文档库 最新最全的文档下载
当前位置:文档库 › 非线性波浪变形计算的三维边界元方法

非线性波浪变形计算的三维边界元方法

非线性波浪变形计算的三维边界元方法
非线性波浪变形计算的三维边界元方法

波浪理论及其计算原理

第七章波浪理论及其计算原理 在自然界中,常可以观察到水面上各式各样的波动,这就是常讲的波浪运动。波浪是海洋中最常见的现象之一,是岸滩演变、海港和海岸工程最重要的动力因素和作用力。引起海洋波动的原因很多,诸如风、大气压力变化、天体的引力、海洋中不同水层的密度差和海底的地震等。大多数波浪是海面受风吹动引起的,习惯上把这种波浪称为“风浪”或“海浪”。风浪的大小取决于风速、风时和风区的太小。迄今海面上观测到的最大风浪高达34m。海浪造成海洋结构的疲劳破坏,也影响船舶的航行和停泊的安全。波浪的动力作用也常引起近岸浅水地带的水底泥沙运动,致使岸滩崩塌,建筑物前水底发生淘刷,港口和航道发生淤积,水深减小,影响船舶的通航和停泊。为了海洋结构物、驾驶船舶和船舶停靠码头的安全,必须对波浪理论有所了解。 当风平息后或风浪移动到风区以外时,受惯性力和重力的作用,水面继续保持波动,这时的波动属于自由波,这种波浪称为“涌浪”或“余波”。涌浪在深水传播过程中,由于水体内部的摩擦作用和波面与空气的摩擦等会损失掉一部分能量,主要能量则是在进人浅水区后受底部摩阻作用以及破碎时紊动作用所消耗掉。 为了研究波浪的特性,对所生成的波浪或传播中的波浪加以分类是十分必要的。 一般讲,平衡水面因受外力干扰而变成不平衡状态,但表面张力、重力等作用力则使不平衡状态又趋于平衡,但由于惯性的作用,这种平衡始终难以达到,于是,水体的自由表面出现周期性的有规律的起伏波动,而波动部位的水质点则作周期性的往复振荡运动,这就是波浪的特性。 波浪可按所受外界的干扰不同进行分类。 由风力引起的波浪叫风成波。 由太阳、月亮以及其它天体引力引起的波浪叫潮汐波。 由水底地震引起的波浪叫地震水波 由船舶航行引起的波浪叫船行波。 其中对海洋结构安全影响最大的是风成波。 风成波是在水表面上的波动,也称表面波。风是产生波动的外界因素,而波动的内在因素是重力。因此,从受力来看,风成波称为重力波。 视波浪的形式及运动的情况,波浪有各种类型。它们可高可低,可长可短。波可以是静止的一一驻波(即两个同样波的相向运动所产生的波),也可以是移动的——推进波(以一定的速度将波形不变地向一个方向传播的波),可以是单独的波,也可以是一个接一个的一系列波所组成的波群。§7-1 流体运动的基本方程

Java实现旋转矩阵算法。

矩阵旋转算法在计算机图形学中,是一种应用非常广泛的变换,是一种称为仿射变换的特殊变换,在仿射变换中的基本变换包括平移、旋转、缩放、剪切这几种。 首先要明确旋转在二维中是绕着某一个点进行旋转,三维中是绕着某一个轴进行旋转。二维旋转中最简单的场景是绕着坐标原点进行的旋转,我们看下面矩阵数组的旋转: 算法实现代码(可在线编辑运行实例,请点击最下方的阅读原文): public class Main { public void rotate(int[][] matrix) { if (matrix == null) return; int N = matrix.length; for (int i = 0; i < N / 2; i++) // This is the laxxxxyer for (int j = i; j < N - i - 1; j++) { // This is the offset to start

// swap int t = matrix[i][j]; matrix[i][j] = matrix[N - j - 1][i]; matrix[N - j - 1][i] = matrix[N - i - 1][N - j - 1]; matrix[N - i - 1][N - j - 1] = matrix[j][N - i - 1]; matrix[j][N - i - 1] = t; } } public static void main(String[] args) { int[][] matrix = { { 1 2 3 4 5 } { 6 7 8 9 10 } { 11 12 13 14 15 } { 16 17 18 19 20 } { 21 22 23 24 25 } }; for (int i = 0; i < matrix.length; i++) {/** from N o w J a v a . c o m **/ for (int j = 0; j < matrix[0].length; j++) System.out.print(matrix[i][j] + " "); System.out.print("\n");

波浪理论及工程应用的研究进展

波浪理论及工程应用的研究进展 近岸的波浪要素往往是多种波浪变形过程的综合结果,因而是十分复杂的。目前对波浪传播的研究方法主要有以下四种:理论分析方法、物理模型实验和现场观测、数学模型。 1、理论分析方法 应用流体力学的基础理论(运动方程、连续方程等)去解决海岸地区各种动力现象的内在联系及其对海岸泥沙的作用(海岸动力学课本,25页)。由于涉及因素的复杂性,许多问题没有从理论上圆满解决,需要今后进一步去探索研究。 由于波浪的频散性、非线性、随机性和三维性等特性,经典波动理论沿Stokes波型(具有完全频散特性的线性及非线性波)与Boussinesq型非线性长波(具有弱频散性的非线性波)这两种基本途径发展。 对于规则波的研究主要基于无粘性无旋重力表面波控制方程,对具体问题进行假定和简化,建立波浪运动的控制方程和定解条件(如微幅波理论、斯托克斯波理论以及浅水非线性波理论等),推导所研究问题的解析解,也为建立波浪数学模型提供依据。 对于不规则波(随机波)的研究方法主要有两种,分别是特征波法和谱方法。特征波法只能反映海浪的外在特征,不能说明其内部结构,海浪谱可以用来描述海浪的内部结构,说明海浪内部的构成及内在关系,谱方法在研究海浪方面的应用越来越广泛。 现阶段对波浪传播的理论研究大致集中在以下几个方面: (1)原有的波浪理论和波浪方程的描述方法多为欧拉法,着重于对整个波浪场形态的研究,现在越来越多的学者趋向于综合考虑拉格朗日法和欧拉法进行考虑,如波浪边界水质点的追踪以确定波浪传播的波形[1],使用拉格朗日法描述波浪形态[2],拉格朗日坐标下的波浪方程的解法研究等[3]。在这个方面台湾学者陈阳益的建树颇多。 (2)对已有波浪理论或者波浪传播控制方程进行数学方法上改进,如改善方程的边界条件,加入各种参数等[4] [5]。使原有的理论或方程的适用范围增大,模拟的结果更加精确等。 2、物理模型 物理模型和现场观测多利用统计学的方法来处理观测到的数据,以进行分析或者是拟合经验公式。实验室的研究与现场的调研在海岸动力学研究中有着特别重要的地位,许多现象本身就要通过实验室或现场的研究来解释,各物理因素间的关系需要通过这些研究来揭示,尤其是海岸泥沙运动方面,关于泥沙运动的关系式大多是经验或半经验的(海岸动力学课本25页:海岸泥沙运动涉及到流体和固体颗粒的两相运动,靠理论分析研究还不能彻底解决

三维有限元法计算过程

三维有限元法计算过程 三维有限元法的计算过程: 1)网格单元剖分; 2)线性插值; 3)单元分析; 4)总体刚度矩阵合成; 5)求解线性方程组等部分组成。 一、偏微分方程对应泛函的极值问题 矿井稳恒电流场分布示意图 主要任务是分析在给定边界条件下,求解稳定电流场的Laplace 方程或Poisson方程的数值解,即三维椭圆型微分方程的边值问题:

) ()((0)(0 )()()(000z z y y x x I F u n u n u F z u z y u y x u x Lu w D ---=???? ?????=+??=??=????+????+????≡ΓΓ+Γδδδγσσσ 上述微分方程边值问题等价于下面泛函的极小值问题: dS U dxdydz fU z U y U x U U J w D ?????Γ+Γ+ΓΩ +-??+??+??=222221 }])()()[(2{][γσσ 二、网格剖分 ∞1 ρi i h ρ......... ... 1、网格单元的类型 图2-5 网格单元类型 2、网格单元剖分原则及其步长选择 因此,网格内的单元剖分应按以下剖分原则 1)、各单元节点(顶点)只能与相邻单元节点(顶点)重合,而

不能成为其它单元内点; 2)、如果求解区域对称,那么单元剖分也应该对称; 3)、在场变化剧烈的区域网格剖分单元要密一些,在场变化平缓 的区域单元密度应小。 4)、网格单元体的大小变化应逐步过渡。 根据上述剖分原则,以x 、y 、z 坐标轴原点o 为中心,分别向x 、y 、z 方向的两侧作对称变步长剖分,距o 越远,步长应越大。常用的变步长方法有: c i x x i i )1(1+=?-?+ c x x i i =??+/1(i ≠0) c x x i i =?-?+1 1 1(i ≠0) 以上各式中c 为常数,1+?i x 、i x ?为同一坐标轴上相邻步长值。以x 方向为例,可知,x 正方向与负方向对称,只相差一负号。若令00=?x ,只要给出距原点最近节点的坐标1x ?,由上式即可求出其它相应的步长i x ?。同理可求得y 、 z 方向上的变步长i y ?、i z ?。 3、网格剖分方法 图2-6 平面内节点编号示意图

旋转变换(一)旋转矩阵

旋转变换(一)旋转矩阵 1. 简介 计算机图形学中的应用非常广泛的变换是一种称为仿射变换的特殊变换,在仿射变换中的基本变换包括平移、旋转、缩放、剪切这几种。本文以及接下来的几篇文章重点介绍一下关于旋转的变换,包括二维旋转变换、三维旋转变换以及它的一些表达方式(旋转矩阵、四元数、欧拉角等)。 2. 绕原点二维旋转 首先要明确旋转在二维中是绕着某一个点进行旋转,三维中是绕着某一个轴进行旋转。二维旋转中最简单的场景是绕着坐标原点进行的旋转,如下图所示: 如图所示点v 绕原点旋转θ角,得到点v’,假设v点的坐标是(x, y) ,那么可以推导得到v’点的坐标(x’, y’)(设原点到v的距离是r,原点到v点的向量与x轴的夹角是? ) x=rcos?y=rsin? x′=rcos(θ+?)y′=rsin(θ+?) 通过三角函数展开得到 x′=rcosθcos??rsinθsin? y′=rsinθcos?+rcosθsin? 带入x和y表达式得到 x′=xcosθ?ysinθ y′=xsinθ+ycosθ 写成矩阵的形式是: 尽管图示中仅仅表示的是旋转一个锐角θ的情形,但是我们推导中使用的是三角函数的基本定义来计算坐标的,因此当旋转的角度是任意角度(例如大于180度,导致v’点进入到第四象限)结论仍然是成立的。 3. 绕任意点的二维旋转 绕原点的旋转是二维旋转最基本的情况,当我们需要进行绕任意点旋转时,我们可以把这种情况转换到绕原点的旋转,思路如下: 1. 首先将旋转点移动到原点处 2. 执行如2所描述的绕原点的旋转 3. 再将旋转点移回到原来的位置

也就是说在处理绕任意点旋转的情况下需要执行两次平移的操作。假设平移的矩阵是T(x,y),也就是说我们需要得到的坐标v’=T(x,y)*R*T(-x,-y)(我们使用的是列坐标描述点的坐标,因此是左乘,首先执行T(-x,-y)) 在计算机图形学中,为了统一将平移、旋转、缩放等用矩阵表示,需要引入齐次坐标。(假设使用2x2的矩阵,是没有办法描述平移操作的,只有引入3x3矩阵形式,才能统一描述二维中的平移、旋转、缩放操作。同理必须使用4x4的矩阵才能统一描述三维的变换)。 对于二维平移,如下图所示,P点经过x和y方向的平移到P’点,可以得到: x′=x+tx y′=y+ty 由于引入了齐次坐标,在描述二维坐标的时候,使用(x,y,w)的方式(一般w=1),于是可以写成下面矩阵的形式 按矩阵乘法展开,正好得到上面的表达式。也就是说平移矩阵是 如果平移值是(-tx,-ty)那么很明显平移矩阵式 我们可以把2中描述的旋转矩阵也扩展到3x3的方式,变为:

波浪理论的计算方法

波浪理论的计算方法 1)第一浪只是推动浪开始 2)第二浪调整不能超过第一波浪起点 比率: 2浪=1浪0.5或0.618 3)第三浪通常是最长波浪,但绝不能是最短(相对1浪和5浪长度) 比率: 3浪=1浪1.618, 2或2.618倍 4)第四浪的调整不能与第一浪重迭(楔形除外) 比率: 4浪=3浪0.382倍。 5)第五浪在少数情况下未能超第三浪终点,即以失败形态告终 比率: 5浪=1浪或5浪=(1浪-3浪)0.382、0.5、0.618倍。 6)A浪比率: A浪=5浪0.5或0.618倍。 7)B浪比率: B浪=A浪0.382、0.5、0.618倍。 8)C浪比率: C浪=A浪1倍或0.618、1.382、1.618倍。 1、波浪理论基础 1) 波浪理论由8浪组成、1、3、5浪影响真正的走势,无论是下跌行情还是上升行情, 都在这三个浪中赚钱; 2) 2、4浪属于逆势发展(回调浪) 3) 6、7、8浪属于修正浪(汇价短期没有创新低或新高) 2、波浪理论相关法则 1) 第3永远不是最短的浪 2) 第4浪不能跌破第2浪的低点,或不能超过第2浪的高点 3) 数浪要点:你看到的任何一浪都是第1浪,第2浪永远和你真正的趋势相反; 4) 数浪规则:看到多少浪就是多少浪,倒回去数浪; 3、相关交易法则 1) 第3浪是最赚钱的一浪,我们应该在1、3、5浪进行交易,避免在2、4浪进场以 及避免在2、4浪的低点或者高点挂单,因为一旦上破或者下坡前期高点或者低点,则会出现发转,具体还要配合RSI和MACD指标进行分析;

4、波浪理论精华部分 1) 波浪理论中最简单的一个循环,或者说最小的一个循环为两浪循环,即上升浪或下跌浪+回调浪 2) 每一波上升浪或下跌浪由5个浪组成,这5浪中有两次2T确认进场; 3) 每一波回调浪由3个浪组成,这3浪中只有一次2T确认进场; 4) 波浪和移动均线共振时,得出进场做多、做空选择,同时要结合4R法则以及123法则进行分析 波浪理论图解 2011-10-21 19:14 每位投资者都希望能预测未来,波浪理论正是这样一种价格趋势分析工具,它根据周期循环的波动规律来分析和预测价格的未来走势。波浪理论的创始人——美国技术分析大师R.N.艾略特(1871~1948)正是在长期研究道琼斯工业平均指数的走势图后,于二十世纪三十年代创立了波浪理论。投资者一走进证券部就会看到记录着股价波动信息的K线图,它们有节奏、有规律地起伏涨落、周而复始,好像大海的波浪一样,我们也可以感受到其中蕴涵的韵律与协调。我们特别邀请到了研究波浪理论的资深专家杨青老师来与读者们一起“冲浪”。 1、基础课波浪理论在技术分析中被广泛采用波浪理论最主要特征就是它的通用性。人类社会经济活动的许多领域都遵循着波浪理论的基本规律,即在相似和不断再现的波浪推动下重复着自己。因为股票、债券的价格运动是在公众广泛参与的自由市场之中,市场交易记录完整,与市场相关的信息全面丰富,因此特别适于检验和论证波浪理论,所以它是诸多股票技术分析理论中被运用最多的,但不可否认,它也是最难于被真正理解和掌握的。专家导读:被事实验证的传奇波浪波浪理论的初次亮相极富传奇色彩。1929年开始的全球经济危机引发了经济大萧条,美国股市在1929年10月创下386点的高点后开始大崩盘,到 1932年仲夏时节,整个市场弥漫着一片绝望的气氛。这时,波浪理论的始作俑者艾略特给《美国投资周刊》主编格林斯发电报,明确指出长期下跌的走势已经结束,未来将会出现一个大牛市。当格林斯收到电报时,道琼斯30种工业指数已经大幅飙升,从邮戳上的时间看,电报就在道琼斯30种工业指数见底前两个小时发出。此后道琼斯指数在9周内上涨了100%,而且从此开始一路上扬。 但是波浪理论在艾略特生前却长期被人们忽视,直到1978年,他的理论继承者帕彻特出版了《波浪理论》一书,并在期货投资竞赛中运用波浪理论取得了四个月获利400%以上的骄人成绩后,这一理论才被世人广泛关注,并开始迅速传播。 2、波浪周期及实例解读 0 && image.height>0){if(image.width>=700){this.width=700;this.height=image .height*700/image.width;}}> 专家解读:五浪上升三浪下降组成完整周期一个完整的波动周期,即完成所谓从牛市到熊市的全过程,包括一个上升周期和一个下跌周期。上升周期由五浪构成,用1、2、3、4、5表示,其中1、3、 5浪上涨,2、4浪下跌;下跌周期由三浪构成,用a、b、c表示,其中a、c浪下跌,b 浪上升。与主趋势方向(即所在周期指明的大方向)相同的波浪我们称为推动浪,

三维旋转矩阵的计算

三维旋转矩阵的计算 旋转矩阵(Rotation matrix)是在乘以一个向量的时候有改变向量的方向但不改变大小的效果的矩阵。旋转矩阵不包括反演,它可以把右手坐标系改变成左手坐标系或反之。所有旋转加上反演形成了正交矩阵的集合。 在三维空间中,旋转变换是最基本的变换类型之一,有多种描述方式,如Euler 角、旋转矩阵、旋转轴/旋转角度、四元数等。本文将介绍各种描述方式以及它们之间的转换。 1. 旋转矩阵 用一个3阶正交矩阵来表示旋转变换,是一种最常用的表示方法。容易证明,3阶正交阵的自由度为3。注意,它的行列式必须等于1,当等于-1的时候相当于还做了一个镜像变换。 2. Euler角 根据Euler定理,在三维空间中,任意一种旋转变换都可以归结为若干个沿着坐标轴旋转的组合,组合的个数不超过三个并且两个相邻的旋转必须沿着不同的坐标轴。因此,可以用三个沿着坐标轴旋转的角度来表示一个变换,称为Euler角。旋转变换是不可交换的,根据旋转顺序的不同,有12种表示方式,分别为:XYZ、XZY、XYX、XZX、YXZ、YZX、YXY、YZY、ZXY、ZYX、ZXZ、ZYZ,可以自由选择其中的一种。对于同一个变换,旋转顺序不同,Euler角也不同,在指定Euler角时应当首先约定旋转顺序。 2.1 Euler角转化为旋转矩阵 不妨设先绕Z轴旋转γ,再绕Y轴旋转β,最后绕X轴旋转α,即旋转顺序为XYZ,旋转矩阵

3. 旋转轴/旋转角度 用旋转轴的方向向量n和旋转角度θ来表示一个旋转,其中 θ>0表示逆时针旋转。 3.1 旋转轴/旋转角度转化为旋转矩阵 设v是任意一个向量,定义

旋转矩阵

三维旋转矩阵 三维旋转特性 给定单位向量u和旋转角度φ,则R(φ,u)表示绕单位向量u旋转φ角度。 R(0,u)表示旋转零度。 R(φ,u)= R(?φ,?u)。 R(π+φ,u)= R(π?φ,?u)。 如果φ=0,则u为任意值。 如果0<φ<π,则u唯一确定。 如果φ= π,则符号不是很重要。因为- π和π是一致的,结果相同,动作不同。 由旋转矩阵求旋转角和旋转轴 每一个三维旋转都能有旋转轴和旋转角唯一确定,好多方法都可以从旋转矩阵求出旋转轴和旋转角,下面简单介绍用特征值和特征向量确定旋转轴和旋转角的方法。 将旋转矩阵作用在旋转轴上,则旋转轴还是原来的旋转轴,公式表示如下: Ru=u 转化得: Ru=Iu =>(R?I)u=0 可以确定的是u在R-I的零空间中,角度可有下面的公式求得,Tr表示矩阵的迹: Tr(R)=1+2cosθ 从旋转轴和旋转角求旋转矩阵 假设给定单位向量u=(u x,u y, u z) T ,并且u为单位向量即: u x2+u y2+u z2=1,给定绕u旋转的角度θ,可以得出旋转矩阵R: R=[cosθ+u x2(1?cosθ)u x u y(1?cosθ)?u z sinθu x u z(1?cosθ)+u y sinθ u y u x(1?cosθ)+u z sinθcosθ+u y2(1?cosθ)u y u z(1?cosθ)?u x sinθ u z u x(1?cosθ)?u y sinθu z u y(1?cosθ)+u x sinθcosθ+u z2(1?cosθ) ] 上面的公式等价于: R=cosθI+sinθ[u]×+(1?cosθ)u?u 其中[u]×是单位向量u的叉乘矩阵,?表示张量积,I是单位向量. 这是罗德里格斯旋转方程的矩阵表示。下面给出叉乘和张量积的公式:

三维有限元方法-为一种新型的研究方法,是利用数学的形式概括事件的各种条件和性能

三维有限元方法-为一种新型的研究方法,是利用数学的形式概括事件的各种条件和性能 三维有限元方法-为一种新型的研究方法,是利用数学的形式概括事件的各种条件和性能,并进行重复分析计算的研究方法。有限元数值模型分析技术将现代数学、力学的基础理论与有限元分析技术、计算机图形学和优化技术相结合,具有丰富、完善的单元库、材料模型库和求解器,可利用数值模拟技术高效求解各类结构动力、静力和线性、非线性问题。将其应用于骨科领域,可以更好的进行各种骨科生物力学分析,对各种生物力学强度进行数值模拟分析,较精确地掌握各点的受力情况,了解内部应力应变的分布规律,获得应力应变分布图等,从而更好的指导临床治疗。 学术术语来源—— 锁骨中段骨折修复:重建钢板前置与上置的生物力学差异 文章亮点: 1 文章结果显示,不论怎样的载荷条件,骨折断端均会存在一定的应力。而且,前置位和上置位不同内固定方式对骨折端愈合的影响方面不存在明显差别,但在骨折断端应力和内固定应力方面,前置位均显著大于上置位。即提示,较之上置位,前置位固定具有更明显的应力集中效应。 2 临床对锁骨中段骨折进行修复的过程中,利用不同重建钢板位置进行内固定修复会产生不同的生物力学情况。其中,较之重建钢板上置内固定,前置内固定修复效果更佳,是一种较为可靠的治疗方法。 3 文章仅对不同重建钢板位置的内固定效果进行了分析研究,并未考虑到不同骨折类型力学特性以及不同钢板类型等因素的影响。并在研究过程中假设螺钉为圆形杆,因此最终的研究结果可能存在导致内固定装置最大等效应力下降的情况,计算精确度存在一定的误差。另外,文章中对所使用的各种生物材料的力学特性均进行了假设,与客观情况存在较大的差异。因此,文章还存在一定的不足之处,还需要在今后的研究中不断予以完善,以提高研究结果的准确性和可信性,更好的为临床治疗提供可参考的依据。 关键词:

三维坐标变换

第二章三维观察 1.三维观察坐标系 1.1观察坐标系 为了在不同的距离和角度上观察物体,需要在用户坐标系下建立观察坐标系x v,y v,z v(通常是右手坐标系)也称(View Reference Coordinate)。如下图所示,其中,点p0(x o, y o, z0)为观察参考点(View Reference Point),它是观察坐标系的原点。 图1.1 用户坐标系与观察坐标系 依据该坐标系定义垂直于观察坐标系z v轴的观察平面(view palne),有时也称投影平面(projection plane)。 图1.2 沿z v轴的观察平面 1.2观察坐标系的建立 观察坐标系的建立如下图所示:

图1.3 法矢量的定义 观察平面的方向及z v轴可以定义为观察平面(view plane)N 法矢量N: 在用户坐标系中指定一个点为观察参考点,然后在此点指定法矢量N,即z v轴的正向。 法矢量V:确定了矢量N后,再定义观察正向矢量V,该矢量用来建立y v轴的正向。通常的方法是先选择任一不平行于N的矢量V',然后由图形系统使该矢量V'投影到垂直于法矢量N的平面上,定义投影后的矢量为矢量V。 法矢量U:利用矢量N和V,可以计算第三个矢量U,对应于x z轴的正向。 的指定视图投影到显示设备表面上的过程来处理对象的描述。2.世界坐标系 在现实世界中,所有的物体都具有三维特征,但是计算机本身只能处理数字,显示二维的图形,将三维物体和二维数据联系到一起的唯一纽带就是坐标。为了使被显示的物体数字化,要在被显示的物体所在的空间中定义一个坐标系。该坐标系的长度单位和坐标轴的方向要适合被显示物体的描述。该坐标系被称为世界坐标系,世界坐标系是固定不变的。

波浪理论与时间周期

波浪理论的时间周期来计算未来市场的转折点 如果知道在历史上某个商品期货的平均DELTA转折点,就能够提高预测转折点精确度。更进一步,以下问题…在什么位置,前后浮动两天,【预测的DELTA】有最高精确度?前后浮动三天呢?四天呢?如何评价每个转折点的精确度呢 输出标题表示它是ITD,并且给出你输入的日期。第一个作为例子被打印的商品是咖啡。它的转折点是三个。每个转折点旁有如下五列: 日期:这是转折点日期,它总是平日。(如果你输入星期日,星期六,将输出最近的平日)。 AR:特定转折点的精确度。17表示从这个转折点到所有前期出现这个点的距离是天。很显然,AR越小,转折点越精确。 *2:这是转折点出现在给定日期两天内的概率。 *3:这是转折点出现在给定日期三天内的概率。 *4:这是转折点出现在给定日期四天内的概率。

DELTA转折点有多精确? 经过观察25个商品市场超过200年的DELTA现象,其平均中短期波动如下: (1)51%的概率,DETLA转折点将出现在投影点两天内。 (2)68%的概率,DETLA转折点将出现在投影点三天内。 (3)81%的概率,DETLA转折点将出现在投影点四天内。 所有的ITD转折点的平均精确度(AR)是27。这意味着每个DELTA 转折点离预定日期的平均距离少于三天。我知道,宣称未来所有ITD 转折点将保持这个精确度,它听起来是难以相信的。我坚信这一点,因为我已经对超过200年的日线数据和超过300年的周线和月线数据,进行了研究。 精确度将会一直保持的原因,是市场跟随DELTA现象。DELTA现象是市场运动的根本原因。观察液体市场最明显,它虽然也在运动,但是更像是跟着DELTA转折点震荡。DELTA是市场运动的本质。 DELTA转折点的精确度,可以通过观察来改善。如果一个转折点出现的早,它可能被漏掉。但是,如果转折点出现的晚,它就不会被

有限元计算原理与方法..

1.有限元计算原理与方法 有限元是将一个连续体结构离散成有限个单元体,这些单元体在节点处相互铰结,把荷载简化到节点上,计算在外荷载作用下各节点的位移,进而计算各单元的应力和应变。用离散体的解答近似代替原连续体解答,当单元划分得足够密时,它与真实解是接近的。 1.1. 有限元分析的基本理论 有限元单元法的基本过程如下: 1.1.1.连续体的离散化 首先从几何上将分析的工程结构对象离散化为一系列有限个单元组成,相邻单元之间利用单元的节点相互连接 而成为一个整体。单元可采用各种类 型,对于三维有限元分析,可采用四 面 体单元、五西体单元和六面体 单元等。在Plaxis 3D Foundation 程序中,土体和桩体主要采用包 含6个高斯点的15节点二次楔 形体单元,该单元由水平面为6 节点的三角形单元和竖直面为四 边形8节点组成的,其局部坐标 下的节点和应力点分布见图3.1,图3.1 15节点楔形体单元节点和应力点分布界面单元采用包含9个高斯点的 8个成对节点四边形单元。 在可能出现应力集中或应力梯度较大的地方,应适当将单元划分得密集些;

若连续体只在有限个点上被约束,则应把约束点也取为节点:若有面约束,则应 把面约束简化到节点上去,以便对单元组合体施加位移边界条件,进行约束处理; 若连续介质体受有集中力和分布荷载,除把集中力作用点取为节点外,应把分布 荷载等效地移置到有关节点上去。 最后,还应建立一个适合所有单元的总体坐标系。 由此看来,有限单元法中的结构已不是原有的物体或结构物,而是同样材料 的由众多单元以一定方式连接成的离散物体。因此,用有限元法计算获得的结果 只是近似的,单元划分越细且又合理,计算结果精度就越高。与位移不同,应力 和应变是在Gauss 积分点(或应力点)而不是在节点上计算的,而桩的内力则可通 过对桩截面进行积分褥到。 1.1. 2. 单元位移插值函数的选取 在有限元法中,将连续体划分成许多单元,取每个单元的若干节点的位移 作为未知量,即{}[u ,v ,w ,...]e T i i i δ=,单元体内任一点的位移为{}[,,]T f u v w =。 引入位移函数N (x,y,z )表示场变量在单元内的分布形态和变化规律,以便用 场变量在节点上的值来描述单元内任一点的场变量。因此在单元内建立的位移模 式为: {}[]{}e f N δ= (3-1) 其中:12315[][,,......]N IN IN IN IN =,I 为单位矩阵。 按等参元的特性,局部坐标(,,)ξηζ到整体坐标,,x y z ()的坐标转换也采用 与位移插值类似的表达式。经过坐标变化后子单元与母单元(局部坐标下的规则 单元)之间建立一种映射关系。不管内部单元或边界附近的单元均可选择相同的 位移函数,则为它们建立单元特性矩阵的方法是相同的。因此,对于15节点楔 形体单元体内各点位移在整体坐标系,,x y z ()下一般取:

旋转矩阵和编程

旋转矩阵 一、数学推导 如何描述三维空间中刚体的旋转,是个有趣的问题。具体地说,就是刚体上的任意一个点P(x, y, z)围绕过原点的轴(i, j, k)旋转θ,求旋转后的点)',','(z y x P 。可以用下面的表达式表达: ???? ??????=??????????z y x R z y x ''' 那么绕x 、y 、z 轴旋转θ角的矩阵为: 那么绕x 轴旋转θ,绕y 轴旋转ω,绕z 轴旋转?的矩阵可以表示为: )()()(?ωθz y x R R R R ??= 二、代码实现 1、产生单个轴的旋转矩阵 Matrix3 RotateX(float angleX ) { Matrix3 mMatrix3; /* 将角度转换为弧度 */ angleX = angleX /(180/3.14159f); /* 绕x 轴的旋转矩阵 */ mMatrix3.m[0][0] = 1.0f;mMatrix3.m[0][1] = 0.0f;mMatrix3.m[0][2] = 0.0f; mMatrix3.m[1][0] = 0.0f;mMatrix3.m[1][1] = cos(angleX);mMatrix3.m[1][2] =-sin(angleX); mMatrix3.m[2][0] = 0.0f;mMatrix3.m[2][1] = sin(angleX );mMatrix3.m[2][2] = cos(angleX ); return mMatrix3; }

同理,按照以上原理可以很容易写出RotateX、RotateY、RotateZ。 2、旋转矩阵相乘 前面的步骤我们已经得到的三个旋转矩阵,为了得到旋转矩阵R,我们将Rx、Ry和Rz相乘,这里我按照矩阵相乘的法则写了两个3*3的矩阵相乘的函数。 /* 定义两个3*3的矩阵相乘 */ Matrix3 Matrix3Multiplication(Matrix3mMatrix1,Matrix3mMatrix2) { Matrix3 mResult; int i,j; /*按照矩阵相乘的法则进行计算*/ for(i=0;i<3;i++){ for(j=0;j<3;j++){ mResult.m[i][j] = mMatrix1.m[i][0]*mMatrix2.m[0][j] + mMatrix1.m[i][1]*mMatrix2.m[1][j] + mMatrix1.m[i][2]*mMatrix2.m[2][j]; }} return mResult; } 通过这个函数我们可以得到绕任意轴的旋转矩阵: /* 通过给定绕XYZ轴的量产生旋转矩阵 */ Matrix3 Rotate(float angleX,float angleY,float angleZ) { Matrix3 m; /*依次按照绕x轴 y轴 z轴进行旋转 */ /* 相应矩阵变换为Rz*Ry*Rx */ m = Matrix3Multiplication(Matrix3Multiplication(RotateZ(angleZ),RotateY(angleY)), RotateX(angleX)); return m; } 3、得到旋转后的坐标 得到旋转矩阵后,P’就非常容易求解了,其本质就是一个3*3的矩阵和一个3*1的向量相乘的问题。得到一下代码: /* 给定旋转矩阵以及向量,返回旋转后的向量*/ Vector3 ComputeRotate(Matrix3mMatrix,Vector3vec){ Vector3 mResult;int j; for(j=0;j<3;j++){ mResult.v[j] = mMatrix.m[j][0]*vec.v[0] + mMatrix.m[j][1]*vec.v[1] + mMatrix.m[j][2]*vec.v[2]; } return mResult; }

非线性规划模型

非线性规划模型 在上一次作业中,我们对线性规划模型进行了相应的介绍及优缺点,然而在实际问题中并不是所有的问题都可以利用线性规划模型求解。实际问题中许多都可以归结为一个非线性规划问题,即如果目标函数和约束条件中包含有非线性函数,则这样的问题称为非线性规划问题。一般来说,解决非线性的问题要比线性的问题难得多,不像线性规划有适用于一般情况的单纯形法。对于线性规划来说,其可行域一般是一个凸集,只要存在最优解,则其最优解一定在可行域的边界上达到;对于非线性规划,即使是存在最优解,却是可以在可行域的任一点达到,因此,对于非线性规划模型,迄今为止还没有一种适用于一般情况的求解方法,我们在本文中也只是介绍了几个比较常用的几个求解方法。 一、非线性规划的分类 1 无约束的非线性规划 当问题没有约束条件时,即求多元函数的极值问题,一般模型为 此类问题即为无约束的非线性规划问题 1.1 无约束非线性规划的解法 1.1.1 一般迭代法 min f X 即为可行方向法。对于问题x R X0 给出f(x)的极小点的初始值X(0),按某种规律计算出一系列的X (k) (k 1,2,),希望点 阵{X(k)}的极限X就是f (x)的一个极小点。 由一个解向量X(k)求出另一个新的解向量x(k1) 向量是由方向和长度确定的,所以X(k1) X k k P k(k 1,2, ) 即求解k和P k,选择k和P k的原则是使目标函数在点阵上的值逐步减小,即 检验{ X (k)}是否收敛与最优解,及对于给定的精度0,是否|| f(X k1)|| 。 1.1.2 一维搜索法 当用迭代法求函数的极小点时,常常用到一维搜索,即沿某一已知方向求目标函数的极小点。一维

关于三维坐标转换参数的讨论

关于三维坐标转换参数的讨论 摘要:首先对坐标转换的物理意义进行解释,又把传统3个旋转角参数用反对称矩阵的3个元素代替,推出用3个和4个公共点直接计算转换参数的严密公式,在此基础上推导出严密的线性化公式。由于不用进行三角函数计算,只用简单加减乘除,也不用迭代计算,所以该模型计算速度快。 关键词:三维坐标转换;转换参数;转换矩阵;反对称矩阵;罗德里格矩阵 一、引言 三维直角坐标转换中,采用7参数Bursa2Wolf 模型、Molodensky 模型和武测模型[1 ] ,当在两坐标系统下有3 个公共点,就可惟一解算出7个转换参数;多余3个公共点时,就要进行平差计算,转换参数的初值(特别是旋转角) 的大小,直接影响平差系统稳定性和计算速度,有时使得解算的参数均严重偏离其值[2 ] 。随着移动测图系统(Mobile Mapping System ,简称MMS) 技术的成熟和应用,对运动载体(飞机、轮船、汽车等) 姿态的测量( GPS + INS) 也越来越多[3~5 ] ,任意角度的3 维坐标转换计算也越来越多。在平台上安装3 台或4 台GPS 接收机,来确定运动载体的位置和空间姿态,这时的旋转角可以说是任意的,取值范围是- 180°至180°,就需要准确计算转换参数模型,适应于任意旋转角的坐标转换。 本文在解释坐标转换的物理意义的基础上,导出3 维坐标转换7

参数直接计算的模型,以旋转矩阵的确定为核心,导出了3 点法和4 点法(两坐标系统下公共点数) ,用反对称矩阵和罗德里格矩阵性质推出的公式严密,该模型计算速度快。 二、三维坐标转换的物理意义和数学模型 1. 物理意义 如图1 所示,在两坐标系统下有4个公共点,在不同坐标系统内, 看成四面的刚体, 如图1(a) , (b)坐标转换的物理意义就是通过平移、旋转和缩放,使两个刚体大小和形状完全相同。具体过程是,设公共点1 为参考点,将图1 (b) 坐标轴和刚体平移,与对应的图1 (a) 刚体的点1 重合,如图1 (c) , 平移量为[ u v w ]T;然后以点1 为顶点,绕3 轴旋转,使两坐标系统的坐标轴平行, 以参考点为顶点的边重合,其他各边平行,两刚体是相似体,只是大小不同,如图1 ( d) ; 最后进行缩放, 使两刚体大小也相同。这样两坐标系统和3 个轴重合,原点统一,从而形成坐标系统转换。

CATIA有限元分析计算实例

CATIA有限元分析计算实例 11.1例题1 受扭矩作用的圆筒 11.1-1划分四面体网格的计算 (1)进入【零部件设计】工作台 启动CATIA软件。单击【开始】→【机械设计】→【零部件设计】选项,如图11-1所示,进入【零部件设计】工作台。 图11-1单击【开始】→【机械设计】→【零部件设计】选项 单击后弹出【新建零部件】对话框,如图11-2所示。在对话框内输入新的零件名称,在本例题中,使用默认的零件名称【Part1】。点击对话框内的【确定】按钮,关闭对话框,进入【零部件设计】工作台。 (2)进入【草图绘制器】工作台 在左边的模型树中单击选中【xy平面】, 如图11-3所示。单击【草图编辑器】工具栏内的【草图】按钮,如图11-4所示。这时进入【草图绘制器】工作台。 图11-2【新建零部件】对话框图11-3单击选中【xy平面】 (3)绘制两个同心圆草图 点击【轮廓】工具栏内的【圆】按钮,如图11-5所示。在原点点击一点,作为圆草图的圆心位置,然后移动鼠标,绘制一个圆。用同样分方法再绘制一个同心圆,如图11-6所示。 图11-4【草图编辑器】工具栏图11-5【轮廓】工具栏 下面标注圆的尺寸。点击【约束】工具栏内的【约束】按钮,如图11-7所示。点击选择圆,就标注出圆的直径尺寸。用同样分方法标注另外一个圆的直径,如图11-8所示。

图11-6两个同心圆草图图11-7【约束】工具栏 双击一个尺寸线,弹出【约束定义】对话框,如图11-9所示。在【直径】数值栏内输入100mm,点击对话框内的【确定】按钮,关闭对话框,同时圆的直径尺寸被修改为100mm。用同样的方法修改第二个圆的直径尺寸为50mm。修改尺寸后的圆如图11-10所示。 图11-8标注直径尺寸的圆草图图11-9【约束定义】对话框 (4)离开【草图绘制器】工作台 点击【工作台】工具栏内的【退出工作台】按钮,如图11-11所示。退出【草图绘制器】工作台,进入【零部件设计】工作台。 图11-10修改直径尺寸后的圆图11-11【工作台】工具栏 (5)拉伸创建圆筒 点击【基于草图的特征】工具栏内的【凸台】按钮,如图11-12所示。弹出【凸台定义】对话框,如图11-13所示。在【第一限制】选项组内的【长度】数值栏内输入50mm,点击对话框内的【确定】按钮,生成一个圆筒体,如图11-14所示。在左边的模型树上出现【填充器.1】元素。

第七章 波浪理论及其计算原理

第七章 波浪理论及其计算原理 在自然界中;常可以观察到水面上各式各样的波动,这就是常讲的波浪运动,它造成海洋结构的疲劳破坏,也影响船的航行和停泊的安全。波浪的动力作用也常引起近岸浅水地带的水底泥沙运动,致使岸滩崩塌,建筑物前水底发生淘刷,港口和航道发生淤积,水深减小,影响船舶的通航和停泊。为了海洋结构物、驾驶船舶和船舶停靠码头的安全,必须对波浪理论有所了解。 一般讲,平衡水面因受外力干扰而变成不平衡状态,但表面张力、重力等作用力则使不平衡状态又趋于平衡,但由于惯性的作用。这种平衡始终难以达到,于是,水体的自由表面出现周期性的有规律的起伏波动,而波动部位的水质点则作周期性的往复振荡运动。这就是波浪现象的特性。 波浪可按所受外界的干扰不同进行分类。 由风力引起的波浪叫风成波。 由太阳、月亮以及其它天体引起的波浪叫潮汐波。 由水底地震引起的波浪叫地震水波 由船舶航行引起的波浪叫船行波。 其中对海洋结构安全影响最大的是风成波。 风成波是在水表面上的波动,也称表面波。风是产生波动的外界因素,而波动的内在因素是重力。因此,从受力的来看;称为重力波。 视波浪的形式及运动的情况,波浪有各种类型。它们可高可低,可长司短。波可是静止的一一驻波(即两个同样波的相向运动所产生的波,也可以是移动的——推进波以一定的速度将波形不变地向一个方向传播的波),可以是单独的波,也可以是一个接一个的一系列波所组成的波群。 §7-1 液体波动理论 一、流体力学基础 1、速度场 描述海水质点的速度随空间位置和时间的变化规律的一个矢量。 ),,,(t z y x V V = 它的三个分量为: x 方向的量:),,,(t z y x u u = y 方向的量:),,,(t z y x v v = z 方向的量:),,,(t z y x w w = 2、速度势 对于作无旋运动的液体,存在一个函数,它能反映出速度的变化,但仅仅是反映速度大

有限元分析过程

有限元分析过程 有限元分析过程可以分为以下三个阶段:1.建模阶段: 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型——有限元模型,从而为有限元数值计算提供必要的输入数据。有限元建模的中心任务是结构离散,即划分网格。但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。2.计算阶段: 计算阶段的任务是完成有限元方法有关的数值计算。由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成。3.后处理阶段: 它的任务是对计算输出的结果惊醒必要的处理,并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是惊醒结构有限元分析的目的所在。注意:在上述三个阶段中,建立有限元模型是整个有限分析过程的关键。首先,有限元模型为计算提供所以原始数据,这些输入数据的误差将直接决定计算结果的精度;其次,有限元模型的形式将对计算过程产生很大的影响,合理的模型既能保证计算结构的精度,又不致使计算量太大和对计算机存储容量的要求太高;再次,由于结构形状和工况条件的复杂性,要建立一个符合实际的有限元模型并非易事,它要考虑的综合因素很多,对分析人员提出了较高的要求;最后,建模所花费的时间在整个分析过程中占有相当大的比重,约占整个分析时间的70%,因此,把主要精力放在模型的建立上以及提高建模速度是缩短整个分析周期的关键。原始数据的计算模型,模型中一般包括以下三类数据:1.节点数据: 包括每个节点的编号、坐标值等;2.单元数据:a.单元编号和组成单元的节点编号;b.单元材料特性,如弹性模量、泊松比、密度等;c.单元物理特征值,如弹簧单元的刚度系数、单元厚度、曲率半径等;d.一维单元的截面特征值,如截面面积、惯性矩等;e.相关几何数据3.边界条件数据:a.位移约束数据;b.载荷条件数据;c.热边界条件数据;d.其他边界数据.建立有限元模型的一般过程:1.分析问题定义在进行有限元分析之前,首先应对结果的形状、尺寸、工况条件等进行仔细分析,只有正确掌握了分析结构的具体特征才能建立合理的几何模型。总的来说,要定义一个有限元分析问题时,应明确以下几点:a.结构类型; b.分析类型; c.分析内容; d.计算精度要求; e.模型规模; f.计算数据的大致规律2.几何模型建立几何模型是从结构实际形状中抽象出来的,并不是完全照搬结构的实际形状,而是需要根据结构的具体特征对结构进行必要的简化、变化和处理,以适应有限元分析的特点。3.单元类型选择划分网格前首先要确定采用哪种类型的单元,包括单元的形状和阶次。单元类型选择应根据结构的类型、形状特征、应力和变形特点、精度要求和硬件条件等因素综合进行考虑。4.单元特性定义有限元单元中的每一个单元除了表现出一定的外部形状外,还应具备一组计算所需的内部特征参数,这些参数用来定义结构材料的性能、描述单元本身的物理特征和其他辅助几何特征等.5.网格划分网格划分是建立有限元模型的中心工作,模型的合理性很大程度上可以通过所划分的网格形式反映出来。目前广泛采用自动或半自动网格划分方法,如在Ansys中采用的SmartSize网格划分方法就是自动划分方法。6.模型检查和处理一般来说,用自动或半自动网格划分方法划分出来的网格模型还不能立即应用于分析。由于结构和网格生成过程的复杂性,划分出来的网格或多或少存在一些问题,如网格形状较差,单元和节点编号顺序不合理等,这些都将影响有限元计算的计算精度和计算时间。7.边界条件定义在对结构进行网格划分后称为离散模型,它还不是有限元模型,只有在网格模型上定义了所需要的各类边界条件后,网格模型才能成为完整的有限元模型。计算机几何建模方法㈠.几何模型的形式1.线框模型:用组成结构的棱边表示结构形状和大小的模型称为线框模型,或线架模型。它是使用最早的几何模型,其特点是数据量少、数据结构简单、算法处理方便,模型输入可以通过定义线段端点坐标来实现。但是这种模型有很大的局限性,它的几何描述能力差,只能提供一个框架,对几何形状的理解很容易产生多义性,也不能计算结构的重量、

相关文档
相关文档 最新文档