组成,松散破碎,风化严重,地下水在局部地段较丰富;进口段350m为黏质黄土,后530m围岩为N2泥质砂岩,埋深浅,地下水较贫乏。就该隧整体地质情况来看,软弱围岩占全隧长度的40%,为堆积体,坡面孤石较多,并且存在偏压现象。为有效地保证正洞周边围岩和边坡稳定,防止施工中出现边仰坡坍塌和孤石下滑,确保施工万无一失,对进洞段进行特殊交底,请现场值班人员、各工班遵照执行。 一边仰坡开挖及防护 1边仰坡开挖前应组织人员将坡面危石及杂草清除干净,并在开挖轮廓以外用轨排防护,避免危石溜坍; 2做好边仰坡外侧的截排水工作,防止雨水或泥石流冲刷坡面; 3正洞开挖轮廓线以外必须进行坡面防护,坡面防护参数:C20喷射砼厚度,10cm;22mm锚杆长度 3.0m,间距 1.0x1.0m;8mm钢筋网格尺寸20x20cm,根据坡面情况,可先用细钢丝网防护后再铺设钢筋网; 二超前支护 1正洞进洞位置或当探明前方围岩破碎时,应及时采取超前支护; 2超前支护方法采用超前小导管内插钢筋方案,超前小导管采用外径42MM,壁厚3.5MM无缝钢管,长3M,全部为花管,为便于打入,前段做成尖锥型,管壁每隔15CM交错梅花形钻眼,眼径8MM;超前小导管间距为:

纵向2.0M,搭接长度不小于1.0M,环向0.3M,进洞位置内外两环,环间距0.3M,梅花形布置,钢管外插角约50,(见图一)为加强小导管刚度,在小导管内插22mm螺纹钢。(见图二) 原地面 超前小导管 ° 仰坡(喷砼护面) 正洞 图一超前小导管布置图 单位:cm,比例:示意 Φ22钢筋 Φ42小导管 图二小导管钢管与钢筋关系图 3注浆浆液采用水泥—水玻璃浆液,水泥浆与水玻璃浆液比例为1:0.5,水泥浆水灰比为1:1,水玻璃浓度35Be0,注浆压力0.5~1.0MPa; 4注浆过程中随时观察,发现串浆现象时,应采取间歇式注浆或调整水泥浆与水玻璃浆液比例,确保注浆效果; 5注浆后观察注浆效果,如发现漏注或有空洞,应及时补注或用砼补喷,保证结构总体均匀。 三洞身开挖

隧道开挖施工方案

中交四公局第一工程有限公司重庆三环铜永段 土建三标项目经理部 隧道开挖施工方案 编制: 复核: 审核: 2012年2月重庆

隧道开挖施工方案 1.目标 明确隧道开挖作业的工艺流程、操作要点和相应的工艺标准,指导、规范隧道开挖施工,尽可能地减少超挖,保证隧道的开挖作业安全、保证开挖质量。 2.编制依据 ⑴重庆三环铜永段玉龙山隧道设计图纸; ⑵《公路隧道工程施工技术规范》 3.适用范围 适用于重庆三环铜永段土建三标项目经理部玉龙山隧道开挖。 4.隧道开挖施工 4.1 方案设计 本线隧道按新奥法原理组织施工,并要根据不同围岩级别及周边环境选择相应工法,应根据监控量测结果,适时施作二次衬砌。 石质隧道破碎带按照“先支护、后开挖、短进尺、弱爆破、快封闭、勤量测”的原则进行组织施工。 隧道开挖前,首先完成洞口截水沟、洞口土方及边仰坡防护施工。洞口土方采用挖掘机配合装载机自上而下分层施工,大型自卸汽车运输,并及时做好坡面防护,开挖一段(台阶)防护一段(台阶)。洞口明洞采用明挖法施工,开挖至明暗分界线后,先施做护拱混凝土,然后施做暗洞超前大管棚,随后立即做好明洞衬砌,随后进入暗洞施工,待明洞混凝土达到设计规定的强度后及时进行明洞洞顶回填。暗洞开挖根据围岩情况:隧道浅埋、V级围岩地段采用留核心土的台阶法开挖,IV围岩地段采用台阶法开挖,Ⅲ级围岩地段采用上下台阶法或全断面开挖,每循环进尺控制在2.5m

以内。 石质隧道采用钻爆法开挖,出碴采用装载机配合大型或中型自卸汽车无轨运输。 施工通风采用管道压入式通风。 在施工过程中应不断总结经验,优化工艺。加强超前地质预测、预报,加强围岩监控量测管理。根据量测结果,及时调整预留变形量及支护参数,适时施作二次衬砌,确保隧道施工安全。开挖方法的改变,要严格按程序申请设计变更。 洞身开挖中,记录开挖的地质情况,并绘制地质描述图(描述开挖面地层的层理、节理、裂隙结构状况、岩体的软硬程度、出水量大小等),核对设计地质情况,判别围岩类别及稳定性。当发现围岩地质情况发生变化时通知设计单位及时现场核实。若实际地质情况与设计地质情况出入较大时,设计单位应进行补充勘察。 4.2留核心土台阶开挖法 先开挖上部导坑成环形,并进行初期支护,再分部开挖剩余部分的施工方法。此方法主要应用于隧道V级围岩的开挖。 4.2.1岩石隧道留核心土台阶开挖法 工艺流程见图1, 施工工序见图2。

软弱围岩隧道台阶法五步开挖施工工法(参考模板)

软弱围岩隧道台阶法五步开挖施工工法 1、前言 隧道通过软弱围岩地段时,由于围岩的整体强度低,自稳能力差,隧道开挖后自稳时间短,甚至没有自稳时间,隧道开挖后拱顶及局部应力集中过大易出现坍塌冒顶,隧道结构极易失稳,给施工带来极大的困难。我局在恩施凤凰山隧道施工过程中,结合施工能力和现场实际地质条件,依据新奥法原理改进施工方案,采用上下台阶预留核心土分五步进行开挖支护,拱部和边墙分别采用组合模板台车衬砌。该施工工艺具有以下特点:1、减少了对周边围岩的扰动,且台阶之间可平行穿插作业;2、开挖面稳定,作业较为安全;3、机械利用率高,施工周期短。通过四川凉山州官地水电站对外交通公路E标段煤炭沟隧道、杭瑞高速鸡口山隧道等软弱围岩隧道的施工,总结了成功的经验,取得了良好的经济效益的社会效益,并形成本工法。 2、工法特点 2.0.1将监控量测技术、数据处理和信息反馈技术应用于施工,动态调整施工方法和支护,确保施工安全; 2.0.2运用上下台阶预留核心土法进行开挖支护,拱部边墙先施做系统锚杆注浆,分部封闭成环,初期支护为网、锚、喷加型钢钢架,二次衬砌为钢筋混凝土结构; 2.0.3采用五步开挖作业简便,无需使用特殊施工机械,容易推广应用; 2.0.4边墙与拱部采用一套组合模板台车,具有费用低、效率高、

混凝土外观质量好的优点。 3、适用范围 3.1.1本工法适用于新奥法指导施工的较大跨度软弱围岩隧道。 3.1.2本工法适用于各种埋深Ⅳ-Ⅴ级围岩公路隧道和类似跨度与其他级别围岩的隧道工程。 4、工艺原理 4.0.1采用上下台阶预留核心土法施工较大跨度的隧道,其机理是将洞室断面分为上部环形拱部、上部核心土、下部弧形拱部、下部核心土以及仰拱,由于上下部有核心土支挡着开挖面,而且能及时施做拱部初期支护,开挖工作面稳定性好,施工安全有保障。上下台阶预留核心土法施工示意图:见图4.1。 上下台阶预留核心土施工示意图图一 1 11 2 3上弧形导坑开挖及支护 上核心土开挖及支护 下弧形导坑开挖及支护下核心土开挖 仰拱开挖及支护 3 4 5 超前小导管 隧道掘进方向 1 2 3 4 5 图4.1

软弱围岩隧道

软弱围岩隧道 随着我国铁路路网的完善,建设标准的提高,特别是高速铁路和客运专线的大量修建,隧道建设规模和技术水平也踏上了一个新的台阶;然而,软弱围岩隧道坍方、作业人员伤亡等事故却时有发生,隧道建设的安全现状无法与当前的形势相适应。从设计源头上解决当前软弱围岩隧道建设过程中存在的问题,是非常必要和及时的。 我国是世界铁路隧道大国。据统计,截止目前,我国铁路隧道通车运营长度已达到6000公里,在建隧道约6600公里,规划设计长度约7600公里,预计到2020年,我国铁路隧道总长将达2万公里左右,位居世界第一。 我院承担的任务主要集中在西南山区,地形、地质条件复杂,一方面,隧道多;另一方面,隧道通过软弱围岩地段长,如:全长462km的成兰线,隧道长度就达到322km,隧线比70%,Ⅳ、Ⅴ级围岩的比重75%,且多为千枚岩、板岩等软弱围岩地层。 这些都从客观上增大了隧道设计在安全方面的风险。半个多世纪来,我院在西南山区铁路隧道的建设中,既积累了一定的经验,也有不少教训和体会,根据会议安排,下面我就软弱围岩隧道工程设计方面做简要汇报,不妥之处,敬请领导批评指正。一、软弱围岩主要工程地质特点 软弱围岩一般是指岩质软弱、承载力低、节理裂隙发育、结构破碎的围岩,工程地质特点有:

(1)岩体破碎松散、粘结力差:一般为土层、岩体全风化层、挤压破碎带等构成的围岩,由于结构破碎松散,岩体间的粘结力差,开挖洞室后,仅靠颗粒间的摩擦效应和微弱胶结作用成拱,这类岩体极不稳定,尤其是在浅埋地段容易发生坍塌冒顶。 (2)围岩强度低、遇水易软化:一般以页岩、泥岩、片岩、炭质岩、千枚岩等为代表的软质岩地层,由于其强度低、稳定性差,开挖暴露后易风化、遇水易软化,尤其是深埋地段受高应力影响容易发生塑性变形,造成洞室内挤。 (3)岩体结构面软弱、易滑塌:主要是存在于受结构面切割影响严重的块状岩体中,由于结构面的粘结强度较低,开挖后周边岩体极易沿结构面产生松弛、滑移和坠落等变形破坏现象。

富水软弱围岩隧道施工控制要点

富水软弱围岩隧道施工控制要点 目前,花油山隧道4#斜井工区大里程、5#斜井工区小里程掌子面为第三系饱水状态下全、强风化砂砾岩,局部呈土状,为富水软弱围岩,而且埋深浅、断面大,开挖后围岩变形大、易失稳,造成侵限、塌方。 设计对于不良地质开挖时采取的措施:采用大管棚、小导管、超前锚杆如玻璃纤维锚杆等超前加固支护措施,配合双侧壁导坑、CRD、CD、三台阶七步等分部开挖工法;支护采用强支护,是预防塌方的重要措施,大多采用复合式衬砌,即:初期支护+防水板+模筑衬砌,初期支护采取锚喷、网喷、喷混凝土与钢支撑或格栅钢架相结合的支护方法,通常采用“钢筋网片+钢拱架+锚杆+喷射混凝土”锚喷支护体系。 施工过程中,应用新奥法原理“少扰动、早喷锚、快封闭、勤测量”,加强施工过程的管控,控变防塌,控制要点主要有下几个方面: 一、重视围岩变形量测工作,确保量测数据真实、可靠 控制软弱围岩的变形是确保施工过程安全的关键。有一句俗语“软岩靠量测,硬岩靠预报”,软弱围岩开挖后的变形是徐变,到一定数值才会塌方,有一个过程,就要求隧道开挖后,及时、准确的量测围岩变形量,对于变形量超标的围岩及时采取加固措施,防止塌方。 (一)围岩量测主要作用 围岩量测是在隧道施工阶段,使用专门仪器和工具,对围岩变形情况和支护结构工作状态进行的量测,是保证隧道

施工过程中安全性重要的环节。 1.及时提供围岩稳定状态和支护结构安全信息,预见可能发生的险情和事故; 2.验证支护结构效果,是设计支护参数和施工方法结果的反馈,同时为调整支护参数和施工方法提供依据; 3.根据变形数据,经济合理确定不同围岩情况下隧道预留的变形量,防止超欠挖; 4.确定二衬施作时机,水平收敛(拱脚附近7d平均值)小于0.2mm/d,拱部下沉速度小于0.15mm/d,方可施作二衬; 5.积累量测数据,为风险管理分级提供依据; 6.为施工过程的安全和结构长期稳定性评价提供实测数据; 7.监控工程施工对周边环境、临近建筑物安全度的影响。 (二)围岩量测方法 围岩量测主要就是接触式测量和非接触式两种方法,传统原始的接触式测量方法即采用水准仪测拱顶下沉、拉钢尺测水平收敛,对施工干扰大、测量速度慢,目前先进、常用的非接触式方法是全站仪无尺法。要求花油山隧道采用全站仪无尺法进行围岩量测。 全站仪无尺法量测技术:隧道开挖后,及时在基岩埋设观测标,利用固定的工作基点作为参照点,全站仪自由设站连续测设前方观测标相对于固定工作基点的位移变化值,经过计算取得围岩的变形信息。当拱顶下沉、水平收敛速率达

【精品】浅埋偏压软弱围岩隧道施工控制浅埋偏压软弱围岩隧道施工控制

浅埋偏压软弱围岩隧道施工控制浅埋偏压软弱围岩隧道施工控制 具体介绍铁路双线隧道浅埋偏压软弱围岩的施工工 摘要:本文结合金温铁路麻芝川隧道工程实例,艺和施工控制,为浅埋偏压软弱围岩隧道洞口的施工提供了很好的借鉴。 关键词:铁路隧道浅埋偏压软弱围岩施工控制 1前言随着我国高速铁路发展规模日益扩大,地质条件日趋复杂,标准化的要求不断提高,铁路隧道施工技术要求也就越来越高.一般情况下隧道洞口位置的地质情况较差,主要不良地质表现为顺层偏压、覆盖层薄、土质松散、边坡失稳,围岩体结构承载力差,若处理不当易发生塌方、冒顶、边仰坡塌滑风险事件。麻芝川隧道是金温铁路的重点工程之一,进口地段就属这类情况。 2工程概况 2.1概述麻芝川隧道进口段位于浙江省温州市泽雅镇。隧道起迄里程为 DK168+673~DK171+515,全长2842m。隧道全部位于左偏曲线上,纵坡为单面下坡,坡率为4.0‰。按新奥法设计,采用复合式衬砌。 2。2工程地质麻芝川隧道地处剥蚀丘陵区,地形起伏,植被茂盛,山体自然坡度25~45°,局部可见基岩裸露。进出口均有混凝土或沥青路面的乡村公路通达。

隧道区地层分布较简单,基岩多有出露。地表出露第四系人工填土层Qml、第四系残坡积层Qel+dl,下伏侏罗系上统西山头组J3x流纹质玻屑凝灰岩.

地下水为松散岩类孔隙水和火山碎石屑岩类基岩裂隙水.区内地表流水活跃,地下水不发育,影响隧道的地下水主要为构造裂隙水。隧道区地处副热带季风气候区,气候温和,雨量充沛,四季分明.雨量充沛,年降雨量达1723。0毫米,4~9月最集中。化学环境作用等级为H2,地震动峰值加速度为0.05g,地震动反应谱特征周期为0.35s。隧道进口进口工程特点 2。3隧道进口工程特点从现场看,隧道进口进洞条件差,边仰坡的坡度陡峭。进口洞口段处于浅埋偏压严重,位于第四系残积层内。进口段表层为含砾粉质黏土,硬塑,厚0~2.5m,下伏基岩流纹质玻屑凝灰岩,强风化厚1~7。5m,下为弱风化,岩质较硬,裂隙发育,岩体破碎。地下水为基岩裂隙水,不发育。洞口浅埋段全长77m,埋深0~18m。因此,如何根据地形、围岩地质的基本特性,确定合理、快捷的施工方法,顺利穿过偏压、浅埋、破碎段是本隧道施工的关键。麻芝川隧道进口平面布置图见图1所示。图1麻芝川隧道进口平面布置图3施工总体方案隧道明洞采用明挖法施工,暗洞采用新奥法施工,进洞采用套拱进洞。隧道半明半暗部分采用套拱、超前支护等措施减小偏压力.超前支护采用108mm超前管棚注浆支护。明洞采用明挖法施工。暗洞软弱围岩地段坚持“管超前、严注浆、弱爆破、短进尺、强支护、早封闭、勤量测、紧衬砌”的施工原则。暗洞V级围岩采用三台阶四步法开挖。4浅埋偏压破碎段施工方法浅埋偏压破碎段施工方法破碎浅埋偏压隧道进洞施工技术以新奥法原理为依据,通过人工配合机械开挖及控制爆破,减少对岩体的扰动。在进洞前完成洞口段地表处理、超前支护、锚喷钢架支护、二次衬砌受力体系转换.4。1地表处理

相关文档