文档库 最新最全的文档下载
当前位置:文档库 › 电厂变频器低电压穿越改造方案汇总

电厂变频器低电压穿越改造方案汇总

电厂变频器低电压穿越改造方案汇总
电厂变频器低电压穿越改造方案汇总

****电厂

给煤机/空气预热器变频器低电压穿越改造方案

目录

一、火力发电厂给煤/粉机及空预器系统现状分析 (2)

二、网源协调对火电厂关键辅机变频器低穿能力要求 (4)

三、电厂关键辅机变频器低穿能力梳理核查 (6)

(一)厂用负荷分类 (6)

(二)厂用负荷继电保护动作特性 (6)

(三)厂用负荷变频器低穿能力要求原则 (7)

(四)低电压对现有厂用负荷的影响分析 (7)

四、技术改造方案 (9)

(一)大惯性类负荷变频器 (9)

(二)给煤机、给粉机类负荷变频器 (9)

(三)各种技术方案特点及对比分析 (12)

五、SCS-230火电机组辅机电源控制系统 ................................................. 错误!未定义书签。

(一)系统原理..................................................................................... 错误!未定义书签。

(二)系统特性..................................................................................... 错误!未定义书签。

(三)支撑方式..................................................................................... 错误!未定义书签。

(四)SCS-230火电机组辅机电源控制系统两种技术方案.............. 错误!未定义书签。

(五)检验方法..................................................................................... 错误!未定义书签。

(六)SCS-230火电机组辅机电源控制系统检测报告...................... 错误!未定义书签。

一、火力发电厂给煤/粉机及空预器系统现状分析

随着电力电子技术的发展,变频器以其调速精确、使用简单、保护功能齐全等优点逐步代替传统的调速控制装置而得到广泛应用。但由于电网电压不稳定,导致变频器在使用中产生了新的问题:变频器低压保护跳闸。低电压通常都是瞬时和短时的,对传统的控制系统影响较小,而对变频器则会产生低压保护跳闸导致电机停机,影响生产和安全。

目前,火电厂煤粉炉的给煤、给粉系统成为自动化程度最低的薄弱环节,特别是电厂内部控制给煤给粉机的变频器低电压保护跳闸问题,对电厂影响尤为严重。在实际使用过程中,因为电网发生低电压穿越或备自投切换时,厂用电电压瞬时或短时低于变频器低电压保护整定值(根据变频器型号不同该值也不同)时,给煤给粉机变频器低压保护会动作,并同时会给FSSS(锅炉安全监控系统)发出停止信号,引起MFT动作,而厂用电和给煤给粉机母线低电压保护整定值通常低于变频器低电压保护整定值,线路中的其它设备还在正常工作,变频器跳闸,迫使FSSS停炉,给电厂带来很大的经济损失,也成为现在电厂安全事故的高发区,同时也是目前电厂面临的比较大的问题,只有很好的解决该问题,才能保证电厂安全、可靠、高效的正常运行,避免停炉事故发生。

空气预热器电源系统由变频器和拖动电机组成。各种故障造成的电力系统电压跌落,导致空气预热器系统停运,进而造成发电机组停机脱网的恶劣事故。

分析空气预热器系统脱网的过程,与给煤给粉机变频相同主要有两个原因可诱发此问题:变频器功率回路(变频器动力部分)和控制电源(控制部分)。变频器的功率回路均由整流模块、直流环节、逆变模块组成,如下图所示。

图变频器结构示意图

变频器的进电端子(R/L1,S/L2,T/L3),经不控整流(TM1,TM2,TM3)到直流DC,再经过逆变(TM4,TM5,TM6)到U/T1,V/T2,W/T3交流,实现频率变换。当低电压发生时,R/L1,S/L2,T/L3电压变低,直流母线电压随之降低,无法提供逆变模块所需要的能量,触发变频器保护。此保护为变频器内置的硬件保护,无法通过修改定值进行规避。

在变频系统中,变频器并非独立运行,有相应的控制电路板、采样反馈系统、继电器和接触器与其配合工作,这些部件均需稳定的控制电源供电。电力系统发生低电压故障时,控制电源也会发生跌落,进而造成控制系统与继电器系统的瘫痪,变频器同样无法正常运行,导致给煤机、给粉机、空预器变频停止运行。

二、网源协调对火电厂关键辅机变频器低穿能力要求

发电机组低电压穿越的概念最早来源于风力发电,特指风力发电机并网点发生一定幅度、时间范围内的电压跌落时,风机机组维持运行不脱网,支持电网恢复,直到电网恢复正常。在我国,国家电网公司对风电场的低电压穿越能力提出了明确的要求。要求风电场内的风电机组,具有在并网点电压跌至20%额定电压时能够保证不脱网连续运行625ms的能力。与此同时,当风电场并网点电压在发生跌落后2s内能够恢复到额定电压的90%时,风电场内的风电机组应能够保证不脱网连续运行。

传统意义上认为火电或水电机组为可控发电能源,机组本身有励磁调节系统,在系统故障期间可稳定维持机端电压,因而不存在低电压穿越问题。但近年来,随着火电厂内部辅机变频器的大规模使用,全国各级电网均出现过电网发生瞬时电压波动引起机组跳闸的问题。发生以上事故的主要原因是辅机(特别是磨煤机、给煤机和引风机等)变频器不具备低电压穿越能力,当电网由于故障造成电压降低时,辅机变频器不能躲过系统保护隔离故障元件时间,而经由低压保护动作跳闸,进而造成机组跳闸或锅炉灭火。因此,火电厂辅机系统变频器不具备高、低电压穿越能力的问题已经成为威胁电厂主设备安全运行的重要隐患,若造成机组跳闸或出力大幅降低还将影响电网的稳定运行。东北电网公司于2011年首次于伊敏煤电公司组织召开了由五大发电集团公司相关派驻机构、东北各网省电力公司、东北电力设计院、东北各省电力设计院等单位参加的“东北电网火电厂辅机低电压穿越能力改造工作现场会”,参会各单位一致认为:应对火电厂辅机低电压穿越能力问题予以高度重视,必须立即着手限期加以彻底解决。2012年,国家电力调度控制中心专门下文对火电厂内变频器的低电压穿越能力进行核查,东北电网、西北电网、内蒙古电网等先后开展了区内火电厂低电压穿越性能核查与整改工作。

目前,给地区对火电厂关键辅机变频器低穿能力要求参照国网公司的《大型汽轮发电机组一类辅机变频器高、低电压穿越技术规范》技术条件执行(见下图):

1.变频器在进线电源电压跌落到不小于20%额定电压,持续时间不大于0.5s 的区域内,能够可靠供电,保障供电对象的安全运行;

2.变频器在进线电源电压跌落到不小于60%额定电压,持续时间不大于5s的区域内,能够可靠供电,保障供电对象的安全运行;

3.变频器在进线电源电压不小于90%额定电压时能够长期可靠供电,保障供电对象的安全运行;

4.变频器进线电压升高到不大于额定电压的1.3倍,持续时间不大于0.5秒,变频器应能够保障供电对象的安全运行。

三、电厂关键辅机变频器低穿能力梳理核查

(一)厂用负荷分类

厂用电负荷按生产过程中的重要性可分为三类:

一类负荷:短时停电可能影响人身或设备安全,使生产停顿或发电量大量下降的负荷。

二类负荷:允许短时停电,但停电时间过长,有可能损坏设备或影响正常生产的负荷。

三类负荷:长时间停电不会直接影响生产的负荷。

汽轮发电机组一次风机、二次风机、引风机、送风机、电动给水泵、凝结水泵,循环水泵、给煤机、给粉机、空气预热器、增压风机、空冷岛冷却风机等均属于一类负荷。

(二)厂用负荷继电保护动作特性

火电厂厂用继电保护装置对高压、低压厂用电动机负荷的保护设置中,涉及低电压保护特性。

根据《火力发电厂厂用电设计技术规定》(DL/T 5153-2002)相关要求:对于一类电动机负荷,当装有自动投入的备用机械时、或为保证人身和设备安全,在电源电压长时间消失后须自动切除时,均应装设9S-10S时限的低电压保护,动作于断路器跳闸。

为了保证接于同段母线的一类电动机自启动,对不要求自启动的二类、三类电动机和不能自启动的电动机装设0.5S时限的低电压保护,动作于断路器跳闸。

电动机负荷低电压保护定值

(三)厂用负荷变频器低穿能力要求原则

变频器的低电压穿越能力应根据电厂主设备及一类辅机设备能力、电网安全运行要求、变频器安全经济能效比等因素统筹兼顾来确定。

变频器的低电压穿越能力不应超越主设备和供电对象的能力,也不应束缚主设备和供电对象的能力,应在适当考虑变频器安全经济能效比的条件下,充分发挥变频器对电网安全的支撑能力。

根据上述原则,变频器低压穿越性能应与主机低压性能相配合,宜与电厂一类辅机的低电压保护定值相配合。

(四)低电压对现有厂用负荷的影响分析

1.厂用继电保护反应

根据现有的火电厂厂用电继电保护特性,在国网公司的《大型汽轮发电机组一类辅机变频器高、低电压穿越技术规范》文件中提到的“暂态低电压穿越区”、“动态低电压穿越区”的维持时间(0.5S、5S)小于继电保护动作时限(9S-10S),一类负荷的继电保护均不会动作跳闸。

2.二类、三类负荷

火电厂中厂用电的二类、三类负荷不对机组并网安全稳定运行造成直接威胁,不涉及低电压穿越问题,在此不做讨论。

3.无变频器一类负荷

电动机类负荷,低电压过程中出现微小波动,可以正常过度,实现低电压穿越。

4.有变频器一类负荷

(1)风机、水泵类大惯性负荷

在低电压穿越区内,变频器可短时中断输出保护自身设备,在电源恢复之后,当电动机仍在运转时,机组仍在运行时,可以跟踪电动机转速再启动(即所谓飞车启动功能)。从调研情况来看,高压变频器基本均带有此功能。

(2)给煤机、给粉机类负荷

在低电压穿越区内,会触发变频器保护闭锁,电机拖动皮带,惯性很小,电机瞬时停转,造成机组停机。如采用强制再启动,也会造成锅炉风煤配比失调,炉膛压力剧烈波动,存在爆炉风险。

四、技术改造方案

参照国网公司的《大型汽轮发电机组一类辅机变频器高、低电压穿越技术规范》技术条件,从应用角度对电厂用的变频器提出改造措施。

(一)大惯性类负荷变频器

电厂中应用的辅机变频器绝大部分属于此类,空气预热器、增压风机、凝结水泵、空冷岛冷却风机、引风机、送风机、一次风机、二次风机、给水泵、凝结水泵等设备的变频器均可以采用失压重启方法或降转速恒磁通方法v/f控制方法。

1.失压重启方法

对于大惯性负载,可采用动力电源部分采用失压重启方法,同时将变频器的控制电源接到 UPS电源。当低电压发生时,变频器可短时中断输出,对自身进行保护;在电源恢复之后,电动机仍在运转时,机组仍在运行时,可以跟踪电动机转速再启动。

2.降转速恒磁通 v/f控制方式

对于允许短时负载波动的应用,此类负载所使用的变频器,可以采用降转速恒磁通 v/f控制方式如允许降低转速,则用本方法可使传动设备在三相电压较大幅度暂态跌落期间继续运行。采用这种方法时必须考虑三相电压暂态跌落的最大幅值、扰动最长持续时间、生产过程中允许的转速降低的程度和负载特性。

(二)给煤机、给粉机类负荷变频器

给煤机、给粉机的变频器可以采用在变频器前端串联交流不间断电源(UPS)方法或外加并联直流电源方法。

1.在变频器前端串联交流不间断电源(UPS)方法

外加串联交流不间断电源 UPS采用这种方法可做到无干扰运行,但是受限于UPS的容量。

2.外加直流端外加电容或电池方法

外加变频器直流母线的电容或电池,增加对变频器内部直流母线的储能能力,提高变频器内部承受低电压的能力。

3.外加并联直流电源方法

在变频器直流母线上外加一路直流电源(直流稳压电源、蓄电池电源、电厂保安电源等),当外部扰动引起常用电源短时中断或短时电压降落时,外加直流电源继续供给变频器,不影响终端电动机的正常运行;当工频电源再度恢复正常供电时,变频器改为工频电源供电。

4.增设稳压电源方案

通过设置变频器低电压穿越电源装置,使其在系统低电压故障期间有效动作,保障变频器拖动系统的连续稳定运行,进而确保生产安全。

1)变频器低电压穿越电源装置构成

变频器低电压穿越电源拓扑如下图所示。

图系统拓扑示意图

该设备的主功率输入为系统三相交流电源,主功率输出一路或多路直流电源。

交流三相电源分为两路为变频器进行供电:一路为交流供电通路,可通过原有送电线路或设置旁路开关,将三相交流电直接送入变频器A/B/C三相交流输入端子;另一路为直流供电通路,三相交流电能经手动断路器QF1送入二极管整流桥TM1-3构成的整流回路,再经过电控开关KM1变换为直流电能并储存于电容C1和C2。电感L1与IGBT构成BOOST型式的升压斩波电路,可将C1/C2上的直

流电能变换为电压等级更高的直流电能储存于电容C3/C4,并经二极管防反回路和熔断器后,送入变频器的直流输入端子。电动开关KM1与电阻YR1构成预充电回路,当预充电结束之后闭合KM1,实现在装置初始上电时为电容C1/C2/C3/C4的平稳充电功能。

在现场改造施工中,变频器低电压穿越电源并接在系统三相380V电源与变频器之间,无需对变频器的配置、设置做任何改动,并可利用现场已铺设的电缆,无需新增任何电力线缆。

2)变频器低电压穿越电源工作原理

变频器低电压穿越电源装置的控制目标为在系统电压跌落时保证变频器及其拖动电机系统的转速、功率、转矩不变。其工作原理介绍如下。

装置挂网运行时,断路器QF1与电动开关KM1均处于闭合状态。

在系统电压正常的状态下,电能通过交流送电回路送入变频器交流输入端子,装置中的电力电子器件均处于旁路状态,不参与装置运行。

在系统电压发生跌落,进而造成C1/C2上整流得到的直流电压跌落时,装置内置的控制系统实时监测到此电压跌落趋势,将电感L1与IGBT构成的BOOST 斩波升压回路快速投入运行,保证在A/B/C三相电压跌落期间,C3/C4上的直流电压被举高,维持到可保证变频器输出功率、电机转矩、电机转速均不变的电压水平。

在系统电压跌落结束,系统电压恢复正常后,IGBT停止运行,BOOST回路退出工作状态,变频器的供电仍由三相交流送电回路提供。

装置中,交流送电通道与直流送电通道的切换由电力电子器件(SCR)完成,切换动作时间小于1ms,为无缝切换,对变频器的稳定运行不会造成冲击。

3)改造工程实施方案

根据现场应用需要,采取两部分措施。

措施一,直流动力电源改造。在变频器直流母线上,加设大功率变频器低电压穿越电源装置。维持原有变频器供电线路不变,为变频器低电压穿越电源装

置引入AC380V的交流动力电源。将变频器低电压穿越电源装置的直流输出接入变频器的直流母线。线路连接如下图所示,图中红色部分为工程接线部分,黑色为原线路予以保留。

图动力电源改造示意图

措施二,控制电源改造。将厂内备用UPS电源引入变频器控制柜,为控制柜中的控制器、接触器、继电器等器件提供控制电源。线路连接如下图所示。

图控制电源改造示意图

(三)各种技术方案特点及对比分析

1.失压重启及降速恒磁V/F

此类方法最大的优点是不用添加额外的硬件设备,只需在软件配置上适当调整即可(需要原变频器厂的配合)。但此两种方法使用只适用于大惯性负载的情况,对于给煤、给粉机等应用场合不适用。

2.加装UPS方案

在变频器前端串联交流不间断电源(UPS)方法可做到无干扰运行,但是受限于UPS的容量。如采用工业级大UPS,工程布线工作量将很大,而且需要为U

PS建造空调房,工程量大;如采用商用级小UPS,可靠性将远不如工业级大UPS。

3.连接直流保安电源方案

电厂的直流保安电源一般电压等级为DC110V或DC220V,而变频器的直流环节是DC540V,依然需要外加装置进行电压变化。

另外,电厂直流保安电源上连接都是电厂里的关键负荷,一旦低穿装置本身的输入短路或电源与装置的连接线路发生故障,将直接导致直流电源系统崩溃。

多台低穿装置连接在直流保安电源上,一旦发生低电压,多台变频器总容量对应的负荷会在瞬间切换到电池上,对直流电源造成巨大冲击,风险过大。

4.加装蓄电池组、电容组方案

在变频器直流环节上加装蓄电池组、电容组等储能器件也可以实现变频器的低电压穿越。该方案的优点是原理简单,缺点包括以下方面:

1)需配备安全要求极高的蓄电池室

蓄电池直流支撑解决方案的核心部件为蓄电池组,由于蓄电池对温度的敏感性,需配备温度可控的密闭蓄电池室安放蓄电池组。蓄电池组由大量蓄电池串联而成,蓄电池在充电或放电过程中会析出相当数量的氢气,同时产生一定的热量。氢气和空气混合能形成爆炸混合物,且其爆炸的上、下限范围较大,因此蓄电池室具有较大的火灾、爆炸危险性。对于存放蓄电池的房间,通风、控温要求极高,同时必须达到很高的防火、防爆安全等级。

2)现场施工量大

蓄电池直流支撑解决方案为集中供电式方案,蓄电池组及其电力电子设备配备安放在独立的蓄电池室中,由1台蓄电池直流支撑装置为多台给煤机变频器同时供电。现场改造时,需在蓄电池组与变频器间铺设长距离输电线缆和线缆桥架。用户除蓄电池装置费用,需承担线缆费用、桥架费用、施工费用,整体改造工程成本大幅提高。同时现场施工量较大,工期较长。

3)整体式供电解决方案,全系统瘫痪概率高

蓄电池直流支撑解决方案为集中供电式方案,这种方式下,任意一台给煤机

变频器发生故障、任意连接线缆发生破皮短路、蓄电池充电系统故障或蓄电池管理系统故障,都有可能触发蓄电池组的相关保护,引发蓄电池直流支撑装置退出运行,进而造成所有给煤机变频器集体丧失低电压穿越功能。在此情况下,若发生电力系统低电压故障,将会引发发电机组跳机的恶劣结果。

4)受运行温度限制大,运行寿命短,电池串联风险高

蓄电池直流支撑解决方案中,解决方案中的核心部件为蓄电池,其对于运行环境温度极为敏感。一方面,在低温环境下蓄电池会出现容量下降现象,严重时会出现整机失效;另一方面过高的环境温度会造成蓄电池整体寿命的下降。理论上环境温度每提高10℃,电池的使用寿命将减小50%。通常情况下,蓄电池标称的使用寿命均为25℃情况下评估得到的,而给煤机系统临近锅炉,其常态环境温度有可能达到50℃以上,以55℃计算,蓄电池的寿命将仅为理想情况的12.5%,通常小于一年,电池更换频率将极高。

同时,蓄电池直流支撑方案中,需240节以上蓄电池进行直接串联,远多于普通电厂内常备电源中蓄电池的串联个数。如此多的电池串联,将造成电池单体间电压的极度不均衡,进而体现为电池串的整体寿命和可靠性大幅度下降。

5)装置本体安全可靠性低

蓄电池直流支撑解决方案中,蓄电池平时多处于浮充状态,即其配备的充电机经常处于工作状态。充电机为电力电子装置,电力电子装置的运行故障率比电动机本体运行故障率高很多。蓄电池解决方案中的充电机的使用,将极大增加给煤机系统的故障率。

6)运行维护复杂

蓄电池直流支撑解决方案中,为保证蓄电池的寿命,需对蓄电池进行定期(通常3个月)的全充全放维护。此维护过程耗时较长,维护中需对给煤机系统进行人为切换电源,极易触发变频器的停机故障,给系统安全连续运行带来风险。同时,常规蓄电池支撑解决方案,不具备自检和故障自诊断功能,一旦发生故障,无法有效的上送故障报警信息,不利于现场故障的及时发现与排查。

5.稳压电源方案

1)更高的安全可靠性

保留原有送电线路或设置旁路开关作为旁路电路,在系统电压正常的情况下,装置工作于旁路模式,变频器由电力系统直接供电,电源变换模块部分处于休眠状态,不参与装置运行。由此降低装置中电力电子器件投入使用的工作时间,从而降低故障概率。

2)高效的定期自检与故障自诊断,免维护应用

装置采用免维护设计,其使用过程中无需工作人员对其进行任何操作和维护。该装置集成定期自检功能,对于自检中发现的问题,具备强大的故障自诊断功能,并可将故障诊断结果通过硬接点、通讯等多种方式上送至后台管理系统,方便故障的统计与记录。

3)宽温度范围,长运行寿命

核心部件为目前世界上最先进的第五代IGBT,其结温耐受能力达到150℃以上。装置整机的稳定运行温度范围可达到-20℃~+55℃。可实现各种恶劣工况下的长寿命运行。

4)分布式供电解决方案,提高系统整体可利用效率

可以为每台变频器配备独立的装置,任意一台变频器的故障均不会影响到其他变频器系统的安全运行,提高了系统整体的可利用效率与可靠性。同时在安装方式上,装置与变频器就近安装,最大限度的缩短了电缆连接线的长度,极大的降低了连接线路短路风险。

5)缺点:一是造价成本较高(但相较于各类储能电源方案并不居于劣势);二是不能解决零电压穿越问题。

6.建议

以上方案各有利弊,从网源协调要求角度出发,并考虑成本、布置、工程难度问题,建议对于惯性负荷,采用失压重启及降速恒磁V/F方式,对于给煤机类负荷,采用稳压电源方案有一定优势。

电厂变频器低电压穿越改造方案

****电厂 给煤机/空气预热器变频器低电压穿越改造方案

目录 一、火力发电厂给煤/粉机及空预器系统现状分析 (2) 二、网源协调对火电厂关键辅机变频器低穿能力要求 (4) 三、电厂关键辅机变频器低穿能力梳理核查 (6) (一)厂用负荷分类 (6) (二)厂用负荷继电保护动作特性 (6) (三)厂用负荷变频器低穿能力要求原则 (7) (四)低电压对现有厂用负荷的影响分析 (7) 四、技术改造方案 (9) (一)大惯性类负荷变频器 (9) (二)给煤机、给粉机类负荷变频器 (9) (三)各种技术方案特点及对比分析 (12) 五、SCS-230火电机组辅机电源控制系统 ................................................. 错误!未定义书签。 (一)系统原理..................................................................................... 错误!未定义书签。 (二)系统特性..................................................................................... 错误!未定义书签。 (三)支撑方式..................................................................................... 错误!未定义书签。 (四)SCS-230火电机组辅机电源控制系统两种技术方案.............. 错误!未定义书签。 (五)检验方法..................................................................................... 错误!未定义书签。 (六)SCS-230火电机组辅机电源控制系统检测报告...................... 错误!未定义书签。

凝结水泵变频改造与应用

凝结水泵变频改造与应用 【摘要】我公司热电车间的发电汽轮机现有两台4N6X-2抽凝式凝结水泵,由于该车间投产比较早,自动化程度比较低,除氧器和热井水位仍要依靠运行人员手动调节,不仅增加了工人的劳动强度,而且严重影响了机组的安全经济运行,针对这一问题,提出了其中一台凝泵由工频泵改为变频泵,补水由“除氧器式”改为“凝汽器式”,不仅提高了自动化程度,而且提高了经济效益。 【关键词】自动化;变频;安全;节能 1研发的必要性及意义 我公司热电车间的发电汽轮机装有两台4N6X-2抽凝式凝结水泵,由于投产时间早,自动化程度较低。凝结水泵是汽水系统中一个重要组成部分,它在凝汽器和除氧器之间,负责把经过汽轮机做功后的蒸汽在凝汽器凝结成的水,经过一系列设备输送到除氧器。现在所有电厂的凝结水泵都采用工频泵,汽水系统中有关凝汽器和除氧器的水位调节分别由化学补水调节阀和凝结水泵出口调节阀调节。除氧器和热水井水位仍要依靠运行人员手动进行调整。 凝结水泵属中低压冷水泵,其吸入侧为真空状态。机组设计一台运行,一台备用。现有凝泵维护量大,盘根易漏空气,导致真空低停机,并且以运行6年,效率低,耗电大。 为确保汽水工艺系统安全稳定运行,设计只用一台变频器控制一台泵,而另一台凝结水泵继续进行工频运行,用来防止变频器故障时备用投入,变频调速系统的自动调节控制部分采用PLC控制器。 2研发的主要内容 化学补充水由“除氧器式”改为“凝汽器式”的可行性计算,研究补充水的补入点及补充水量,若补水量过大,将无法将补充水中的含氧量降到要求值以下,造成凝结水含氧量超标,从而腐蚀凝结水管道;上述问题可采用合理的补水方式解决,我们采用雾化状态补水,扩大淋水面积,预计可得到较好的除氧效果,从凝汽器喉部补水,并使用喷嘴,强化补充水与排汽间的换热,使补充水易达到饱和,为气体从水滴中溢出扩散出来,创造了条件,同时,又防止出现补水沿着凝汽器内壁流动的现象。 3研究达到的目标及主要技术指标 1)总体设计目标 (1)将化学补充水由“除氧器式”改为“凝汽器式”,充分利用凝汽器的结构特性,最大限度地降低凝汽器的真空度。 (2)采用变频调速装置来控制凝结水泵(一工频一变频),实现除氧器和热水井水位的自动控制,使热水井水位保持在低位运行状态,并使除氧器保持稳定水位运行,达到高效除氧的目的。 2)主要技术指标 (1)保持凝汽器的真空是电厂节能的重要内容。 据估算,中小型机组真空每提高1%,机组功率可增加1%,煤耗下降1%,若一台6MW机组,以每年运行7000h计,每年可多发电42万kW.h,节约标煤210吨。 我们通过取证、分析,确定了水的补入状态应雾化从喉部补入,最好能形成一个“雾化带”。这样可以强化补充水与排汽间的换热,使补充水易达到饱和,为

凝结水泵电机变频改造方案

新疆宜化化工有限公司热电分厂凝结水泵电机变频改造方案 批准: 审定: 审核: 编制: 新疆宜化化工有限公司热电分厂 2019年06月

目录 一、工程简介 (2) 二、现状把握 (2) 三、改造原因 (3) 四、调研情况 (4) 五、整改方案 (4) 六、投资回报 (5) 七、施工要求 (5) 八、风险评估 (6) 九、补充说明 (6) 十、预期效果 (7)

新疆宜化化工有限公司热电分厂 凝结水泵电机变频改造方案 一、工程简介 工程名称:新疆宜化电厂凝结水泵电机变频器改造项目 建设地点:新疆昌吉州五彩湾工业园区新疆宜化化工有限公司热电分厂 工程性质:技改项目 二、现状把握 新疆宜化热电分厂2*330MW机组的四台凝结水泵电机目前采用工频运行方式,两台凝结水泵电机互为备用。凝结水泵为多级离心泵,设计流量为1021t/h,扬程为318m,运行时出口压力高,除氧器上水调门节流明显,尤其机组启动及低负荷阶段,需配合开启凝结水再循环调门控制出口压力,导致再循环管道振动及冲刷现象明显,目前我厂#1、#2机组凝结水系统已多次发生再循环旁路阀及阀后管道冲刷减薄泄漏事件,降低了机组运行安全可靠性。 电机铭牌:

高压变频器原理简述: 水泵轴功率与其转速的立方成正比,当电机转速从N1变到N2时,其电机轴功率P 的变化关系为:P2/P1=(N2/N1)3,即水泵转速略有降低功率便有较大幅度的下降,可见降低电机转速能得到立方级的节能效果。 交流电动机的转速公式n=60fp(p为电机极对数),即转速n与频率f成正比,通过改变电源频率即可改变电动机的转速,达到降低电机运行功率、节能目的。 变频器是一种使电动机变速运行进而达到节能效果的设备,目前广泛使用的高压变频器是一种串联叠加型高压变频器,即采用多台单相三电平逆变器串联连接,输出可变频变压的高压交流电。高压变频器本身由变压器柜、功率柜、控制柜三部分组成,三相高压电经高压开关柜进入,经输入降压、移相给功率单元柜内的功率单元供电,主控制柜中的控制单元通过光纤对功率柜中的每一功率单元进行整流、逆变控制与检测,根据实际需要通过操作界面进行频率的给定,输出可变频率、可变电压的电源来改变电机转速。 三、改造原因 3.1 电机采用工频的运行方式,存在以下问题: 3.1.1启动电流大:启动电流一般为4-7倍的电机额定电流,较大启动电流,不仅对电机、管道产生冲击,且影响同一母线上其他电气设备的正常运行。 3.1.2资源浪费:采用直接启动、工频运行方式,给水量不能随着季节、机组运行工况、负荷等变化自动调整流量、压力,经常出现水量供给过剩、设备超压运行等现象,造成资源浪费;而且运行中电机功率不可调,往往出力过剩,存在“大马拉小车”的现象,效率低下,造成电能浪费。 3.1.3自动化程度低:由于给水流量不能自动调节,调节给水量增加了许多繁琐的人工操作,增加了不安全隐患因素。

给煤机变频器低电压穿越装置安装、调试方案

给煤机、空预器变频器低电压穿越装置 安装、调试方案 批准: 复审: 初审: 编写: 河南检修电气专业 2012年07月13日

一、装置概况: 根据根据坑口公司电气专业要求,对1、2号炉14台给煤机8台空预器变频器安装变频器低电压穿越装置。 GLT-20A、B型变频器低电压穿越装置当电网电压正常时装置待机,电能通过交流旁路向变频器送电,BOOST升压回路处于旁路状态,不参与装置运行。当电网电压发生跌落时,BOOST升压电路以BOOST工作状态启动,保证到负载稳定的直流电压。 装置的运行模式下有两种工作状态:BOOST工作状态、非BOOST工作状态。BOOST工作状态是指在电网电源发生跌落时,BOOST升压电路可以提供变频器稳定的直流电压,维持变频器正常工作; 非BOOST工作状态是指在电网电源正常时,BOOST升压电路不参与装置的运行,电能通过交流旁路向变频器送电。 二、组织措施: (一)施工技术负责人:徐洪民 施工安全负责人:和占明 施工人员:和海涛李海龙等 施工上岗到位人员: 1、组织人员:徐洪民、和占明、张海明 2、参加人员:河南维护电气二次班人员

(二)人员责任分工: 1、徐洪民负责本次安装全面协调工作,负责技术方案审核并负有安全技术措施管理执行和完成落实责任。 2、和占明组织本专业全面检修与配合工作,对检修人员的安全负管理责任。 3、张海明负责检修工作过程中的技术监督工作,负责整体检修工作人员组织与协调工作。 一、施工安全措施 (一)、施工作业危险点分析 1、不办理工作票即开始工作,即无票工作,安全措施未落实,造成人身伤害、设备损坏。 2、进行拆接线时,发生人身触电。 3、误接线。 4、电缆勋伤 (二)、施工作业危险点预控措施 1、电气工作应按照规定办理电气工作票,严禁无票工作。 2、作业前工作负责人向工作班成员交待好作业危险点,现场使用的检修电源必需配臵合格的漏电保安器。 3、工作前要验电,确认设备停电并将盘内电源开关至于断开位臵后方可开始工作。 拆接线时应做好监护、拆接线应做好绝缘防护严防短路和接地,工作时要戴好线手套。

变频改造电气方案的优化 (终)

给水泵变频改造电气方案的优化 林永祥吴广臣瞿宿伟 上海电力修造总厂有限公司 摘要:目前电动给水泵变频改造技术日趋成熟,已有较多电厂已完成改造并投入运行,节能情况也十分理想。但是经了解,对于给水泵变频一拖二的情况,需要经过“二启二停” 才能实现倒泵,较为繁琐。针对这种情况,对电气方案进行深入研究,发现只需“一启一停”即可实现倒泵,为电厂变频运行提供了更简洁的优化方案。 关键字:给水泵变频改造电气方案一启一停优化 1.引言 近年来,随着电网容量的不断增加,用电峰谷差也逐步增大,需要机组调峰幅度相应增加,目前某某发电有限公司调峰幅度甚至超过50%,而作为全厂最大辅机设备的给水泵,虽然配置有液力耦合器调速,但电机在固定转速下随着给水泵输出转速的降低,给水泵组的效率也越来越低,给水泵耗电率一直居高不下,直接影响到全厂经济技术指标和节能效益,故此全电泵机组进行变频改造也应运而生。目前也已有较多电厂完成改造并投入运行,节能情况也较为理想,但是在经过与野马寨电厂、珲春电厂、双鸭山电厂的交流后也发现存在的一个问题,即对于电气改造一拖二的方案,需要经过“二启二停”,才能实现倒泵,较为繁琐。于是找出优化方案,为电厂解决难题成为我们一个新的课题。 下面通过对旧方案与优化方案的简介以及对比来进行介绍。 2.旧方案简介 2.1 高压变频调速装置的构成 对应单台给水泵配置一套高压变频调速装置,每套变频调速装置包括控制柜、单元柜、移相变压器柜、旁通柜,它们和电动机、给水泵及后台控制系统构成一套完整调速系统。2.2 给水泵变频一拖二方案的电气一次接线 给水泵变频一拖二方案的电气一次接线如下图。虚线框内设备,为实现给水泵变频一拖二方案增加的设备。

水泵深度变频节能改造分析

水泵深度变频节能改造分析 发表时间:2018-03-20T11:41:12.230Z 来源:《电力设备》2017年第29期作者:刘辉 [导读] 摘要:目前多数火力发电厂都采用“一拖一”“一拖二”方案对凝结水泵进行变频改造,对提高电厂经济性的同时也给凝结水系统的控制及操作提出了新要求。 (安徽晋煤中能化工股份有限公司安徽阜阳 236400) 摘要:目前多数火力发电厂都采用“一拖一”“一拖二”方案对凝结水泵进行变频改造,对提高电厂经济性的同时也给凝结水系统的控制及操作提出了新要求。本文以凝结水变频控制系统出发,并结合实际生产数据分析,提出凝结水泵变频调节系统节能改造的相关建议。 关键词:凝结水泵;变频运行;节能效果 1凝结水系统概述 凝结水泵是火电厂的重要辅机,其耗能在厂用电中占一定的比重。凝结水泵工频方式运行时耗能高、节流损失大、压力高,使凝结水系统的整体效率偏低。目前,大多数火电厂都对凝结水泵进行了变频改造,多采用“变频一拖一”“变频一拖二”运行方式,一般可节电30%左右,且设备运行可靠,可明显提高电厂的技术和经济指标,所以凝结水泵变频改造技术己成为电力行业广泛推广的节能项目之一。本文以华能营口热电厂凝结水泵的深度变频改造为例,分析其节能效果。 某厂两台330MW机组,每台机组配备3台50%容量的凝结水泵,2台运行1台备用,其中A泵采用“变频一拖一”控制,B,C泵采用“变频一拖二”控制,同时给水管道上配置了除氧器给水主调节阀和给水辅调节阀。凝结水泵采用抽芯式结构,部件可拆装更换,泵壳设计成全真空型。凝结水泵深度变频改造的同时也给凝结水系统的控制带来一系列的新问题: (1)改造后,水泵的保护、联锁及凝结水系统相关调节阀的控制回路都需要做改动和优化,保证在各种异常工况下泵及相关调节阀的正确动作,来维持凝结水位的稳定运行; (2)改造后,泵由变频控制,原有调节阀调节系统压力难以满足原有凝结水用户对压力的需求,所以必须根据机组的工况设定合适的压力,来满足整个系统安全性和经济性的要求。 2凝泵变频控制系统的改进 2.1凝泵变颓控制系统的改进 改造之前,低负荷运行时,一台凝结水泵运行,用再循环门的开度和加减补水量的方式来控制凝汽器水位;高负荷时,两台凝结水泵运行,用调整再循环门的开度和加减补水量的方式来控制凝汽器水位。 改造后,整个除氧器水位自动控制系统设计为典型的两段式控制,即两套控制回路,其中一套为凝泵出口母管压力控制回路,靠凝结水泵变频控制,其中母管压力设定值为机组负荷的折线函数;另一套为除氧器水位控制回路,由除氧器主、辅调节阀控制,并且控制方式采用了单冲量和三冲量。当凝结水流量大于350t/h时,凝结水泵需提高转速以满足系统需要,此时凝泵变频器投入水位自动控制,调节门自动切换为凝泵出口压力控制。由于除氧器容积较大,作为被调量的除氧器水位存在较大惯性,负荷增减过程中给水流量变化较大时有可能出现“虚假水位”现象,使得给水流量和凝结水流量的不平衡增大,延长了调节时间,故凝泵变频器调节除氧器水位设计三冲量控制回路以解决这一问题,主调节器调节除氧器水位,副调节器调节除氧器入口凝结水流量,同时将总给水流量作为副调节器的前馈信号。当凝结水流量发生扰动时,通过内回路的作用可以迅速消除:当给水流量发生扰动时,通过内回路的作用可以使凝结水流量迅速跟踪给水流量的变化。 2.2报泵变颇独制系统改进后调节手段 (1)机组启机自第一台凝结水泵启动至150MW负荷时,凝泵变频不得投自动,手动调整凝泵变频保持凝泵出口压力在1.OMPa以上,此时除氧器水位由除氧器水位主调阀投自动(除氧器辅调阀不能投自动)或手动调整保持。 (2)机组负荷大于150MW且凝结水流量大于350 tlh,两台凝结水泵均变频启动运行正常,进入凝汽器疏水扩容器的疏水门全部关闭后可考虑将凝泵变频器投入自动运行。 (3)凝泵变频器投入自动运行前,应检查凝泵出口压力给定值与凝泵出口实际压力基本相同,但不得小于0.70 MPao (4)凝泵变频器投入自动运行后应检查凝泵出口压力和除氧器水位平稳,无较大波动,除氧器水位主调阀和凝泵变频器自动调整正常,两台汽泵密封水压差在正常范围。 (5)机组负荷大于170MW,除氧器水位主调阀接近全开后,手动将除氧器水位辅调阀逐渐开启,以满足公司节能要求。 (6)机组正常运行凝泵定期轮换应在负荷低于250MW以下进行。先解除备用泵联锁,缓慢转移出力后停运一台运行泵,再变频启动备用泵,操作过程中注意保持凝泵出口压力稳定。 此次改造方案实施前凝结水泵虽采取变频运行,但出口压力不能降低很多,变频深度受到影响,正常运行除氧器水位调整门开度未能全部打开,存在节流现象,凝泵变频的节电优势没有很好发挥。为充分发挥凝泵变频运行的节能、节电潜力,为了充分体现价值工程,汽机、热工专业技术人员经过多次试验,并对数据进行分析,提出除氧器水位由凝结水泵变频控制的改造方案,经多专业密切配合,进行了现场实施。 3凝泵深度变频运行节能效果 制约凝结水泵变频改造节能效果的最主要因素是凝结水泵出口压力允许最低值,其是由众多凝结水用户共同决定的。最常见的凝结水用户为给水密封水、低压旁路减温水和低压缸轴封减温水等。 3.1报泵深度变翻运行效果 图1为机组负荷与凝泵出口压力关系曲线,根据试验结果看出,#1,#2机凝结水泵变频调节除氧器水位改造方案实施后,凝泵出口压力由最低的的1.2MPa降低至0.75MPa,由最高的2.1MPa降低至1.7MPa o

450kW水泵高压变频技术方案(1)

深圳瑞普泰科技节电有限公司辽阳石油化纤公司化工厂 (循环水泵、路灯) 技术方案 Technical Proposal 设备:变频器RPOWERT-HIVERT-Y06/061 路灯节电器RPOWERT-ZNLD 时间:2017年10月25日

第一部分:循环水泵 1. 概述 深圳瑞普泰科技节电有限公司是一家专业开发、生产各种负载节电器及高压大功率变频器的民营高科技企业。其变频器系列产品广泛应用于火力发电、城市供水、采油采矿、化工、冶金、水泥、造纸等领域,可实现对各类高压电动机驱动的风机、水泵、空气压缩机等负载的调速、节能、软启动和智能控制,综合效益十分显著。 深圳瑞普泰科技节电有限公司拥有国内一流的专业研发和管理队伍,员工中博、硕士比例约占20 %,约65 %的员工具有本科以上的学历。公司十分重视人才的培育和制度建设,力求使自己成为一支目标精准、反应迅速、高效务实、温馨和谐的团队。 精益求精的技术设计、稳定可靠的产品品质、独具优势的性价比率和先人后己的服务心态是深圳瑞普泰科技节电有限公司的经营特色和致胜法宝。深圳瑞普泰科技节电有限公司愿与国内外同行一道,共同致力于开创中国工业的绿色能源时代。 公司RPOWERT-HIVERT系列高压大容量变频器已于2003年3月通过国家电力科学研究院、国家电控配电设备质量监督检验中心等权威部门的严格测试。在质量保证体系方面,通过了ISO9001-2000认证。 RPOWERT-HIVERT变频器已有很好的运行业绩,得到了用户的认可,并在业界取得了不少国内客户青睐。 采用RPOWERT-HIVERT-Y系列高压变频器实现恒压供水,具有以下特点: ●优良的调速性能,可实现恒压供水,提高供水质量; ●良好的节能效果,可提高系统运行效率; ●实现电机软启动,减小启动冲击,降低维护费用,延长设备使用寿命; ●压力恒定,避免晚间流量小时压力过高而造成的管线损坏; ●减小跑、冒、滴、漏造成的损失; ●控制方便、灵活,自动化水平高,无须人工倒泵和调节阀门,减轻劳动强度; ●系统安全、可靠,确保负载连续运行; ●输入谐波含量小,不对电网造成污染; ●输出谐波含量低,适合所有改造项目的异步电动机,无须降容使用。 2. 用户条件及要求 贵厂现共装有主循环水泵三台,两用一备,并网运行,一台阀门全开,另一台阀门开度约52%。拟对阀门开度52% 的水泵进行变频改造,采用调速方式,实现供水,保证恒压。 3. 变频器选型及性能特性 根据电机容量,选用深圳瑞普泰科技节电有限公司自主研发和生产,适合驱动高压异步电动

高压变频器低电压穿越功能的实现49

高压变频器低电压穿越功能的实现 摘要:本文首先阐述了高压变频器设备现状,接着分析了高压变频器低电压穿越 治理系统, 最后对设备改造方案、实现方法、效果评价进行了探讨。通过近几年 新高压变频器系统的设计,实现了高压变频器的低电压穿越功能。 关键词:高压变频器;低电压穿越功能 引言: 电厂中,高压变频器用于拖动各类辅机,对于电厂的节能环保具有重要作用。由于电网电压不稳定,当高压变频器的输入电压过低时,会触发保护,从而导致 辅机停机,甚至引起机组停机,因此要求高压变频器具备低电压穿越的能力。 1设备现状 高压变频器跳闸主要有两个原因:变频器功率回路(变频器动力部分)和控 制回路(控制部分)。变频器的功率回路均由整流模块、直流环节、逆变模块组成。在变频系统中,变频器并非独立运行,有相应的控制电路板、采样反馈系统、继电器和接触器与其配合工作,这些部件均需稳定的控制电源供电。电力系统发 生低电压故障时,控制电源也会发生跌落,进而造成控制系统与继电器系统的瘫痪,变频器同样无法正常运行,导致高压变频停止运行。 2高压变频器低电压穿越治理系统 2.1高压变频器低电压穿越治理系统逻辑控制 控制单元输入信号:变频器运行状态接点信号;母线电压监测信号。输出信号:断路器、直流接触器的闭合断开信号。交流电压正常条件下低电压穿越治理 系统投入过程:变频器电源端送入正常电压,变频器受电,内部CPU准备运行,DCS或PLC控制设备送来启动指令;模拟控制4~20mA电流决定变频器拖动电机 的运行转速;等到系统正常运行后变频器状态接点闭合;低电压穿越治理系统控 制单元接收到变频器正常运行状态指令后,向执行单元发出合闸指令,这时该回 路在热备用状态;此次操作结束。变频器电源失电,控制单元给执行单元一个运 行信号,低电压穿越治理系统给变频器直流母线供电,此过程变频器运行不间断。变频器电源供电恢复时其直流环节的电压应立刻上升;执行单元撤出对变频器的 供电,变频器转为电源供电。母线电压未恢复,直流支撑系统给变频器供电时间 不小于10s。 2.2高压变频器低电压穿越治理系统工作流程 系统直流输出母线由晶闸管和直流压差控制系统控制,正常运行时与变频器 完全隔离。电网电压大于90%时,系统不工作,处于热备用状态。当电压跌落到0~90%范围内系统瞬时(<200μs)启动工作,维持变频器直流母线电压在 DC500V左右,保证变频器正常运行。当电网电压恢复时,系统自动退出工作状态,转为热备用状态,变频器自动转换由电网供电。当MFT动作或变频器停止运 行时,系统自动退出,转为热备用状态。 3设备改造方案 通常,变频器采用“交-直-交”工作模式,主要有变频器功率回路和控制电 源两部分。若要彻底解决变频器因电压低而跳闸的问题,就必须同时解决直流电 源支撑问题和控制电源问题。考虑到高压变频器负荷转矩特性,计划为高压变频 器加装低电压穿越电源装置。在系统发生低电压期间,低电压穿越装置输出稳定 直流,可靠提供高压变频器直流电源,同时提供可靠的控制电源,保障变频器拖 动系统的连续稳定运行。

高压变频器市场情况分析报告

高压变频器市场情况分析报告 一、高压变频器产品市场概述 高压变频器技术的发展历史较短。在中国,90年代后期高压变频器才开始在电力、冶金等少数行业得到应用,由于产品和技术都由国外厂商垄断,价格高昂,而且进口产品对我国电力运行环境的适应性较差,行业发展缓慢。2000年以后,国内企业的高压变频器技术和生产制造工艺得到了大幅提高,产品运行的稳定性和可靠性显著提升,产品生产成本也大幅下降,高压变频器行业开始进入快速发展时期,行业应用领域被大幅拓宽。 高压变频器总体竞争形势而言,目前仍然是国外品牌垄断高端市场,主要由西门子、ABB、日本三菱垄断,包括炼钢高炉等场合应用的超大功率(8000KW 以上)变频器,轧钢机、机车牵引等应用的特种变频器等,而中小容量产品的低端产品则是国产品牌占据优势。虽然国内品牌在高端市场的影响力及技术水平方面与国外品牌有一定差距,但以利德华福、合康变频为代表的领先品牌已不再满足于产品应用局限于中低端市场的情况,开始向大功率、超大功率等高端应用市场的进军。例如在2008 年11 月份,广州智光电气公司推出的7 000kV A级超大功率高压变频调速系统,将打破高压大功率变频调速系统长期被国外品牌“一统天下”的格局。该设备已通过国家电控配电设备质量监督检验中心检验,这意味着我国高压变频器市场将告别被外国品牌垄断的时代。且随着国内厂家的技术进步和质量稳定性的提升,加上服务和价格方面的优势,预计未来几年高端产品被国外厂家垄断的市场局面将有所改观。 国外高压变频器的技术开发起步早,目前各大品牌的变频器生产商,均形成了系列化的产品,其控制系统也已实现全数字化。几乎所有的产品均具有矢量控制功能,完善的工艺水平也是国外品牌的一大特点。目前,在发达国家,只要有电机的场合,就会同时有变频器的存在。 二、中国高压变频器预计市场规模 根据中国电机系统节能项目组在所著的“中国电机系统能源效率与市场潜力分析”中对于1999年中国分行业用电量与电动机装机容量和耗电量的详细调查分析,中国用电设备的总容量为3.73亿kW,其耗电量为9800亿kW时,占当年全国总用电量的81%;其中由电动机拖动的设备总容量为1.83亿kW,其耗电

水泵变频节能改造项目技术要求

一、能源机房冷却水泵变频改造 改造内容:将现有3台冷却泵的软启动控制柜更换为变频控制柜,并在冷却水回水管安装3套温度传感器和控制线,根据冷却水回水温度控制水泵运行频率。 控制功能:每台泵均配变频器,实现恒温变频控制。当冷却水回水温度低于27℃时水泵根据水温高低变频运转,使水温趋近27℃,变频运行时,通过设置合理的响应时间,避免水温频繁波动,同时设定一频率下限,避免冷却水断流。当水持续升高、超过27℃时,水泵以工频运行;在水温处于28℃-32℃区间时,继续使用现有的风机变频功能实现冷却水温度控制。 重点说明:现场调试时,由于新增冷却泵温度传感器与原风机温度传感器存在误差,需根据具体情况测试、修正,实现冷却泵、风机根据上述温度控制区间有序变频运行,达到冷却水系统的安全运行和节能运行要求。 待改造配电柜一览表 二、游泳馆水泵控制改造 改造内容:在地板采暖补水泵出口管道安装压力变送器,改造控制柜,在软化水箱中安装浮球式液位控制器,试现场情况安装敷设控制线,改造阀门、压力表、温度计等附件。 控制功能:补水泵出口管道压力为地板采暖二次水定压值,即静水压线。设定启泵压力为0.1Mpa、停泵压力为0.15Mpa,报警压力为0.9Mpa;采用10寸触摸屏plc控制柜,通过压力变送器实现2台补水泵自动启停及欠压报警功能。同时具备低软化水箱低水位自动停泵及报警功能,避免水泵损坏。 重点说明:2台补水泵功率为0.37kw,一用一备,实现自动轮换运行或手动选择开启;为便于调试、观察,压力变送器自身需具备压力显示功能;控制柜采用声光报警器实现报警功能,并设手动按钮消除报警;为便于调试,控制柜的触摸屏软件可对报警压力、启/停泵压力值进行修改。 三、体育馆中水泵、变频柜改造。 改造内容:拆除CR10-05立式泵1台,安装格兰富CR45-2立式泵1台(扬程:35.8m,流量:45m3/h,转速:2900转,功率:7.5kw);更换水泵出、入口阀部件、仪表及管道;改造11kw变频控制柜1台,在中水水箱中安装浮球式液位控制器。

变频器低电压穿越能力

低电压穿越能力 低电压穿越能力(Low voltage ride through capability),就是指风力发电机的端电压 降低到一定值的情况下不脱离电网而继续维持运行,甚至还可为系统提供一定无功以帮助系 统恢复电压的能力。具有低电压穿越能力的风力发电机可躲过保护动作时间,故障切除后恢 复正常运行。这可大大减少风电机组在故障时反复并网次数,减少对电网的冲击。 具有低电压穿越能力可保证风电机组在电网故障电压降低的情况下 , 尽最大可能与电网连接 ,保持发电运行能力,减少电网波动。一般 230 kV 或更高电压等级线路的故障,在 6 个周波(120 ms)内被切除 ,电压恢复到正常水平的 15 %需要 100 ms ,恢复到正常水平的 75 %或者更高水平则需要1 s ,LVRT功能是要风电机组在故障电压短时间消失期间 ,保持持续运行的能力 ,如此后电压仍处在低压 ,风电机组将被低压保护装置切除。 低电压穿越能力的具体实现方式 目前实现低电压穿越能力的方案一般有三种:1).采用了转子短路保护技术,2).引入新型拓扑结构,3).采用合理的励磁控制算法。 1、转子短路保护技术(crowbar电路) 这是目前一些风电制造商采用得较多的方法,其在发电机转子侧装有crowbar电路,为转子侧电路提供旁路,在检测到电网系统故障出现电压跌落时,闭锁双馈感应发电机励磁变流器,同时投入转子回路的旁路(释能 电阻)保护装置,达到限制通过励磁变流器的电流和转子绕组过电压的作用,以此来维持发电机不脱网运行(此时双馈感应发电机按感应电动机方式运行)。 2、新型拓扑结构包括以下几种:1).新型旁路系统 2).并联连接网侧 变流器 3).串联连接网侧变流器 3、采用新的励磁控制策略 从制造成本的角度出发,最佳的办法是不改变系统硬件结构,而是通 过修改控制策略来达到相同的低电压穿越效果:在电网故障时,使发电机 能安全度越故障,同时变流器继续维持在安全工作状态。

高压变频器方案

一、概述 高压变频器调速系统是将变频调速技术应用于大功率高压电机调速的一种电力换流装置,是国家大型设备节能技术改造及建设推广项目,应用范围广泛,应用高压变频调速器能大幅度降低电机的电耗,其节能效果一般在30%以上,具有明显的节能与环保效益,对提高企业的能源利用率,延长设备的使用寿命,减少设备运行费用与设备维护费用,确保用户的用电质量与用电可靠性,能起到极大的促进作用。在社会积极倡导各行业节能、减排的今天,甲方同时也做出积极地响应。甲方对现场控制对象(高惯量风机)提出的高性能控制装置高压变频器无疑就是其中的一例。根据现场使用情况、工艺要求,利用选用优良的大功率、高电压变频控制装置,不但可以调节电机的转速、转矩充分发挥其电气机械特性,而且可以更大程度上为钢厂、社会节能同时能够获得的更大的经济效益。本系统方案就是给现场高惯量风机选择一款综合性能较好的高压变频器。 二、被控设备基本参数、工作环境、电网情况 1、风机: 型号:Y5-2*48N026.5F 流量:700000m3/h 转速:965r/min 转动惯量:23000kg/m3 2、驱动电机: 型号:YBPK710-6 额定功率:2240KW 额定电压:6KV 额定电流:261A 变频运行:电动机Y型接法效率:96.0% 功率因素:0.86 绝缘等级:F 3、设备现场环境情况: 温度:0-40℃湿度:≤95%,不凝露 4、10KV电网情况 额定电压:10KV 正常电压波动范围:+/-10% 额定频率:50HZ 频率变化范围:+/-10% 三、高压变频器控制方案及选择 交流变频调速技术是现代化电气传动的主要发展方向之一,它不仅调速性能优越,而且节能效果良好。实践证明,驱动风机、水泵的大、中型笼型感应电动机,采用交流变频调速技术,节能效果显著,控制水平也大为提高。目前,变频调速技术已广泛应用于低压(380V)电动机,但在中压(3000V以上)电动机上却一直没有得到广泛应用,造成这种情况的主要原因是目前在低压变频器中广泛应用的功率电子器件均为电压型器件,耐压值基本都在1200-1800V,研制高压变频器难度较大,为了攻克这一技术难题,国内外许多科研机构及大公司都倾注大量人力物力进行研究,工业发达国家高压变频器技术已趋于成熟,国外几家著名电器公司都有高压大容量变频器产品,典型的如美国A-B(罗克韦尔自动化公司所属品牌)、欧洲的西门子公司、ABB 公司等。这些公司产品的电压一般为3-10kv,容量从250-4000kw,所采用的控制方式、变流方式及其他方面的关键技术也有很大差别。 A-B 从1990 年研制成功并开始投入商业运行的变频器主要采CSI-PWM技术,即电流源逆变-脉宽调制型变频器,采用电流开关器件,无需升降压变压器即可以直接输出6KV 电压,分强制风冷和水冷型,功率从300 到18000 马力,至今已经应用于多个行业上千台应用记录。是最有影响力,最为广泛接受的中压变频技术。美国罗宾康公司采用大量低压电压型开关器件,配合特殊设计的多脉冲多次级抽头输出隔离整流变压器,同样能够实现输出端直接6 千伏输出,由于是大量低压元件串接,故被称之为多极化电压性解决方案。西门子公司和ABB 公司分别采用中压IGBT 和IGCT 器件,是典型的电压型变频器。器件耐压等级为4160/3300V,直接输出电压最高达3300V。所以国内也有将此种方案称为高中方案,对应的将6KV-6KV(如A-B 方案)称为高高方案。中压变频器的发展和广泛应用是最近十几年的事情,相比之下低压变频器的应用却已经有超过二十年的时间。在中压变频器大面积推广应用之前,也出现了另外一种方案。即采用升降压变压器的“高-低-高”式变频器,

#1机给煤机低电压穿越电源改造试验方案

#1机给煤机低电压穿越电源改造试验方案

中铝宁夏能源集团有限公司六盘山热电厂 #2炉给煤机 低电压穿越电源改造送电试验方案 批准: 审核: 编写:

#2炉给煤机 低电压穿越电源改造送电试验方案 一、设备现状 按照宁夏电力调度控制中心《关于印发2014 年宁夏电网网源协调重点工作的通知》宁电调字〔2014〕18号以及《关于印发2015年宁夏电网网源协调重点工作方案的通知》文件要求,我厂须按照宁夏电力调度控制中心制定的2015年电网网源协调重点工作计划,开展火电机组一类辅机变频器低电压穿越能力整改工作,即对#1、#2炉给煤机变频器加装低电压穿越装置;目前,#2炉低电压穿越装置已安装完毕并具备调试条件,为确保调试、试验工作安全、顺利进行,特制订以下方案: 二、组织措施 总负责人:王子龙 技术负责人:侯红伟 安全负责人:柳银兰 三、安全措施 在进行#2机组低电压穿越电源调试及试验工作时,必须落实以下安全措施、防止发生任何影响人身、设备的不安全现象,现根据工作中的危险点及《安规》,就有关安全事项规定如下: 1、工作前,对工作中的危险因素进行认真分析,填写危险点预控单,办理工作票,经许可后进入现场,对工作班成员进行危险点的告知后方可开展工作,工作时严格按照工作票所留安全措施执行。

力电源分开,一般控制回路电源可接至380V母线电压上,动力回路电源需要断开,由低穿试验箱提供电源。 3)低电压穿越限值要求 当外部故障或扰动引起的变频器进线电压跌落幅值和持续时间在低电压穿越区内时(如表 1 所示),变频器应能够保障供电对象的安全运行。 电压跌落幅度≥20%额定电 压 ≥60%额定电 压 ≥90%额定电 压 低电压持续时间≤0.5s >0.5s, ≤5s >5s 4)试验接线:

循环泵变频改造施工组织设计方案

五、循环泵变频改造施工组织设计方案 5.1编制说明: 安装工程施工组织设计方案,在详细阅读“招标文件”充分理解设计图纸,深入现场考察的基础上,对目标工期、施工质量控制、项目管理机构及劳动组织、施工机械设备和周转材料配备、主要分项工程的施工方法及技术措施、质量安全、文明施工保证措施等方面进行初步的组织设计和部署,我们承诺:工程一旦由我公司中标,我们将在本施工组织设计的基础上,根据施工合同的要求以及业主的各项指示,向业主提供更能符合项目各项要求的施工组织设计方案,确保工程目标的完成。 5.2工程概况: 河庄坪污水厂排污泵变频改造项目主要工程量为: (1)对现用的排污泵系统安装变装控制装置,实现变频运行达到节能的目地。 (2)变频器选用ABB,用变频控制柜替换现用电源柜,原位安装一对一控制。 (3)控制柜具备本地和远程控制功能以及手动和自动运行两种方式。 (4)变频控制柜除标准功能外,增加数字式电参数仪表。 (5)预留标准通信接口。 (6)在值班室增加一面远程控制箱,可实现两地控制,方便操作。 (7)采用定液位变频运行,采用超声波液位仪。 (8)将泵主要运行参数上传到泵房值班室。 (9)更换现用的三台多级管道泵为第四代管道泵,按现有功率进行更换;增大过滤器容量,改善排污能力。 5.3编制依据: 1、《低压配电设计规范》GB50231-98; 2、《电气装置安装工程电气照明装置施工及验收规范》GB50259-96; 3、《工业自动化仪表工程施工及验收规范》GBJ93-86; 4、《电力工程电缆设计规范》GB50217; 5、《低压成套开关设备和控制设备》GB/7251.1-2005; 6、《电气装置安装工程爆炸和火灾危险环境电气装置施工及验收规范》GB50257-1996; 7、《建筑电气工程施工质量验收规范》GB/50303-2002

HINV高压变频器维修方案

HINV高压变频器维修方案 一、概述 1、高压变频系统维护意义 贵公司所使用的北京动力源公司生产高压变频器在国内市占有率很高,虽然每台变频器的应用行业和应用场合不同,但是它们的重要性都是毋庸置疑的,由于大功率高压变频器应用的部位都是生产系统的关键部位,它的稳定运行决定着行业安全和稳定。由于设备长时间的连续运行,从环境的温度,湿度,洁净度,负荷度,元件老化程度等的不同,设备也会出现不同的故障,及时的有效的对故障变频器进行维修维护会对生产带来有效的保障。 二、解决方案 针对贵公司使用的北京动力源HINV系列高压变频器型号为HINV-10/1460B 发生的故障我们给出如下维修维护翻案。 首先是故障单元的处理,本次确定的故障单元共有6台,分别位A1、B1、C1、A2、B2、C2,这6台单元需要返回我们公司本部进行系统维修,对故障单元进行检测,损坏的元器件进行复原或者更换,在对修复的单元进行带载实验,周期大约7个工作日,合格后将修复单元返回,我们会给出相应的检测合格报告。可以说此次维修设备过程中故障单元的维修是重中之重,同样也是最大的技术难关。下面具体介绍下这6个单元的调试过程: 1. 适用范围 适用于HINV系列高压变频器的功率单元的调试。 2. 仪器设备及工具 功率单元调试检验工装 1台 3相调压器(10kVA) 2台负载电抗(100A/4mH) 功率单元额定电流<80A时,每个功率单元用1个负载电抗,当额定电流超过80A时,负载电抗并联使用1组 数字万用表(UT56) 1块扳手、改锥等工具 1套

隔离示波器(TEK TPS2012,2根1KV探头,电流探头) 1台钳形电流表(YF-800型) 1块数字测温枪(Raytek MT)1个离心风机(130FJ1 0.5A 85W 苏州电信电机) 1台风速仪(AM-4202) 1块 3. 调试过程 进入电气调试阶段的功率单元应当通过装配检验,具有装配检验合格的质量跟踪单。 电气调试过程分为调试准备、空载性能调试、空载高温老化和负载调试。4. 调试人员要求 4.1 调试过程中应有2名或2名以上调试人员操作。 4.2 调试人员应认真阅读《安全生产规程》、《JS-HINV-16功率单元调试通用工艺》和《附:功率单元调试工装台使用说明书》,并熟练操作功率单元调试工装台。 4.3 测试时请严格按照规定步骤和项目进行测试。 4.4 调试人员操作过程中勿触及功率单元机壳。 5. 调试准备 5.1 工艺检查 在功率单元每次上电调试前需要作工艺检查。 5.1.1 螺丝紧固检查 功率单元内半导体功率器件、电解电容器(组件)和结构件螺丝紧固合适,不得松动。 5.1.2 检查导热硅脂涂敷 功率单元内半导体功率器件应均匀涂敷导热硅脂。 5.1.3 接线正确性检查 功率单元内连接线连接牢固,无受力脱落的现象。 5.1.4 功率单元机箱内检查 功率单元内部的接线固定合理,机箱内没有异物。 5.1.5 驱动电阻检查

中央空调系统水泵变频节能改造方案

中央空调系统水泵变频节能改造方案 一、概述 中央空调系统在现代企业及生活环境改善方面极为普遍,而且某此生活环境或生产工序中是属必须的,即所谓人造环境,不仅是温度的要求,还有湿度、洁净度等。至所以要中央空调系统,目的是提高产品质量,提高人的舒适度,集中供冷供热效率高,便管理,节省投资等原因,为此几乎企业、高层商厦、商务大楼、会场、剧场、办公室、图书馆、宾馆、商场、超市、酒店、娱乐场、体育馆等中大型建筑上都采用中央空调的,它是现代大型建筑物不可缺少的配套设施之一,电能的消耗非常之大,是用电大户,几乎占了用电量50%以上,日常开支费用很大。 由于中央空调系统都是按最大负载并增加一定余量设计,而实际上在一年中,满负载下运行最多只有十多天,甚至十多个小时,几乎绝大部分时间负载都在70%以下运行。通常中央空调系统中冷冻主机的负荷能随季节气温变化自动调节负载,而与冷冻主机相匹配的冷冻泵、冷却泵却不能自动调节负载,几乎长期在100%负载下运行,造成了能量的极大浪费,也恶化了中央空调的运行环境和运行质量。 随着变频技术的日益成熟,利用变频器、PLC、数模转换模块、温度传感器、温度模块等器件的有机结合,构成温差闭环自动控制系统,自动调节水泵的输出流量;采用变频调速技术不仅能使商场室温维持在所期望的状态,让人感到舒适满意,可使整个系统工作状态平缓稳定,更重要的是其节能效果高达30%以上,能带来很好的经济效益。

二、水泵节能改造的必要性 中央空调是大厦里的耗电大户,每年的电费中空调耗电占60% 左右,因此中央空调的节能改造显得尤为重要。 由于设计时,中央空调系统必须按天气最热、负荷最大时设计,并且留10-20% 设计余量,然而实际上绝大部分时间空调是不会运行在满负荷状态下,存在较大的富余,所以节能的潜力就较大,其中,冷冻主机可以根据负载变化随之加载或减载,冷冻水泵和冷却水泵却不能随负载变化作出相应调节,存在很大的浪费。 水泵系统的流量与压差是靠阀门和旁通调节来完成,因此,不可避免地存在较大截流损失和大流量、高压力、低温差的现象,不仅大量浪费电能,而且还造成中央空调最末端达不到合理效果的情况。为了解决这些问题需使水泵随着负载的变化调节水流量并关闭旁通。 再因水泵采用的是Y- △起动方式,电机的起动电流均为其额定电流的3 ~ 4倍,一台90KW的电动机其起动电流将达到500A ,在如此大的电流冲击下,接触器、电机的使用寿命大大下降,同时,起动时的机械冲击和停泵时水垂现象,容易对机械散件、轴承、阀门、管道等造成破坏,从而增加维修工作量和备品、备件费用。 采用变频器控制能根据冷冻水泵和冷却水泵负载变化随之调整水泵电机的转速,在满足中央空调系统正常工作的情况下使冷冻水泵和冷却水泵作出相应调节,以达到节能目的。水泵电机转速下降,电机从电网吸收的电能就会大大减少。 其减少的功耗△ P=P0 〔 1-(N1/N0)3 〕( 1 )式 减少的流量△ Q=Q0 〔 1-(N1/N0) 〕( 2 )式 其中N1为改变后的转速, N0为电机原来的转速, P0为原电机转速下的电机消耗功率, Q0为原电机转速下所产生的水泵流量。由上式可以看出流量的减少与转速减少的一次方成正比,但功耗的减少却与转速减少的三次方

高压变频器改造

高压变频器用于火力发电厂节能分析报告 第一章概述 国家大力提倡走节约型发展之路,做到珍惜资源、节约能源、保护环境、可持续发展。由于目前国内仍然以燃煤电厂为主,怎样在火力发电厂来落实和贯彻减能、增效的方针政策,大力促进火力发电厂节能是一个值得探讨的问题,而推广应用各种新技术、新工艺、新管理是实现节能的唯一途径。信息、通讯、计算机、智能控制、变频技术的发展,为火力发电厂的高效、节约运作、科学管理,以及过程优化提供了前所未有的手段,进而促进火力发电厂的科学管理和自动化水平的提高。 针对节能工程必须追求合理的投资回报率,下面的报告就是针对火力发电厂在提高用电率方面实施的节能工程的跟踪与效益的分析。 第二章国内火力发电厂能源消耗的分析 据国家《电动机调速技术产业化途径与对策的研究》报告披露,中国发电总量的66%消耗在电动机上。且目前电动机装机容量已超过4亿千瓦,高压电机约占一半。而高压电机中近70%拖动的负载是风机、泵类、压缩机。具体到火力发电厂来说主要有九种风机和水泵:送风机、引风机、一次风机、排粉风机、脱硫系统增压风机、锅炉给水泵、循环水泵、凝结水泵、灰浆泵。 可以说这些设备在火力发电厂中应用极广,种类数量繁多,总装机容量大,而且平均耗电量已占到厂用电的45%左右。 但是泵与风机这些主要耗电设备在我国火力发电厂中普遍存在着“大马拉小车”的现象,大量的能源在终端利用中被白白地浪费掉。浪费的主要原因有以下两点: 1、运行方式技术落后 据调查,目前我国火力发电厂中除少量采用汽动给水泵、液力耦合器及双速电机外,其它水泵和风机基本上都采用定速驱动,阀门式挡板调节。这种定速驱动的泵,在变负荷的情况下,由于采用调节泵出口阀开度(风机则采用调节入口风门开度)的控制方式,达到调节流量得目的,以满足负荷变化的需要。所以在工艺只需小流量的情况下,其泵或风机仍以额定的功率,恒定的速度运转着,特别是在机组低负荷运行时,其入口调节挡板开度很小,引风机所消耗的电功率大部分将被风门节流而消耗掉,能源损失和浪费极大。另外,风机档板执行机构为大力矩电动执行机构,故障较多,风机自动率较低,存在严重的节流损耗。 2、运行实际效率低下 从实际运行效率上来说,在机组变负荷运行时,由于水泵和风机的运行偏离高效点,偏离最优运行区,使运行效率降低。调查显示,我国50MW以上机组锅炉风机运行效率低于70%的占一半以上,低于50%的占1/5左右。这是因为,我国许多大中型泵与风机套用定型产品,由于型谱是分档而设,间隔较大,一般只能套用相近型产品,造成泵与风机的实际运行情况运行效率低,能耗高。同时在设计选型时往往加大保险系数,裕量过大,也是造成运行工况偏离最优区,实际运行情况运行效率低下的原因。 第三章降低能源消耗的技术策略 为了降低上述火力发电厂运行设备的能源消耗,同时提高火力发电厂的发电效率,新建火力发电厂可选用高效辅机和配套设备,做法有二。一是采用液力耦合器、双速电动机、叶片角度可调的轴流式风机等设备;二是采用变频调速装置。尽管采用液力耦合器在一次投资方面具有一定的优势,但液力偶合调速装置除在节能方面比变频调速效果过相差很远以外,还在功率因数、起动性能、运行可靠性、运行维护、调节及控制特性、综合投资及回报等方面有较大差异。因此,现有老的火力发电厂减少能耗最经济,最简单可行的方法就是加装变频调

相关文档