文档库 最新最全的文档下载
当前位置:文档库 › 高等数学第二章课后习题答案

高等数学第二章课后习题答案

高等数学第二章课后习题答案
高等数学第二章课后习题答案

第二章 导数与微分

1. ()().1,102-'=f x x f 试按定义求设

200200(1)(1)10(1)10

'(1)lim lim

1020lim lim (1020)20x x x x f x f x f x x

x x x x

?→?→?→?→-+?--?---==???-?==?-=-?

2. 下列各题中均假定()0x f '存在,按导数定义观察下列极限,指出此极限表示什么, 并将答案填在括号内。

⑴ ()()=?-?-→?x

x f x x f x 000lim (0'()f x -); ⑵ ()=→?x

x f x 0lim ('(0)f ), 其中()()存在;且0,00f f '= ⑶ ()()

=--+→h

h x f h x f h 000

lim

(02'()f x ).

3. 求下列函数的导数:

⑴ ='=y x y ,4

则34x ⑵ ='=y x y ,32

则1

323

x -

⑶ ='=y x

y ,1

则32

12x -- ⑷ =

'=y x x y ,53则115165x 4. 求曲线. 21,3 cos 程处的切线方程和法线方上点??

?

??=πx y

'sin ,'()32

y x y π=-=-

所以切线方程为1)23y x π-

=-

2(1)0y +-=

法线方程为1)23y x π-

=-

化简得3)0x π+-= 5. 讨论函数?????=≠=0

00

1sin 2

x x x

x y 在0=x 处的连续性和可导性. 20(0)0

1

lim sin 0(0)()x f x f x

→===因为有界量乘以无穷小 所以函数在0x =处连续

因为 20

001

sin

(0)(0)

1lim

lim lim sin 0x x x x f x f x x x

x x

?→?→?→?+?-==?=???

所以函数在0x =处可导.

6. 已知()()()()是否存在?

又及求 0 ,0 0 , 0

0 2f f f x x x x x f '''?

??<-≥=-+ 2

'

00(0)(0)(0)lim lim 0h h f h f h f h h

+

→+→++-===

'0

0(0)(0)(0)lim

lim 1h h f h f h

f h h

-→-→++--===- ''(0)(0)f f +-≠ '(0)f ∴不存在

7. ()(). , 0

sin x f x x x x x f '??

?≥<=求已知 当0x <时, '()(sin )'cos f x x x ==; 当0x >时, '()()'1f x x ==;

当0x =时

'0

0(0)(0)(0)lim

lim 1h h f h f h

f h h

+→→+-===++ '0

0(0)(0)sin (0)lim

lim 1h h f h f h f h h

-→-→+-===- '(0)1f ∴=

综上,cos ,0'()1,0

x x f x x

8. 求下列函数的导数:

(1);5432

3

-+-=x x x y (2);122744

5+-+=

x x

x y 222

222

22322

4222

2csc cot (1)2csc 2'(1)2(1)csc cot 4csc (1)23

(3)(3ln )(2ln )(2)

'(3ln )(94)ln 32(3ln )x x x x x

y x x x x x x x x x x x x x x x y x x x x x x x x x x -+-=

+-+-=

+++-++=+-+-+=

+2'364

y x x =-+

652'20282y x x x ---=--+

(3);3253

x

x

e x y +-= (4);1sec tan 2-+=x x y

2'152ln 23x x y x e =-+ 2'2sec sec tan y x x x =+

(5);log 3lg 2ln 2x x x y +-= (6)()();7432x x y -+=

123

'ln10ln 2

y x x x =

-+

'422y x =--

(7);ln x x

y =

(8);cos ln 2x x x y = 2

1

ln 'x x

x y x

-= 221'2ln cos cos ln sin y x x x x x x x x x =+- 2

1ln x x

-= 2

2ln cos cos ln sin x x x x x x x x =+- (9);1csc 22

x

x

y +=

222

2csc cot (1)2csc 2'(1)x x x x x y x -+-=+ 222

2(1)csc cot 4csc (1)

x x x x x x -+-=+ (10).ln 3ln 22

3

x

x x x y ++= 22322

23

(3)(3ln )(2ln )(2)

'(3ln )

x x x x x x x x y x x ++-++=+ 4222

(94)ln 32(3ln )x x x x x x x x -+-+=+

9. 已知. ,cos 21sin 4

π

??

ρ???ρ=+

=d d 求

因为

1

sin cos sin 2

d d ρ?????=+-

所以

4

12422284

d d π

?ρπ?

=

=

+-=+

10. .1

轴交点处的切线方程与写出曲线x x

x y -

= 令0y =,得11x x ==-或 因为2

'1y x -=+, 所以 1

1

'

2,'

2x x y y ==-==

曲线在(1,0)处的切线方程为2(1)y x =-,即220x y --=; 曲线在(1,0)-处的切线方程为2(1)y x =+,即220x y -+=。

11. 求下列函数的导数:

(1)()可分解为:函数4

52+=x y 4

,25y u u x ==+

其导数='y 3

8(25)x +

(2)函数可分解为:2

3x e y -= 2

,3u y e u x ==-

='y 其导数2

36x xe --

(3)可分解为:函数22x a y -=

22y u a x ==-

='y

其导数

(4)()

可分解为:函数x e y arctan = arctan ,x

y u u e ==

='y 其导数21x x

e e +

12. 写出下列函数的导数(只需写出结果):

(1)()='-=y x y , cos 343sin(43)x - (2)(

)

=

'+=y x y , ln 2

12

21x

x

+ (3)='=y x y , sin 2

2sin cos x x (4)()

=

'=y x y , arctan 2

4

21x

x + (5)()

='=y x y , tan 2

2

2

2sec ()x x

(6)()

,log ='++=y x x y a 12

221

(1)ln x x x a

+++

(7)='=y x y ,cos ln tan x - (8)()='-=y x y ,arcsin 21

13. 求下列函数的导数(要有解题步骤):

(1);2arcsin 2

??? ?

?

=x y (2);arctan x e y =

(3)()[]; ln ln ln x y = (4).cos sin nx x y n

=

14. 设():dx

dy

y x f 的导数可导,求下列函数 (1)();2

x

f y = (2)()().cos sin 2

2

x f x f y +=

22'()dy xf x dx = 22'(sin )2sin cos '(cos )2cos sin dy f x x x f x x x dx

=- 2

2

sin 2['(sin )'()]x f x f cox x =-

15. 求下列函数的导数: (1)()2

2

sin sin x x y ?=

(2)x

y 1cos ln =

(3)x

e y 1sin 2

-=

(4)x x y +=

16. 求下列函数的二阶导数: (1)x x y ln 22+=

1'4y x x =+

21

''4y x

=-

(2)t e y t

sin -=

'sin cos (cos sin )t

t

t

y e t e t e t t ---=-+=-

''(cos sin )(sin cos )2cos t

t

t

y e t t e t t e t ---=--+--=-

(3)()

1ln 2x x y ++=

'y ===

3

22

322

1''(1)22

(1)

x y x x x -=-+=-

+

17. 若():2

2dx

y

d x f 阶导数存在,求下列函数的二'' (1)()2

x

f y = (2)()[]x f y ln =

2

2

22

'()()

''()()['()]

[()]dy f x dx f x d y f x f x f x dx f x =-=

18. 求下列函数的n 阶导数的一般表达式:

(1)x y 2

sin = (2)x x y ln =

19. 求下列函数所指定阶的导数: (1),cos x e y x

= 求()

.4y (2),2sin 2x x y = 求().50y

20. 求下列方程所确定的隐函数:dx

dy y 的导数

2222

2

2222'()2['()2''()]2'()4''()

dy

xf x dx

d y f x x xf x dx

f x x f x ==+=+

(1)0333=-+axy y x (2) y

xe y -=1

方程两边关于x 求导得: 方程两边关于x 求导得:

22

33330dy dy x y ay ax dx dx +--= y y

dy dy

e xe dx dx

=-- 所以 22223333dy ay x ay x dx y ax y ax --==-- 所以 1y y

dy e dx xe -=+

21. .42

,423

2

3

23

2

程处的切线方程和法线方在点求曲线???

? ?

?=+a a a y

x 方程两边关于x 求导得:113

3

22033dy x y dx

--+= 所以

13

13

dy x dx y -

-=-=从而切线斜率

1)1dy k dx

=

=-,法线斜率 21

11k k =-

=

所以切线方程为()44y a x a -

=--

,即02

x y a +-=;

法线方程为44

y x a -

=-,即0x y -=。 22. .12

2dx

y

d y x

e y y

的二阶导数所确定的隐函数求由方程+=

23. 用对数求导法求下列函数的导数

:dx

dy (1)55

2

2

5

+-=x x y (2)()

()

5

4

132+-+=

x x x y

24. 求由参数方程???==t

y t x 2cos sin ,所确定的曲线在4π

=t 处的切线方程和法线方程.

25. :2

2dx

y

d 的函数的二阶导数求下列参数方程所确定 (1)?????==-t t

e

y e x 23 (2)()()()???-'='=t f t f t y t f x ,().存在且不为零设t f ''

22233t

t t dy dy e dt e dx dx e dt -===-- '()''()'()

''()

dy dy f t tf t f t dt t dx dx f t dt +-===

22

3244339

t t t e d y e

dx e --==- 221''()d y dx f t =

26. 注水入深m 8上顶直径m 8的正圆锥形容器中,其速率为43

m

.当水深为m

5时,其表面上升的速率为多少

27. 求下列函数的微分:

⑴ ;2sin x x y = ⑵ ()[];1ln 2

x y -=

sin 2sin dy xdx xd x =+ 2

[ln(1)]dy d x =- sin 22cos2xdx x xdx =+ 2ln(1)ln(1)x d x =--

(sin 22cos 2)x x x dx =+ 2ln(1)

(1)1x d x x -=

--

2ln(1)

1

x dx x -=-

⑶ (); 3cos x e

y x

-=- ⑷ .1arcsin 2x y -=

cos(3)(3)x x dy x de e dcox x --=-+- dy d =

cos(3)sin(3)x

x

x e dx e

x dx --=--+-

=

(sin(3)cos(3))x

e x x dx -=---

=

28. 将适当的函数填入下列括号内,使等式成立:

⑴ (

)22;d x C

dx += ⑵23

32d x C xdx ??

+=

??

?;

⑶ (

)sin cos d x C

xdx += ⑷ cos sin ;x

d C xdx ωωω

??

-

+=

??

?

⑸ (

)1

ln(1);1d x C

dx x ++=

+ ⑹ 22;2

x

x

e d C e dx --??-+= ??

?

⑺ (

)

;d

C

dx

=

⑻ 2tan 3sec 33

x

d C xdx ??

+= ??

?

29. 计算三角函数值

29cos 的近似值。

因为 cos 29cos(301)=-

所以 cos 29cos30sin 30180

π

≈+10.874762180

π=

+≈ 30. 计算根式665的近似值。

116

6

(65)(641)==+

所以1

1566

61111

(65)64(64)22 2.00526632192

-≈+=+

=≈ 31. 当x 较小时,证明下列近似公式:(利用()(0)'(0)f x f f x ≈+)

(1)();是角的弧度值x x x tan ≈ (2)().1ln x x ≈+

(tan )'sec x x = 1

(ln(1))'1x x

+=

+ 0

tan 0x x

== 0

ln(1)

0x x =+=

(tan )'

1x x == 0

[ln(1)]'

1x x =+=

所以 tan x x ≈ 所以 ln(1)x x +≈

《微积分》《高等数学》第二章测试题

《微积分》第二章测试题 1. 【导数的概念】已知()23f '=,求()() 22lim h f h f h h →+-- 解()() ()() ()()()0 0222222lim lim 226h h f h f h f h f f h f f h h h →→+--+---??'=+== ?-?? 2. 设函数cos ln x y x e a -=++,求 d y d x 解 sin x dy x e dx -=-- 3. 设函数arctan x y e =,求 d y d x 解 d y d x () arctan arctan 1 1 1221x x e e x x x x =? ? = ++ 4. 设函数2 sin cos 2y x x =,求 d y d x , x dy dx = 解()2 2 2 2 4 sin cos 2sin 12sin sin 2sin y x x x x x x ==-=- ()()3 2 2 2sin cos 8sin cos 2sin cos 14sin sin 214sin dy x x x x x x x x x dx =-=-=-, 0x dy dx == 5. 【函数的微分,记得加dx 】设函数2 sin 2x y x = ,求dy 解2 4 3 3 2cos 22sin 22cos 22sin 22cos 22sin 2,dy x x x x x x x x x x dy dx dx x x x ---== ∴= 6. 【高阶导数】设函数11 y x = -,求 n n d y dx 解 () () () () () () () 2 3 1 2 3 4 1 23 ! 11, 21, 3!1,, 1n n n n dy d y d y d y n x x x x dx dx dx dx x ----+' = -=--=-=--=-- 7.【隐函数求导】 设函数()y y x =由方程2 sin 20xy y -=确定,求 d y d x 解 等式两边同时对x 求导2 22sin 20,y xyy y y ''+-=则 () 2 2 2 2sin 222221dy y y y y dx y xy xy xy x y '== = = ---

微积分课后题答案第九章习题详解

第9章 习题9-1 1. 判定下列级数的收敛性: (1) 11 5n n a ∞ =?∑(a >0); (2) ∑∞ =-+1 )1(n n n ; (3) ∑∞ =+13 1 n n ; (4) ∑∞ =-+12)1(2n n n ; (5) ∑∞ =+11ln n n n ; (6) ∑∞ =-12)1(n n ; (7) ∑∞ =+11 n n n ; (8) 0(1)21n n n n ∞ =-?+∑. 解:(1)该级数为等比级数,公比为 1a ,且0a >,故当1 ||1a <,即1a >时,级数收敛,当1 | |1a ≥即01a <≤时,级数发散. (2) Q n S =+++L 1= lim n n S →∞ =∞ ∴ 1 n ∞ =∑发散. (3)113 n n ∞ =+∑是调和级数11n n ∞=∑去掉前3项得到的级数,而调和级数11 n n ∞ =∑发散,故原 级数 11 3 n n ∞ =+∑发散. (4)Q 1112(1)1(1)22 2n n n n n n n ∞ ∞-==?? +--=+ ???∑∑ 而11 12n n ∞ -=∑,1(1)2m n n ∞ =-∑是公比分别为1 2的收敛的等比级数,所以由数项级数的基本性质

知111(1)2 2n n n n ∞ -=??-+ ???∑收敛,即原级数收敛. (5)Q ln ln ln(1)1 n n n n =-++ 于是(ln1ln 2)(ln 2ln 3)[ln ln(1)]n S n n =-+-+-+L ln1ln(1)ln(1)n n =-+=-+ 故lim n n S →∞ =-∞,所以级数 1 ln 1 n n n ∞ =+∑发散. (6)Q 2210,2n n S S +==- ∴ lim n n S →∞ 不存在,从而级数 1 (1) 2n n ∞ =-∑发散. (7)Q 1 lim lim 10n n n n U n →∞ →∞+==≠ ∴ 级数 1 1 n n n ∞ =+∑发散. (8)Q (1)(1)1 , lim 21212 n n n n n n U n n →∞--==++ ∴ lim 0n x U →∞≠,故级数1 (1)21n n n n ∞ =-+∑发散. 2. 判别下列级数的收敛性,若收敛则求其和: (1) ∑∞ =??? ??+13121n n n ; (2) ※ ∑∞ =++1)2)(1(1n n n n ; (3) ∑∞ =?1 2sin n n n π ; (4) 0πcos 2n n ∞ =∑. 解:Q (1)1111, 23n n n n ∞ ∞==∑∑都收敛,且其和分别为1和12,则1112 3n n n ∞ =?? + ???∑收敛,且其 和为1+ 12=3 2 . (2)Q 11121(1)(2)212n n n n n n ?? =-+ ?++++??

高等数学第二章练习及答案

第二章 一、选择题. 1. 函数1y x =+在0x =处 ( ) A 、无定义 B 、不连续 C 、可导 D 、连续但不可导 2. 设函数221,0(), 0x x f x x x +

7. (arctan 2)d x =________,[]ln(sin 2)d x =__________. 8. 函数32()39f x x ax x =++-,已知()f x 在3x =-时取得极值,则a =______. 9.设需求量q 对价格p 的函数为2e 100)(p p q -=,则需求弹性E p =__________. 三、判断题. 1. 若()f x 在点0x 处可导,则()f x 在点0x 处连续. ( ) 2. dy 是曲线()y f x =在点00(,())x f x 处的切线纵坐标对应于x ?的改变量. ( ) 3. 函数()y f x =在0x 点处可微的充要条件是函数在0x 点可导. ( ) 4. 极值点一定是驻点. ( ) 5. 函数y x =在点0x =处连续且可导. ( ) 四、计算题. 1.求函数y =. 2. 求由方程0e e 2=+-+y x y x 所确定的隐函数()y f x =的导数y '. 3. 设e x y x =,求y '. 4. 求由方程cos()y x y =+所确定的隐函数()y f x =的二阶导数.y '' 五、求下列极限. (1)sin lim sin x x x x x →∞-+, (2)x x x x x x x --+-→4240sin 23lim , (3)11lim 1ln x x x x →??- ?-? ?, (4)1lim(1)(0)x x a x a →∞->, (5)()10lim 1x x x →+, (6)1lim ()x x x x e →+∞+. 六、应用题. 1. 求函数32 ()391f x x x x =--+的单调性、极值与极值点、凹凸区间及拐点. 2.某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求量为100010q p =-(q 为需求量,p 为价格).试求:(1)成本函数,收入函数;(2)产量为多少吨时利润最大?

郑州大学高等数学下课后习题答案解析

习题7.7 3.指出下列方程所表示的曲线. (1)???==++;3, 25222x z y x (2)???==++;1,3694222y z y x (3)???-==+-;3, 254222x z y x (4)???==+-+.4,08422y x z y 【解】 (1)表示平面3=x 上的圆周曲线1622=+z y ; (2)表示平面1=y 上的椭圆19 32322 2=+z x ; (3)表示平面3-=x 上的双曲线14 162 2=-y z ; (4)表示平面4=y 上的抛物线642-=x z . 4.求() () ?????=++=++Γ2, 21, :2 22 2 222Rz z y x R z y x 在三个坐标面上的投影曲线. 【解】 (一)(1)、(2)联立消去z 得 2224 3R y x = + 所以,Γ在xoy 面上的投影曲线为 ?????==+.0, 4 322 2z R y x (二)(1)、(2)联立消去y 得 R z 2 1 = 所以,Γ在zox 面上的投影曲线为 .23.0,21R x y R z ≤ ?? ? ??==

(三)(1)、(2)联立消去x 得 R z 21 = 所以,Γ在yoz 面上的投影曲线为 .23.0, 21R y x R z ≤ ????? == 6.求由球面224y x z --= ①和锥面() 223y x z += ②所围成的立体在xoy 面上的投影区域. 【解】联立①、②消去z 得 122=+y x 故Γ在xoy 面上的投影曲线为 ? ??==+.0, 122z y x 所以,球面和锥面所围成的立体在xoy 面上的投影区域为(){}1|,22≤+=y x y x D . 习题7.8 2.设空间曲线C 的向量函数为(){} t t t t t r 62,34,122--+=,R t ∈.求曲线C 在与 20=t 相应的点处的单位切向量. 【解】因(){}64,4,2-=t t t r ,故C 相应20=t 的点处的切向量为 (){}2,4,42='r . C 相应20=t 的点处的单位切向量为 (){}.31,32,322,4,4612? ?????±=± =' 3.求曲线32,,:t z t y t x ===Γ在点)1,1,1(0M 处的切线方程和法平面方程. 【解】0M 对应参数1=t .Γ在0M 点处的切线方向为

专升本高等数学测试及答案(第二章)

高等数学测试(第二章) 一.选择题(每小题2分,共20分) 1 .设函数0()10 2 x f x x ≠=??=?? 在0x =处( ) A .不连续B .连续但不可导C .可导D .可微 2.设函数()ln 2f x x x =在0x 处可导,且0()2f x '=,则0()f x 等于( )A .1 B .2 e C .2e D .e 3.设函数()f x 在点x a =处可导,则0()()lim x f a x f a x x →+--等于( ) A .0 B .()f a ' C .2()f a ' D .(2)f a ' 4.设x x x f += ??? ??11,x x g ln )(=,则[()]f g x '= ( ) A . 2) 1(1x + B .2)1(1x +- C .1x x + D .22 )1(x x +- 5.设函数 )(x f 在),(+∞-∞内可导,则下列结论中正确的是 ( ) A .若)(x f 为周期函数,则)(x f '也是周期函数 B .若)(x f 为单调增加函数,则)(x f '也是单调增加函数 C .若)(x f 为偶函数,则)(x f '也是偶函数 D .若 )(x f 为奇函数,则)(x f '也是奇函数 6.设)(x f 可导,则下列不成立的是 ( ) A .)0()0()(lim 0 f x f x f x '=-→ B .)()()2(lim 0 a f h a f h a f h '=-+→ C .)()()(lim 0 000 x f x x x f x f x '=??--→? D .)(2)()(lim 0000 x f x x x f x x f x '=??--?+→?

大学高等数学上习题(附答案)

《高数》习题1(上) 一.选择题 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 7. 211 f dx x x ??' ???? 的结果是( ). (A )1f C x ?? - + ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 10.设()f x 为连续函数,则()10 2f x dx '?等于( ). (A )()()20f f - (B )()()11102f f -????(C )()()1 202f f -??? ?(D )()()10f f - 二.填空题 1.设函数()21 00x e x f x x a x -?-≠? =??=? 在0x =处连续,则a = . 2.已知曲线()y f x =在2x =处的切线的倾斜角为5 6 π,则()2f '=. 3. ()21ln dx x x = +?. 三.计算 1.求极限 ①21lim x x x x →∞+?? ??? ②() 20sin 1 lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分x xe dx -?

高等数学第六版(同济大学)上册课后习题答案解析

高等数学第六版上册课后习题答案及解析 第一章 习题1-1 1. 设A =(-∞, -5)?(5, +∞), B =[-10, 3), 写出A ?B , A ?B , A \B 及A \(A \B )的表达式. 解 A ?B =(-∞, 3)?(5, +∞), A ? B =[-10, -5), A \ B =(-∞, -10)?(5, +∞), A \(A \B )=[-10, -5). 2. 设A 、B 是任意两个集合, 证明对偶律: (A ?B )C =A C ?B C . 证明 因为 x ∈(A ?B )C ?x ?A ?B ? x ?A 或x ?B ? x ∈A C 或x ∈B C ? x ∈A C ?B C , 所以 (A ?B )C =A C ?B C . 3. 设映射f : X →Y , A ?X , B ?X . 证明 (1)f (A ?B )=f (A )?f (B ); (2)f (A ?B )?f (A )?f (B ). 证明 因为 y ∈f (A ?B )??x ∈A ?B , 使f (x )=y ?(因为x ∈A 或x ∈B ) y ∈f (A )或y ∈f (B ) ? y ∈f (A )?f (B ), 所以 f (A ?B )=f (A )?f (B ). (2)因为 y ∈f (A ?B )??x ∈A ?B , 使f (x )=y ?(因为x ∈A 且x ∈B ) y ∈f (A )且y ∈f (B )? y ∈ f (A )?f (B ), 所以 f (A ?B )?f (A )?f (B ). 4. 设映射f : X →Y , 若存在一个映射g : Y →X , 使X I f g =ο, Y I g f =ο, 其中I X 、 I Y 分别是X 、Y 上的恒等映射, 即对于每一个x ∈X , 有I X x =x ; 对于每一个y ∈Y , 有I Y y =y . 证明: f 是双射, 且g 是f 的逆映射: g =f -1. 证明 因为对于任意的y ∈Y , 有x =g (y )∈X , 且f (x )=f [g (y )]=I y y =y , 即Y 中

高等数学I(专科类)测试题

考试科目:《高等数学》高起专 一.选择题 (每题4分,共20分) 1. 函数 y = 的定义域是 ( ). (a) (2,6)- (b) (2,6] (c)[2,6) (d)[2,6]- 2. 设11f x x =-(), 则(())f f x = ( ) (a) 1x x - (b) 12x - (c) 1x - (d) 1x x - 3. 10 lim(12)x x x →- (a) e (b) 1 (c) 2e - (d) ∞ 4. 2 20lim (2) x x sin x → (a) 12 (b) 13 (c) 1 (d) 14 5. 在 0x → 时, sin x x - 是关于 x 的 ( ) (a) 低阶无穷小量 (b) 等价无穷小量 (c) 高阶无穷小量 (d) 同阶但不等价无穷小量 二.填空题(每题4分,共28分) 6. 设2(1)3f x x x -=++, 则 ()f x =___________. 7. 函数()f x = 的定义域是__________ 8. 若(31)1x f x +=+, 则()f x =__________ . 9. 2sin(2)lim 2 x x x →--=_____. 10. 设1,0,()5,0,1tan ,0x x f x x x x -? , 则 0lim ()x f x +→=_______.

11. 4lim(1)x x x →∞-=_____. 12. 3232lim 35 x x x x x →∞+--+=_____. 三.解答题(满分52分) 13. 求 45lim()46 x x x x →∞--. 14. 求 0x →. 15. 求 2sin lim 24cos x x x x x →∞-+. 16. 求 2lim x →-. 17. 求 123lim 24 n n n +→∞-+. 18. 设函数22cos ,0()2,0ln(14)a x x x f x x x x +-≤??=?>?+? , 在 0x = 处极限存在, 求 a 的值。 19. 若 33lim 12 x x ax b →-=++, 试确定常数 ,a b 的值。 附:参考答案: 一.选择题 (每题4分,共20分) 1)a 2)d 3)c 4)a 5)c 二.填空题(每题4分,共28分) 6)2 35x x ++ 7)12x -<<

中国人民大学出版社第四版高等数学一第6章课后习题详解

高等数学一第6章课后习题详解 课后习题全解 习题6-2 ★ 1.求由曲线 x y =与直线 x y =所围图形的面积。 知识点:平面图形的面积 思路:由于所围图形无论表达为X-型还是Y-型,解法都较简单,所以选其一做即可 解: 见图6-2-1 ∵所围区域D 表达为X-型:?? ?<<<

∵所围区域D 表达为X-型:?????<<< <1 sin 2 0y x x π, (或D 表达为Y-型:???<<<

∴所围区域D 表达为Y-型:?? ?-<<<<-2 2 422y x y y , ∴23 16 )32 4()4(2 2 32 222= -=--=- - ? y y dy y y S D (由于图形关于X 轴对称,所以也可以解为: 2316 )324(2)4(22 32 22=-=--=? y y dy y y S D ) ★★4.求由曲线 2x y =、24x y =、及直线1=y 所围图形的面积 知识点:平面图形面积 思路:所围图形关于Y 轴对称,而且在第一象限内的图形表达为Y-型时,解法较简单 解:见图6-2-4 ∵第一象限所围区域1D 表达为Y-型:? ??<<<

高等数学课后习题及解答

高等数学课后习题及解答 1. 设u=a-b+2c,v=-a+3b-c.试用a,b,c 表示2u-3v. 解2u-3v=2(a-b+2c)-3(-a+3b-c) =5a-11b+7c. 2. 如果平面上一个四边形的对角线互相平分,试用向量证明它是平 行四边形. 证如图8-1 ,设四边形ABCD中AC 与BD 交于M ,已知AM = MC ,DM 故 MB . AB AM MB MC DM DC . 即AB // DC 且|AB |=| DC | ,因此四边形ABCD是平行四边形. 3. 把△ABC的BC边五等分,设分点依次为D1,D2,D3,D4,再把各 分点与点 A 连接.试以AB=c, BC=a 表向量 证如图8-2 ,根据题意知 1 D 1 A, 1 D 2 A, D 3 A, D A. 4 1 D3 D4 BD1 1 a, 5 a, D1D2 a, 5 5 1 D 2 D 3 a, 5 故D1 A=- (AB BD1)=- a- c 5

D 2 A =- ( AB D A =- ( AB BD 2 BD )=- )=- 2 a- c 5 3 a- c 3 =- ( AB 3 BD 4 )=- 5 4a- c. 5 4. 已知两点 M 1(0,1,2)和 M 2(1,-1,0) .试用坐标表示式表示 向量 M 1M 2 及-2 M 1M 2 . 解 M 1M 2 =(1-0, -1-1, 0-2)=( 1, -2, -2) . -2 M 1M 2 =-2( 1,-2,-2) =(-2, 4,4). 5. 求平行于向量 a =(6, 7, -6)的单位向量 . a 解 向量 a 的单位向量 为 ,故平行向量 a 的单位向量为 a a 1 = ( 6,7, -6)= 6 , 7 , 6 , a 11 11 11 11 其 中 a 6 2 72 ( 6)2 11. 6. 在空间直角坐标系中,指出下列各点在哪个卦限? A (1,-2,3), B ( 2, 3,-4), C (2,-3,-4), D (-2, -3, 1). 解 A 点在第四卦限, B 点在第五卦限, C 点在第八卦限, D 点在第三卦限 . 7. 在坐标面上和在坐标轴上的点的坐标各有什么特征?指出下列各点的位置: A ( 3, 4, 0), B ( 0, 4,3), C ( 3,0,0), D ( 0, D A 4

高等数学第二章练习及答案

x) 1 3. 函数f (x) lnx 在x 1处的切线方程是 _______________________ 1 4. 设 f(—) x ,则 f (x) ___ ________ x 3 5. 函数 f (x) sin(cosx ),贝y f (x) ___________________ 6.设函数f(x) ln cosx ,则二阶导数f (x) 、选择题. 1.函数y A 、无定义 不连续 第二章 C 、可导 D 、连续但不可导 2.设函数f (X ) 2x 2 x , 1,x 0 ,则 f (x)在点x 0处 A 、没有极限 B 、有极限但不连续 C 、连续但不可导 D 、可导 3?设函数y f (x)可微, 则当 y dy 与x 相比,是 x 的等价无穷小 x 的同阶无穷小 C . x 的高阶无穷小 x 的低阶无穷小 4.函数 x 3的单调增区间是 中B 、(严,T 3 3 3 C 、(于 5?函数f (x) 1 (e x e x )的极小值点是 ) ) ) ) (0,+ ) ) 不存在 、填空题. 1. 已知(sin x) cosx , 利用导数定义求极限 2、 如果f (x °) 4,则 lim f(x 0 3x) x 0 f (X o )

7. d(arctan2x) ,d In (sin 2x) 四、计算题. 六、应用题. 产品的市场需求量为 q 1000 10 p ( q 为需求量,p 为价格)?试求:(1 )成本函数,收入 函数;(2)产量为多少吨时利润最大? 8.函数f(x) x 3 ax 2 3x 9,已知f (x)在x 3时取得极值,则 a = p 9 ?设需求量q 对价格p 的函数为q(p) 100e ? ,则需求弹性E p 三、判 断题. 1. 若f(x)在点X o 处可导,则f (x)在点X o 处连续. 2. dy 是曲线y f (x)在点(x 0, f (怡))处的切线纵坐标对应于 x 的改变量. 3. 函数y f (x)在x 0点处可微的充要条件是函数在 X 。点可导. 4. 极值点一定是驻点. 5. 函数y x 在点x 0处连续且可导. 1.求函数 y arctan-. 1 x 2的导数. 2.求由方程x y e 2x e y 0所确定的隐函数 y f(x)的导数y . e 3.设 y x ,求 y . 4.求由方程y cos(x y)所确定的隐函数 y f (x)的二阶导数y . 五、求下列极限. (1) lim x x sin x x sin x (2) 4 c 2 lim X x 0 3x 2x si nx 4 , (3) 01 x x 1 ln x (4) 1 lim( a' X 1)x (a 0), (5) (6) lim (x x 1 X \ X e)x . 1.求函数f (x) x 3 3x 2 9x 1的单调性、极值与极值点、凹凸区间及拐点. 2.某厂生产一批产品, 其固定成本为2000元,每生产一吨产品的成本为 60元, 对这种

高等数学上复旦第三版 课后习题答案

283 高等数学上(修订版)(复旦出版社) 习题六 无穷数级 答案详解 1.写出下列级数的一般项: (1)111135 7 ++++ ; (2)2 2242462468x x x x x ++++?????? ; (3)3579 3579 a a a a -+-+ ; 解:(1)1 21 n U n =-; (2)()2 !! 2n n x U n = ; (3)() 21 1 121 n n n a U n ++=-+; 2.求下列级数的和: (1)()()() 11 11n x n x n x n ∞ =+-+++∑ ; (2) ( )1 221n n n n ∞ =+-++∑; (3)23 111 5 55+ ++ ; 解:(1)()()() ()()()()1 11111211n u x n x n x n x n x n x n x n = +-+++?? -= ?+-++++??

284 从而()()()()()()() ()()()()()()()1111 1211212231111111211n S x x x x x x x x x n x n x n x n x x x n x n ?-+-= +++++++?? ++ - ?+-++++? ?? -= ?++++?? 因此() 1lim 21n n S x x →∞ =+,故级数的和为 () 121x x + (2)因为()()211n U n n n n =-+-++- 从而()()()() ()()()()3243322154432112112 1 12 21 n S n n n n n n n n =-+-----+-++---+-++-=+-++-=+-+++ 所以lim 12n n S →∞ =-,即级数的和为12-. (3)因为2111 5551115511511145n n n n S =+ ++????-?? ???? ?=-????=-?? ????? 从而1lim 4 n n S →∞ =,即级数的和为14 . 3.判定下列级数的敛散性: (1) ( )1 1n n n ∞ =+-∑; (2) ()() 11111661111165451n n +++++???-+ ; (3) ()23133222213333 n n n --+-++- ;

高等数学练习题第二章导数与微分

高等数学练习题 第二章 导数与微分 系 专业 班 学号 第一节 导数概念 一.填空题 1.若)(0x f '存在,则x x f x x f x ?-?-→?) ()(lim 000 = )(0x f '- 2. 若)(0x f '存在,h h x f h x f h ) ()(lim 000 --+→= )(20x f ' . 000 (3)() lim x f x x f x x ?→+?-?=03()f x '. 3.设20-=')(x f , 则=--→)()2(lim )000 x f x x f x x 4 1 4.已知物体的运动规律为2 t t s +=(米),则物体在2=t 秒时的瞬时速度为5(米/秒) 5.曲线x y cos =上点( 3 π ,21)处的切线方程为03 123=- -+π y x ,法线方程为 03 22332=-+ -π y x 6.用箭头?或?表示在一点处函数极限存在、连续、可导、可微之间的关系, 可微 ? 可导 <≠ ? | 连续 <≠? 极限存在。 二、选择题 1.设0)0(=f ,且)0(f '存在,则x x f x ) (lim 0→= [ B ] (A ))(x f ' ( B) )0(f ' (C) )0(f (D) 2 1 )0(f 2. 设)(x f 在x 处可导,a ,b 为常数,则x x b x f x a x f x ??--?+→?) ()(lim 0 = [ B ] (A ))(x f ' ( B) )()(x f b a '+ (C) )()(x f b a '- (D) 2 b a +)(x f ' 3. 函数在点 x 处连续是在该点 x 处可导的条件 [ B ] (A )充分但不是必要 (B )必要但不是充分 (C )充分必要 (D )即非充分也非必要 4.设曲线22 -+=x x y 在点M 处的切线斜率为3,则点M 的坐标为 [ B ]

高等数学(高起专)第1阶段测试题

江南大学现代远程教育2013年上半年第一阶段测试卷考试科目:《高等数学》高起专第一章至第二章(总分100分)时间:90分钟 __________学习中心(教学点)批次:层次: 专业:学号:身份证号: 姓名:得分: 一.选择题 (每题4分,共20分) 1. 函数 y=的定义域是(a ). (a) (2,6) -(b) (2,6](c)[2,6)(d)[2,6] - 2. 设 1 2 f x x = + (),则(()) f f x=( d ) (a) 52 2 x x + + (b) 2 5 x+ (c) 2 x+(d) 2 52 x x + + 3. 1 lim(19)x x x → -= (c) (a) e(b) 9(c) 9 e-(d) ∞ 4. 2 2 lim sin(4) x x x → = ( d) (a) 1 2 (b) 1 3 (c) 1(d) 1 4 5. 在0 x→时, 1cos x -是关于x的( c ) (a) 低阶无穷小量(b) 等价无穷小量(c) 高阶无穷小量(d) 同阶但不等价无穷小量

二.填空题(每题4分,共28分) 6. 设(5)3f x x =-, 则 ()f x =_____ 35x -______. 7. 函数()f x = 的定义域是_____12x -<<___ 8. 若(31)1f x x +=+, 则()f x =_____ 233x +_____ . 9. 3sin [2(3)] lim (3)x x x →-++=___2__. 10. 设34,0, ()5,0,12tan ,0x x f x x x x -? , 则 0lim ()x f x +→=____1___. 11. 24lim (1)x x x +→∞- =___4e -__. 12. 32332lim 325x x x x x x →∞+--+=___1 3__. 三.解答题(满分52分) 13. 求 47lim ( )48 x x x x →∞--. 解:1(48)484471lim ( )lim (1)4848x x x x x x x e x x --→∞→∞-=+ =-- 14. 求 02 lim sin 3x x →. 解:002 21lim ( )lim sin 36x x x x →→== 15. 求 32sin lim 254co s x x x x x →∞+-+-. 解:3 2sin 132sin 1lim lim 5 4co s 254co s 2 2x x x x x x x x x x x x →∞→∞+-+-==+-+-

微积分课后题答案习题详解

微积分课后题答案习题 详解 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

第二章 习题2-1 1. 试利用本节定义5后面的注(3)证明:若lim n →∞ x n =a ,则对任何自然数k ,有lim n →∞ x n +k =a . 证:由lim n n x a →∞ =,知0ε?>,1N ?,当1n N >时,有 取1N N k =-,有0ε?>,N ?,设n N >时(此时1n k N +>)有 由数列极限的定义得 lim n k x x a +→∞ =. 2. 试利用不等式A B A B -≤-说明:若lim n →∞ x n =a ,则lim n →∞ ∣x n ∣=|a|.考察数列x n =(-1)n ,说明 上述结论反之不成立. 证: 而 n n x a x a -≤- 于是0ε?>,,使当时,有N n N ?> n n x a x a ε-≤-< 即 n x a ε-< 由数列极限的定义得 lim n n x a →∞ = 考察数列 (1)n n x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞ =, 所以前面所证结论反之不成立。 3. 利用夹逼定理证明: (1) lim n →∞ 2 22111(1) (2)n n n ??+++ ?+?? =0; (2) lim n →∞2!n n =0. 证:(1)因为 222 222111 112(1)(2)n n n n n n n n n n ++≤+++ ≤≤=+ 而且 21lim 0n n →∞=, 2lim 0n n →∞=, 所以由夹逼定理,得 22211 1lim 0(1)(2)n n n n →∞?? +++ = ?+? ? . (2)因为22222240!123 1n n n n n < =<-,而且4 lim 0n n →∞=,

高等数学第二章测试题

高等数学第二章习题 一 、选择填空(一个3分,共24分) 1、 已知,01lim 2=??? ? ??--+∞→b ax x x x 则( ) (A )1,1==b a (B )1,1-=-=b a (C )1,1=-=b a (D )1,1-==b a 2、函数32)2)(23()(++-=x x x x x x f 有( )个不可导点。 (A ) 1 (B ) 2 (C ) 3 (D ) 4 3、设)2004()2)(1()(---=x x x x x f ,则=)0(/f ( ) (A ) !2003- (B )!2004- (C )!2003 (D ) !2004 4、设?????=≠=0,0 0,1sin )(x x x x x f k ,在0=x 点处,下面叙述错误的是( ) (A )0>k 时连续(B )1>k 时连续不可导(C )1>k 时可导(D )2>k 时导函数连续 5、设)(x f 在1=x 点处可导,且0)1(=f ,下列等式不等于)1(/f 的是 (A )2 20)tan (cos lim x x x f x +→ (B )20)(cos 2lim x x f x -→ (C )) 1(4)sin 31()sin 1(lim 0---+→x x e x f x f (D )220)1(lim x x f x --→ 6、设2 1)(0/=x f ,则0→x ?时,该函数在0x x =处的微分dy ( ) (A )是 x ?的高阶无穷小 (B )是 x ?的低阶无穷小 (C )是 x ?的等价无穷小 (D )是 x ?的同阶阶无穷小 7、设)(x f 在0x x =处可导,)(x g 都在0x x =处不可导,则叙述错误的是( ) (A ))()(x g x f +在0x x =处不可导 (B ))()(x g x f -在0x x =处不可导 (C ))()(x g x f 在0x x =处不可导 (D ))()(x g x f 在0x x =处不一定不可导 8、下面叙述错误的是( )。 (A ))(x f 在0x x =处可导,则)(x f 在0x x =处有切线。 (B ))(x f 在0x x =处不可导,则)(x f 在0x x =处就没有切线。 (C ))(x f 在0x x =处导数为无穷大,则)(x f 在0x x =处有切线。 (D ))(x f 在0x x =处左右导数存在不相等,则)(x f 在0x x =处就没有切线。 二 、填空(1个4分,共32分) 1、如果?? ???=≠-+=0,00,12sin )(2x x x e x x f ax 在),(+∞-∞内连续,则_______________=a 2、已知21)]([,sin )(x x f x x f -==φ,则)(x φ的定义域为______________ 3、曲线???=+=32 1t y t x 在2=t 处的切线方程为___________________________ 4、若))((),1ln()(2x f f y x x f =+=,则_______________________/=y 5、 设曲线n x x f =)( 在点)1,1(处的切线与x 轴的交点为)0,(n u ,则___)(lim =∞→n n u f 6、设x xe x f =)(,则______________)0() (=n f 7、设y x y +=tan ,则________________=dy

高等数学同济第六版上册课后答案

2018年湖南省怀化市中考物理试卷 一、选择区 1. 下图中符合安全用电原则的是() A. 雷雨时在大树下躲雨 B. 在高压线下钓鱼 C. 在同一插座上同时使用多个大功率用电器 D. 发现有人触电时立即切断电源 【答案】D 【解析】A、雷雨时,不可以在大树下避雨,要注意防雷电,故A错误; B、高压线下钓鱼,鱼线很容易接触到高压线,容易发生触电事故,故B错误; C、在同一个插座上同时使用了多个大功率的用电器,由可得,会使干路中的电流过大,容易发生电路火灾,故C错误; D、当发现有人触电时,应该立即采取的措施是:迅速切断电源或用绝缘体挑开电线,因为人体是导体,不能用手拉开电线和触电的人,故D正确。 故选:D。 点睛:本题考查日常安全用电常识,关键是了解安全用电的基本原则“不接触低压带电体,不靠近高压带电体。” 2. 在北京8分钟的节目中,憨态可掬的大熊猫令人忍俊不禁。这只大熊猫是用一种特制的铝合金材料制成的,它的高度为2.35m,质量却只有10kg,它利用了铝合金的哪一种性质() A. 质量小 B. 密度小 C. 比热容小 D. 导热性能好 【答案】B 【解析】解:由题知,大熊猫是用一种特殊的铝合金材料制成的,它的高为2.35m,质量却只有10kg,也就是说它的体积很大,质量很小,根据ρ=可知,材料的体积相同时,质量越小,密度越小。所以它利用

了铝合金密度小的性质。故ACD错误,B正确。 故选:B。 点睛:密度是物质的一种特性,不同物质密度一般不同,常用密度来鉴别物质。解答本题时,要紧扣大熊猫高度大,质量小的特点进行分析。 3. 下列事例中不是利用大气压工作的是() A. 用塑料吸管吸饮料 B. 用抽水机抽水 C. 用注射器将药液注入病人体内 D. 钢笔吸墨水 【答案】C 【解析】解:A、用吸管吸饮料时,吸管内的气压小于外界大气压,饮料在外界大气压的作用下,被压入口腔内。利用了大气压。故A不合题意; B、抽水机抽水,通过活塞上移或叶轮转动使抽水机内水面上方的气压减小,水在外界大气压的作用下,被压上来,利用了大气压,故B不合题意。 C、用注射器将药液注入病人体内是利用人的压力将药液注入人体肌肉的,不是利用大气压来工作的,故C 符合题意。 D、用力一按橡皮囊,排出了里面的空气,当其恢复原状时,橡皮囊内部气压小于外界大气压,在外界大气压的作用下,墨水被压入钢笔内,利用了大气压。故D不合题意。 故选:C。 点睛:本题考查了大气压的应用,此类问题有一个共性:通过某种方法,使设备内部的气压小于外界大气压,在外界大气压的作用下出现了这种现象。 4. 自然界中有些能源一旦消耗就很难再生,因此我们要节约能源。在下列能源中,属于不可再生的能源的是 A. 水能 B. 风能 C. 太阳能 D. 煤炭 【答案】D D、煤炭属于化石燃料,不能短时期内从自然界得到补充,属于不可再生能源,故D符合题意。

相关文档
相关文档 最新文档