文档库 最新最全的文档下载
当前位置:文档库 › 20# φ114x6 管状对接焊接工艺评定(焊条电弧焊)

20# φ114x6 管状对接焊接工艺评定(焊条电弧焊)

20# φ114x6  管状对接焊接工艺评定(焊条电弧焊)
20# φ114x6  管状对接焊接工艺评定(焊条电弧焊)

xx石化工程有限公司焊接工艺评定

编号:PQR03-SMAW-Fe1-6

编制:

审核:

批准:

目录

一、焊接工艺评定任务书(共 1 页)

二、预焊接工艺规程(pWPS)(共 2 页)

三、焊接工艺评定报告(共 3 页)

四、焊接工艺规程(WPS)(共 2 页)

五、附件(共8 页)

焊接工艺评定任务书

注:对每一种母材与焊接材料的组合均需分别填表。

预焊接工艺规程(pWPS)

焊接工艺评定报告

焊接工艺规程(WPS)

试件焊缝外观检查记录

电弧焊焊接工艺参数

3) 考虑焊接层次通常焊接打底焊道时,为保证背面焊道的质量,使用的焊接电流较小;焊接填充焊道时,为提高效率,保证熔合好,使用较大的电流:焊接盖面焊道时,防止咬边和保证焊道成形美观,使用的电流稍小些。 焊接电流—一般可根据焊条直径进行初步选择,焊接电流初步选定后,要经过试焊,检查焊缝成形和缺陷,才可确定。对于有力学性能要求的如锅炉、压力容器等重要结构,要经过焊接工艺评定合格以后,才能最后确定焊接电流等工艺参数。 1.4.3 电弧电压 当焊接电流调好以后,焊机的外特性曲线就决定了。实际上电弧电压主要是由电弧长度来决定的。电弧长,电弧电压高,反之则低。焊接过程中,电弧不宜过长,否则会出现电弧燃烧不稳定、飞溅大、熔深浅及产生咬边、气孔等缺陷:若电弧太短,容易粘焊条。一般情况下,电弧长度等于焊条直径的0.5~1倍为好,相应的电弧电压为16—25V。碱性焊条的电弧长度不超过焊条的直径,为焊条直径的一半较好,尽可能地选择短弧焊;酸性焊条的电弧长度应等于焊条直径。 1.4.4 焊接速度 焊条电弧焊的焊接速度是指焊接过程中焊条沿焊接方向移动的速度,即单位时间内完成的焊缝长度。焊接速度过快会造成焊缝变窄,严重凸凹不平,容易产生咬边及焊缝波形变尖;焊接速度过慢会使焊缝变宽,余高增加,功效降低。焊接速度还直接决定着热输入量的大小,一般根据钢材的淬硬倾向来选择。 1.4.5 焊缝层数 厚板的焊接,一般要开坡口并采用多层焊或多层多道焊。多层焊和多层多道焊接头的显微组织较细,热影响区较窄。前一条焊道对后一条焊道起预热作用,而后一条焊道对前一条焊道起热处理作用。因此,接头的延性和韧性都比较好。特别是对于易淬火钢,后焊道对前焊道的回火作用,可改善接头组织和性能。 对于低合金高强钢等钢种,焊缝层数对接头性能有明显影响。焊缝层数少,每层焊缝厚度太大时,由于晶粒粗化,将导致焊接接头的延性和韧性下降。 1.4.6 热输入 熔焊时,由焊接能源输入给单位长度焊缝上的热量称为热输入。其计算公式如下: Q=NLU/u 式中 Q——单位长度焊缝的热输入(J/cm) I——焊接电流(A) ; U——电弧电压(V) ; u——焊接速度(cm/s) n——热效率系数,焊条电弧焊为0.7~0.8。 热输入对低碳钢焊接接头性能的影响不大,因此,对于低碳钢焊条电弧焊—一般不规定热输入。对于低合金钢和不锈钢等钢种,热输入太大时,接头性能可能降低:热输入太小时,有的钢种焊接时可能产生裂纹。因此,焊接工艺规定热输入。焊接电流和热输入规定之后,焊条电弧焊的电弧电压和焊接速度就间接地大致确定了。 一般要通过试验来确定既可不产生焊接裂纹、又能保证接头性能合格的热输入范围。允许的热输入范围越大,越便于焊接操作。 1.4.7 预热温度 预热是焊接开始前对被焊工件的全部或局部进行适当加热的工艺措施。预热可以减小接头焊后冷却速度,避免产生淬硬组织,减小焊接应力及变形。它是防止产生裂纹的有效措施。对于刚性不大的低碳钢和

焊接工艺参数

手工电弧焊的焊接工艺参数选择 选择合适的焊接工艺参数,对提高焊接质量和提高生产效率是十分重要. 焊接工艺参数(焊接规范)是指焊接时,为保证焊接质量而选定的诸多物理量. 1、焊接电源种类和极性的选择 焊接电源种类:交流、直流 极性选择:正接、反接 正接:焊件接电源正极,焊条接电源负极的接线方法。 反接:焊件接电源负极,焊条接电源正极的接线方法。 极性选择原则:碱性焊条常采用直流反接,否则,电弧燃烧不稳定, 飞溅严重,噪声大,酸性焊条使用直流电源时通常采用直流正接。 2、焊条直径 可根据焊件厚度进行选择。一般厚度越大,选用的焊条直径越粗,焊条直径与焊件的关系见下表: 焊件厚度(mm) 2 3 4-5 6-12 >13 焊条直径(mm) 2 3.2 3.2-4 4-5 4-6 3、焊接电流的选择 选择焊接电流时,要考虑的因素很多,如:焊条直径、药皮类型、工件厚度、接头类型、焊接位置、焊道层次等。但主要由焊条直径、焊接位置、焊道层次来决定。 (1)焊条直径焊条直径越粗,焊接电流越大。下表供参考 焊条直径(mm) 1.6 2.0 2.5 3.2 4.0 5.0 6.0 焊接电流(A)

25-45 40-65 50-80 100-130 160-210 260-270 260-300 (2)焊接位置平焊位置时,可选择偏大一些焊接电流。横、立、仰焊位置时,焊接电流应比平焊位置小10~20%。角焊电流比平焊电流稍大一些。 (3)焊道层次 打底及单面焊双面成型,使用的电流要小一些。 碱性焊条选用的焊接电流比酸性焊条小10%左右。不锈钢焊条比碳钢焊条选用的焊接电流小左右等。 总之,电流过大过小都易产生焊接缺陷。电流过大时,焊条易发红,使药皮变质,而且易造成咬边、弧坑等到缺陷,同时还会使焊缝过热,促使晶粒粗大。 (4)电弧电压 电弧电压主要决定于弧长。电弧长,则电弧电压高;反之,则低。 在焊接过程中,一般希望弧长始终保持一致,而且尽可能用短弧焊接。所谓短弧是指弧长焊条直径的0.5~1.0倍,超过这个限度即为长弧。 (5)焊接速度 在保证焊缝所要求尺寸和质量的前提下,由操作者灵活掌握。速度过慢,热影响区加宽,晶粒粗大,变形也大;速度过快,易造成未焊透,未熔合,焊缝成型不良好等缺陷。 (6)速度以及电压与焊工的运条习惯有关不用强制要求,但是根据经验公式,可知当电流小于600A时,电压取20+0.04I。当电流大于600A时电压取44V。 参考资料:https://www.wendangku.net/doc/9e6059391.html,/jl 16 回答者: trilsen 焊接工艺参数的选择 手工电弧焊的焊接工艺参数主要有焊条直径、焊接电流、电弧电压、焊接层数、电源种类及极性等。 1.焊条直径 焊条直径的选择主要取决于焊件厚度、接头形式、焊缝位置和焊接层次等因素。在一般情况下,可根据表6-4按焊件厚度选择焊条直径,并倾向于选择较大直径的焊条。另外,在平焊时,直径可大一些;立焊时,所用焊条直径不超过5mm;横焊和仰焊时,所用直径不超过4mm;开坡口多层焊接时,为了防止产生未焊透的缺陷,第一层焊缝宜采用直径为3.2mm 的焊条。

药芯焊丝焊缝表面全是气孔是什么原因

药芯焊丝焊缝表面全是气孔是什么原因? 1、焊丝是否受潮,药芯焊丝非常容易受潮,受潮后就容易出现气孔。如果焊丝表面已经生锈,焊药潮湿基本上必出现气孔! 因药芯焊丝是由薄钢带卷成的管状焊丝,属于有缝焊丝;空气中的水分会通过缝隙侵入药芯,2焊缝热输入太大,即焊接参数太大,或走的太慢,容易产生表面虫状气孔。 2、气体保护不好,气体流量小,保护不好容易产生气孔。气体流量太大时也容易产生气孔,特别是角焊缝的时候。 3、焊工操作手法也可能成为影响因素,比如有人习惯用左焊法,或操作不熟练等。 4、焊材表面清理不干净,有锈、油等杂质。 2 、防止气孔的应用 2.1 涂漆钢板角焊的气孔 使用普通的药芯焊丝焊接涂漆钢板水平角焊时,问题是产生凹坑、气体沟和气孔等焊接缺陷。防止焊接缺陷是控制焊接速度或者消除钢板底漆。 2.1.1 气孔产生机理 在气孔中,以凹坑为例详细说明气体的产生机理。焊接涂漆钢板时,电弧热产生H2氢、CH4、O2氧、N2氮、CO钴(一氧化碳气孔)等气体。根部间隙的涂料燃烧气体气泡;气泡长大及气泡上浮进入液态金属;根部间隙产生的气体供给气泡长大;气泡不连续成长。在气泡成长的过程中,由于供给气体的压力减少,不能到达表面,而残留在熔敷金属内部,这就是气孔。 2.1.2 减少涂层钢板焊接时气孔的措施 涂层钢板水平角焊的问题必须从焊丝、涂层、焊接方法三个方面综合地探讨。 A、从焊丝方面降低气孔

与实心焊丝相比,在研究开发涂料钢板的抗气孔性能(以下称为抗涂料性)优良的MAG焊用焊丝方面,药芯焊丝的质量设计具有较大的自由度。 吸取药皮焊条的经验,由于药皮的作用和效果,在某种程度上制成抗涂料性优良的药芯焊丝是可能的。 由于扩散氢含量变化,凹坑个数变化较大,扩散氢含量在10~15ml/100g左右时,凹坑个数达到峰值,小于5ml/100g和大于20ml/100g时,凹坑个数具有减少的倾向。 根据焊条的经验,正在开发使用非低氢型单层角焊用、低氢型单层、多层角焊和平焊用等CO2药芯焊丝。 (1)焊接时冷却速度的影响。这是立焊段2(10)至4(8)点产生气孔的主要原因。在立焊段由于液态金属本身的重力,所以焊接速度较快,焊道熔深较浅,使焊缝液态金属冷却速度加快,气体逸出机会减少,造成焊道内产生较多气孔。 (2)焊接时飞溅的影响。 目前使用的自保护药芯焊丝,在焊接时金属氧化飞溅较大。当导电嘴前端粘附的氧化金属飞溅达到一定数量后,它金属氧化飞溅的过渡着移动的焊丝一起进入熔池。这种现象随焊道填充金属量的增加情况更加严重,导致焊道内气孔产生。 (3)焊缝接头的影响。在大口径管线施工中,焊工在施焊时,由于空间位置的限制,大多数都在5(7)点位置停弧。因此,热焊层、填充层及盖面层的焊缝接头容易叠加,使焊道内部生密集气孑L机会增大。 (4)自然环境的影响。在湿度较大的环境中施工,收工时剩余的焊丝放置在露天环境中,未加妥善保管,造成焊丝受潮。另外,当施工环境的风速大于8 m/s 时,如果没有采取相应的防风措施,也是导致焊道产生气孔的一个重要因素。 (5)焊接工艺参数的影响。自保护药芯半自动焊 焊接工艺参数调节范围较窄,一般电弧电压在18~22V,送丝速度为2 000~2 300 mm/min。因此,这两个参数必须调整好。否则,电压过高易造成焊道表面的熔渣保护效果不好,易产生气孔。 CO2可能产生的气孔主要有3种一氧化碳气孔、氢气孔和氮气孔。 1、一氧化碳气孔 产生CO气孔的原因,主要是熔池中的FeO和C发生如下的还原反应: FeO+C==Fe+CO

焊条电弧焊实习心得

焊条电弧焊实习心得 通过焊条电弧焊实习,我了解到很多工作常识,也得到意志上锻炼,有辛酸也有快乐,这是我大学毕业生活中的又一笔宝贵的财富,对我以后的学习和工作将有很大的影响。下面是为大家收集整理的焊条电弧焊实习心得,欢迎大家阅读。 焊条电弧焊实习心得篇1 一、实习目的1 二、实习的任务和要求1 (一)主要任务 (二)基本要求 三、实习内容及操作要领2 1.低碳素钢板平焊(单面焊双面成行) 2.低碳素钢板横焊(单面焊双面成行) 3.低碳素钢板立焊(单面焊双面成行) 4.固定管对接焊(焊条电弧焊) 5.固定管对接焊(气焊) 6.氩弧焊(TIG焊) 7.CO2气体保护焊 8.气割 9.组合焊接

10.埋弧自动焊、等离子弧切割、碳弧气刨、电渣焊、电阻点焊 四、实习小结10 一、实习目的 焊接专业实习的目的是学生把在校所学各种焊接方法与技能进行充分结合的一次实习环节,从而提升学生各种焊接方法的操作技能,为取得高级焊工资格证书打下基础。 二、实习的任务和要求 (一)主要任务 通过实习操作,使学生掌握焊条电弧焊、气焊、气割、TIG焊和CO2焊的操作技能,通过演示参观,使学生对埋弧自动焊、等离子弧切割焊接、碳弧气刨、电渣焊、电阻点焊有一定感性认识,全面提高学生综合素质和分析问题、解决问题的能力。 (二)基本要求 1、充分熟悉焊条电弧焊的操作技能,能进行碳钢和有色金属的I型坡口平对接双面焊、横焊和船型焊、管座焊的操作。 2、掌握手工气割和半自动气割的操作技能,能进行钢板直线气割、曲线气割、管子气割的操作。 3、掌握气焊的操作技能,能进行气焊平对接焊、水平固定管气焊的单面焊双面成形操作。 4、掌握TIG焊的碳钢和有色金属操作技能,能进行TIG水平固定管单面焊双面成形操作,能进行TIG打底,焊条电弧焊盖面和埋弧焊盖面操作。

手工电弧焊的工艺参数

手工电弧焊的工艺参数 2006-12-15 15:56 选择合适的焊接工艺参数,对提高焊接质量和提高生产效率是十分重要. 焊接工艺参数(焊接规范)是指焊接时,为保证焊接质量而选定的诸多物理量. 1、焊接电源种类和极性的选择 焊接电源种类:交流、直流 极性选择:正接、反接 正接:焊件接电源正极,焊条接电源负极的接线方法。 反接:焊件接电源负极,焊条接电源正极的接线方法。 极性选择原则:碱性焊条常采用直流反接,否则,电弧燃烧不稳定, 飞溅严重,噪声大,酸性焊条使用直流电源时通常采用直流正接。 2、焊条直径 可根据焊件厚度进行选择。一般厚度越大,选用的焊条直径越粗,焊条直径与焊件的关系见下表:焊件厚度(mm)234-56-12>13 焊条直径(mm)2 3.2 3.2-44-5 4-6 3、焊接电流的选择 选择焊接电流时,要考虑的因素很多,如:焊条直径、药皮类型、工件厚度、接头类型、焊接位置、焊道层次等。但主要由焊条直径、焊接位置、焊道层次来决定。 (1)焊条直径焊条直径越粗,焊接电流越大。下表供参考 焊条直径(mm) 1.6 2.0 2.5 3.2 4.0 5.0 6.0焊接电流(a)25-4540-6550-80100-130160-210260-270260-300 (2)焊接位置平焊位置时,可选择偏大一些焊接电流。横、立、仰焊位置时,焊接电流应比平焊位置小10~20%。角焊电流比平焊电流稍大一些。 (3)焊道层次 打底及单面焊双面成型,使用的电流要小一些。 碱性焊条选用的焊接电流比酸性焊条小10%左右。不锈钢焊条比碳钢焊条选用的焊接电流小%20左右等。总之,电流过大过小都易产生焊接缺陷。电流过大时,焊条易发红,使药皮变质,而且易造成咬边、弧坑等到缺陷,同时还会使焊缝过热,促使晶粒粗大。 (4)电弧电压 电弧电压主要决定于弧长。电弧长,则电弧电压高;反之,则低。 在焊接过程中,一般希望弧长始终保持一致,而且尽可能用短弧焊接。所谓短弧是指弧长焊条直径的 0.5~1.0倍,超过这个限度即为长弧。 (5)焊接速度 在保证焊缝所要求尺寸和质量的前提下,由操作者灵活掌握。速度过慢,热影响区加宽,晶粒粗大,变形也大;速度过快,易造成未焊透,未熔合,焊缝成型不良好等缺陷。

药芯焊丝与实芯焊丝的区别

药芯焊丝的特点 生产效率 与手工焊条相比,由于药芯焊丝采用了连续焊接方式,因此生产效率高;与实心焊丝相比,由于药芯焊丝焊接飞溅少、焊缝成形好,所以减少了清除飞溅与修磨焊缝表面的时间。 对钢材的适应性 与实心焊丝相比,由于药芯焊丝一般是通过药芯过渡合金元素,因此可以像手工焊条那样方便地从配方中调整合金成分,以适应被焊钢材的要求。而实芯焊丝每调整一次合金成分,就要重新冶炼,其工序多,难控制,因此难以满足用量少而品种多的要求。而且有的合金钢实芯焊丝拉拔性能差,很难拉拔成所需的焊丝。此时药芯焊丝更显其独特之优点。 工人操作要求 药芯焊丝对工人的操作水平要求低:与手工焊条比,省去了向下运条的操作;与实芯焊丝比,其电流、电压适应范围宽。 使用成本 与手工焊条及实芯焊丝相比,药芯焊丝本身的价格很高。但对于大型企业来讲,使用药芯焊丝后,生产周期缩短且焊缝质量容易保证,所以带来的综合效益是很高的。 抗潮性 普通的药芯捍丝由于其制造形式的约束,在其钢皮的侧边有一条连续的缝隙。所以药芯焊丝在打开包装之后的搁置时间不能太长,以防吸潮过多而影响焊接质量。 1.焊丝选用的要点 焊丝的选择要根据被焊钢材种类、焊接部件的质量要求、焊接施工条件(板厚、坡口形状、焊接位置、焊接条件、焊后热处理及焊接操作等)、成本等综合考虑。焊丝选用要考虑的顺序如下。 ①根据被焊结构的钢种选择焊丝 对于碳钢及低合金金高强钢,主要是按“等强匹配”的原则,选择满足力学性能要求的焊丝。对于耐热钢和耐候钢,主要是侧重考虑焊缝金属与母材化学成分的一致或相似,以满足对耐热性和耐腐蚀性等方面的要求。 ②根据被焊部件的质量要求(特别是冲击韧性)选择焊丝 与焊接条件、坡口形状、保护气体混合比等工艺条件有关,要在确保焊接接头性能的前提下,选择达到最大焊接效率及降低焊接成本的焊接材料。 ③根据现场焊接位置 对应于被焊工件的板厚选择所使用的焊丝直径,确定所使用的电流值,参考各生

课题二(焊条电弧焊板V型坡口单面焊双面成形平位对接焊 )

编号:KJX/D 17-10(2-2) 1、了解 本课题存在的风险识别、设备使用原理、板平位对接焊焊工艺参数选择、焊接要求等 。 2、明确板平位对接焊的操作步骤、操作工艺要点以及操作技术、评分标准。 1.安全风险-------①烫伤②触电③电光性眼炎④烧焊机⑤慢性 中毒⑥着火。 2.防范措施 ------ ①着装符合要求,按操作规程正确操作,不许赤手触 摸刚焊完的焊件和刚扔下的焊条头,敲渣时焊帽挡住面部或佩戴平光镜,以免手、面部和眼睛烫伤。 ②防触电措施到位,不能赤手更换焊条。 ③正确掌握引弧方法,正确处理电焊面罩漏光问题,避免弧光伤眼。 ④操作时特别注意发生短路(如粘焊条、地线与焊把线直接接触),防止焊机过热而烧毁。 ⑤改善通风装置、充分发挥自然通风、合理安排中间休息 ⑥按操作规程操作,工作人员和学生熟悉消防器材的位置和正确使用方法。 课题二 SMAW 焊板V 型坡口单面焊双面成形平位对接焊( 49 学时) 一、实习目的 二、风险识别

1、焊机原理:⑴ 焊机型号(尽量图片解释)ZX7-315 焊机 ⑵ 焊机调试:电流、电压、电弧推力、起弧电流的调 节方法;电源极性的调节; ⑶ 注意事项:风险识别中已提到。 2、常用工具: (尽量图片解释)角向磨光机;钢丝刷;敲渣锤。 (一) 焊前准备及试件装配 焊前准备 1、试件材料: 20 钢或 16Mn 。 2、试件尺寸: 300mm ×200mm ×12mm ;坡口尺寸:60°V 形坡口,如图 1 一 1 所 示。 3、焊接要求: 单面焊双面成形。 4、焊接材料: E4303 (结 422 )或 E5015 (结 507 ) ,直径¢3.2 mm 和¢ 4.0 mm ,焊条烘焙 350 ~400 ℃(结 507) ,恒温2h ,随用随取。 5、焊机 : ZX7 一 315 型或 ZX7- 400型。 图1 一 1 V 形坡口对接平焊试件图 试件装配 四、实习内容 三、设备原理、工具

焊接工艺参数

焊接工艺参数 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

焊接工艺指导书 电弧焊工艺 1 接口 焊条电弧焊的接头主要有对接接头、T形接头、角接接头和搭接接头四种。 1.1 对接接头 对接接头是最常见的一种接头形式,按照坡口形式的不同,可分为I形对接接头(不开坡口)、V形坡口接头、U形坡口接头、X形坡口接头和双U形坡口接头等。一般厚度在6mm以下,采用不开坡口而留一定间隙的双面焊;中等厚度及大厚度构件的对接焊,为了保证焊透,必须开坡口。V形坡口便于加工,但焊后构件容易发生变形;X形坡口由于焊缝截面对称,焊后工件的变形及内应力比V形坡口小,在相同板厚条件下,X形坡口比V形坡口要减少1/2填充金属量。U形及双U形坡口,焊缝填充金属量更少,焊后变形也很小,但这种坡口加工困难,一般用于重要结构。 1.2 T形接头 根据焊件厚度和承载情况,T形接头可分为不开坡口,单边V形坡口和K形坡口等几种形式。T形接头焊缝大多数情况只能承受较小剪切应力或仅作为非承载焊缝,因此厚度在30mm以下可以不开坡口。对于要求载荷的T形接头,为了保证焊透,应根据工件厚度、接头强度及焊后变形的要求来确定所开坡口形式。 1.3 角接接头 根据坡口形式不同,角接接头分为不开坡口、V形坡口、K形坡口及卷边等几种形式。通常厚度在2mm以下角接接头,可采用卷边型式;厚度在2~8mm以下角接接头,往往不开坡口;大厚度而又必须焊透的角接接头及重要构件角接头,则应开坡口,坡口形式同样要根据工件厚度、结构形式及承载情况而定。 1.4 搭接接头 搭接接头对装配要求不高,也易于装配,但接头承载能力低,一般用在不重要的结构中。搭接接头分为不开坡口搭接和塞焊两种型式。不开坡口搭接一般用于厚度在12mm 以下的钢板,搭接部分长度为3~5δ(δ为板厚) 2 焊条电弧焊工艺参数选择 2.1 焊条直径 焊条直径可根据焊件厚度、接头型式、焊缝位置、焊道层次等因素进行选择。焊件厚度越大,可选用的焊条直径越大;T形接头比对接接头的焊条直径大,而立焊、仰焊及横焊比平焊时所选用焊条直径应小些,一般立焊焊条最大直径不超过5mm,横焊、仰焊不超过4mm;多层焊的第一层焊缝选用细焊条。焊条直径与厚度的关系见表4 2.2 焊接电流是焊条电弧焊中最重要的一个工艺参数,它的大小直接影响焊接质量及焊缝成形。当焊接电流过大时,焊缝厚度和余高增加,焊缝宽度减少,且有可能造成咬边、烧穿等缺陷;当焊接电流过小时,焊缝窄而高,熔池浅,熔合不良,会产生未焊透、夹渣等缺陷。选择焊接电流大小时,要考虑焊条类型、焊条直径、焊件厚度以及接头型式、

实芯焊丝气体保护焊(GMAW)和药芯焊丝气体保护焊(FCAW)两者的区别

GMAW:熔化极气体保护焊含有MIG和MAG MIG:熔化极惰性气体保护焊 MAG:熔化极活性气体保护焊 FCAW: 药芯焊丝气体保护焊(软钢及高张力钢用药芯焊丝) SMAW:药皮焊条电弧焊 SAW:埋弧自动焊 实芯焊丝气体保护焊(GMAW)和药芯焊丝气体保护焊(FCAW)两者的区别: 1.GMAW的主要优势在于每小时的金属熔敷量,这极大地降低了劳动力成本。气体保护焊的另一个优势在于它是一种干净的工艺,这主要归功于没有使用焊剂。在通风不良的车间会发现,从手工电弧焊或药芯焊换成气体保护焊后情况会得到改善,这是因为烟的产生减少了。由于有各种各样的焊丝可选用,而且焊接设备变的更便于携带,气体保护焊的适用领域不断得到扩展。该工艺的另外一个优点是可见性。因为没有焊渣,焊工能够很容易地观察电弧和熔池的情况,从而改善控制。 GMAW还对气流和风特别敏感,它们会将保护气体吹开,留下未保护的金属。正是这个原因,气体保护焊不大适合工地焊接。应充分认识到,气体流量大于推荐值的上限,并不能保证对熔池适当的保护。实际上,大的气体流量反而导致气体紊乱,并增大气孔产生的可能性,这是因为增大气体流量实际上可能将空气带入焊接区。 2.FCAW获得广泛的认可,是因为它能提供优良的性能。可能最重要的优点是它能提供很高的生产效率,即单位时间内所熔敷的焊缝金属量。它是手工焊接工艺中效率最高的。这是由于焊丝盘提供连续不断的焊丝,同GMAW一样增加了电弧时间。该工艺还被分类为大熔深弧焊,这有助于减少熔合性缺陷的可能性。由于该方法主要用于半自动工艺,其操作技能要求远低于手工方法的要求。无论有无保护气体的辅助,FCAW因有焊剂,它比GMAW对母材污染有更大的容许。正是这个原因,使得FCAW适合工地焊接,在现场,风使得保护气体流失,而GMAW会受到极大的影响。 然而,检验师应当明白该工艺有它的局限。首先,由于有焊剂,所以在后序焊道焊接前和外观检查前必须去除这层固体焊渣。 由于存在焊剂,在焊接过程中会产生大量的烟。长时间暴露在没有通风条件的地方会危害焊工的健康。这些烟还会降低焊工的视线,会给接头中的电弧正确操作带来困难。虽然可以采用烟雾抽除系统,但要在焊枪加上附件,这会增加其重量并降低焊工的视线。当采用附加保护气体时,它还会扰乱保护气氛。 即使FCAW被认为是有烟工艺,但它在单位熔敷金属时产生的烟量没有SMAW多。FCAW所要求的设备比SMAW的复杂,因而其先期成本和机械故障的可能性限制了它在一些环境中的使用。 和所有的工艺一样,FCAW自身存在一些问题。首先是于焊剂有关。由于焊剂的存在,在层间清理不当或操作技术不当时,会有焊渣残留在焊缝金属中的可能性。 对于FCAW,至关重要的是焊接速度要足够快,以保持电弧在熔池的前缘。当焊接速度太慢,使电弧在熔池的中前部或后部,熔化的焊渣会被卷入熔池中形成夹渣。另一个自身的问题与送丝机构有关。与GMAW情形一样,缺少保养维护会导致焊丝送进问题,这会影响焊缝的质量。FCAW同样产生包括未焊透、夹渣和气孔在内的典型缺陷。

焊接工艺参数的选择

手工电弧焊的焊接工艺参数主要有焊条直径、焊接电流、电弧电压、焊接层数、电源种类及极性等。 1.焊条直径 焊条直径的选择主要取决于焊件厚度、接头形式、焊缝位置和焊接层次等因素。在一般情况下,可根据表6-4按焊件厚度选择焊条直径,并倾向于选择较大直径的焊条。另外,在平焊时,直径可大一些;立焊时,所用焊条直径不超过5mm;横焊和仰焊时,所用直径不超过4mm;开坡口多层焊接时,为了防止产生未焊透的缺陷,第一层焊缝宜采用直径为的焊条。 表6-4焊条直径与焊件厚度的关 系 mm 2.焊接电流 焊接电流的过大或过小都会影响焊接质量,所以其选择应根据焊条的类型、直径、焊件的厚度、接头形式、焊缝空间位置等因素来考虑,其中焊条直径和焊缝空间位置最为关键。在一般钢结构的焊接中,焊接电流大小与焊条直径关系可用以下经验公式进行试选: I=10d2 (6-1)式中 I——焊接电流(A); d——焊条直径(mm)。 另外,立焊时,电流应比平焊时小15%~20%;横焊和仰焊时,电流应比平焊电流小10%~15%。

3.电弧电压 根据电源特性,由焊接电流决定相应的电弧电压。此外,电弧电压还与电弧长有关。电弧长则电弧电压高,电弧短则电弧电压低。一般要求电弧长小于或等于焊条直径,即短弧焊。在使用酸性焊条焊接时,为了预热部位或降低熔池温度,有时也将电弧稍微拉长进行焊接,即所谓的长弧焊。 4.焊接层数 焊接层数应视焊件的厚度而定。除薄板外,一般都采用多层焊。焊接层数过少,每层焊缝的厚度过大,对焊缝金属的塑性有不利的影响。施工中每层焊缝的厚度不应大于4~ 5mm。 5.电源种类及极性 直流电源由于电弧稳定,飞溅小,焊接质量好,一般用在重要的焊接结构或厚板大刚度结构上。其他情况下,应首先考虑交流电焊机。 根据焊条的形式和焊接特点的不同,利用电弧中的阳极温度比阴极高的特点,选用不同的极性来焊接各种不同的构件。用碱性焊条或焊接薄板时,采用直流反接(工件接负极);而用酸性焊条时,通常采用正接(工件接正极)。

电弧焊方法复习题 答案

电极斑点: 电 极 斑 点 阴极斑点阳极斑点 定义惰性气体保护下母材作为阴极时,受母材尺寸 大、导热量大等条件的影响,表面上容易形成 阴极斑点 小电流焊接,母材作为阳极,如果母 材上不能形成连续的熔化,将会在母 材上电弧后面形成阳极斑点, 特点阴极斑点对电极有“黏着”作用; 电弧阴极斑点的形成通常对焊接是不利的 有后拖、“黏着”、跳动的现象; 正常焊接时阳极斑点对焊接过程没 有大的不良影响。 出 现 场 合 该情况多出现在铝、镁及其合金的焊接场合 短路过渡:由于电压低,电弧较短,熔滴尚未长成大滴时即与熔池接触而形成短路液桥,在向熔池方向的表面张力及电磁收缩力的作用下,熔滴金属过渡到熔池中去这样的过渡形式称为短路过渡。 射流过渡:是喷射过渡中最富有代表性且用途广泛的一种过渡形式。获得射流过渡的条件是采用纯氩或富氩保护气氛,直流反接,除了保持高弧压(长弧)外,还必须使焊接电流大于某一临界值。 熔敷系数:是指单位时间、单位电流所熔敷到焊缝中的焊丝金属质量。 焊丝的熔敷效率:过渡到焊缝中的金属质量与使用的焊丝(条)金属质量之比。焊缝的成形系数:Φ=B/H 焊接电弧焊接熔合比:焊缝中母材金属所占的面积与焊缝总面积的比值为熔合比γ=Am/(Am +AH) 弧焊电源的外特性:是指电源内部参数一定的情况下,改变负载时,电源输出的电压的稳定值Uy与输出的电流的稳定值Iy之间的关系曲线——Uy=f(Iy)称为电源的外特性;直流时,Uy和Iy为平均值,交流电源则为有效值。 金属材料的焊接性:指被焊金属采用一定的焊接方法、焊接材料、工艺参数及结构形式条件下,获得优质焊接接头的难易程度 钨极惰性气体保护焊(TIG):钨极惰性气体保护焊是以钨或钨的合金作为电极材料,在惰性气体的保护下,利用电极与母材金属(工件)之间产生的电弧热熔化母材和

5-1 钢结构手工电弧焊焊接工艺标准(501-1996)

5-1 钢结构手工电弧焊焊接工艺标准(501-1996) 1 范围 本工艺标准适用于一般工业与民用建筑工程中钢结构制作与安装手工电弧焊焊接工程。22施工准备 2.1 材料及主要机具 2.1.1 电焊条:其型号按设计要求选用,必须有质量证明书。按要求施焊前经过烘焙。严禁使用药皮脱落、焊芯生锈的焊条。设计无规定时,焊接Q235钢时宜选用E43系列碳钢结构焊条;焊接16Mn钢时宜选用E50系列低合金结构钢焊条;焊接重要结构时宜采用低氢型焊条(碱性焊条)。按说明书的要求烘焙后,放入保温桶内,随用随取。酸性焊条与碱性焊条不准混杂使用。 2.1.2 引弧板:用坡口连接时需用弧板,弧板材质和坡口型式应与焊件相同。 2.1.3 主要机具:电焊机(交、直流)、焊把线、焊钳、面罩、小锤、焊条烘箱、焊条保温桶、钢丝刷、石棉条、测温计等。 2.2 作业条件 2.2.1 熟悉图纸,做焊接工艺技术交底。 2.2.2 施焊前应检查焊工合格证有效期限,应证明焊工所能承担的焊接工作。 2.2.3 现场供电应符合焊接用电要求。 2.2.4 环境温度低于0℃,对预热,后热温度应根据工艺试验确定。 3 操作工艺 3.1 工艺流程: 作业准备→电弧焊接(平焊、立焊、横焊、仰焊) →焊缝检查 3.2 钢结构电弧焊接: 3.2.1 平焊 3.2.1.1 选择合格的焊接工艺,焊条直径,焊接电流,焊接速度,焊接电弧长度等,通过焊接工艺试验验证。 3.2.1.2 清理焊口:焊前检查坡口、组装间隙是否符合要求,定位焊是否牢固,焊缝周围不得有油污、锈物。 3.2.1.3 烘焙焊条应符合规定的温度与时间,从烘箱中取出的焊条,放在焊条保温桶内,随用随取。 3.2.1.4 焊接电流:根据焊件厚度、焊接层次、焊条型号、直径、焊工熟练程度等因素,选择适宜的焊接电流。 3.2.1.5 引弧:角焊缝起落弧点应在焊缝端部,宜大于10mm,不应随便打弧,打火引弧后应立即将焊条从焊缝区拉开,使焊条与构件间保持2~4mm间隙产生电弧。对接焊缝及时接和角接组合焊缝,在焊缝两端设引弧板和引出板,必须在引弧板上引弧后再焊到焊缝区,中途接头则应在焊缝接头前方15~20mm处打火引弧,将焊件预热后再将焊条退回到焊缝起始处,把熔池填满到要求的厚度后,方可向前施焊。 3.2.1.6 焊接速度:要求等速焊接,保证焊缝厚度、宽度均匀一致,从面罩内看熔池中铁水与熔渣保持等距离(2~3mm)为宜。 3.2.1.7 焊接电弧长度:根据焊条型号不同而确定,一般要求电弧长度稳定不变,酸性焊条一般为3~4mm,碱性焊条一般为2~3mm为宜。 3.2.1.8 焊接角度:根据两焊件的厚度确定,焊接角度有两个方面,一是焊条与焊接前进方向的夹角为60~75°;二是焊条与焊接左右夹角有两种情况,当焊件厚度相等时,焊条与焊件夹角均为45°;当焊件厚度不等时,焊条与较厚焊件一侧夹角应大于焊条与较薄焊件一侧夹角。 3.2.1.9 收弧:每条焊缝焊到末尾,应将弧坑填满后,往焊接方向相反的方向带弧,使弧坑甩在焊道里边,以防弧坑咬肉。焊接完毕,应采用气割切除弧板,并修磨平整,不许用锤击落。 3.2.1.10 清渣:整条焊缝焊完后清除熔渣,经焊工自检(包括外观及焊缝尺寸等)确无问题后,方可转移地点继续焊接。

电弧焊焊接工艺参数

焊接工艺参数 1.4 焊接工艺参数 焊接工艺参数是指焊接时,为保证焊接质量而选定的诸物理量 ( 例如:焊接电流、电弧电压、焊接速度、热输入等 ) 的总称。焊条电弧焊的焊接工艺参数主要包括焊条直径、焊接电流、电弧电压、焊接速度和预热温度等。 1.4.1 焊条直径 焊条直径是根据焊件厚度、焊接位置、接头形式、焊接层数等进行选择的。 厚度较大的焊件,搭接和 T 形接头的焊缝应选用直径较大的焊条。对于小坡口焊件,为了保证底层的熔透,宜采用较细直径的焊条,如打底焊时一般选用Φ2.5m m 或Φ3.2mm 焊条。不同的焊接位置,选用的焊条直径也不同,通常平焊时选用较粗的Φ~mm 的焊条,立焊和仰焊时选用Φ~mm 的焊条;横焊时选用Φ~mm 的焊条。对于特殊钢材,需要小工艺参数焊接时可选用小直径焊条。 根据工件厚度选择时,可参考表3-20。对于重要结构应根据规定的焊接电流范围 ( 根据热输入确定 )参照表3—21焊接电流与焊条直径的关系来决定焊条直径。 1.4.2 焊接电流 焊接电流是焊条电弧焊的主要工艺参数,焊工在操作过程中需要调节的只有焊接电流,而焊接速度和电弧电压都是由焊工控制的。焊接电流的选择直接影响着焊接质量和劳动生产率。 焊接电流越大,熔深越大,焊条熔化快,焊接效率也高,但是焊接电流太大时,飞溅和烟雾大,焊条尾部易发红,部分涂层要失效或崩落,而且容易产生咬边、焊瘤、烧穿等缺陷,增大焊件变形,还会使接头热影响区晶粒粗大,焊接接头的韧性降低;焊接电流太小,则引弧困难,焊条容易粘连在工件上,电弧不稳定,易产生未焊透、未熔合、气孔和夹渣等缺陷,且生产率低。 因此,选择焊接电流时,应根据焊条类型、焊条直径、焊件厚度、接头形式、焊缝位置及焊接层数来综合考虑。首先应保证焊接质量,其次应尽量采用较大的电流,以提高生产效率。板厚较的,T 形接头和搭接头,在施焊环境温度低时,由于导热较快,所以焊接电流要大一些。但主要考虑焊条直径、焊接位置和焊道层次等因素。 1) 考虑焊条直径焊条直径越粗,熔化焊条所需的热量越大,必须增大焊接电流,每种焊条都有一个最合适电流范围,表3-21是常用的各种直径焊条合适的焊接电流参考值。 当使用碳钢焊条焊接时,还可以根据选定的焊条直径,用下面的经验公式计算焊接电流: I=dK 式中:I 一一焊接电流 (A) : d——焊条直径 (mm) : K——经验系数 (A/cra) ,见表 3-20。 表 3-20 焊接电流经验系数与焊条直径的关系 [9] 焊条直径 d24

药芯焊丝气体保护焊的应用

RIKT的焊接 摘要:离心等温式空气压缩机,简称RIKT,通过对空气压缩机箱体中分面法兰母材Q345E的分析,采用药芯焊丝气体保护焊,选用合理焊接工艺,进行工艺评定,满足要求并在实际中应用,取得良好效果。 关键词:RIKT FCAW Q345E 1 前言 公司主要生产离心等温式空气压缩机,大量用于空分行业,主要结构有定子、转子、冷却器和箱体。其中箱体为焊接结构,其材料主要为Q235、Q345系列材料。其中中分面法兰材料厚度达到150mm,属于厚板焊接,80%焊缝需做UT检测,所有焊缝做MT检测,质量要求高,外观要求美观。 2母材性能介绍 2.1 Q345E的化学成分表1和力学性能表2所示: 2.2 材料的焊接性分析 首先计算碳当量: CE(IIW)=C+Mn/6+(Cr+Mo+V)/5+(Cu+Ni)/15 把Q345E的化学成份代入公式,得到碳当量为0.48。 碳当量超过0.4,又是厚板焊接,有一定的淬硬倾向,但焊接性尚好。 3 药芯焊丝气体保护电弧焊介 综合考虑以上特点和产品要求,决定采用FCAW,因为它是一种很有发展前景,而且

已经在工程中使用的焊接方法。 3.1 其工作原理:与实芯焊丝气保护焊的主要区别是作用焊丝的构造不同。 药芯焊丝是在焊丝内部装有焊剂或金属粉末混合物(称药芯)。焊接时,电弧热的作用下融化状态的芯料。焊丝金属、母材金属和保护气体相互之间发生冶金作用。同时形成一层较薄的液态熔渣包覆熔滴并覆盖熔池,对熔丝金属构成又一层保护。所以实质上这是一种气渣联合保护的焊接方法。 3.2工艺特点 药芯焊丝气体保护焊综合了焊条电弧焊和CO2焊的工艺特点。 ⑴由于药芯成分改变了纯CO2电弧气氛的物理,化学性质,因而飞溅少,且颗粒细,易于消除。又因熔池表面覆盖有熔渣,焊缝成形比实芯焊丝美观。 ⑵与实芯焊丝相比,通过调整药芯的成份,就可以焊接不同钢种,适用性强。若研制适用同样钢种的实芯焊丝在技术上将遇到许多困难。 ⑶对焊接电源无特殊要求,交流和直流均可使用,平特性和陡降性都适用。因为药芯成份能改变电弧特性。 ⑷缩短加工时间。药芯焊丝飞溅小而少,不像实芯焊丝那么多飞溅,一点一点的就像焊在母材上,要花很多功夫清理。而药芯焊丝飞溅就易清理,一铲就掉,节省很多时间。 ⑸药芯焊丝焊缝质量高,机械性能好,不易产生咬边、裂纹、气孔等缺陷。 其中咬边对于大壁厚母材,拘束性很大,焊接过程中和热处理后易产生裂纹。 由于是气渣联合保护,对焊接区表面的污染、油、锈、水份和现场的风速,没实芯焊丝那么敏感,不易产生气孔。 3.3 发展和介绍 药芯焊丝最早出现在20世纪20年代美国和德国。但真正大量应用于工业生产是50年代,特别是60、70年代。出现2.0mm以下焊丝,进入高速发展阶段,我国是在60年代开始研制。 利用药芯焊丝作融化极的电弧焊称药芯焊丝电弧焊,英文简称FCAW。有两种焊接形式:一种是焊接过程中使用外加保护气体(一般是纯CO2或CO2+A r)的焊接。称药芯焊丝气体保护焊,它与普通融化极气体保护焊基本相同;另一种是不加保护气体,只靠焊丝内部的芯料燃烧与分解所产生的气体和渣作用保护的焊接,称自保护电弧焊。自保护电弧焊和焊条电弧焊相似,不同的是使用盘状的焊丝,连续不断送到电弧中。(主要运用于野外,干丝伸出较长位置焊接,焊接质量较差。) 3.4 熔滴过渡介绍 大概可分三类 ⑴短路过渡 在小电流低电压焊接时,熔滴在未脱离焊丝前就与熔池接触形成液态金属短路,使电弧熄灭。当液粉金属在电磁收缩力、表面张力作用下,脱离焊丝过渡到熔池中去,这时电弧复燃。又开始下一周期过程,这种过渡形式称短路过渡。主要运用于薄板全位置焊接或对接焊单面焊双面成形打底焊。 ⑵滴状过渡 当电流较小、电弧力作用小,随着焊丝融化,熔滴逐渐长大。当熔滴的重力能克服其表面张力的作用时,就以较大的颗粒脱离焊丝,落入熔池实现大滴落过渡。当电流较大时,电磁收缩力较大,熔滴的表面张力减小,熔滴细化,其直径一般等于或略小于焊丝直径。熔滴的熔池过渡频率增加,飞溅少,电弧稳定,焊缝成形较好。这种过渡形式称细颗粒过渡。在生产中广泛运用于实芯焊丝。

平敷焊(慕课)

焊条电弧焊操作一体化校本教材 模块一表面敷焊 项目一:平敷焊 一、焊接电弧 各位同学大家好,我是中南工业学校《焊条电弧焊》课程的主讲老师王洪,欢迎大家加入本课堂。今天我们要讲的课程内容是焊接电弧的概念和产生。 《焊条电弧焊》这门课程是我们焊接专业的基础课程,极为重要。要学好这门课程,首先我们需要了解焊接电弧的概念、它是怎么产生的。 首先电弧是什么? 焊接时,将焊条与焊件接触后快速拉开,在焊条端部和焊件之间立即会产生明亮的电弧(如图1-1)。 图1-1 电弧示意图 那么,由焊接电源供给的具有一定电压的两电极间或电极与焊件间的气体介质中,产生强烈而持久的放电现象,称为焊接电弧。 焊接电弧,它具有两个特性,即能放出强烈的光和大量的热。 焊接就是利用产生的热量作为热源,用来熔化母材和填充金属。 2、焊接电弧的产生 那么焊接电弧又是怎么产生的呢? 在通常情况下,气体是不导电的,为了使其导电,必须使气体电离,即必须在气体中形成足够数量的自由电子和正离子。 焊接电弧的引燃过程,是当焊条与工件接触的瞬间,焊条与工件表面局部突出部位首先接触,在接触区有电流通过,使得接触处的电流密度增大,产生了很大的电阻热,将接触点熔化。 同时受热的阴极发射出大量电子。由阴极发射的电子,在电场的作用下快速

向阳极运动,在运动中与中性气体粒子相撞,并使其电离,分离成电子和正离子,电子被阴极吸收,而正离子向阴极运动,形成电弧的放电现象。 以上就是焊接电弧的概念和焊接电弧产生的内容了,谢谢大家。 3、焊接电弧的组成及温度分布 同学们好,这节课我们学习焊接电弧的组成及温度分布。 (1)首先第一部分焊接电弧的组成 焊接电弧由阴极区、弧柱区和阳极区三部分组成。 1)第一个阴极区 电弧紧靠负电极的区域为阴极区。 阴极区很窄,电场强度很大。在阴极区的阴极表面有一个明亮的斑点,称为阴极斑点。阴极斑点是一次电子发射的发源地,电流密度很大,也是阴极区温度最高的地方。 2)第二阳极区 电弧紧靠正电极的区域为阳极区。 阳极区比阴极区宽,在阳极的表面也有一个明亮的斑点,称为阳极斑点。 它是由电子对阳极表面撞击而 形成的。是集中接收电子的微小区 域。阳极区电场强度比阴极区小得 多。 3)第三弧柱区 在阴极区和阳 极区之间的区域称为弧柱区。 由于阴极区和阳极区的长度极 小,故弧柱区的长度就可以认为是电弧的长度。 (2)第二部分电弧的温度分布 焊接电弧中三个区域的温度是不均匀的。影响三者的温度的因素有三种:电极材料和焊接方法,以及电弧长度。 阴极区和阳极区温度主要取决于电极材料,而且一般阴极温度低于阳极温度,且低于材料的沸点。 阴极区温度最高的部分一般可达2130~3230℃,放出的热量占焊接总热量的36%左右。 阳极区温度一般可达2330~3980 ℃,放出的热量占焊接总热量的43%左右。 图1-2 焊接电弧的构造 1-焊条 2-阴极区 3-弧柱 4-阳极区 5-焊件

实芯焊丝和药芯焊丝的优缺点

实心焊丝和药芯焊丝的优缺点 优点: 1、对各种钢材的焊接,适应性强调整焊剂的成分和比例极为方便和容易,可以提供所要求的焊缝化学成分。 2、工艺性能好,烛缝成形美观采用气渣联合保护,获得良好成形。加入稳弧剂使电弧稳定,熔滴过渡均匀。 3、熔敷速度快,生产效率高在相同焊接电流下药芯焊丝的电流密度大,熔化速度快,其熔敷率约为85%-90%,生产率比焊条电弧焊高约3-5倍。焊接速度快,下向焊,水平焊的时候,药芯焊丝的速度比实芯焊丝的焊接速度快约10%,特别是立向焊( Vertical) 和仰焊(over head )的时候,根据药粉的作用,可以使用高电流焊接,所以可以提高两倍以上速度。 4、可用较大焊接电流进行全位置焊接。实芯焊丝在水平焊或者上向焊的时候要求焊工有很高的焊接技巧,会产生大量的飞溅,因此只适用于薄板焊接,但是药芯焊丝因为产生充分的焊渣,覆盖在焊接部位上,所以适用于全位置的焊接。 5、药芯焊丝与实心焊丝相比飞溅小,连续使用也不会堵塞焊枪嘴。 7、作业性良好,药芯焊丝焊弧柔和,焊接作业性良好,便于操作。比实芯好的不是一点半点,一个普通工人简单培训就能焊出合格焊缝,在这又省了培训成本。 缺点: 1、熔敷效率低,药芯焊丝在焊接后因为产生大量的焊渣所以熔敷效率为约为88% ,而实芯焊丝因为没有焊渣,熔敷效率约为95% 2、烟尘大,药芯焊丝在焊接过程中相对来说烟尘大,防护得当的话,其实真不算缺点,说弄脏工作,我觉得有点冤,轻轻一擦就干净了,它飞溅比实心小多了,应该是对工作表面质量有帮助的。 3、价格贵,按照公斤的单位来计算,药芯焊丝价格虽然较贵,但是如果从提高生产性的角度计算的话,反而能够节省费用。

焊条电弧焊的操作技巧与禁忌

焊条电弧焊的操作技巧与禁忌 焊接设备操作注意事项 是一种为电弧提供电能的设备,简称为电焊机。 1)检查接线是否正确,设备外壳必须接地,遇到焊工触电时,应先断电源再进行抢救。 2)推拉电源开关应戴好干燥手套,禁止面对开关,以免发生电弧火花而灼伤面部。 3)焊接电缆不准放在焊机附近或炙热的金属焊缝上,也要避免碰撞和磨损。4)停止工作时应及时断电,户外工作时要遮盖好设备。 焊接材料的选用 焊条的选用原则是等强度原则、等同性原则、等条件原则。

焊接电流的选择 1)实际生产过程中焊工都是根据试焊的试验结果,并根据自己的实践经验选择焊接电流的。 2)电流太小,很难引弧,焊条容易粘在焊件上,鱼鳞纹粗,两侧融合不好。3)电流太大,焊接时飞溅和烟雾大,焊条发红,熔池表面很亮,容易烧穿、咬边。 4)电流合适,容易引弧电弧稳定,飞溅很小,能听到均匀的劈啪声,焊缝两侧圆滑的过渡到母材,表面鱼鳞纹很细,焊渣容易敲掉。 电弧电压的选择 电弧电压主要影响焊缝的宽窄。焊条电弧焊时,主要靠焊条的横向摆动来控制,因此电弧电压的影响并不大。 当焊接电流调整好以后,电弧越长电压越高。但电弧太长时,燃烧不稳、飞溅大、容易产生咬边,气孔等缺陷;若电弧太短,容易粘住焊条,一般情况下,电弧长度等于焊条直径的1/2或1倍为好。 焊接速度及焊缝层数的选择

焊接速度是指单位时间内完成焊缝的长度。在保证所要求的尺寸和外形、熔合良好的原则下,焊接速度由焊工灵活掌握。 在厚板焊接时,必须采用多层焊或多层多道焊。前一条焊道对后一条焊道起预热作用,后一条焊道对前一条焊道起热处理作用。有利于提高焊缝金属的朔性和韧性。每层焊道厚度不能大于焊条直径的1.5倍。 焊条运条的技巧 引弧 电弧焊开始时,引燃焊接电弧的过程称为引弧。 引弧的方法包括以下两类: 1)不接触引弧:是指利用高频电压使电极末端与焊件间的气体导电产生电弧。焊条电弧焊很少采用这种方法。 2)接触引弧:引弧时先使电极与焊件短路,再拉开电极引燃电弧。根据操作手法不同又可分为敲击法和划檫法两种。 敲击法:使焊条与焊件表面垂直地接触,当焊条的末端与焊件的表面轻轻一碰,便迅速提起焊条并保持一定的距离,立即引燃了电弧。操作时焊工必须掌握好手腕上下动作的时间和距离。

相关文档
相关文档 最新文档