文档库 最新最全的文档下载
当前位置:文档库 › 基于Copula函数的长春市暴雨联合分布与特征分析

基于Copula函数的长春市暴雨联合分布与特征分析

基于Copula函数的长春市暴雨联合分布与特征分析
基于Copula函数的长春市暴雨联合分布与特征分析

copula函数及其应用.doc

copula函数及其应用 陆伟丹2012214286 信息与计算科学12-2班Copula函数及其应用Copula函数是一种〃相依函数"或者“连接函数",它将多维变量的联合分布函数和一维变量的边际分布函数连接起来,在实际应用中有许多优点。 首先,由于不限制边缘分布的选择,可运用Copula理论构造灵活的多元分布。其次,运用Copula理论建立模型时,可将随机变量的边缘分布和它们之间的相关结构分开来研究,它们的相关结构可由一个C opu 1 a函数来描述。另外,如果对变量作非线性的单调增变换,常用的相关性测度——线性相关系数的值会发生改变,而由Cop u1 a函数导出的一致性和相关性测度的值则不会改变。此外,通过C o p u1 a函数,可以捕捉到变量间非线性、非对称的相关关系,特别是容易捕捉到分布尾部的相关关系。 正是这些性质与特点使得C opu 1 a为研究变量问的相关性提供了一种新方法,使得投资组合风险管理度量方法有了一个新的突破。 Copula函数是现代概率论研究的产物,在2 0世纪5 0年代由S k1 a r( 19 5 9 )首先提出,其特点在于能将联合分布的各边缘分布分离出来,从而简化建模过程,降低分析难度,这也是著名的S k 1 a r定理。S c hwe i z e r Sklar( 1983) 对其进行了阶段性的总结,在概率测度空间理论的框架内,介绍了C opu1 a函数的定义及Copula函数的边缘分布等内容。J oe ( 1 9 9 7 )又从相关性分析和多元建模的角度进行了论述,展示了Copula 函数的性质,并详尽介绍了Copula函数的参数族。Ne 1 s e n(1999 )在其专著中比较系统地介绍了C o pula的定义、 构建方法、Archimedean Copula及相依性,成为这一研究领域的集大成者。D a v i d s i on R A, Res nick S 1.( 1984)介绍了C o p u 1 a的极大似然估计和矩估计。而J o e , H .提出了二步极大似然估计,并说明它比极大似然估计更有效。在选择最适合我们要求的Copula 函数上,最常用的方法是拟合优度检验,W. B reymannn ,A.Dias , P ? Embrecht s ( 2 0

概率论中几种具有可加性的分布及其关系

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 引言 (1) 1几种常见的具有可加性的分布 (1) 二项分布 (2) 泊松分布(Possion分布) (3) 正态分布 (4) 伽玛分布 (6) 柯西分布 (7) 卡方分布 (7) 2具有可加性的概率分布间的关系 (8) 二项分布的泊松近似 (8) 二项分布的正态近似 (9) 正态分布与泊松分布间的关系 (10) 正态分布与柯西分布、卡方分布及卡方分布与伽玛分布的关系 (11) 3小结 (12) 参考文献 (12) 致谢 (13)

概率论中几种具有可加性的分布及其关系 摘要概率论与数理统计中概率分布的可加性是一个十分重要的内容.所谓分布的可加性指的是同一类分布的独立随机变量和的分布仍属于此类分布.结合其特点,这里给出了概率论中几种具有可加性的分布:二项分布,泊松分布,正态分布,柯西分布,卡方分布以及伽玛分布.文章讨论了各类分布的性质及其可加性的证明,这里给出了证明分布可加性的两种方法,即利用卷积公式和随机变量的特征函数.除此之外,文章就可加性分布之间的各种关系,如二项分布的泊松近似,棣莫佛-拉普拉斯中心极限定理等,进行了不同层次的讨论. 关键词概率分布可加性相互独立特征函数 SeveralKindsofProbabilityDstributionanditsRelationshipwithAdd itive 'scentrallimittheorem,andsoon,hascarriedonthedifferentlevelsofdiscussion. KeyWords probabilitydistributionadditivitypropertymutualindependencecharacteristicfunction 引言概率论与数理统计是研究大量随机现象的统计规律性的学科,在概率论与数理统计中,有时候我们需要求一些随机变量的和的分布,在这些情形中,有一种求和类型比较特殊,即有限个相互独立且同分布的随机变量的和的分布类型不变,这一求和过程称为概率分布的“可加性”.概率分布中随机变量的可加性是一个相当重要的概念,本文给出了概率论中常见的六种具有可加性的分布,包括二项分布,泊松分布,正态分布,伽玛分布,柯西分布和卡方分布.文章最后讨论了几项分布之间的关系,如二项分布的泊松近似,正态近似等等. 1几种常见的具有可加性的分布 在讨论概率分布的可加性之前,我们先来看一下卷积公式和随机变量的特征函数,首先来看卷积公式[1]: ①离散场合的卷积公式设离散型随机变量ξζ,彼此独立,且它们的分布列分别是 n k a k P k ,1,0,)(???===ζ和.,,1,0,)(n k b k P k ???===ξ则ξζ?+=的概率分布列可表示为 ②连续场合的卷积公式设连续型随机变量ξζ,彼此独立,且它们的密度函数分别是 )(),(y f x f ξζ,则它们的和ξζ?+=的密度函数如下 其证明如下: ξζ?+=的分布函数是dxdy y f x f z f z F z y x )()()()(ξζ?ξζ??≤+= ≤+= 其中)(x F ζ为ζ的分布函数,对上式两端进行求导,则可得到ξζ?+=的密度函数:

特征函数

特征函数 (概率论) 维基百科,自由的百科全书 跳转到:导航, 搜索 在概率论中,任何随机变量的特征函数完全定义了它的概率分布。在实直线上,它由以下公式给出,其中X是任何具有该分布的随机变量: , 其中t是一个实数,i是虚数单位,E表示期望值。 用矩母函数M X(t)来表示(如果它存在),特征函数就是iX的矩母函数,或X 在虚数轴上求得的矩母函数。 与矩母函数不同,特征函数总是存在。 如果F X是累积分布函数,那么特征函数由黎曼-斯蒂尔切斯积分给出: 。 在概率密度函数f X存在的情况下,该公式就变为: 。 如果X是一个向量值随机变量,我们便取自变量t为向量,tX为数量积。 R或R n上的每一个概率分布都有特征函数,因为我们是在有限测度的空间上对一个有界函数进行积分,且对于每一个特征函数都正好有一个概率分布。 一个对称概率密度函数的特征函数(也就是满足f X(x) = f X(-x))是实数,因为从x>0所获得的虚数部分与从x<0所获得的相互抵消。

目录 [隐藏] ? 1 性质 ? 2 连续性 o 2.1 反演定理 o 2.2 博赫纳-辛钦定理/公理化定义 o 2.3 计算性质 ? 3 特征函数的应用 o 3.1 矩 o 3.2 一个例子 ? 4 多元特征函数 o 4.1 例子 ? 5 矩阵值随机变量 ? 6 相关概念 ?7 参考文献 [编辑]性质 [编辑]连续性 主条目:勒维连续定理 勒维连续定理说明,假设为一个随机变量序列,其中每一个都有特征函数,那么它依分布收敛于某个随机变量: 当 如果 当 且在处连续,是的特征函数。 勒维连续定理可以用来证明弱大数定律。

统计学常用分布及其分位数

§1、4 常用得分布及其分位数 1、 卡平方分布 卡平方分布、t 分布及F 分布都就是由正态分布所导出得分布,它们与正态分布一起,就是试验统计中常用得分布。 当X 1、X 2、… 、Xn 相互独立且都服从N(0,1)时,Z=∑i i X 2 得分布称为自由度等于n 得2χ分布,记作Z ~2χ(n),它得分布 密度 p(z )=??? ????>??? ??Γ--,,00,2212122其他z e x n z n n 式中得??? ??Γ2n =u d e u u n ?∞+--012,称为Gamma 函数,且()1Γ=1, ?? ? ??Γ21=π。2χ分布就是非对称分布,具有可加性,即当Y 与Z 相互独立,且Y ~2χ(n ),Z ~2χ(m ),则Y+Z ~2χ(n+m )。 证明: 先令X 1、X 2、…、X n 、X n+1、X n+2、…、 X n+m 相互独立且都服从N(0,1),再根据2χ分布得定义以及上述随机变量得相互独立性,令 Y=X 21+X 22+…+X 2n ,Z=X 21+n +X 22+n +…+X 2m n +, Y+Z= X 21+X 22+…+X 2n + X 21+n +X 22+n +…+X 2m n +, 即可得到Y+Z ~2χ(n +m )。 2、 t 分布 若X 与Y 相互独立,且 X ~N(0,1),Y ~2χ(n ),则Z =n Y X 得分布称为自由度等于n 得t 分布,记作Z ~ t (n ),它得分布密度 P(z)=)()(221n n n ΓΓ+2121+-???? ??+n n z 。 请注意:t 分布得分布密度也就是偶函数,且当n>30时,t

常用连续型分布性质汇总及其关系

常用连续型分布性质汇总及其关系 1. 常用分布 1.1 正态分布 (1)若X 的密度函数和分布函数分别为 ()( )()22 222(), . ,. x t x p x x F x e dt x μσμσ-- -- -∞ = -∞<<+∞= -∞<<+∞ 则称X 服从正态分布,记作()2~,,X N μσ,其中参数,0.μσ-∞<<+∞> (2)背景:一个变量若是由大量微小的、独立的随机因素的叠加结果,则此变量一定是正态变量。测量误差就是由量具零点偏差、测量环境的影响、测量技术的影响、测量人员的心理影响等等随机因素叠加而成的,所以测量误差常认为服从正态分布。 (3)关于参数,μσ: μ是正态分布的的数学期望,即()E X μ=,称μ为正态分布的位置参 数。μ为正态分布的对称中心,在μ的左侧和()p x 下的面积为0.5;在 μ的右侧和()p x 下的面积也是0.5,所以μ也是正态分布的中位数。 2σ是正态分布的方差,即2().Var X σ=σ是正态分布的标准差,σ愈小,正态分布愈集中,σ愈大,正态分布愈分散。σ又称为是正态分布的的尺度参数。 (4)称0,1μσ==时的正态分布(0,1)N 为标准正态分布。记U 为标准正 态分布变量,()u ?和()u Φ为标准正态分布的密度函数和分布函数。 ()u ?和()u φ满足:

()()()(); 1. u u u u ??-=Φ-=-Φ (5)标准化变换: 若()2~,,X N μσ则()~0,1.X U N μ σ -= (6)若()2~,,X N μσ则对任意实数a 与b ,有 ()( ),()1( ),()( )( ),b P X b a P a X b a P a X b μ σ μ σμ μ σ σ -≤=Φ-<=-Φ--<≤=Φ-Φ 0.6826,1,()()()0.9545,2,.0.9973, 3.k P X k k k k k μσ=?? -<=Φ-Φ-==??=? (7)特征函数 22 ()exp{}.2 t t i t σ?μ=-(标准正态分布2()exp{}2t t ?=-) 1.2.均匀分布 (1)若X 的密度函数和分布函数分别为 1 ().0 a x b P x b a else ?<

【良心出品】Copula理论及MATLAB应用实例

%-------------------------------------------------------------------------- % Copula理论及应用实例 %-------------------------------------------------------------------------- %******************************读取数据************************************* % 从文件hushi.xls中读取数据 hushi = xlsread('hushi.xls'); % 提取矩阵hushi的第5列数据,即沪市的日收益率数据 X = hushi(:,5); % 从文件shenshi.xls中读取数据 shenshi = xlsread('shenshi.xls'); % 提取矩阵shenshi的第5列数据,即深市的日收益率数据 Y = shenshi(:,5); %****************************绘制频率直方图********************************* % 调用ecdf函数和ecdfhist函数绘制沪、深两市日收益率的频率直方图 [fx, xc] = ecdf(X); figure; ecdfhist(fx, xc, 30); xlabel('沪市日收益率'); % 为X轴加标签 ylabel('f(x)'); % 为Y轴加标签 [fy, yc] = ecdf(Y); figure; ecdfhist(fy, yc, 30); xlabel('深市日收益率'); % 为X轴加标签 ylabel('f(y)'); % 为Y轴加标签 %****************************计算偏度和峰度********************************* % 计算X和Y的偏度 xs = skewness(X) ys = skewness(Y) % 计算X和Y的峰度 kx = kurtosis(X) ky = kurtosis(Y) %******************************正态性检验*********************************** % 分别调用jbtest、kstest和lillietest函数对X进行正态性检验 [h,p] = jbtest(X) % Jarque-Bera检验 [h,p] = kstest(X,[X,normcdf(X,mean(X),std(X))]) % Kolmogorov-Smirnov检验 [h, p] = lillietest(X) % Lilliefors检验

概率论中几种常用重要分布

概率论中几种常用的重要的分布 摘要:本文主要探讨了概率论中的几种常用分布,的来源和他们中间的关系。其在实际中的应用。 关键词 1 一维随机变量分布 随机变量的分布是概率论的主要内容之一,一维随机变量部分要介绍六中常 用分布,即( 0 -1) 分布、二项分布、泊松分布、均匀分布、指数分布和正态分布. 下面我们将对这六种分布逐一地进行讨论. 随机事件是按试验结果而定出现与否的事件。它是一种“定性”类型的概念。为了进一步研究有关随机试验的问题,还需引进一种“定量”类型的概念,即,根据试验结果而定取什么值(实值或向量值)的变数。称这种变数为随机变数。本章内将讨论取实值的这种变数—— 一维随机变数。 定义1.1 设X 为一个随机变数,令 ()([(,)])([]),()F x P X x P X x x =∈-∞=-∞ +∞. 这样规定的函数()F x 的定义域是整个实轴、函数值在区间[0,1]上。它是一个普通的函数。成这个函数为随机函数X 的分布函数。 有的随机函数X 可能取的值只有有限多个或可数多个。更确切地说:存在着有限多个值或可数多个值12,,...,a a 使得 12([{,,...}])1P X a a ∈= 称这样的随机变数为离散型随机变数。称它的分布为离散型分布。 【例1】下列诸随机变数都是离散型随机变数。 (1)X 可能取的值只有一个,确切地说,存在着一个常数a ,使([])1P X a ==。称这种随机变数的分布为退化分布。一个退化分布可以用一个常数a 来确定。 (2)X 可能取的值只有两个。确切地说,存在着两个常数a ,b ,使 ([{,}])1P X a b ∈=.称这种随机变数的分布为两点分布。如果([])P X b p ==,那 么,([])1P X a p ===-。因此,一个两点分布可以用两个不同的常数,a b 及一个在区间(0,1)内的值p 来确定。 特殊地,当,a b 依次为0,1时,称这两点分布为零-壹分布。从而,一个零-壹分布可以用一个在区间(0,1)内的值p 来确定。 (3)X 可能取的值只有n 个:12,...,a a (这些值互不相同),且,取每个i a 值

特征函数与极限定理

第 十二 次课 2学时 本次课教学重点: 特征函数的定义与性质 本次课教学难点: 常见分布的特征函数的计算 本次课教学内容: 第四章 特征函数 通过前面的讨论,我们已经知道如何去计算随机变量的数字特征,数字特征一般由各阶矩决定,随着阶数的增高,矩的计算总是较麻烦的,另一方面,由于随机现象错综复杂,一个随机现象往往需要多个随机变量来描述,甚至需要讨论一列随机变量依某种意义的收敛,从前面的讨论我们就看到,只利用分布函数和密度函数,求独立随机变量的和的分布都是较麻烦的(要计算密度函数的卷积),要解决复杂的多的问题,没有更优越的数学工具是不行的,在学习数学分析时我们就知道富里埃变换能把卷积运算变成乘法运算,它在数学中是非常重要而有效的工具,把富里埃变换引入到概率之中来,就产生了“特征函数”,可以毫不夸张地说,概率统计自从引进了特征函数以后,就把理论的研究推进到一个新的台阶。 第一节特征函数定义与性质 一、定义 本章中1-= i 定义4.1.1设ξ是定义在概率空间),,(P F Ω一个随机变量,分布函数为)(x F ,称 ()ξ?it Ee t =,∞<<∞-t (4.1) 为ξ的特征函数。有时也称为分布函数)(x F 的特征函数。 由定义 ()()???????=?∑∞ ∞ -∞=dx x f e p e t itx k k ita k 1 ? (4.2) 由1=itx e ,故(4.2)的级数或积分是绝对收敛,即ξ,,v r 的特征函数总存在。 由(4.2)看出,ξ..v r 的f c .是其概率函数或密度函数的富里埃变换,计算特征函数则需要进行复数求和或作实变量复值函数的积分。作积分时有时会用到复变函数中的残数理 当ξ~f (x ) 当

copula函数.docx

copula函数 1、Sklar定理 Sklar定理(二元形式):若H(x,y)是一个具有连续边缘分布的F(x)与G(y)的二元联合分布函数,那么存在唯一的copula函数C使得H(x,y)=C(F(x),G(y))。反之,如果C是一个copula函数,而F,G是两个任意的概率分布函数,那么由上式定义的H函数一定是一个联合分布函数,且对应的边缘分布函数刚好就是F和G。 Sklar定理告诉我们一件很重要的事情,一个联合分布关于相关性的性质完全由它的copula函数决定,与它的边缘分布没有关系。在已知H,F,G的情况下,能够算出它们的copula: C(u,v)=H[F-1(u),G-1(v)] 2、什么是copula函数? copula函数实际上是一个概率。假设我们有n个变量(U 1,U 2 ,…,U N ),这n 个变量都定义在[0,1],copula函数C(u 1,u 2 ,…,u n )即是P{U 1 [0,1] (2)C(u,0)=c(0,v)=0;C(u,1)=u;C(1,v)=v (3)0≤?C/?u≤1;0≤?C/?v≤1 4、copula函数的种类 (1)多元正态分布的copula(高斯copula):(边缘分布是均匀分布的多元正态分布) (2)多元t分布的copula:t-copula (3)阿基米德copula(人工构造) 令φ:[0,1]→[0,∞]是一个连续的,严格单调递减的凸函数,且φ(1)=0,其伪逆函数φ[-1] 由下式定义:那么由下式定义的函数C:[0,1]*[0,1]→[0,1]是一个copula,通过寻找合适的函 数φ利用上式所生成的copula都是阿基米德类copula,并称φ为其生成函数,且阿基米德类copula都是对称的,即C(u,v)=C(v,u)。只要找到合适的生成函数,那么就可以构造出对应的阿基米德类copula。 5、为什么金融风险管理中常用copula? 不同的两个资产会始终同时达到最糟的状况吗?因为有资产相关性的影响,可以使两个资产之间在一定程度上同向变动或反向变动,可能发生对冲,从而减少风险,因此我们需要知道资产之间的相关性,然而金融中的分布,大多都不是

16种常见概率分布概率密度函数、意义及其应用

目录 1. 均匀分布 (1) 2. 正态分布(高斯分布) (2) 3. 指数分布 (2) 4. Beta分布(:分布) (2) 5. Gamm 分布 (3) 6. 倒Gamm分布 (4) 7. 威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5) 8. Pareto 分布 (6) 9. Cauchy分布(柯西分布、柯西-洛伦兹分布) (7) 2 10. 分布(卡方分布) (7) 8 11. t分布................................................ 9 12. F分布 ............................................... 10 13. 二项分布............................................ 10 14. 泊松分布(Poisson 分布)............................. 11 15. 对数正态分布........................................

1. 均匀分布 均匀分布X ~U(a,b)是无信息的,可作为无信息变量的先验分布。

2. 正态分布(高斯分布) 当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量 很可能服从正态分布,记作 X~N (」f 2)。正态分布为方差已知的正态分布 N (*2)的参数」的共轭先验分布。 1 空 f (x ): —— e 2- J2 兀 o' E(X), Var(X) _ c 2 3. 指数分布 指数分布X ~Exp ( )是指要等到一个随机事件发生,需要经历多久时间。其 中,.0为尺度参数。指数分布的无记忆性: Plx s t|X = P{X t}。 f (X )二 y o i E(X) 一 4. Beta 分布(一:分布) f (X )二 E(X) Var(X)= (b-a)2 12 Var(X)二 1 ~2

Copula函数

一、 C o p u l a 函数理论 Copula 理论的是由Sklar 在1959年提出的,Sklar 指出,可以将任意一个n 维联合累积分布函数分解为n 个边缘累积分布和一个Copula 函数。边缘分布描述的是变量的分布,Copula 函数描述的是变量之间的相关性。也就是说,Copula 函数实际上是一类将变量联合累积分布函数同变量边缘累积分布函数连接起来的函数,因此也有人称其为“连接函数”。 Copula 函数是定义域为[0,1]均匀分布的多维联合分布函数,他可以将多个随机变量的边缘分布连.起来得到他们的联合分布。 Copula 函数的性质 定理1 (Sklar 定理1959) 令F 为一个n 维变量的联合累积分布函数,其中各变量的边缘累积分布函数记为F i ,那么存在一个n 维Copula 函数C ,使得 111(,,)((),,())n n n F x x C F x F x ???=??? (1) 若边缘累积分布函数F i 是连续的,则Copula 函数C 是唯一的。不然,Copula 函数C 只在各边缘累 积分布函数值域内是唯一确定的。 对于有连续的边缘分布的情况,对于所有的[0,1]n ∈u ,均有 1111()((),,())n n C F F u F u --=???u (2) 在有非减的边缘变换绝大多数的 从Sklar 定理可以看出, Copula 函数能独立于随机变量的边缘分布反映随机变量的相关性结构, 从而可将联合分布分为两个独立的部分来分别处理: 变量间的相关性结构和变量的边缘分布, 其中相关性结构用Copula 函数来描述。Copula 函数的优点在于不必要求具有相同的边缘分布, 任意边缘分布经Copula 函数连接都可构造成联合分布, 由于变量的所有信息都包含在边缘分布里, 在转换过程中不会产生信息失真。 Copula 函数总体上可以划分为三类: 椭圆型、Archimedean (阿基米德) 型和二次型, 其中含一个参数的Archimedean Copula 函数应用最为广泛, 多维Archimedean Copula 函数的构造通常是基于二维的,根据构造方式的不同可以分为对称型和非对称型两种. 三种常用的3-维非对称型Archimedean Copula 函数: Frank Archimedean Copula 函数 , Clayton Archimedean Copula 函数, Gumbe Archimedean Copula 函数 二、 Copula 函数的应用 Copula 函数的应用具体包括以下几个步骤: ①确定各变量的边缘分布; ②确定Copula 函数的参数"; ③根据评价指标选取Copula 函数, 建立联合分布; ④根据所建分布进行相应的统计分析。: 参数估计 Copula 函数的参数估计方法大致可分为三种:

统计学常用分布及其分位数

§1.4 常用的分布及其分位数 1. 卡平方分布 卡平方分布、t 分布及F 分布都是由正态分布所导出的分布,它们与正态分布一起,是试验统计中常用的分布。 当X 1、X 2、…、Xn 相互独立且都服从N(0,1)时,Z=∑i i X 2 的 分布称为自由度等于n 的2χ分布,记作Z ~2χ(n),它的分 布密度 p(z )=???????>??? ??Γ--,,00,2212122其他z e x n z n n 式中的??? ??Γ2n =u d e u u n ?∞+--012,称为Gamma 函数,且()1Γ=1, ?? ? ??Γ21=π。2χ分布是非对称分布,具有可加性,即当Y 与Z 相互独立,且Y ~2χ(n ),Z ~2χ(m ),则Y+Z ~2χ(n+m )。 证明: 先令X 1、X 2、…、X n 、X n+1、X n+2、…、 X n+m 相互独立且都服从N(0,1),再根据2χ分布的定义以及上述随机变量的相互独立性,令 Y=X 21+X 22+…+X 2n ,Z=X 21+n +X 22+n +…+X 2m n +, Y+Z= X 21+X 22+…+X 2n + X 21+n +X 22+n +…+X 2m n +, 即可得到Y+Z ~2χ(n +m )。 2. t 分布 若X 与Y 相互独立,且 X ~N(0,1),Y ~2χ(n ),则Z =n Y X 的分布称为自由度等于n 的t 分布,记作Z ~ t (n ),它的分布密度 P(z)=)()(221n n n ΓΓ+2121+-???? ??+n n z 。 请注意:t 分布的分布密度也是偶函数,且当n>30时,t

Copula函数

一、 Copula 函数理论 Copula 理论的是由Sklar 在1959年提出的,Sklar 指出,可以将任意一个n 维联合累积分布函数分解为n 个边缘累积分布和一个Copula 函数。边缘分布描述的是变量的分布,Copula 函数描述的是变量之间的相关性。也就是说,Copula 函数实际上是一类将变量联合累积分布函数同变量边缘累积分布函数连接起来的函数,因此也有人称其为“连接函数”。 Copula 函数是定义域为[0,1]均匀分布的多维联合分布函数,他可以将多个随机变量的边缘分布连.起来得到他们的联合分布。 Copula 函数的性质 定理1 (Sklar 定理1959) 令F 为一个n 维变量的联合累积分布函数,其中各变量的边缘累积分布函数记为F i ,那么存在一个n 维Copula 函数C ,使得 111(,,)((),,())n n n F x x C F x F x ???=??? (1) 若边缘累积分布函数F i 是连续的,则Copula 函数C 是唯一的。不然,Copula 函数C 只在各边缘累积分布函数值域内是唯一确定的。 对于有连续的边缘分布的情况,对于所有的[0,1]n ∈u ,均有 1111()((),,())n n C F F u F u --=???u (2) 在有非减的边缘变换绝大多数的 从Sklar 定理可以看出, Copula 函数能独立于随机变量的边缘分布反映随机变量的相关性结构, 从而可将联合分布分为两个独立的部分来分别处理: 变量间的相关性结构和变量的边缘分布, 其中相关性结构用Copula 函数来描述。Copula 函数的优点在于不必要求具有相同的边缘分布, 任意边缘分布经Copula 函数连接都可构造成联合分布, 由于变量的所有信息都包含在边缘分布里, 在转换过程中不会产生信息失真。 Copula 函数总体上可以划分为三类: 椭圆型、Archimedean (阿基米德) 型和二次型, 其中含一个参数的Archimedean Copula 函数应用最为广泛, 多维Archimedean Copula 函数的构造通常是基于二维的,根据构造方式的不同可以分为对称型和非对称型两种. 三种常用的3-维非对称型Archimedean Copula 函数: Frank Archimedean Copula 函数 , Clayton Archimedean Copula 函数, Gumbe Archimedean Copula 函数

常见统计分布及其特点

【附录一】常见分布汇总 一、二项分布 二项分布(Binomial Distribution),即重复n次的伯努利试验(Bernoulli Experiment),用ξ表示随机试验的结果, 如果事件发生的概率是P,则不发生的概率q=1-p,N次独立重复试验中发生K次的概率是。 二、泊松poisson分布 1、概念 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧10,p≦0.1时,就可以用泊松公式近似得计算。 2、特点——期望和方差均为λ。 3、应用(固定速率出现的事物。)——在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布 三、均匀分布uniform 设连续型随机变量X的分布函数F(x)=(x-a)/(b-a),a≤x≤b 则称随机变量X服从[a,b]上的均匀分布,记为X~U[a,b]。 四、指数分布Exponential Distribution 1、概念

2、特点——无记忆性 (1)这种分布表现为均值越小,分布偏斜的越厉害。 (2)无记忆性 当s,t≥0时有P(T>s+t|T>t)=P(T>s) 即,如果T是某一元件的寿命,已知元件使用了t 小时,它总共使用至少s+t小时的条件概率,与从开始使用时算起它使用至少s小时的概率相等。 3、应用 在电子元器件的可靠性研究中,通常用于描述对发生的缺陷数或系统故障数的测量结果 五、正态分布Normal distribution 1、概念 2、中心极限定理与正态分布(说明了正态分布的广泛存在,是统计分析的基础) 中心极限定理:设从均值为μ、方差为σ^2;(有限)的任意一个总体中抽取样本量为n 的样本,当n充分大时,样本均值的抽样分布近似服从均值为μ、方差为σ^2/n 的正态分布。 3、特点——在总体的随机抽样中广泛存在。 4、应用——正态分布是假设检验以及极大似然估计法ML的理论基础 定理一:设X1,X2,X3.。。Xn是来自正态总体N(μ,δ2)的样本,则有 样本均值X~N(μ,δ2/n)——总体方差常常未知,用t分布较多 六、χ2卡方分布(与方差有关)chi-square distribution 1、概念 若n个相互独立的随机变量ξ?、ξ?、……、ξn ,均服从标准正态分布(也称独立同 分布于标准正态分布),则这n个服从标准正态分布的随机变量的平方和构成一新的随机变量,其分布规律称为卡方分布(chi-square distribution),其中参数n 称为自由度 【注意】假设随机干扰项呈正态分布。因此,卡方分布可以和RSS残差平方和联系起来。用RSS/δ2,所得的变量就是标准正态分布,就服从卡方分布。

Copula函数的估计问题

Copula函数的估计问题 摘要对Copula函数的研究是统计研究问题的一个热点,Copula函数揭示了蕴含在变量间所有的相依关系,与传统的相依度量有着紧密的联系,因而在理论和实际问题中都有着重要的意义。文章较全面总结了关于Copula函数的三类估计即参数估计,半参数估计及非参数估计的基本思路和估计方法并进行了比较。 关键词Copula;参数估计;半参数估计;非参数估计 一、引言 多个随机变量之间的相依关系的度量是统计的一个基本问题,很多的相依度量测度被提出,如Pearson相关系数,Dendall ,Pearman等,它们仅仅抓住了相依关系的某个方面,只有Copula函数揭示了蕴含在变量间所有的相依关系,所以Copula函数有着广阔的应用前景,如在生存问题,风险管理和资产投资等方面。对于Copula的理论研究,主要有两个方面,一是相依性度量研究,二是多元分布族的构造。但在实际问题中,如何由样本数据估计Copula函数尤为重要。根据对样本分布族和Copula函数分布族的结构,对Copula函数的估计,可以分为三种情况:参数估计,半参数估计,非参数估计。本文总结了这三类估计的基本思路和估计方法及各种方法的比较。 Copula函数的估计最基本的依据就是Sklar定理:设X=(X■,X■,……,X■)■是随机向量,F是X的分布函数,Fk(x1,x2,……xd)是X的边际分布函数,则存在上[0,1]d的多元分布函数C满足F(x■,x■,……,x■)=C(F■(x■),F■(x■)……,F■■(x■)),函数C就称X的Copula函数,它联接了X的边际分布和联合分布函数。进一步,如果函数C偏倒数存在,则称c(?滋■,?滋■,……,?滋■)=■为Copula密度函数。且如果X的密度函数及边际密度函数分别为F(x■,x■,……,x■)及fk(xk)(k=1,2,……d),则有F (x■,x■,……,x■)=c(?滋■,?滋■,……,?滋■)■f■(x■)由此,可以看到Copula密度函数完全包含了除了边际密度和联合密度之外所有变量相关关系的信息.而且也可以分析出基本的推断方法。 为行文的方便,下仅以d=2为例来叙述,且设样本为(x1i,x2i)(i=1,2,……n)。 二、Copula函数的参数估计 当样本边际分布族和Copula函数分布族都已知时,估计Copula函数分布族中的参数,因为所有分布仅仅是参数未知,故称此情况下的估计为Copula函数的参数估计。基本思路主要是最大似然法。当然还有矩方法,实际问题中应用很少,在此就不叙述了。根据最大似然方法的不同使用情况和不同计算方法,Copula

Copula简介

Copula 简介 Copula理论的是由Sklar在1959年提出的,Sklar指出,可以将任意一个n 维联合累积分布函数分解为n个边缘累积分布和一个Copula函数。边缘分布描述的是变量的分布,Copula函数描述的是变量之间的相关性。也就是说,Copula 函数实际上是一类将变量联合累积分布函数同变量边缘累积分布函数连接起来的函数,因此也有人称其为“连接函数”。 1 二元Copula函数 定义1 二元Copula函数(Nelsen,2006) 二元Copula函数是指具有以下性质的函数C: (1)C的定义域为I2,即[0,1]2; (2)C有零基面(grounded),且是二维递增(2-increasing)的; (3)对任意的变量u、v [0,1],满足:C(u,1) = u,C(1,v) = v。 其中: 有零基面(grounded)指的是:在二元函数H(x, y)的定义域S1×S2(S1、S2为非空的实数子集)内,如果至少存在一个a1 S1和一个a2 S2,使得H(x, a2) = 0 = H(a1, y),那么称函数有零基面(grounded)。 二维递增(2-increasing)指的是:对于二元函数H(x, y),若在任意的二维实数空间B = [x1, x2]×[y1, y2]中,均有V H(B) = H(x2, y2) - H(x2, y1) - H(x1, y2) + H(x1, y1)≥0,那么称H(x, y)是二维递增(2-increasing)。 二元Copula函数有以下几点性质: (1)对u、v [0,1]中的任一变量,C(u, v)都是非减的; (2)对任意的u、v [0,1],均有C(u,0) = C(0,v) = 0,C(u,1) = u,C(1,v) = v;(3)对任意的u1、u2、v1、v2 [0,1],若有u1 < u2、v1 < v2,则 C(u2, v2) - C(u2, v1) - C(u1, v2) + C(u1, v1)≥0 (4)对任意的u、v [0,1],均有max(u+v-1, 0)≤C(u, v)≤min(u, v); (5)对任意的u1、u2、v1、v2 [0,1],均有 |C(u2, v2) - C(u1, v1)|≤| u2 -u1| + | v2 -v1 | (6)若u、v独立,则C(u, v) = uv。 定理1二元Copula的Sklar定理:令H为具有边缘分布F、G的联合分布函数,那么存在一个Copula函数C,使得 () =(1) H x y C F x G y (,)(),() 如果F,G是连续的,则函数C是唯一的。

随机变量的特征函数文档

第四章 大数定律与中心极限定理 4.1特征函数 内容提要 1. 特征函数的定义 设X 是一个随机变量,称)()(itX e E t =?为X 的特征函数,其表达式如下 (),()().(), 在离散场合, 在连续场合,itx i i itX itx x e P X x t E e t e p x dx ?+∞-∞ ?=?==-∞<<+∞???∑? 由于1sin cos 22=+=tx tx e itx ,所以随机变量X 的特征函数)(t ?总是存在的. 2. 特征函数的性质 (1) 1)0()(=≤??t ; (2) ),()(t t ??=-其中)(t ?表示)(t ?的共 轭; (3) 若Y =aX +b ,其中a ,b 是常数.则);()(at e t X ibt Y ??= (4) 若X 与Y 是相互独立的随机变量,则);()()(t t t Y X Y X ????=+ (5) 若()l E X 存在,则)(t X ?可l 次求导,且对l k ≤≤1,有);()0()(k k k X E i =? (6) 一致连续性 特征函数)(t ?在),(+∞-∞上一致连续 (7) 非负定性 特征函数)(t ?是非负定的,即对任意正整数n ,及n 个实数 n t t t ,,,21 和n 个复数n z z z ,,21,有 ;0)(11≥-∑∑==j k j n k n j k z z t t ? (8) 逆转公式 设F (x )和)(t ?分别为X 的分布函数和特征函数,则对F (x )的任意两个点21x x <,有 =-+--+2 )0()(2)0()(1122x F x F x F x F ;)(21 lim 2 1dt t it e e T T itx itx T ?π?-+∞→- 特别对F (x )的任意两个连续点21x x <,有 ;)(21 lim )()(2 112dt t it e e x F x F T T itx itx T ?π ?-+∞→-=- (9) 唯一性定理 随机变量的分布函数有其特征函数唯一决定;

常用分布概率计算的Excel应用

上机实习常用分布概率计算的Excel应用利用Excel中的统计函数工具,可以计算二项分布、泊松分布、正态分布等常用概率分布的概率值、累积(分布)概率等。这里我们主要介绍如何用Excel来计算二项分布的概率值与累积概率,其他常用分布的概率计算等处理与此类似。 §3.1 二项分布的概率计算 一、二项分布的(累积)概率值计算 用Excel来计算二项分布的概率值P n(k)、累积概率F n(k),需要用BINOMDIST函数,其格式为: BINOMDIST (number_s,trials, probability_s, cumulative) 其中 number_s:试验成功的次数k; trials:独立试验的总次数n; probability_s:一次试验中成功的概率p; cumulative:为一逻辑值,若取0或FALSE时,计算概率值P n(k);若取1 或TRUE时,则计算累积概率F n(k),。 即对二项分布B(n,p)的概率值P n(k)和累积概率F n(k),有 P n(k)=BINOMDIST(k,n,p,0);F n(k)= BINOMDIST(k,n,p,1) 现结合下列机床维修问题的概率计算来稀疏现象(小概率事件)发生次数说明计算二项分布概率的具体步骤。 例3.1某车间有各自独立运行的机床若干台,设每台机床发生故障的概率为0.01,每台机床的故障需要一名维修工来排除,试求在下列两种情形下机床发生故障而得不到及时维修的概率: (1)一人负责15台机床的维修; (2)3人共同负责80台机床的维修。 原解:(1)依题意,维修人员是否能及时维修机床,取决于同一时刻发生故障的机床数。 设X表示15台机床中同一时刻发生故障的台数,则X服从n=15,p=0.01的二项分布: X~B(15,0.01), 而 P(X= k)= C15k(0.01)k(0.99)15-k,k = 0, 1, …, 15 故所求概率为 P(X≥2)=1-P(X≤1)=1-P(X=0)-P(X=1) =1-(0.99)15-15×0.01×(0.99)14 =1-0.8600-0.1303=0.0097 (2)当3人共同负责80台机床的维修时,设Y表示80台机床中同一时刻发生故障的台数,则Y服从n=80、p=0.01的二项分布,即 Y~B(80,0.01) 此时因为 n=80≥30, p=0.01≤0.2 所以可以利用泊松近似公式:当n很大,p较小时(一般只要n≥30,p≤0.2时),对任一确定的k,有(其中 =np)

相关文档