文档库 最新最全的文档下载
当前位置:文档库 › 微分方程数值解(生物种群的相互竞争模型)

微分方程数值解(生物种群的相互竞争模型)

微分方程数值解(生物种群的相互竞争模型)
微分方程数值解(生物种群的相互竞争模型)

1.求微分方程的解析解, 并画出它们的图形, (1)y ’= y + 2x , y (0) = 1, 0

用matlab 编程如下: syms x y k

k=dsolve('Dy=y+2*x','y(0)=1','x') ezplot(k,[0,1]) 其结果和图像如下:

ans=-2*x-2+3*exp(x)

2. y ’’+y cos(x ) = 0, y (0)=1, y ’(0)=0; 用matlab 编程如下: syms x y z

z=dsolve('D2y+y*cos*(x)=0','y(0)=1','Dy(0)=0') ezplot('z')

其图像和结果如下:

z =cos(cos^(1/2)*x^(1/2)*t)

3.Rossler 微分方程组:

??

?

??-+=+=--=)('''c x z b z ay x y z y x

当固定参数b=2, c=4时,试讨论随参数a 由小到大变化(如a ∈(0,0.65))而方程解的变化情况,并且画出空间曲线图形,观察空间曲线是否形成混沌状? 用matlab 编程

建立rossler.m 文件: function r=rossler(t,x) global a; global b; global c;

r=[-x(2)-x(3);x(1)+a*x(2);b+x(3)*(x(1)-c)]; 建立exp4-3.m 如下: global a; global b; global c; b=2; c=4;

t0=[0,200];

for a=0:0.03:0.65

[t,x]=ode45('rossler',t0,[0,0,0]); subplot(1,2,1);

plot(t,x(:,1),'r',t,x(:,2),'g',t,x(:,3),'b');

title('x(红色),y(绿色),z(蓝色)随t 变化情况');xlabel('t'); subplot(1,2,2);

plot3(x(:,1),x(:,2),x(:,3))

title('相图');xlabel('x');ylabel('y');zlabel('z'); end

(1)当a=0时,图像如下:

所以当a=0时,(x,y,z)收敛于(0,0.5,0.5) (2)当a=0.12时,图像如下:

x(红色),y(绿色),z(篮色)随t 变化情况t

相图

z

当a=0.27时,(x,y,z)仍然收敛,但是收敛速度大大降低。 (3)当a=0.27时,图像如下

(4)当a=0.39时,图像如下

(5)当a=0.52时,图像如下

t

z

x(红色),y(绿色),z(篮色)随t 变化情况t

相图

z

x(红色),y(绿色),z(篮色)随t 变化情况t

相图

z

从这一系列变化的图像中可以看出,随着 a 的增大,(x,y,z)接近极限环的速度加快。

4.Apollo 卫星的运动轨迹的绘制

用matlab 编程如下: x0=[1.2;0;0;-1.04935751]; options=odeset('reltol',1e-8);

[t,y]=ode45('appollo',[0,20],x0,options); plot(y(:,1),y(:,3))

title('Appollo 卫星运动轨迹') xlabel('X') ylabel('Y') 绘图如下:

t

z

1133

12

13

3

12112()()2,2,

1/82.45,1,

(0) 1.2,(0)0,(0)0,(0) 1.04935751

x x x y x r r y y

y x y r r r r x x y y μμμμμμμμμ+-=+--=-+-

-

==-======-

5.盐水的混合问题

一个圆柱形的容器,内装350升的均匀混合的盐水溶液。如果纯水以每秒14升的速度从容器顶部流入,同时,容器内的混合的盐水以每秒10.5升的速度从容器底部流出。开始时,容器内盐的含量为7千克。求经过时间t 后容器内盐的含量。

做出如下假设:

1.假设在不同浓度的水中的盐扩散速度都相同。

2.假设任何时刻容器内的盐水都是均匀的。

3.用y (t )表示容器内t 时刻的盐的含量,用W (t )表示容器内t 时刻的水的总量,用O 表示盐水流出的速度,用I 代表纯水流入的速度,时间变化t ?后容器内盐的含量为y (t+t ?)。考虑在t ?内流出的盐水的为O t ?则其流出的盐为

t O t W t y ?)

()

(. 通过以上假设可以得如下模型:

t O t W t y t y t t y ?-

=?+)

()

()()( t

O I t W Odt t y t y dy t y )()()()()(0-+-

=+ 化简可得

t

O I t W O t y dt dy o )()()(-+-

= 使用MATLAB 求解:

syms x y z k;k=dsolve('Dy=-(y*Y)/(T(t0)+(C-Y)*t)','y(0)=7','t') 结果为:

(7*exp((O*log(W(t0)))/(I - O)))/exp((O*log(W(t0) + t*(I - O)))/(I - O)) 由题目可知W (t 0)=350,O=10.5,I=14,从而y(t)=7000000/(t + 100)^3。

6. 两种生物种群竞争模型

两种相似的群体之间为了争夺有限的同一种食物来源和生活空间而进行生存竞争时,往往是竞争力较弱的种群灭亡,而竞争力较强的种群达到环境容许的最大数量。假设有甲、乙

两个生物种群,当它们各自生存于一个自然环境中,均服从 Logistic

规律,即有

???

?

???-=-=)1()1(2222211111N x x x N x x x λλ

其中x 1(t), x 2(t)分别为两种生物种群在时刻t 的数量,λ1,λ2分别为其自然增长率,N 1,N 2是它们各自的最大容量。

当两个种群在同一个自然环境下生存时,乙消耗的同一自然资源对甲的增长产生了阻滞作用,设为

甲对乙的阻滞作用设为

由于生物种群的数量很大,可视为时间t 的连续可微函数。生物种群的相互竞争模型为

1)m 2(m 1)为种群乙(甲)占据甲(乙)的位置的数量,并且 m 2=αx 2; m 1=α2x 1。计算x 1(t),

x 2(t), 画出图形及相轨迹图。解释其解变化过程。

2)改变λ1,λ2, N 1, N 2, 而α1,α2不变,计算并分析结果;若α1=1.5,α2=0.7,再分析结果。由此能得到什么结论。 用matlab 编程:

建立logistic.m 文件: function l=logistic(t,x) r=[1 1]; n=[100 100]; m=[1.5 0.7];

l=[r(1)*x(1)*(1-x(1)/n(1)+m(1)/n(2));r(2)*x(2)*(1-x(2)/n(2)+m(2)/n(1))]; 建立exp4-8.m 文件: x0=[10 10]; t0=[0 10];

[t x]=ode45('logistic',t0,x0);

plot(t,x(:,1),'r',t,x(:,2),'b');xlabel('时间');ylabel('种群数量'); title('种群数量与时间的关系');

text(t(16),x(16,1),'\leftarrow 种群一的数量');

text(t(18),x(18,2),'种群二的数\rightarrow','HorizontalAlignment','right'); pause

2

12x N α1

21x N α1211111221222221(1)(1)x x x x N N x x x x N N λαλα?

=--????=--??

由上图可知,开始阶段,两个种群的数量都随时间而增长;随着时间的推移,种群数量达到饱和。两者数量基本持平,种群二略占优势。当时间足够长时,两者都将接近环境的最大容量。

改变参数,有以下实验结果

1.改变种群的增长率

r1=1,r2=0.5

r1=0.5,r2=1

由图可知,增长率改变,图形也改变,但最增长趋势不变。

2. 改变环境容量

n 1=100,n 2=50

n 1=50,n 2=100

当两个物种对应的环境容量改变时,随着时间的推移,两者依旧将趋向于环境的最大

容量n 1,n 2。

3. 改变α、β的值

α=1.5、β=0.7,β<α时,种群一灭绝。

课堂练习:

7.试用微分方程数值解分析传染病模型SIR 的相轨线趋势。

随机微分方程在物理学中的应用

科技大学 本科毕业论文 论文题目:随机微分方程在物理学中的应用院系:物理科学与技术学院 专业:应用物理 姓名:vvv 学号:0700000069 指导教师:xxx

二零一二年三月 摘要 牛顿和莱布尼兹创建了微积分学,为了描述机械动力学、天文学等领域的物理现象,建立了确定性的微分方程。确定性的微分方程在实际问题中有大量的应用。然而在研究实际物理现象的数学模型时,描述一个具体物理现象所用的一组数学方程不会是完全精确的。实际问题中不确定性因素大量存在且往往是问题的关键所在,不可忽视。由于二十世纪中叶大量的含有不确定性的实际问题的出现,以及对模型精确性要求和实际问题复杂性认识的不断提高,不确定性因素越来越多的被考虑到模型的建立中,这就在微分方程的基础上引入了随机因素,促使了随机积分的构建与发展,并在此基础上建立了随机微分方程的相关理论和方法。 随着科技的发展,随机微分方程越来越广泛地应用于模型的建立和分析中。本文针对物理学中存在随机性的特征,提取其中的数学本质,利用数学方法和策略,建立相应的随机微分方程,分析其中数学特征和数学机理,推导相关的公式和性质,通过分析来更好的理解物理学中的随机性问题。 关键词:随机微分方程;布朗运动;matlab模拟;

Abstract. Newton and Leibniz created calculus, in order to describe the mechanical dynamics, astronomy and other fields of physics, the establishment of a deterministic differential equation. Deterministic differential equations large number of practical problems in application. However, the actual physical phenomena in the study mathematical model to describe the physical phenomenon of a specific set of mathematical equations used to not be completely accurate. Practical problems of uncertainties abound and often the crux of the problem can not be ignored. Since the mid-twentieth century, a lot of uncertainty with the actual problems, and the accuracy of the model and actual problems requires understanding the complexity of continuous improvement, more and more uncertainty to the model to be considered in This is the basis of the differential equations introduced random factor

偏微分方程数值解期末试题及标准答案

偏微分方程数值解试题(06B ) 参考答案与评分标准 信息与计算科学专业 一(10分)、设矩阵A 对称,定义)(),(),(2 1)(n R x x b x Ax x J ∈-=,)()(0x x J λλ?+=.若0)0('=?,则称称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解 解: 设n R x ∈0是)(x J 的驻点,对于任意的n R x ∈,令 ),(2),()()()(2 000x Ax x b Ax x J x x J λλλλ?+-+=+=, (3分) 0)0('=?,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若n R x ∈0满足b Ax =0,则对于任意的x ,)(),(2 1)0()1()(00x J x Ax x x J >+==+??,因此0x 是)(x J 的最小值点. (4分) 评分标准:)(λ?的展开式3分, 每问3分,推理逻辑性1分 二(10分)、 对于两点边值问题:?????==∈=+-=0 )(,0)(),()('b u a u b a x f qu dx du p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ],[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈ 建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和Galerkin 形式的变分方程。 解: 设}0)(),,(|{11=∈=a u b a H u u H E 为求解函数空间,检验函数空间.取),(1b a H v E ∈,乘方程两端,积分应用分部积分得到 (3分) )().(),(v f fvdx dx quv dx dv dx du p v u a b a b a ==+=??,),(1 b a H v E ∈? 即变分问题的Galerkin 形式. (3分)

种群相互竞争模型

数学实验设计 课题: 两种群相互竞争模型如下: ()1(11)12()2(12)12x y x t r x s n n x y y t r y s n n ? =--??? ?=--?? 其中x (t ),y(t)分别是甲乙两种群`的数量,r1,r2为它们的固有增长率,n1,n2为它们的最大容量。s1的含义是,对于供养甲的资源而言,单位数量乙(相对n2)的消耗量为单位数量甲(相对n1)消耗的s1倍,对于s2也可做相应的解释。 分析: 这里用x (t)表示甲种群在时刻t 的数量,即一定区域内的数量。y(t)表示乙种群在时刻t 的数量。假设甲种群独立生活时的增长率(固有增长率)为r1,则x (t)/ x=r1,而种群乙的存在会使甲的增长率减小,且甲种群数量的增长也会抑制本身数量的增长,即存在种间竞争。这里,我们设增长率的一部分减少量和种群乙的数量与最大容纳量的比值成正比,与s1(s1表示最大容纳量乙消耗的供养甲的资源是最大容纳量甲消耗该资源的s1倍)成正比。另一部分的减少量和种群甲的数量与甲的最大容纳量的比值成正比。则我们可以得到如下模型: x(t)=r1*x*(1-x/n1-s1*y/n2)

同样,我们可以得到乙种群在t时刻的数量表达式:y(t)=r2*y*(1-s2*x/n1-y/n2) 如果给定甲、乙种群的初始值,我们就可以知道甲、乙种群数量随时间的演变过程。 对于上述的模型,我们先设定好参数以后,就可以用所学的龙格库塔方法及MATLAB 软件求其数值解; 问题一: 设r1=r2=1,n1=n1=100,s1=0.5,s2=2, 初值x0=y0=10,计算x(t),y(t),画出它们的图形及相图(x,y),说明时间t充分大以后x(t),y(t)的变化趋势(人民今天看到的已经是自然界长期演变的结局)。 编写如下M文件: function xdot=jingzhong(t,x) r1=1;r2=1;n1=100;n2=100;s1=0.5;s2=2; xdot=diag([r1*(1-x(1)/n1-s1*x(2)/n2),r 2*(1-s2*x(1)/n1-x(2)/n2)])*x; 然后运行以下程序: ts=0:0.1:10; x0=[10,10]; [t,x]=ode45(@jingzhong,ts,x0); [t,x] plot(t,x),grid,

常微分方程初值问题的数值解法

第七章 常微分方程初值问题的数值解法 --------学习小结 一、本章学习体会 通过本章的学习,我了解了常微分方程初值问题的计算方法,对于解决那些很难求解出解析表达式的,甚至有解析表达式但是解不出具体的值的常微分方程非常有用。在这一章里求解常微分方程的基本思想是将初值问题进行离散化,然后进行迭代求解。在这里将初值问题离散化的方法有三种,分别是差商代替导数的方法、Taylor 级数法和数值积分法。常微分方程初值问题的数值解法的分类有显示方法和隐式方法,或者可以分为单步法和多步法。在这里单步法是指计算第n+1个y 的值时,只用到前一步的值,而多步法则是指计算第n+1个y 的值时,用到了前几步的值。通过对本章的学习,已经能熟练掌握如何用Taylor 级数法去求解单步法中各方法的公式和截断误差,但是对线性多步法的求解理解不怎么透切,特别是计算过程较复杂的推理。 在本章的学习过程中还遇到不少问题,比如本章知识点多,公式多,在做题时容易混淆,其次对几种R-K 公式的理解不够透彻,处理一个实际问题时,不知道选取哪一种公式,通过课本里面几种方法的计算比较得知其误差并不一样,,这个还需要自己在往后的实际应用中多多实践留意并总结。 二、本章知识梳理 常微分方程初值问题的数值解法一般概念 步长h ,取节点0,(0,1,...,)n t t nh n M =+=,且M t T ≤,则初值问题000 '(,),()y f t y t t T y t y =≤≤?? =?的数值解法的一般形式是 1(,,,...,,)0,(0,1,...,)n n n n k F t y y y h n M k ++==-

微分方程数值解试题库2011(试题参考)

---------------------------------------------------------------------------------------------------------------------- 《常分方程数值解法》试题一及答案 ---------------------------------------------------------------------------------------------------------------------- 1.用欧拉法解初值问题???1 =060≤≤0--='2)() .(y x xy y y ,取步长 h =0.2.计算 过程保留4位小数。 解:h =0.2, f (x )=-y -xy 2.首先建立欧拉迭代公式 ),,k )(y x (y .y hx hy y )y ,x (hf y y k k k k k k k k k k k 21042021=-=--=+=+ 当k =0,x 1=0.2时,已知x 0=0,y 0=1,有 y (0.2)≈y 1=0.2×1(4-0×1)=0.800 0 当k =1,x 2=0.4时,已知x 1=0.2, y 1=0.8,有 y (0.4)≈y 2=0.2×0.8×(4-0.2×0.8)=0.614 4 当k =2,x 3=0.6时,已知x 2=0.4,y 2=0.614 4,有 y (0.6)≈y 3=0.2×0.614 4×(4-0.4×0.4613)=0.800 0 2.对于初值问题? ??1=0='2 )(y xy y 试用(1)欧拉法;(2)欧拉预报-校正公式; (3)四阶龙格-库塔法分别计算y (0.2),y (0.4)的近似值. 3.证明求解初值问题的梯形公式是 y k +1=y k +)],(),([2 11+++k k k k y x f y x f h , h =x k +1-x k (k =0,1,2,…,n -1),

微分方程数值解试卷

中国矿业大学2008~2009学年第 1 学期 《微分方程数值解法》试卷(B )卷 考试时间:100 分钟 考试方式:半开卷 学院 班级 姓名 序号 1、下面关于Euler 公式的结论哪些是正确的(打√)?哪些是错误的(打×)? (1)二阶方法;(2)一阶方法;(3)显式公式;(4)隐式公式;(5)是数值稳定的。 2、如果微分方程为,(0)1u tu u '==,则用Taylor 级数法求()u h 时,它的前两项为: 。 3、二阶差商 11 2 2i i i u u u h +--+近似二阶导数()i u x ''局部截断误差为 。 4、算术平均11 2 i i u u +-+近似函数值()i u x 的局部截断误差为 。 5、在课本P98差分方程(3.10)中,第二个方程的局部误差是什么? 。 6、函数空间0()C I ∞ 中函数满足什么性质? 。 二、(10分)求解常系数齐次差分方程21120,1,2, 1,1 i i i u u u i u u ++-+==?? =-=?的解。 三、(25分)已知数值解公式21132(2)m m m m m u u u h f f +++-+=- (1)写出与它们对应的特征多项式。 (2)这个多步法相容吗? (3)利用课本P47公式(2.66)求公式的局部截断误差的主项。 (4)讨论这个算法的零稳定性。 (5)求这个算法的绝对稳定区间。 四、(10分)试利用初值问题的数值解公式 11 11(,) (,)n n n n n n n n u u hf x u u u hf x u ++++=+?? =+? (1)构造一个PECE 预测校正系统;

常微分方程数值解

第四章常微分方程数值解 [课时安排]6学时 [教学课型]理论课 [教学目的和要求] 了解常微分方程初值问题数值解法的一些基本概念,如单步法和多步法,显式和隐式,方法的阶数,整体截断误差和局部截断误差的区别和关系等;掌握一阶常微分方程初值问题的一些常用的数值计算方法,例如欧拉(Euler)方法、改进的欧拉方法、龙贝-库塔(Runge-Kutta)方法、阿达姆斯(Adams)方法等,要注意各方法的特点及有关的理论分析;掌握构造常微分方程数值解的数值积分的构造方法和泰勒展开的构造方法的基本思想,并能具体应用它们导出一些常用的数值计算公式及评估截断误差;熟练掌握龙格-库塔(R-K)方法的基本思想,公式的推导,R-K公式中系数的确定,特别是能应用“标准四阶R-K公式”解题;掌握数值方法的收敛性和稳定性的概念,并能确定给定方法的绝对稳定性区域。[教学重点与难点] 重点:欧拉方法,改进的欧拉方法,龙贝-库塔方法。 难点:R—K方法,预估-校正公式。 [教学内容与过程] 4.1 引言 本章讨论常微分方程初值问题 (4.1.1) 的数值解法,这也是科学与工程计算经常遇到的问题,由于只有很特殊的方程能用解析方法求解,而用计算机求解常微分方程的初值问题都要采用数值方法.通常我们假定(4.1.1)中 f(x,y)对y满足Lipschitz条件,即存在常数L>0,使对,有 (4.1.2) 则初值问题(4.1.1)的解存在唯一. 假定(4.1.1)的精确解为,求它的数值解就是要在区间上的一组离散点 上求的近似.通常取 ,h称为步长,求(4.1.1)的数值解是按节点的顺序逐步 推进求得.首先,要对方程做离散逼近,求出数值解的公式,再研究公式的局部截

种群相互竞争的Matlab程序

两种群相互竞争模型如下: 1112 2221(1)(1)dx x y r x s dt n n dy y x r y s dt n n =--=-- 其中x(t),y(t)分别为甲乙两种群的数量,1r ,2r 为它们的固有增长率,1n ,2 n 为它们的最大容量。1s 的含义是,对于供养甲的资源来说,单位数量的乙(相对2n )的消耗为单位数量甲(相对1n )消耗的1s 倍,对2s 可以作相应解释。 经过计算,该模型无解析解,故用数值方法研究,为此提出以下问题: (1) 设r1=r2=1,n1=n2=100,s1=0.5,s2=2,初值x0=y0=10,计算x(t),y(t),画出 它们的图形及图(x,y ),说明时间t 充分大了以后x(t),y(t)的变化趋 势。 (2) 改变r1,r2,n1,n2,x0,y0,但s1,s2不变(或保持s1<1,s2>1),计算并分 析所得结果,若s1=1.5(>1),s2=0.7(<1),再分析结果。由此可以得到 什么结论,请作出解释。 (3) 试验当s1=0.8,s2=0.7时会有什么结果,当s1=1.5,s2=1.7时,又会有 什么结果。 模型求解: 程序如下: fun.m: function dx=fun(t,x,r1,r2,n1,n2,s1,s2) dx=[r1*x(1)*(1-x(1)/n1-s1*x(2)/n2);r2*x(2)*(1-s2*x(1)/n1-x(2)/n2)]; p3.m: h=0.1;%所取时间点间隔 ts=[0:h:30];%时间区间 x0=[10,10];%初始条件 opt=odeset('reltol',1e-6,'abstol',1e-9);%相对误差1e-6,绝对误差1e-9 [t,x]=ode45(@fun,ts,x0,opt,1,1,100,100,0.5,2);%使用5级4阶龙格—库塔公式计算%后面的参数传给fun,分别是r1,r2,n1,n2,s1,s2 [t,x]%输出t,x(t),y(t) plot(t,x,'.-'),grid%输出x1(t), x2(t)的图形 gtext('x1(t)'),gtext(' x2(t)'),pause plot(x(:,1),x(:,2),'.-'),grid,%作相轨线 gtext('x1'),gtext('x2'); 运行结果[t,x]为: ans = 0 10.0000 10.0000 0.1000 10.8805 10.7120 0.2000 11.8235 11.4454 0.3000 12.8309 12.1962 0.4000 13.9044 12.9595 0.5000 15.0453 13.7295 ……

常微分方程数值解法

第七章 常微分方程数值解法 常微分方程中只有一些典型方程能求出初等解(用初等函数表示的解),大部分的方程是求不出初等解的。另外,有些初值问题虽然有初等解,但由于形式太复杂不便于应用。因此,有必要探讨常微分方程初值问题的数值解法。本章主要介绍一阶常微分方程初值问题的欧拉法、龙格-库塔法、阿达姆斯方法,在此基础上推出一阶微分方程组与高阶方程初值问题的 数值解法;此外,还将简要介绍求解二阶常微分方程值问题的差分方法、试射法。 第一节 欧拉法 求解常微分方程初值问题 ?????==0 0)() ,(y x y y x f dx dy (1) 的数值解,就是寻求准确解)(x y 在一系列离散节点 <<<<

偏微分方程数值解复习题(2011硕士)

偏微分方程数值解期末复习(2011硕士) 一、考题类型 本次试卷共六道题目,题型及其所占比例分别为: 填空题20%;计算题80% 二、按章节复习内容 第一章 知识点:Euler法、向前差商、向后差商、中心差商、局部截断误差、整体截断误差、相容性、收敛性、阶、稳定性、显格式、隐格式、线性多步法、第一特征多项式、第二特征多项式、稳定多项式、绝对稳定等; 要求: 会辨认差分格式, 判断线性多步法的误差和阶; 第二章 知识点:矩形网格、(正则,非正则)内点、边界点、偏向前(向后,中心)差商、五点差分格式、增设虚点法、积分插值法、线性椭圆型差分格式、极值原理、比较定理、五点差分格式的相容收敛和、稳定性等; 要求: 建立椭圆型方程边值问题的差分格式, 极值原理; 第四章 知识点:最简显格式、最简隐格式、CN格式、双层加权格式、Richardson 格式、网格比、传播因子法(分离变量法) 、传播因子、传播矩阵、谱半径、von Neumann条件、跳点格式、ADI格式、线性椭圆型差分格式、极值原理、比较定理、五点差分格式的相容收敛和稳定性等; 要求: 建立抛物型方程边值问题的差分格式, 计算局部截断误差; 第五章 知识点:左偏心格式、右偏心格式、中心格式、LF格式、LW格式、Wendroff 格式、跳蛙格式、特征线、CFL条件等; 要求: 建立双曲型方程边值问题的差分格式, 计算局部截断误差; 第七章 要求: 会用线性元(线性基)建立常微分方程边值问题的有限元格式

三 练习题 1、 已知显格式21131()22 n n n n u u h f f +++-=-,试证明格式是相容的,并求它的阶。 P39+P41 2、用Taylor 展开原理构造一元函数一阶导数和二阶导数的数值微分公式。 提示:向前、向后和中心差商与一阶导数间关系,二阶中心差商与二阶导数 之间的关系 课件 3、用数值微分方法或数值积分方法建立椭圆型方程 2222(,),(,),u u f x y x y x y ??--=?∈Ω?? :01,01x y Ω≤≤≤≤ 内点差分格式。 P75+课件 4、构造椭圆型方程边值问题的差分格式. P101 (4)题 5、构建一维热传导方程220,(0)u u Lu a a t x ??=-=>??的数值差分格式(显隐格式等)。 参考P132-135相关知识点 6、设有逼近热传导方程22(0)u u Lu a f a const t x ??≡-==>??的带权双层格式 ()()1111111122(1)2k k j j k k k k k k j j j j j j u u a u u u u u u h θθτ++++-+-+-??=-++--+?? 其中[0,1]θ∈,试求其截断误差。并证明当2 1212h a θτ=-时,截断误差的阶最 高阶为24()O h τ+。 P135+P165+课件 7、传播因子法证明抛物型方程22(0)u u Lu a f a const t x ??≡-==>??的最简显隐和六点CN 格式稳定性。 P156+课件 8、对一阶常系数双曲型方程的初边值问题 0,0,0,0,(,0)(),0,(0,)(),0, u u a t T x a t x u x x x u t t t T φψ???+=<≤<<∞>?????=≤<∞??=≤≤?

常微分方程的数值解

实验4 常微分方程的数值解 【实验目的】 1.掌握用MATLAB软件求微分方程初值问题数值解的方法; 2.通过实例用微分方程模型解决简化的实际问题; 3.了解欧拉方法和龙格-库塔方法的基本思想和计算公式,及稳定性等概念。 【实验内容】 题3 小型火箭初始重量为1400kg,其中包括1080kg燃料。火箭竖直向上发射时燃料燃烧率为18kg/s,由此产生32000N的推力,火箭引擎在燃料用尽时关闭。设火箭上升时空气阻力正比于速度的平方,比例系数为m,求引擎关闭瞬间火箭的高度、速度、加速度,及火箭到达最高点的时的高度和加速度,并画出高度、速度、加速度随时间变化的图形。 模型及其求解 火箭在上升的过程可分为两个阶段,在全过程中假设重力加速度始终保持不变,g=s2。 在第一个过程中,火箭通过燃烧燃料产生向上的推力,同时它还受到自身重力(包括自重和该时刻剩余燃料的重量)以及与速度平方成正比的空气阻力的作用,根据牛顿第二定律,三个力的合力产生加速度,方向竖直向上。因此有如下二式: a=dv/dt=/m=/(1400-18t) dh/dt=v 又知初始时刻t=0,v=0,h=0。记x(1)=h,x(2)=v,根据MATLAB 可以求出0到60秒内火箭的速度、高度、加速度随时间的变化情况。程序如下: function [ dx ] = rocket( t,x ) a=[*x(2)^2)/(1400-18*t)]; dx=[x(2);a]; end ts=0:1:60;

x0=[0,0]; [t,x]=ode45(@rocket,ts,x0); h=x(:,1); v=x(:,2); a=[*(v.^2))./(1400-18*t)]; [t,h,v,a]; 数据如下: t h v a 000

偏微分方程数值解期末试题及答案(内容参考)

偏微分方程数值解试题(06B) 参考答案与评分标准 信息与计算科学专业 一(10分)、设矩阵A 对称,定义)(),(),(2 1 )(n R x x b x Ax x J ∈-= ,)()(0x x J λλ?+=.若0)0('=?,则称称0x 是)(x J 的驻点(或稳定点).矩阵A 对称(不必正定),求证0x 是)(x J 的驻点的充要条件是:0x 是方程组 b Ax =的解 解: 设n R x ∈0是)(x J 的驻点,对于任意的n R x ∈,令 ),(2 ),()()()(2 000x Ax x b Ax x J x x J λλλλ?+ -+=+=, (3分) 0)0('=?,即对于任意的n R x ∈,0),(0=-x b Ax ,特别取b Ax x -=0,则有 0||||),(2000=-=--b Ax b Ax b Ax ,得到b Ax =0. (3分) 反之,若 n R x ∈0满足 b Ax =0,则对于任意的 x ,)(),(2 1 )0()1()(00x J x Ax x x J >+ ==+??,因此0x 是)(x J 的最小值点. (4分) 评分标准:)(λ?的展开式3分, 每问3分,推理逻辑性1分 二(10分)、 对于两点边值问题:????? ==∈=+-=0 )(,0)() ,()(' b u a u b a x f qu dx du p dx d Lu 其中]),([,0]),,([,0)(min )(]),,([0min ] ,[1b a H f q b a C q p x p x p b a C p b a x ∈≥∈>=≥∈∈ 建立与上述两点边值问题等价的变分问题的两种形式:求泛函极小的Ritz 形式和 Galerkin 形式的变分方程。 解: 设}0)(),,(|{11 =∈=a u b a H u u H E 为求解函数空间,检验函数空间.取),(1 b a H v E ∈,乘方程两端,积分应用分部积分得到 (3分) )().(),(v f fvdx dx quv dx dv dx du p v u a b a b a ==+=??,),(1 b a H v E ∈? 即变分问题的Galerkin 形式. (3分)

随机微分方程2种数值方法的稳定性分析_邱妍

文章编号:1009-1130(2007)04-0035-04 随机微分方程2种数值方法的稳定性分析 邱妍,朱永忠 (河海大学理学院,江苏南京210098) 摘要:给出了求解随机微分方程的2种数值方法:有限差分法和向后Milstein法,基于随机微分方程的试验方程分析讨论了2种数值方法的均方稳定性和A!稳定性,得到了相应的稳定性条件和稳定域.最后应用MatLab进行模拟演示,模拟演示结果表明,有限差分法和向后Milstein法都全局一阶强收敛于随机微分方程的求解过程,并且验证了均方稳定理论的正确性. 关键词:随机微分方程;均方稳定;A!稳定;向后Milstein法;有限差分法 中图分类号:O241.8文献标识码:A 收稿日期:2007-06-19 作者简介:邱妍(1984-),女,江苏扬州人,硕士研究生,应用数学专业. 随机微分方程是针对物理、经济等领域中的随机现象而建立的数学模型,其理论研究和实际应用均取得了丰富而又成熟的成果.但在多数情况下随机微分方程与常微分方程类似,其解析解不易求出,因此,构造有效的数值方法进行数值求解显得十分重要.近20年来,随机微分方程数值计算方法不仅作为随机分析、微分方程数值分析的交叉研究方向得到了高度重视和发展,而且在自然科学以及工程领域得到了广泛的应用,但随机变量的存在给数值方法的构造和各种性质的研究带来了一定的难度.本文中作者在Milstein法的基础上建立有限差分格式,讨论了向后Milstein法[1]和有限差分法的均方稳定性和A!稳定性. 1求解随机微分方程的2种数值方法 考虑如下标量自治初值问题: dX(t)=f(X(t))dt+g(X(t))dW(t)X(0)=X0t∈[0,T"](1) 式中:参数t表示时间;指标集T是一个有限或无限区间,通常取为实轴或实轴上的一个区间;f(X)和g(X)是区间[0,T]上的连续可测函数,分别称为偏移系数和扩散系数;W(t)为标准Wiener过程,其增量"W(t)=W(t+h)-W(t),t+h∈[0,T],若步长h充分小,则ΔW(t)的均值和方差分别为 E"W(t"# )=0,E["W(t)]"$2=h为讨论2种数值方法的均方稳定性和A!稳定性,给出式(1)的2类试验方程,即 dX(t)=!X(t)dt+"X(t)dW(t) (2)dX(t)=!X(t)dt+#dW(t) (3) 式中:!,",#是常系数. 对于求解随机微分方程的数值方法,1974年,Milstein给出了以下差分格式[2]:Xn+1=Xn+f(Xn)h+g(Xn)"Wn+12 [g′g](Xn)[("Wn)2-h]n=0,1,…(4)并证明了该方法在均方意义下的收敛阶为O(h).本文在此基础上给出了2种数值方法:第1种为向后Milstein法,即将式(4)中偏移系数变为隐式;第2种为有限差分法,即将式(4)中的微分用有限差分代替.有限差分法是十分有用的,因为在通常情况下用式(4)求解随机微分方程(1)时需要对其中的g(Xn)求导,若g(Xn)的值是由试验得出的具体数据,则无法进行求导计算,而采用有限差分法将微分转化为差分,避免 第21卷第4期2007年12月Vo1.21No.4 Dec.2007河海大学常州分校学报JOURNALOFHOHAIUNIVERSITYCHANGZHOU

种群的相互竞争模型中数值计算与结果分析

河北大学《数学模型》实验实验报告 一、实验目的 1.学会编写程序段。 2.能根据m文件的结果进行分析。 3.根据图像进行比较和分析。 二、实验要求 8-1捕鱼业的持续收获 运行下面的m文件,并把相应结果填空,即填入“_________”。 clear;clc; %无捕捞条件下单位时间的增长量:f(x)=rx(1-x/N) %捕捞条件下单位时间的捕捞量:h(x)=Ex %F(x)=f(x)-h(x)=rx(1-x/N)-Ex %捕捞情况下渔场鱼量满足的方程:x'(t)=F(x) %满足F(x)=0的点x为方程的平衡点 %求方程的平衡点 syms r x N E; %定义符号变量 Fx=r*x*(1-x/N)-E*x; %创建符号表达式 x=solve(Fx,x) %求解F(x)=0(求根) %得到两个平衡点,记为: % x0=______________ , x1=___________ x0=x(2); x1=x(1);%符号变量x的结构类型成为<2×1sym> %求F(x)的微分F'(x) syms x; %定义符号变量x的结构类型为<1×1sym> dF=diff(Fx,'x'); dF=simple(dF) %简化符号表达式 %得 F'(x)=________________ %求F'(x0)并简化 dFx0=subs(dF,x,x0); %将x=x0代入符号表达式dF dFx0=simple(dFx0) %得 F’(x0)=_______ %求F’(x1) dFx1=subs(dF,x,x1) %得 F’(x1)=________ %若 E0,故x0点稳定,x1点不稳定(根据平衡点稳定性的准则); %若 E>r,则结果正好相反。 %在渔场鱼量稳定在x0的前提下(E

多种群的数学模型

自然界的多种群模型分析 小组成员:杨宏志 09053055 曾云霖 09053057 赵恒宇 09053060 目录 摘要第3页 关键词第3页 问题重述第3页 符号说明第4页 基本假设第4页 问题分析第4页 正文第5页 总结与思考第12页 参考文献第13页 (注:正文中包括对模型的建立,模型的具体检验,模型的改进,改进模型的检验以及问题的扩展深化。) 自然界的多种群模型分析

摘要:在我们生活的大自然中,有着太多太多的秩序和规则。种群之间的你争我斗,弱肉强食也是非常激烈。种群,顾名思义就是指同一种生物的一个集合。不同种群之间的关系大致分为四种:捕食与被捕食关系,互利共生关系,相互竞争关系和寄生与寄主关系。我们这次的建模就是围绕着种群之间的关系来展开的,下面我将从这几个方面来进行分类讨论,由于寄生与寄主的关系不是很常见,关系也比较简单,在此便不再赘述。 捕食与被捕食关系:这种关系很简单,大家也能很容易地理解,通俗地解释,就是指一种生物以另一种生物为食,举个例子大家也许会更容易地理解。比如说狼和羊的关系,狼是捕食者,羊是被捕食者,狼以羊为食,是羊的天敌。 互利共生关系:指两种生物共同生活在一个区域有助于提高另一种生物的种群密度,假如其中一种生物的数量减少,也会影响另一种生物的数量,使其数量减少。比如草地和森林优势植物的根多与真菌共生形成菌根,多数有花植物依赖昆虫传粉,大部分动物的消化道也包含着微生物群落,最典型的就是大豆与根瘤菌。大豆给根瘤菌提供养分,根瘤菌给大豆提供氮元素。 相互竞争关系:有种内和种间两种竞争方式。这里是指两种共居一起,为争夺有限的营养、空间和其他共同需要而发生斗争的种间关系。竞争的结果,或对竞争双方都有抑制作用,大多数的情况是对一方有利,另一方被淘汰,一方替代另一方。举个例子,牛和羊生活在共同的一片草地上,因为这两种生物都以草为食,它们之间不存在其他关系,所以它们之间是竞争关系。 以上就是三种种群之间的关系,下面我们就从这三个方面对物种种群密度的变化进行分析。在以下的讨论中我们将建立微分方程的数学模型,对生物多种群之间各种关系进行 关键词:生物种群,数量,关系,互相作用,竞争

常微分方程数值解法

i.常微分方程初值问题数值解法 常微分方程初值问题的真解可以看成是从给定初始点出发的一条连续曲线。差分法是常微分方程初值问题的主要数值解法,其目的是得到若干个离散点来逼近这条解曲线。有两个基本途径。一个是用离散点上的差商近似替代微商。另一个是先对微分方程积分得到积分方程,再利用离散点作数值积分。 i.1 常微分方程差分法 考虑常微分方程初值问题:求函数()u t 满足 (,), 0du f t u t T dt =<≤ (i.1a ) 0(0)u u = (i.1b) 其中(,)f t u 是定义在区域G : 0t T ≤≤, u <∞上的连续函数,0u 和T 是给定的常数。我们假设(,)f t u 对u 满足Lipschitz 条件,即存在常数L 使得 121212(,)(,), [0,]; ,(,)f t u f t u L u u t T u u -≤-?∈∈-∞∞ (i.2) 这一条件保证了(i.1)的解是适定的,即存在,唯一,而且连续依赖于初值0u 。 通常情况下,(i.1)的精确解不可能用简单的解析表达式给出,只能求近似解。本章讨论常微分方程最常用的近似数值解法-差分方法。先来讨论最简单的Euler 法。为此,首先将求解区域[0,]T 离散化为若干个离散点: 0110N N t t t t T -=<< <<= (i.3) 其中n t hn =,0h >称为步长。 在微积分课程中我们熟知,微商(即导数)是差商的极限。反过来,差商就是微商的近似。在0t t =处,在(i.1a )中用向前差商 10()()u t u t h -代替微商du dt ,便得 10000()()(,())u t u t hf t u t ε=++ 如果忽略误差项0ε,再换个记号,用i u 代替()i u t 便得到 1000(,)u u hf t u -= 一般地,我们有 1Euler (,), 0,1, ,1n n n n u u hf t u n N +=+=-方法: (i.4) 从(i.1b) 给出的初始值0u 出发,由上式可以依次算出1,,N t t 上的差分解1,,N u u 。

。随机微分方程的数值解读后感

随机微分方程的数值模拟算法的读后感 本文主要分为九个部分,对随机微分方程的数值模拟进行了介绍。这篇文章建立在MATLAB程序的基础上,主要包过随机积分、欧拉—丸山法、米尔斯坦法,强弱收敛性、线性稳定性,随机链法则。 第一部介绍了随机微分方程的应用领域,研究需要的背景知识,以及下面几部分的研究你内容和参考文献介绍。 第二部分介绍了布朗运动和计算布朗路径。首先规定了满足布朗运动的三个条件;然后用随机号码发生器通过for循环或randn(1.N)创建一维数组来模拟布朗路径;最后找出通过1000点布朗路径的函数,并与五个独立路径对比。同时也为下面的研究作铺垫。 第三部分我们验证了关于布朗运动的积分并说明了与Ito积分与斯特拉托诺维奇积分的不同点。我们通过两种黎曼和来类比的得到ito积分和斯特拉托诺维奇积分。同时也给出了他们两个的区别,最后给出精确估计随机积分的办法。 第四部分叙述了欧拉—丸山法怎样模拟随机微分方程的。首先引入自治标量的随机微分方程的积分式,通过变形,变量的重新定义得到EM法的表达式。后来通过一个在金融数学中资产价值的模型——毕苏期机定价模式的偏微分方程来进一步说明。 第五部分介绍了强弱收敛性概念,在数值上证明了欧拉—丸山的收敛区间[0.5,1]. 第六部分通过研究米尔斯坦方法来校正欧拉—丸山的收敛性,使强收敛性为1。从第一部分我们知道欧拉—丸山的收敛性为1时才起决定性作用,但是前面满足条件的值是0.5。这一部分就通过米尔斯坦高阶法用在随机增量增加修正值的办法使收敛性为1。 第七部分介绍两种不同的线性稳定性,进而强调随机分析不同与基本定积分。稳定性部分理论是依据变量趋于无穷条件子啊拟合的数值结果,这种数值方法应用于一些定性描述的问题上的,这种方法重现部分性质的能力也是可以分析的。关于稳定性的度量这里只考虑两种,均方数和渐进性。我们通过matlab编程改变参数值和步长来观察均方稳定性和渐进稳定性,最后得到参数和步长变化所对应的不同稳定性的区域。 第八部分引出并证明随机链法则。在第三部分我们发现不只是一种办法可以对随机函数的积分的扩展,这种办法有点像黎曼积分的链式法则,然后对以前的式子进行改进,然后通过matlab编程实现。 第九部分对重要结论简要的叙述。同时指出了一些不足,如没有讨论许多额外的条件,仅仅为了能产生我一定结果,没有提及到随机微分方程和有时间决定的偏微分方程之间的联系,没有注意到标量问题等。 通过这篇文章的学习使我对随机过程有了一定了解,对matlab软件有了更深的认识。同时通过查阅专业数学字典和相关文献使我对专业英文论文的阅读能力有一定的提高。我相信一个暑假的努力对我以后研究生的会有很大的帮助的。 朱园珠 2011年9月1日

微分方程数值解习题(李立康)

常微分方程习题 《李立康》 习题 1.用Euler 方法求初值问题 ? ? ?=-='0)0(21u tu u 在1=t 时的近似解(取4 1= h )。 2.初值问题 1 3 00 u u u()??'=? ?=? 有解32 23/u(t )t ?? = ? ?? 。但若用Euler 方法求解,对一切N T ,和H T h = ,都只能得到N t u t ,...,2,1,0==,试解释此现象产生的原因。 3.用Euler 方法计算 ?? ?=='1 )0(u u u 在1=t 处的值,取16 1 和41= h ,将计算结果与精确值e =)1(u 相比较。 4.设),(u t f 满足定理2.1的条件,对改进Euler 法(2.10)式证明: (1)其局部截断误差为)()(12 43 h O t u h -'''- ; (2)当1

?? ?=='1 )0(u u u 计算公式 m m h h u ??? ? ??-+=22 取4 1 = h 计算)1(u 的近似值,并与习题3的结果比较。 6.就初值问题 ?? ?=+='0 )0(u b at u 分别导出用Euler 方法和改进Euler 法求近似解的表达式,并与真解 bt t a u += 22 相比较。 7.证明改进Euler 法的绝对稳定区域是整个左半平面0)Re(

倒向随机微分方程的数值方法及其误差估计(精)

倒向随机微分方程的数值方法及其误差估计 倒向随机微分方程(BSDE)是一个相对比较新的研究方向。1973年Bismut[9]研究的线性形式可以看作是著名的Girsanov定理的推广。非线性BSDE的概念是由Pardoux和Peng[60]在1990年引入的。Duffie和Epstein[28]于1992年独立引入经济模型中的随机微分效用概念,也可以看作某些特殊的BSDE的解。从那以后,关于BSDE的很多理论和应用结果得到了发展,其中包括:反射倒向随机微分方程、正倒向随机微分方程、偏微分方程与倒向随机微分方程的联系、随机控制、数理金融、非线性期望和非线性鞅论、递归效用和风险敏感效用以及随机微分几何等。在El Karoui和Mazliak[30],Ma和 Yong[5l],Yong和zhou[86]写的书以及综述论文El Karoui,Peng和Quenez[33]中,详细介绍了BSDE的理论和在数理金融和随机控制中的应用。倒向随机微分方程的存在唯一性意味着我们能够明确的解决现在应怎样去做以实现一个给定的将来目标。但是对于一个具体的倒向方程如何算出它的解来对一般情况而言仍是一个未解决的问题。在实际应用中能够显式解出的BSDE是很少见的,因此我们需要计算BSDE的数值解。相对于正向随机微分方程的数值解法,无论是从结果的丰富程度还是从算法实现的难易程度来看,BSDE都要落后很多。出现这 一问题不外乎有以下两个原因:首先,正向随机微分方程与倒向随机微分方程在结构上有本质的区别,从而倒向随机微分方程的数值方法不能完全套用正向随机微分方程已有的数值方法。其次,从应用的角度讲,正向随机微分方程考虑的是如何认识一个客观存在的随机过程,而倒向随机微分方程则主要关心在有随机干扰的环境中如何使一个系统达到预期的目标。在过去的十几年里,许多学者做出了很大的努力,在BSDE数值解法的研究中取得了一系列的成果。这些数值方法按照其求解原理可以划分为两大类:第一类方法主要通过数值求解与BSDE相对应的拟线性偏微分方程;另一类算法直接对随机问题按时间进行倒向计算。2006年,Zhao,Chen和Peng[89]提出了解BSDE的θ格式,该方法结合PDE数值解法的特点,使用随机的思想来解释高精度的差分方法,对BSDE进行时间空间离散,用Monte Carlo方法结合插值近似计算条件数学期望,在数值实验中得到了较好的结果。本文主要研究了BSDE的几种数值方法,在Zhao,Chen和Peng[89]的基础上,离散BSDE时用Gauss-Hermite积分替代Monte Carlo方法近似条件期望,并得到了θ格式的误差估计;提出了一种新的Crank-Nicolson格式并进行误差估计;对一种更高阶的Adams方法也提出了BSDE的离散格式且得到了格式的收敛误差。下面我们列出本文的主要结果。第一章:简要介绍本文中所讨论问题的背景及总体思路,介绍了BSDE,Feynman-Kac公式的基本概念,对BSDE已有的数值解法进行了简要的回顾总结。第二章:给出了BSDE(2-1)的θ格式的误差估计。证明了对一般的θ,格式一阶收敛,特别当θ=(?)时,格式二阶收敛。当 θ=1时,我们得到θ格式对(2-1)的适应解(y_t,z_t)一阶收敛。在θ=(?)的情形,我们还得到解z_t的误差估计。我们称下面两个解(?)的方程为离散 BSDE(2-1)的θ格式:对该格式的误差估计主要有下面的定理。定理2.1.假设2.1成立,令y_t和y~n分别是BSDE(2-1)和θ格式(2-12)的解,那么对足够小的时间步长Δt_n,我们有其中C是一个正常数,它仅依赖于T,φ和f导数的上界和(2-3)的解u(t,x)。定理2.3.假设2.1成立,令y~n(n=N,…,0)是θ格式(2-12)在θ=(?)时的解,y_t(0≤t≤T)是BSDE(2-1)的解,那么对足够小的时间步长Δt_n,我们有定理2.4.假设2.1成立,令(y~n,z~n)(n=N,…,0)是θ格式

相关文档
相关文档 最新文档