文档库 最新最全的文档下载
当前位置:文档库 › 均值不等式常用变形及解题方法总结

均值不等式常用变形及解题方法总结

均值不等式常用变形及解题方法总结
均值不等式常用变形及解题方法总结

不等式知识点与题型总结

不等式 一、知识点: 1. 实数的性质: 0>-?>b a b a ;0<-??<,a b b a . 传递性 a b >且b c a c >?>. 加法性质 a b a c b c >?+>+;a b >且c d a c b d >?+>+. 乘法性质 ,0a b c ac bc >>?>;0a b >>,且00c d ac bd >>?>>. 乘方、开方性质 0,n n a b n N a b *>>∈?>;0,n n a b n N a b *>>∈?>. 倒数性质 11,0a b ab a b >>? <. 3. 常用基本不等式: 条 件 结 论 等号成立的条件 a R ∈ 20a ≥ 0a = ,a R b R ∈∈ 2 2 2a b ab +≥,2()2 a b ab +≤, 22 2()22a b a b ++≥ a b = 0,0>>b a 基本不等式: 2a b ab +≥ 常见变式: 2≥+b a a b ; 21 ≥+a a a b = 0,0>>b a 22112 2 2b a b a ab b a +≤ +≤≤+ a b = 4.利用重要不等式求最值的两个命题: 命题1:已知a ,b 都是正数,若ab 是实值P ,则当a=b= 时,和a +b 有最小值2 . 命题2:已知a ,b 都是正数,若a +b 是实值S ,则当a=b=2 s 时,积ab 有最大值42s . 注意:运用重要不等式求值时,要注意三个条件:一“正”二“定”三“等”,即各项均为正数,和或积 为定值,取最值时等号能成立,以上三个条件缺一不可. 5.一元二次不等式的解法:设a>0,x 1x 2是方程ax 2+bx+c=0的两个实根,且x 1≤x 2,则有

柯西不等式的变形公式的妙用

柯西不等式的变形公式的妙用 柯西不等式晌丝形公式的她用 湖北省襄阳市第一中学王勇龚俊峰441000 柯西不等式具有对称和谐的结构,应用的关键在 于抓住问题的结构特征,找准解题的正确方向,合理 地变形,巧妙地构造.作为新课程的选修内容,柯西不 等式(简记为"方和积不小于积和方")在数学的多个 领域都有着广泛的应用.课堂教学中,笔者与学生共 同探究了柯西不等式的一个变形公式的应用,方便快 捷,妙不可言,达到了化难为易,化繁为简,化陌生为 熟悉的目的. 柯西不等式的变形公式:设a,n,…,a为实 数,b,bz,…,为正数,则等+薏十…+筹≥ b1+62+…+ 等号. , 当且仅当一薏一?一时取 址明:田tⅡJ四个寺瓦,侍 ((22十~t2+…+等)(64.b24.…+) ()+(老)+..?+(老).][c,z +()4-…+()!] ≥(.+老'+...+老.) 一(口l十以2+…+甜). . . .bl,b2,…~b为正数,...bl4"b24-…+>O, .

? . 鲁+譬+…+譬≥. 当且仅当一-...一卿一… 时取等号. 下面分类例析,旨在探索题型规律,揭示解题方法. 1在代数中的妙用 例1设n,b,C均为正数,且不全相等,求证: ++>. 证明:由柯西不等式的变形公式,得 ++一:一 04.b6+f.f+n2(a+6).2(bq-一c) l2 .2(c+a) ,(2+2+2)0 2(n+6)+2(64-c)+2(f+0) 4(a+6+f) 一 —— a4"b4"c' 当且仅当一一,即6 —6+f:f+n,亦即a~b=c时,上述不等式取等号. 因题设a,b,c不全相等,于是9l_+赢9+?) >? ._..I◆ 点评:将十+变形为+

均值不等式的4种变形及应用yqh

均值不等式的四种变形及其应用 定理:如果,a b R ∈,那么22 2a b ab +≥(当且仅当a b =取等号)。 这个定理至少有四种变式。 例如 一 第一种变式为2 2 2 2()()a b a b +≥+ 它是怎样用定理“如果,a b R ∈,那么22 2a b ab +≥(当且仅当a b =取等号),”推导 出来的呢?只要在么222a b ab +≥的两边同时加上22 a b +可推出为2 2 2 2()() a b a b +≥+它可以用中文数学语言叙述成“两个非负数的平方和的2倍不小于这两个非负数的和的平方。”什么时候用这一均值不等式的变式呢?凡带有根号形式的不等式证明题可用此第一种变式。 例1设0,0a b >>,1a b +=≤ 证明:2 2(2121)22(1)8a b a b ≤+++=?++= ≤ 例2设x,y 均为正数,10=- y x 且,求证:x-2y 200 ≤(1987年列宁格勒数学奥林匹克试题).证明:用均值不等式的变形公式()(2)2 2 2 b a b a +≤+ y y y x y x y x 2200)100(2)10(10102+=+≤+=?+=?=- 移项得x-2y 200≤. 例3 若a,b,c + ∈R 且a+b+c=1,求证:21141414≤++++ +c b a . 证明:用三元均值不等式的变形公式)(3)(2 2 2 2 c b a c b a ++≤++ .21)141414(3)141414(2=+++++≤+++++c b a c b a 两边开方得出21141414≤++++ +c b a 例4 若a,b,c,d +∈R 且a+b+c+d=1求证:2414141414≤++++++ +d c b a 证明: 用四个变量均值不等式的变形公式)(4)(2 2 2 2 2 d c b a d c b a +++≤+++ 32]4)(4[4)14141414(2=++++≤+++++++d c b a d c b a . 两边开方得出所要证的结果.

高考数学数列不等式证明题放缩法十种方法技巧总结(供参考)

1. 均值不等式法 例1 设.)1(3221+++?+?=n n S n 求证.2 )1(2)1(2 +<<+n S n n n 例2 已知函数bx a x f 211 )(?+=,若54)1(=f ,且)(x f 在[0,1]上的最小值为21,求证:.2121 )()2()1(1-+ >++++n n n f f f 例3 求证),1(2 21321 N n n n C C C C n n n n n n ∈>?>++++- . 例4 已知222121n a a a +++=,222121n x x x +++=,求证:n n x a x a x a +++ 2211≤1. 2.利用有用结论 例5 求证.12)1 211()511)(311)(11(+>-++++n n 例6 已知函数 .2,,10,)1(321lg )(≥∈≤x x f x f 对任意*∈N n 且2≥n 恒成立。 例7 已知1 12111,(1).2n n n a a a n n +==+++ )(I 用数学归纳法证明2(2)n a n ≥≥; )(II 对ln(1)x x +<对0x >都成立,证明2n a e <(无理数 2.71828 e ≈) 例8 已知不等式21111[log ],,2232 n n N n n *+++>∈>。2[log ]n 表示不超过n 2log 的最大整数。设正数数列}{n a 满足:.2,),0(111≥+≤ >=--n a n na a b b a n n n 求证.3,][log 222≥+

《不等式》常见题型归纳和经典例题讲解

? x + 1 ?? 2 3 《不等式》常见题型归纳和经典例题讲解 1.常见题型分类(加粗体例题需要作答) 定义类 1.下列不等式中,是一元一次不等式的是( ) A. 1 x +1>2 B.x 2>9 C.2x +y ≤5 D. 1 2 (x -3)<0 2.若 (m - 2) x 2m +1 - 1 > 5 是关于 x 的一元一次不等式,则该不等式的解集为 . 用不等式表示 a 与 6 的和小于 5; x 与 2 的差小于-1; 数轴题 1.a ,b 两个实数在数轴上的对应点如图所示:用“<”或“>”号填空: a __________ b ; |a |__________|b |; a +b __________0 a -b __________0; a +b __________a -b ; ab __________a . 2.已知实数 a 、b 在数轴上对应的点如图所示,则下列式子正确的是( ) A 、ab >0 B 、 a > b C 、a -b >0 D 、a +b >0 同等变换 1.与 2x <6 不同解的不等式是( ) A.2x +1<7 B.4x <12 C.-4x >-12 借助数轴解不等式(组): (这类试题在中考中很多见) ?1 - ≥ 0 1.(2010 湖北随州)解不等式组 ? 3 ??3 - 4( x - 1) < 1 D.-2x <-6 2.(2010 福建宁德)解不等式 2 x - 1 - 5x + 1 3 2 ?1 - 2( x -1) > 1, ? 3.(2006 年绵阳市) ? x 1 - ≥ x. 含参不等式: 此类试题易错知识辨析 ≤1,并把它的解集在数轴上表示出来.

基本不等式知识点归纳.

基本不等式知识点归纳 1.基本不等式2 b a a b +≤ (1)基本不等式成立的条件:.0,0>>b a (2)等号成立的条件:当且仅当b a =时取等号. [探究] 1.如何理解基本不等式中“当且仅当”的含义? 提示:①当b a =时,ab b a ≥+2取等号,即.2 ab b a b a =+?= ②仅当b a =时, ab b a ≥+2取等号,即.2 b a ab b a =?=+ 2.几个重要的不等式 ).0(2);,(222>≥+∈≥+ab b a a b R b a ab b a ),(2 )2();,()2(2 222R b a b a b a R b a b a ab ∈+≤+∈+≤ 3.算术平均数与几何平均数 设,0,0>>b a 则b a ,的算术平均数为2 b a +,几何平均数为a b ,基本不等式可叙述为:两个正实数的算术平均数不小于它的几何平均数. 4.利用基本不等式求最值问题 已知,0,0>>y x 则 (1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (简记:积定和最小). (2)如果和y x +是定值,p ,那么当且仅当y x =时,xy 有最大值是.4 2 p (简记:和定积最大). [探究] 2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理? 提示:当等号取不到时,可利用函数的单调性等知识来求解.例如,x x y 1 +=在2≥x 时的最小值,利用单调性,易知2=x 时.2 5min = y [自测·牛刀小试] 1.已知,0,0>>n m 且,81=mn 则n m +的最小值为( ) A .18 B .36 C .81 D .243 解析:选A 因为m >0,n >0,所以m +n ≥2mn =281=18.

均值不等式求最值的常用技巧及习题

利用基本不等式求最值的常用技巧及练习题(含解答)(经典) 一.基本不等式的常用变形 1.若0x >,则12x x + ≥ (当且仅当1x =时取“=” );若0x <,则1 2x x +≤- (当且仅当 _____________时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当____________时取“=”) 2.若0>ab ,则2≥+a b b a (当且仅当____________时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当_________时取“=” ) 注:(1)当两个正数的积为定植时,可以求它们和的最小值,当两个正数的和为定植时, 可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的重要条件“一正,二定,三取等” 二、利用基本不等式求最值的技巧: 技巧一:直接求: 例1 已知,x y R + ∈,且满足 134 x y +=,则xy 的最大值为 ________。 解:因为x >0,y>0 ,所以 34x y +≥=当且仅当34x y =,即x=6,y=8时取等 号) 1, 3.xy ∴≤,故xy 的最大值3. 变式:若44log log 2x y +=,求11 x y +的最小值.并求x ,y 的值 解:∵44log log 2x y += 2log 4=∴xy 即xy=16 2 1211211==≥+∴xy y x y x 当且仅当x=y 时等号成立 技巧二:配凑项求 例2:已知5 4x < ,求函数14245 y x x =-+-的最大值。

高中不等式的常用证明方法归纳总结

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a +++++≥++111212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a +++++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

不等式常见题型归纳和经典例题讲解

《不等式》常见题型归纳和经典例题讲解 1.常见题型分类(加粗体例题需要作答) 1.下列不等式中,是一元一次不等式的是( ) A.x 1 +1>2 B.x 2>9 C.2x +y ≤5 D.21 (x -3)<0 2.若51)2(12>--+m x m 是关于x 的一元一次不等式,则该不等式的解集为 . a 与6的和小于5; x 与2的差小于-1; 1.a ,b 两个实数在数轴上的对应点如图所示:用“<”或“>”号填空: a __________ b ; |a |__________|b |; a +b __________0 a - b __________0; a +b __________a -b ; ab __________a . 2.已知实数a 、b 在数轴上对应的点如图所示,则下列式子正确的是( ) A 、ab >0 B 、a b > C 、a -b >0 D 、a +b > 0 1.与2x <6不同解的不等式是( ) A.2x +1<7 B.4x <12 C.-4x >-12 D.-2x <-6 ): (这类试题在中考中很多见) 1.(2010湖北随州)解不等式组110334(1)1 x x +?-???--???-≥?? : 此类试题易错知识辨析

(1)解字母系数的不等式时要讨论字母系数的正、负情况. 如不等式ax b >(或ax b <)(0a ≠)的形式的解集: 当0a >时,b x a >(或b x a <) 当0a <时,b x a <(或b x a >) 当0a <时,b x a <(或b x a >) 4 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ). (A)a <0 (B)a >-1 (C)a <-1 (D)a <1 5 若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______. 6.如果不等式(m -2)x >2-m 的解集是x <-1,则有( ) A.m >2 B.m <2 C.m =2 D.m ≠2 7.如果不等式(a -3)x <b 的解集是x < 3-a b ,那么a 的取值范围是________. 1.不等式3(x -2)≤x +4的非负整数解有几个.( ) A.4 B.5 C.6 D.无数个 2.不等式4x - 41141+

(汇总)高中数学-公式-柯西不等式.doc

第一课时 3.1 二维形式的柯西不等式(一) 2. 练习:已知a 、b 、c 、d 为实数,求证22222()()()a b c d ac bd ++≥+ ① 提出定理1:若a 、b 、c 、d 为实数,则22222()()()a b c d ac bd ++≥+. 证法一:(比较法)22222()()()a b c d ac bd ++-+=….=2()0ad bc -≥ 证法二:(综合法)222222222222()()a b c d a c a d b c b d ++=+++ 222()()()ac bd ad bc ac bd =++-≥+. (要点:展开→配方) 证法三:(向量法)设向量(,)m a b =u r ,(,)n c d =r ,则22||m a b =+u r 22||n c d +r . ∵ m n ac bd ?=+u r r ,且||||cos ,m n m n m n =<>u r r u r r u r r g g g ,则||||||m n m n ≤u r r u r r g g . ∴ ….. 证法四:(函数法)设22222()()2()f x a b x ac bd x c d =+-+++,则 22()()()f x ax c bx d =-+-≥0恒成立. ∴ 22222[2()]4()()ac bd a b c d ?=-+-++≤0,即….. ③二维形式的柯西不等式的一些变式: 2222||a b c d ac bd +++g 或 2222||||a b c d ac bd +++g 2222a b c d ac bd ++≥+g . ④ 提出定理2:设,αβu r u r 是两个向量,则||||||αβαβ≤u r u r u r u r g . 即柯西不等式的向量形式(由向量法提出 ) → 讨论:上面时候等号成立?(βu r 是零向量,或者,αβu r u r 共线) ⑤ 练习:已知a 、b 、c 、d 222222()()a b c d a c b d ++≥-+- 证法:(分析法)平方 → 应用柯西不等式 → 讨论:其几何意义?(构造三角形) 2. 教学三角不等式: ① 出示定理3:设1122,,,x y x y R ∈22222211221212()()x y x y x x y y ++≥-+-分析其几何意义 → 如何利用柯西不等式证明 → 变式:若112233,,,,,x y x y x y R ∈,则结合以上几何意义,可得到怎样的三角不等式? 3. 小结:二维柯西不等式的代数形式、向量形式;三角不等式的两种形式(两点、三点) 第二课时 3.1 二维形式的柯西不等式(二) 教学过程: 22222()()()a b c d ac bd ++≥+22222211221212()()x y x y x x y y ++≥-+- 3. 如何利用二维柯西不等式求函数12y x x =--? 要点:利用变式2222||ac bd a b c d +++g . 二、讲授新课: 1. 教学最大(小)值: ① 出示例1:求函数31102y x x =-- 分析:如何变形? → 构造柯西不等式的形式 → 板演 → 变式:31102y x x =-- → 推广:,(,,,,,)y bx c e fx a b c d e f R +=+-∈ ② 练习:已知321x y +=,求22x y +的最小值. 解答要点:(凑配法)2222222111()(32)(32)131313 x y x y x y += ++≥+=. 2. 教学不等式的证明: ① 出示例2:若,x y R +∈,2x y +=,求证: 112x y +≥. 分析:如何变形后利用柯西不等式? (注意对比 → 构造) 要点:2222111111()()[()()][()]22x y x y x y x y x y +=++=++≥…

专题:基本不等式常见题型归纳(学生版)

专题:基本不等式 基本不等式求最值 利用基本不等式求最值:一正、二定、三等号. 三个不等式关系: (1)a ,b ∈R ,a 2+b 2≥2ab ,当且仅当a =b 时取等号. (2)a ,b ∈R + ,a +b ≥2ab ,当且仅当a =b 时取等号. (3)a ,b ∈R ,a 2+b 22≤(a +b 2)2 ,当且仅当a =b 时取等号. 上述三个不等关系揭示了a 2+b 2 ,ab ,a +b 三者间的不等关系. 其中,基本不等式及其变形:a ,b ∈R + ,a +b ≥2ab (或ab ≤(a +b 2)2),当且仅当a =b 时取等号,所以当和为定值时,可求积的最值;当积为定值是,可求和的最值. 【题型一】利用拼凑法构造不等关系 【典例1】已知1>>b a 且7log 3log 2=+a b b a ,则 1 12 -+b a 的最小值为 . 练习:1.若实数满足,且,则的最小值为 . 2.若实数,x y 满足1 33(0)2xy x x +=<< ,则313 x y +-的最小值为 . 3.已知0,0,2a b c >>>,且2a b += ,则 2ac c c b ab +-+ 的最小值为 . 【典例2】已知x ,y 为正实数,则4x 4x +y +y x +y 的最大值为 . 【典例3】若正数a 、b 满足3ab a b =++,则a b +的最小值为__________. 变式:1.若,a b R +∈,且满足22 a b a b +=+,则a b +的最大值为_________. 2.设0,0>>y x ,822=++xy y x ,则y x 2+的最小值为_______ 3.设R y x ∈,,142 2 =++xy y x ,则y x +2的最大值为_________ 4.已知正数a ,b 满足 19 5a b +=,则ab 的最小值为 ,x y 0x y >>22log log 1x y +=22 x y x y +-

(完整版)均值不等式常考题型

均值不等式及其应用 一.均值不等式 1.(1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当 b a =时取“=”) 3.若0x >,则12x x + ≥ (当且仅当1x =时取 “=”);若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2( 2 22b a b a +≤ +(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的 积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三相等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1 x 解:(1)y =3x 2+1 2x 2 ≥2 3x 2·1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧: 技巧一:凑项 例1:已知5 4x < ,求函数14245 y x x =-+-的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x --g 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->Q ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。

分式不等式的证明与方法

分式 摘要:分式不等式的证明是高中数学中的难点之一,本文主要通过作差法,利用基本不等式法,利用非负实数的性质,利用放缩法,环元法,构造法,类比法,局部不等式法来分析与 证明分式不等式,从而对分式不等式的证明有着整体的理解。通过方法与总结克服证明分式不等式的胆怯心理。 关键词:分式不等式 证明方法 作差法 基本不等式法 构造法 二.利用基本不等式法 均 值 不 等 式 即 : 利用不等式 ∑ =n i y i x m i n 11 ≥∑=∑=n i y i n n i x i n m 1 11)1(∑=-∑=n i i m m y x n n i i 1 2 1 1)((2,1,,=∈+i R y x i i )证明一 类难度较大的分式不等式是很简捷的。 例2.若1,2)(i R =∈+ a i 且N m s n i i a ∈=∑=,1 ,则有∑+=-n i m a a i i 1 ) (1)(s n n s m n +≥ 证明:(1)当m=1时, ∵n a a n i i n i i 2 1 1 1 ≥∑∑=-=,s n a n i i 2 1 1 ≥∑=-,所以有:)1 1 (a a i n i i +∑=-=∑∑==-+n i i n i i a a 1 1 1 ≧s n 2 +s=n(n s s n +) (2)当m=2时,

)1 1 (a a i n i i +∑=-≧ n m 2 1 -n i i n i m a a ∑+=-1 )(1≧n )( n s s n m + 综上,由(1)(2)知原不等式成立。 排序不等式即,适用于对称不等式 例3.设a,b,c 是正实数,求证: 23 ≥+++++b a c a c b c b a 证明:不妨设a ≧c b ≥则b a a c c b +≥+≥+1 11 由排序不等式得: ≥+++++b a c a c b c b a b a a a c c c b b +++++ (1) ≥+++++b a c a c b c b a b a b a c a c b c +++++ (2) 由(1)+(2)得 2( b a c a c b c b a +++++)3≥,所以2 3≥+++++b a c a c b c b a 利用倒数不等式即:若a i >0,则n a a n i i n i i 2 1 1 1 ≥∑∑=-= 例4.设βα,都是锐角,求证:且βα,取什么值时成立? 证明:1cos sin 2 2=+βα,不等式左边拆项得: ββαcos sin sin cos 2 2 2 2 1 1 + = β αβααsni 2 2 2 2 2 sin cos sin cos 1 1 1 + + 又由于1sin sin cos sin cos 2 2222=++βαβαα 由倒数不等式有: ) (sin sin cos sin cos 2 2 2 2 2 βαβαα++)1 1 1 ( 2 2 2 2 2 sin cos sin cos β αβααsni + + ≥9 所以原不等式成立 当且仅当βαβααsin sin cos sin cos 2 2222==即2tan ,1tan ==αβ时等

(完整word版)高中数学-公式-柯西不等式.doc

第一课时 3.1 二维形式的柯西不等式(一) 2. 练习:已知 a 、 b 、 c 、d 为实数,求证 (a 2 b 2 )(c 2 d 2 ) ( ac bd) 2 ① 提出定理 1:若 a 、 b 、 c 、 d 为实数,则 (a 2 b 2 )( c 2 d 2 ) (ac bd )2 . 证法一:(比较法) (a 2 b 2 )(c 2 d 2 ) ( ac bd ) 2 = .= ( ad bc) 2 0 证法二:(综合法) (a 2 b 2 )( c 2 d 2 ) a 2c 2 a 2 d 2 b 2c 2 b 2d 2 ( ac bd ) 2 ( ad bc) 2 ( ac bd) 2 . (要点:展开→配方) ur (a,b) , r ur a 2 b 2 r c 2 d 2 . 证法三:(向量法)设向量 m n (c,d ) ,则 | m | , | n | ur r ur r ur r ur r ur r ur r ∴.. ∵ m ? n ac bd ,且 mgn | m |g| n |gcos m,n ,则 | mgn | | m |g| n | . 证法四:(函数法)设 f ( x) ( a 2 b 2 ) x 2 2( ac bd ) x c 2 d 2 ,则 f ( x) ( ax c)2 (bx d )2 ≥ 0 恒成立 . ∴ [ 2(ac bd)] 2 4(a 2 b 2 )( c 2 d 2 ) ≤ 0,即 .. ③二维形式的柯西不等式的一些变式: a 2 b 2 g c 2 d 2 | ac bd | 或 a 2 b 2 g c 2 d 2 | ac | | bd | 或 a 2 b 2 g c 2 d 2 ac bd . 2:设 ur ur ur ur | | ur ur ④ 提出定理 , 是两个向量,则 | g || | . 即柯西不等式的向量形式(由向量法提出 ) ur ur ur , → 讨论:上面时候等号成立?( 是零向量,或者 共线) ⑤ 练习:已知 a 、 b 、 c 、d 为实数,求证 a 2 b 2 c 2 d 2 (a c)2 (b d) 2 . 证法:(分析法)平方 → 应用柯西不等式 → 讨论:其几何意义?(构造三角形) 2. 教学三角不等式: ① 出示定理 3:设 x , y , x , y R ,则 2 2 2 2 2 2 . 1 12 2 x 1 y 1 x 2 y 2 ( x 1 x 2 ) ( y 1 y 2 ) 分析其几何意义 → 如何利用柯西不等式证明 → 变式:若 x 1 , y 1 , x 2 , y 2 , x 3 , y 3 R ,则结合以上几何意义,可得到怎样的三角不等式? 3. 小结: 二维柯西不等式的代数形式、向量形式;三角不等式的两种形式(两点、三点) 第二课时 3.1 二维形式的柯西不等式(二) 教学过程 : (a 2 b 2 )(c 2 d 2 ) ( ac bd) 2 ; x 12 y 1 2 x 2 2 y 2 2 ( x 1 x 2 ) 2 ( y 1 y 2 )2 3. 如何利用二维柯西不等式求函数 y x 1 2 x 的最大值 ? 要点:利用变式 | ac bd | a 2 b 2 g c 2 d 2 . 二、讲授新课: 1. 教学最大(小)值: ① 出示例 1:求函数 y 3 x 1 10 2x 的最大值? 分析:如何变形? → 构造柯西不等式的形式 → 板演 → 变式: y 3x 1 10 2x → 推广: y a bx c d e fx,( a,b,c,d ,e, f R ) ② 练习:已知 3x 2 y 1,求 x 2 y 2 的最小值 . 解答要点:(凑配法) x 2 y 2 1 ( x 2 y 2 )(3 2 22 ) 1 (3 x 2 y) 2 1 . 13 13 13 2. 教学不等式的证明: ① 出示例 2:若 x, y R , x y 2 ,求证: 1 1 2 . x y 分析:如何变形后利用柯西不等式? (注意对比 → 构造) 要点: 1 1 1 ( x y)( 1 1 ) 1 [( x )2 ( y )2 ][( 1 ) 2 (1)2 ] x y 2 x y 2 x y

基本不等式的变形及应用

基本不等式ab b a 22 2≥+的变式及应用 不等式ab b a 222≥+是课本中的一个定理,它是重要的基本不等式之一,对于它及它各种变式的掌握与熟练运用是求解很多与不等式有关问题的重要方法,这里介绍它的几种常见的变式及应用 1、十种变式 ①222b a ab +≤; ②2 )2(b a ab +≤; ③2 )2(222b a b a +≤+ ; ④)(222b a b a +≤+ ⑤若0>b ,则b a b a -≥22 ; ⑥ ,,+∈R b a 则b a b a +≥+411 ⑦若ab b a R b a 4 )11(,,2≥ +∈+ ⑧若 ≠ab ,则 2 2 2)11(2111b a b a +≥+ 上述不等式中等号成立的充要条件均为: b a = ⑨若R b a R n m ∈∈+ ,,,,则n m b a n b m a ++≥+2 22)((当且仅当bm an =时 等号成立) ⑩)(3)(2222c b a c b a ++≤++(当且仅当c b a ==时等号成立) 2、应用 例1、若+∈R c b a ,,,且2=++c b a ,求证:4111<+++++c b a 证法一:由变式①得21 111++≤ +? a a 即12 1+≤+a a

同理:121+≤ +b b ,12 1+≤+c c 因此 12111+≤+++++a c b a 41212≤++++c b 由于三个不等式中的等号不能同时成立,故 4111<+++++c b a 评论:本解法应用“2 2 2b a ab +≤ ”观察其左右两端可以 发现,对于某一字母左边是一次式,而右边是二次式,显然,这个变式具有升幂与降幂功能,本解法应用的是升幂功能。 证法二:由变式④得)11(211+++≤+++b a b a 同理: )11(211++≤++c c ∴≤ ++++++1111c b a )4(2)2(2)2(2+++≤++++c b a c b a 512<= 故结论成立 评论:本解法应用“)(222b a b a +≤+” ,这个变式的功能是将“根式合并”,将“离散型”要根式转化为统一根式,显然,对问题的求解起到了十分重要的作用。 证法三:由变式⑩得 1(3)111(2+≤+++++a c b a 15)11=++++c b 故4111<+++++c b a 即得结论

均值不等式公式完全总结归纳(非常实用)

均值不等式归纳总结 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥ +2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2? ? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则1 1122-2x x x x x x +≥+ ≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2 )2 (22 2b a b a +≤+(当且仅当b a =时取“=”) 『ps.(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和 为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用』

应用一:求最值 例1:求下列函数的值域 (1)y=3x 2+1 2x 2(2)y=x+ 1 x

解:(1)y =3x 2+1 2x 2 ≥2 3x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2; 当x <0时, y =x +1x = -(- x -1 x )≤-2 x ·1 x =-2 ∴值域为(-∞,-2]∪[2,+∞) 解题技巧 技巧一:凑项 例 已知5 4 x <,求函数14245 y x x =-+ -的最大值。 解:因450x -<,所以首先要“调整”符号,又1 (42)45 x x -- 不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴-> ,11425434554y x x x x ??∴=-+=--++ ?--? ?231≤-+= 当且仅当1 5454x x -= -,即1x =时,上式等号成立,故当1x =时,max 1y =。 评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 解析:由 知, ,利用均值不等式求最值,必须和为定值或积为 定值,此题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。 当 ,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。

不等式常见考试题型总结

不等式常见考试题型总结 Prepared on 22 November 2020

《不等式》常见考试题型总结一、高考与不等式 高考试题,有关不等式的试题约占总分的12% 左右,主要考查不等式的基本知识,基本技能,以及学生的运算能力,逻辑思维能力,分析问题和解决问题的能力.选择题和填空题主要考查不等式的性质、比较大小和解简单不等式,还可能与函数、方程等内容相结合的小综合.解答题主要是解不等式或证明不等式或以其他知识为载体的综合题。不等式常与下列知识相结合考查: ①不等式的性质的考查常与指数函数、对数函数、三角函数的性质的考查相结合,一般多以选择题的形式出现,有时也与充要条件、函数单调性等知识结合,且试题难度不大; ②解不等式的试题主要在解答中出现,常常是解含参不等式较多,且多与二次函数、指数、对数、可能还会出现导数相结合命题; ③证明不等式是理科考查的重点,经常同一次函数、二次函数、数列、解析几何,甚至还可能与平面向量等结合起来考查. 二、常见考试题型 (1)求解不等式解集的题型 (分式不等式的解法,根式不等式的解法,绝对值不等式的解法,含参不等式的解法,简单的一元高次不等式的解法) (2)不等式的恒成立问题 (不等式恒成立问题的常规处理方式常应用函数方程思想,分离变量法,数形结合 法) (3)不等式大小比较 常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式); 3.分析法;

4.平方法; 5.分子(或分母)有理化; 6.利用函数的单调性; 7.寻找中间量或放缩法 ; 8.图象法。 (4)不等式求函数最值 技巧一:凑项 例:已知5 4x < ,求函数14245 y x x =-+-的最大值。 技巧二:凑系数 例. 当 时,求(82)y x x =-的最大值。 技巧三: 分离 例. 求2710 (1)1 x x y x x ++= >-+的值域。 技巧四:换元 例. 求2710 (1)1x x y x x ++= >-+的值域。 技巧五:函数的单调性 (注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+的单调性。) 例:求函数22 4 y x = +的值域。 技巧六:整体代换 (多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。) 例:(1)已知0,0x y >>,且19 1x y +=,求x y +的最小值。 (2)若+ ∈R y x ,且12=+y x ,求y x 11+的最小值 (3)已知+ ∈R y x b a ,,,且1=+y b x a ,求y x +的最小值

相关文档
相关文档 最新文档