文档库 最新最全的文档下载
当前位置:文档库 › 平面解析几何(解析版)

平面解析几何(解析版)

 平面解析几何(解析版)
 平面解析几何(解析版)

专题05 平面解析几何

1.【2019年高考全国Ⅰ卷理数】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B

两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为

A .2

212

x y +=

B .22

132x y += C .22

143

x y +=

D .22

154

x y += 【答案】B

【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.

在1AF B △中,由余弦定理推论得22214991cos 2233

n n n F AB n n +-∠==??.

在12AF F △中,由余弦定理得2

2

14422243n n n n +-???

=

,解得n =

2

2

2

24312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22

132

x y +=,故选B .

法二:由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=.

在12AF F △和12BF F △中,由余弦定理得222122

2144222cos 4422cos 9n n AF F n n n BF F n

?+-???∠=?+-???∠=?, 又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,

,得

223611n n +=,解得2

n =

.22224312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22

132

x y +=,故选B .

【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地落实了直观想象、逻辑推理等数学素养.

2.【2019年高考全国Ⅱ卷理数】若抛物线y 2

=2px (p >0)的焦点是椭圆2231x y p

p

+

=的一个焦点,则p =

A .2

B .3

C .4

D .8

【答案】D

【解析】因为抛物线2

2(0)y px p =>的焦点(,0)2p 是椭圆2231x y p p +=的一个焦点,所以2

3()2

p p p -=,解得8p =,故选D .

【名师点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.解答时,利用抛物线与椭圆有共同的焦点即可列出关于p 的方程,从而解出p ,或者利用检验排除的方法,如2p =时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除A ,同样可排除B ,C ,从而得到选D .

3.【2019年高考全国Ⅱ卷理数】设F 为双曲线C :22

221(0,0)x y a b a b

-=>>的右焦点,O 为坐标原点,以

OF 为直径的圆与圆222x y a +=交于P ,Q 两点.若PQ OF =,则C 的离心率为

A B

C .2

D 【答案】A

【解析】设PQ 与x 轴交于点A ,由对称性可知PQ x ⊥轴,

又||PQ OF c ==Q ,||,2

c

PA PA ∴

=∴为以OF 为直径的圆的半径, ∴||2c OA =

,,22c c P ??∴ ???

又P 点在圆2

2

2

x y a +=上,222

44

c c a ∴+=,即22222,22c c a e a =∴==.

e ∴=A .

【名师点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.解答本题时,准确画图,由图形对称性得出P 点坐标,代入圆的方程得到c 与a 的关系,可求双曲线的离心率.

4.【2019年高考全国Ⅲ卷理数】双曲线C :22

42

x y -=1的右焦点为F ,点P 在C 的一条渐近线上,O 为

坐标原点,若=PO PF ,则△PFO 的面积为

A .

4

B .

2

C .

D .【答案】A

【解析】由2,,a b c ===,P PO PF x =∴=

Q ,

又P 在C 的一条渐近线上,不妨设为在b y x a =

上,则2P P b y x a =?==

11

22PFO P S OF y ∴=

?==

△,故选A . 【名师点睛】本题考查以双曲线为载体的三角形面积的求法,渗透了直观想象、逻辑推理和数学运算素

养.采取公式法,利用数形结合、转化与化归和方程思想解题.忽视圆锥曲线方程和两点间的距离公式的联系导致求解不畅,采取列方程组的方式解出三角形的高,便可求三角形面积.

5.【2019年高考北京卷理数】已知椭圆22

22 1x y a b

+=(a >b >0)的离心率为12,则

A .a 2=2b 2

B .3a 2=4b 2

C .a =2b

D .3a =4b

【答案】B

【解析】椭圆的离心率2

221,2

c e c a b a ===-,化简得2234a b =, 故选B.

【名师点睛】本题考查椭圆的标准方程与几何性质,属于容易题,注重基础知识?基本运算能力的考查.由题意利用离心率的定义和,,a b c 的关系可得满足题意的等式.

6.【2019年高考北京卷理数】数学中有许多形状优美、寓意美好的曲线,曲线C :221||x y x y +=+就是其中之一(如图).给出下列三个结论:

①曲线C 恰好经过6个整点(即横、纵坐标均为整数的点);

②曲线C ; ③曲线C 所围成的“心形”区域的面积小于3. 其中,所有正确结论的序号是 A .① B .② C .①②

D .①②③

【答案】C

【解析】由2

2

1x y x y +=+得,2

2

1y x y x -=-,2

222

||3341,10,2443x x x y x ??-=-- ?

?

?厔, 所以x 可取的整数有0,?1,1,从而曲线22

:1C x y x y +=+恰好经过(0,1),(0,?1),(1,0),(1,

1), (?1,0),(?1,1),共6个整点,结论①正确.

由2

2

1x y x y +=+得,222

2

12

x y x y +++…,解得22

2x y +≤,所以曲线C 上任意一点到原点的距离

. 结论②正确.

如图所示,易知()()()()0,1,1,0,1,1,,0,1A B C D -, 四边形ABCD 的面积13111122

ABCD S =

??+?=四边形,很明显“心形”区域的面积大于2ABCD S 四边形,即“心形”区域的面积大于3,说法③错误.

故选C.

【名师点睛】本题考查曲线与方程?曲线的几何性质,基本不等式及其应用,属于难题,注重基础知识?基本运算能力及分析问题、解决问题的能力考查,渗透“美育思想”.将所给方程进行等价变形确定x 的范围可得整点坐标和个数,结合均值不等式可得曲线上的点到坐标原点距离的最值和范围,利用图形的对称性和整点的坐标可确定图形面积的范围.

7.【2019年高考天津卷理数】已知抛物线2

4y x =的焦点为F ,准线为l ,若l 与双曲线

22

221(0,0)x y a b a b

-=>>的两条渐近线分别交于点A 和点B ,且||4||AB OF =(O 为原点),则双曲线的离心率为

A B

C .2

D 【答案】D

【解析】抛物线2

4y x =的准线l 的方程为1x =-, 双曲线的渐近线方程为b

y x a

=±, 则有(1,),(1,)b b A B a a ---,

∴2b AB a =,

24b

a

=,2b a =,

∴c e a a

===

故选D.

【名师点睛】本题考查抛物线和双曲线的性质以及离心率的求解,解题关键是求出AB 的长度.解答时,只需把4AB OF =用,,a b c 表示出来,即可根据双曲线离心率的定义求得离心率. 8.【2019年高考浙江卷】渐近线方程为x ±y =0的双曲线的离心率是

A B .1

C D .2

【答案】C

【解析】因为双曲线的渐近线方程为0x y ±=,所以a b =,则c ==,所以双曲线的离

心率c

e a

=

= 【名师点睛】本题根据双曲线的渐近线方程可求得a b =,进一步可得离心率,属于容易题,注重了双曲线基础知识、基本计算能力的考查.理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.

9.【2019年高考浙江卷】已知圆C 的圆心坐标是(0,)m ,半径长是r .若直线230x y -+=与圆C 相切于

点(2,1)A --,则m =___________,r =___________.

【答案】2-【解析】由题意可知11

:1(2)22

AC k AC y x =-?+=-+,把(0,)m 代入直线AC 的方程得2m =-,

此时||r AC ==

=

【名师点睛】本题主要考查圆的方程、直线与圆的位置关系.首先通过确定直线AC 的斜率,进一步得

到其方程,将(0,)m 代入后求得m ,计算得解.解答直线与圆的位置关系问题,往往要借助于数与形的结合,特别是要注意应用圆的几何性质.

10.【2019年高考浙江卷】已知椭圆22

195

x y +=的左焦点为F ,点P 在椭圆上且在x 轴的上方,若线段PF 的中点在以原点O 为圆心,OF 为半径的圆上,则直线PF 的斜率是___________.

【解析】方法1:如图,设F 1为椭圆右焦点.由题意可知||=|2OF OM |=c =,

由中位线定理可得12||4PF OM ==,设(,)P x y ,可得22

(2)16x y -+=,

与方程22195

x y +=联立,可解得321,22x x =-=(舍)

, 又点P 在椭圆上且在x

轴的上方,求得32P ?- ??

,所以212

PF

k ==.

方法2:(焦半径公式应用)由题意可知|2OF |=|OM |=c =, 由中位线定理可得12||4PF OM ==,即3

42

p p a ex x -=?=-

从而可求得32P ?-

??

,所以212

PF k ==.

【名师点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、圆的方程与性质的应用,利用数形结合

思想,是解答解析几何问题的重要途径.结合图形可以发现,利用三角形中位线定理,将线段长度用圆的方程表示,与椭圆方程联立可进一步求解.故故利用焦半径及三角形中位线定理解决,则更为简洁.

11.【2019年高考全国Ⅲ卷理数】设12F F ,为椭圆C :22

+13620

x y =的两个焦点,M 为C 上一点且在第一象

限.若12MF F △为等腰三角形,则M 的坐标为___________.

【答案】(

【解析】由已知可得2

2

2

2

2

36,20,16,4a b c a b c ==∴=-=∴=,

11228MF F F c ∴===,∴24MF =.

设点M 的坐标为()()0000,0,0x y x y >>,则1212001

42

MF F S F F y y =??=△,

又1201

442

MF F S y =

?=∴=△0y =, 2

20

136

20

x ∴+=,解得03x =(03x =-舍去)

M \的坐标为(.

【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地落

实了直观想象、逻辑推理等数学素养.解答本题时,根据椭圆的定义分别求出12MF MF 、

,设出M 的坐标,结合三角形面积可求出M 的坐标.

12.【2019年高考全国Ⅰ卷理数】已知双曲线C :22

221(0,0)x y a b a b

-=>>的左、右焦点分别为F 1,F 2,

过F 1的直线与C 的两条渐近线分别交于A ,B 两点.若1F A AB =u u u r u u u r ,120F

B F B ?=u u u

r u u u u r ,则C 的离心率为____________. 【答案】2

【解析】如图,由1,

F A AB =u u u r u u u r 得1.F A AB =又12,OF OF =得OA 是三角形12F F B 的中位线,即22,2.BF OA BF OA =∥由120F B F B ?=u u u r u u u u r

,得121,,F B F B OA F A ⊥∴⊥∴1OB OF =,

1AOB AOF ∠=∠, 又OA 与OB 都是渐近线,得21,BOF AOF ∠=∠

又21πBOF AOB AOF ∠+∠+∠=,∴2160,BOF AOF BOA ∠=∠=∠=o

又渐近线OB 的斜率为

tan 60b a =?=∴该双曲线的离心率为2c e a ====.

【名师点睛】本题结合平面向量考查双曲线的渐近线和离心率,渗透了逻辑推理、直观想象和数学运算素养,采取几何法,利用数形结合思想解题.解答本题时,通过向量关系得到1F A AB =和1OA F A ⊥,从而可以得到1AOB AOF ∠=∠,再结合双曲线的渐近线可得21,BOF AOF ∠=∠进而得到

2160,BOF AOF BOA ∠=∠=∠=o 从而由

tan 60b

a

=?=. 13.【2019年高考江苏卷】在平面直角坐标系xOy 中,若双曲线2

2

21(0)y x b b

-=>经过点(3,4),则该

双曲线的渐近线方程是 ▲ .

【答案】y =

【解析】由已知得2

2

2431b

-=,解得b =b =

因为0b >,所以b =

因为1a =,所以双曲线的渐近线方程为y =.

【名师点睛】双曲线的标准方程与几何性质,往往以小题的形式考查,其难度一般较小,是高考必得分题.双曲线渐近线与双曲线标准方程中的,a b 密切相关,事实上,标准方程中化1为0,即得渐近线方程. 14.【2019年高考江苏卷】在平面直角坐标系xOy 中,P 是曲线4

(0)y x x x

=+

>上的一个动点,则点P 到直线x +y =0的距离的最小值是 ▲ . 【答案】4

【解析】当直线x +y =0平移到与曲线4

y x x

=+相切位置时,切点Q 即为点P ,此时到直线x +y =0的距离最小.

由24

11y x

'=-

=-

,得)x x ==

,y =

Q , 则切点Q 到直线x +y =0

4=,

故答案为4.

【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法和公式法,利用数形结合和转化与化归思想解题.

15.【2019年高考全国Ⅰ卷理数】已知抛物线C :y 2=3x 的焦点为F ,斜率为

的直线l 与C 的交点为A ,B ,与x 轴的交点为P .

(1)若|AF |+|BF |=4,求l 的方程;

(2)若,求|AB |.

【答案】(1)3728y x =

-;(2

【解析】设直线()()11223

:,,,,2

l y x t A x y B x y =

+. (1)由题设得3,04F ??

???

,故123||||2AF BF x x +=++,由题设可得1252x x +=.

由232

3y x t y x

?

=+???=?,可得22

912(1)40x t x t +-+=,则1212(1)9t x x -+=-. 从而12(1)592t --

=,得7

8

t =-. 所以l 的方程为37

28

y x =

-. (2)由3AP PB =u u u r u u u r

可得123y y =-.

由232

3y x t y x

?

=+???=?,可得2220y y t -+=. 所以122y y +=.从而2232y y -+=,故211,3y y =-=.

3

2

3AP PB =u u u r u u u r

代入C 的方程得1213,3

x x ==

故||AB =

. 【名师点睛】本题考查抛物线的几何性质、直线与抛物线的综合应用问题,涉及平面向量、弦长的求解方法,解题关键是能够通过直线与抛物线方程的联立,利用根与系数的关系构造等量关系. 16.【2019年高考全国Ⅱ卷理数】已知点A (?2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之

积为?

12

.记M 的轨迹为曲线C .

(1)求C 的方程,并说明C 是什么曲线;

(2)过坐标原点的直线交C 于P ,Q 两点,点P 在第一象限,PE ⊥x 轴,垂足为E ,连结QE 并延长交

C 于点G .

(i )证明:PQG △是直角三角形; (ii )求PQG △面积的最大值.

【答案】(1)见解析;(2)

16

9

. 【解析】(1)由题设得1222y y x x ?=-+-,化简得22

1(||2)42

x y x +=≠,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点.

(2)(i )设直线PQ 的斜率为k ,则其方程为(0)y kx k =>.

由2

2142

y kx

x y =???+=?

?

得x =.

记u =

,则(,),(,),(,0)P u uk Q u uk E u --.

于是直线QG 的斜率为

2k ,方程为()2

k

y x u =-. 由22

(),2142

k y x u x y ?

=-????+=??得

22222(2)280k x uk x k u +-+-=.①

设(,)G G G x y ,则u -和G x 是方程①的解,故22(32)2G u k x k +=+,由此得3

2

2G uk

y k

=+. 从而直线PG 的斜率为3

22

2

12(32)2uk uk k u k k

u

k -+=-+-+. 所以PQ PG ⊥,即PQG △是直角三角形.

(ii )由(i

)得||2PQ =

2

2||2PG k

=+,所以△PQG 的面积

2

222

18()

18(1)||12(12)(2)12()k k k k S PQ PG k k k k

++===++++‖. 设t =k +

1

k

,则由k >0得t ≥2,当且仅当k =1时取等号. 因为2

812t S t =

+在[2,+∞)单调递减,所以当t =2,即k =1时,S 取得最大值,最大值为16

9

. 因此,△PQG 面积的最大值为

16

9

. 【名师点睛】本题考查了求椭圆的标准方程,以及利用直线与椭圆的位置关系,判断三角形形状以及三角形面积最大值问题,考查了数学运算能力,考查了求函数最大值问题.

17.【2019年高考全国Ⅲ卷理数】已知曲线C :y =2

2

x ,D 为直线y =12-上的动点,过D 作C 的两条切线,

切点分别为A ,B .

(1)证明:直线AB 过定点: (2)若以E (0,

5

2

)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积. 【答案】(1)见详解;(2)3

或 【解析】(1)设()111,,,2D t A x y ?

?-

???

,则2112x y =.

由于y'x =,所以切线DA 的斜率为1x ,故1111

2y x x t

+

=- . 整理得112 2 +1=0. tx y -

设()22,B x y ,同理可得222 2 +1=0tx y -. 故直线AB 的方程为2210tx y -+=. 所以直线AB 过定点1(0,)2

.

(2)由(1)得直线AB 的方程为12

y tx =+

. 由2

122

y tx x y ?

=+????=??,可得2210x tx --=. 于是()2121212122,

1,121x x t x x y y t x x t +==-+=++=+,

()212||21AB x t =-==+.

设12,d d 分别为点D ,E

到直线AB

的距离,则12d d ==

因此,四边形ADBE 的面积()

(2121

||32

S AB d d t =

+=+设M 为线段AB 的中点,则2

1,2M t t ??+

???

. 由于EM AB ⊥u u u u r u u u r ,而()

2

,2EM t t =-u u u u r ,AB u u u r 与向量(1, )t 平行,所以()220t t t +-=.解得t =0或1t =±.

当t =0时,S =3;当1t =

±时,S =因此,四边形ADBE

的面积为3或【名师点睛】此题第一问是圆锥曲线中的定点问题,第二问是求面积类型,属于常规题型,按部就班地求解就可以,思路较为清晰,但计算量不小.

18.【2019年高考北京卷理数】已知抛物线C :x 2=?2py 经过点(2,?1).

(1)求抛物线C 的方程及其准线方程;

(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =?1分

别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点. 【答案】(1)抛物线C 的方程为2

4x y =-,准线方程为1y =;(2)见解析.

【解析】(1)由抛物线2:2C x py =-经过点(2,1)-,得2p =.

所以抛物线C 的方程为2

4x y =-,其准线方程为1y =. (2)抛物线C 的焦点为(0,1)F -. 设直线l 的方程为1(0)y kx k =-≠.

由2

1,4y kx x y

=-??

=-?得2

440x kx +-=. 设()()1122,,,M x y N x y ,则124x x =-. 直线OM 的方程为1

1

y y x x =

. 令1y =-,得点A 的横坐标1

1

A x x y =-

. 同理得点B 的横坐标2

2

B x x y =-

. 设点(0, )D n ,则1

212,1,,1x x DA n DB n y y ????=---=--- ? ?????

u u u r u u u r ,

21212

(1)x x

DA DB n y y ?=++u u u r u u u r

212

22

12(1)44x x n x x =

++????-- ???????

212

16

(1)n x x =

++ 24(1)n =-++.

令0DA DB ?=u u u r u u u r ,即2

4(1)0n -++=,则1n =或3n =-.

综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,3)-.

【名师点睛】本题主要考查抛物线方程的求解与准线方程的确定,直线与抛物线的位置关系,圆的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.

19.【2019年高考天津卷理数】设椭圆22

221(0)x y a b a b

+=>>的左焦点为F ,上顶点为B .已知椭圆的短

轴长为4

(1)求椭圆的方程;

(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上.若||||ON OF =(O 为原点),且OP MN ⊥,求直线PB 的斜率.

【答案】(1)22154

x y +=;(2

或.

【解析】(1)设椭圆的半焦距为c ,

依题意,24,

c b a ==222a b c =+

,可得a =2,b =1c =.

所以,椭圆的方程为22

154

x y +=. (2)由题意,设()()

()0,,0P P p M P x y x M x ≠,.设直线PB 的斜率为()0k k ≠, 又()0,2B ,则直线PB 的方程为2y kx =+,

与椭圆方程联立222,1,5

4y kx x y =+??

?+=??整理得()2245200k x kx ++=,

可得2

2045P k

x k =-+,代入2y kx =+得2281045P k y k -=+,

进而直线OP 的斜率2

4510P p y k x k

-=

-. 在2y kx =+中,令0y =,得2

M x k

=-

. 由题意得()0,1N -,所以直线MN 的斜率为2

k -

由OP MN ⊥,得

2

451102k k k

-??

?-=- ?-??

,化简得2245k =,从而k =±

所以,直线PB 或. 【名师点睛】本小题主要考查椭圆的标准方程和几何性质、直线方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.

20.【2019年高考江苏卷】如图,在平面直角坐标系xOy 中,椭圆C :22

221(0)x y a b a b

+=>>的焦点为F 1

(–1、0),F 2(1,0).过F 2作x 轴的垂线l ,在x 轴的上方,l 与圆F 2:2

2

2

(1)4x y a -+=交于点A ,与椭圆C 交于点D .连结AF 1并延长交圆F 2于点B ,连结BF 2交椭圆C 于点E ,连结DF 1. 已知DF 1=

5

2

. (1)求椭圆C 的标准方程; (2)求点E 的坐标.

【答案】(1)22

143

x y +=;

(2)3(1,)2E --. 【解析】(1)设椭圆C 的焦距为2c .

因为F 1(?1,0),F 2(1,0),所以F 1F 2=2,c =1.

又因为DF 1=

52,AF 2⊥x 轴,所以DF 23

2

==, 因此2a =DF 1+DF 2=4,从而a =2. 由b 2=a 2?c 2,得b 2=3.

因此,椭圆C 的标准方程为22

143

x y +=.

(2)解法一:由(1)知,椭圆C :22

143

x y +=,a =2,

因为AF 2⊥x 轴,所以点A 的横坐标为1. 将x =1代入圆F 2的方程(x ?1) 2+y 2=16,解得y =±4. 因为点A 在x 轴上方,所以A (1,4). 又F 1(?1,0),所以直线AF 1:y =2x +2.

由22

()22116

y x x y =+-+=???,得2

56110x x +-=,解得1x =或115x =-. 将115x =-

代入22y x =+,得 12

5y =-, 因此1112

(,)55

B --.

又F 2(1,0),所以直线BF 2:3

(1)4

y x =-.

由22

14

33(1)4x y x y ?????+=-?=?,得2

76130x x --=,解得1x =-或137x =. 又因为E 是线段BF 2与椭圆的交点,所以1x =-. 将1x =-代入3(1)4y x =-,得3

2

y =-. 因此3(1,)2

E --.

解法二:由(1)知,椭圆C :22

143

x y +=.

如图,连结EF 1.

因为BF 2=2a ,EF 1+EF 2=2a ,所以EF 1=EB , 从而∠BF 1E =∠B .

因为F 2A =F 2B ,所以∠A =∠B , 所以∠A =∠BF 1E ,从而EF 1∥F 2A . 因为AF 2⊥x 轴,所以EF 1⊥x 轴.

因为F 1(?1,0),由2214

31

x x y ??

?+

==-??,得32y =±.

又因为E 是线段BF 2与椭圆的交点,所以3

2

y =-. 因此3(1,)2

E --.

【名师点睛】本小题主要考查直线方程、圆的方程、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,考查推理论证能力、分析问题能力和运算求解能力.

21.【2019年高考浙江卷】如图,已知点(10)F ,为抛物线2

2(0)y px p =>的焦点,过点F 的直线交抛物

线于A 、B 两点,点C 在抛物线上,使得ABC △的重心G 在x 轴上,直线AC 交x 轴于点Q ,且Q 在点F 的右侧.记,AFG CQG △△的面积分别为12,S S . (1)求p 的值及抛物线的准线方程; (2)求

1

2

S S 的最小值及此时点G 的坐标.

【答案】(1)p =2,准线方程为x =?1;(2

)最小值为12

+,此时G (2,0). 【解析】(1)由题意得

12

p

=,即p =2. 所以,抛物线的准线方程为x =?1.

(2)设()()(),,,,,A A B B c c A x y B x y C x y ,重心(),G G G x y .令2,0A y t t =≠,则2

A x t =.

由于直线AB 过F ,故直线AB 方程为21

12t x y t

-=+,代入24y x =,得 ()222140t y y t

--

-=,

故24B ty =-,即2B y t =-,所以212,B t

t ??- ???.

又由于()()11,33G A B c G A B c x x x x y y y y =

++=++及重心G 在x 轴上,故2

20c t y t

-+=,得242211222,2,,03t t C t t G t t t ????

-+????-- ? ? ? ? ?????????

. 所以,直线AC 方程为()

222y t t x t -=-,得()

21,0Q t -.

由于Q 在焦点F 的右侧,故2

2t >.从而

42242212

44

242222211|2|||322

221222211|||1||2|23A

c t t t FG y t S t t t t t S t t QG y t t t t

-+-??--====--+--?--?-

.

令22

m t=-,则m>0,

1

2

2

1

2221

3

434

S m

S m m m

m

=-=-=

++++

当m=时,1

2

S

S

取得最小值1+G(2,0).

【名师点睛】本题主要考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,同时考查运算求解能力和综合应用能力.

22.【辽宁省丹东市2019届高三总复习质量测试理科数学(二)】经过点(3,0)

M作圆22243

x y x y

+---0

=的切线l,则l的方程为

A.30

x y

+-=B.30

x y

+-=或3

x=

C.30

x y

--=D.30

x y

--=或3

x=

【答案】C

【解析】2222

2430(1)(2)8

x y x y x y

+---=?-+-=,所以圆心坐标为(1,2)

,半径为

当过点()

3,0

M的切线存在斜率k,切线方程为(3)30

y k x kx y k

=-?--=,

圆心到它的距离为

1

k

==,即切线方程为30

x y

--=,

当过点()

3,0

M的切线不存在斜率时,即3

x=

,显然圆心到它的距离为2≠,所以3

x=不是圆的切线.

因此切线方程为30

x y

--=,故本题选C.

【名师点睛】本题考查了求圆的切线.本题实际上是过圆上一点求切线,所以只有一条.解答本题时,设直线l存在斜率k,点斜式设出方程,利用圆心到直线l的距离等于半径求出斜率k,再讨论直线l不存在斜率时,是否能和圆相切,如果能,写出直线方程,综合求出切线方程.

23.【广东省深圳市深圳外国语学校2019届高三第二学期第一次热身考试数学试题】已知椭圆

22

22

1

x y

a b

+=

(0)

a b

>>

P到两焦点距离之和为12,则椭圆短轴长为

高中平面解析几何知识点总结

高中平面解析几何知识点总结 一.直线部分 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把 x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α 叫做直线 的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率: αtan ),(211 21 2=≠--= k x x x x y y k .两点坐标为111(,)P x y 、222(,)P x y . 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:121 121x x x x y y y y --= -- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意 直线.

(4)截距式:1=+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式: B C x B A y - - =,即,直线的斜率: B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1)直线在两坐标轴上的截距相等?直线的斜率为1-或直线过原点. (2)直线两截距互为相反数?直线的斜率为1或直线过原点. (3)直线两截距绝对值相等?直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+,有

高考数学压轴专题人教版备战高考《平面解析几何》知识点总复习含解析

【最新】《平面解析几何》专题 一、选择题 1.若点O 和点F 分别为椭圆22 143 x y +=的中心和左焦点,点P 为椭圆上的任意一点,则 OP FP →→ g 的最大值为( ) A .4 B .5 C .6 D .7 【答案】C 【解析】 【分析】 设(),P x y ,由数量积的运算及点P 在椭圆上,可把OP FP ?u u u r u u u r 表示成为x 的二次函数,根 据二次函数性质可求出其最大值. 【详解】 设(),P x y ,()()1,0,0,0F O -,则 ()(),,+1,OP x y FP x y ==u u u r u u u r ,则 22OP FP x x y ?=++u u u r u u u r , 因为点P 为椭圆上,所以有:22143 x y +=即2 2334y x =-, 所以()2222 23132244 x x y x x x FP x OP =++=?++-=++u u u r u u u r 又因为22x -≤≤, 所以当2x =时,OP FP ?u u u r u u u r 的最大值为6 故选:C 【点睛】 本题考查了数量积的坐标运算,求二次函数的最大值,属于一般题. 2.已知直线21y kx k =++与直线1 22 y x =-+的交点位于第一象限,则实数k 的取值范围是( ) A .1 2 k > B .16k <- 或1 2 k > C .62k -<< D .1162 k - << 【答案】D 【解析】 【分析】 联立21 1 22y kx k y x =++???=-+?? ,可解得交点坐标(,)x y ,由于直线21y kx k =++与直线

高中数学平面解析几何知识点总结

平面解析几何 一、直线与圆 1.斜率公式 2121 y y k x x -=-(111(,)P x y 、222(,)P x y ). 2.直线的五种方程 (1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121 y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). < (4)截距式 1x y a b +=(a b 、分别为直线的横、纵截距,0a b ≠、). (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 3.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ?=≠; ②12121l l k k ⊥?=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222 ||A B C l l A B C ? =≠; < ②1212120l l A A B B ⊥?+=; 4.点到直线的距离 d =(点00(,)P x y ,直线l :0Ax By C ++=). 5.圆的四种方程 (1)圆的标准方程 222()()x a y b r -+-=. (2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).圆心??? ??--2,2E D ,半径r=2 422F E D -+. 6.点与圆的位置关系 点00(,)P x y 与圆2 22)()(r b y a x =-+-的位置关系有三种: . 若d =d r >?点P 在圆外;d r =?点P 在圆上;d r 相离r d ; 0=???=相切r d ; 0>???<相交r d . 其中22B A C Bb Aa d +++=. 8.两圆位置关系的判定方法 # 设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21 条公切线外离421??+>r r d ; 条公切线外切321??+=r r d ;

平面解析几何经典题(含答案)

平面解析几何 一、直线的倾斜角与斜率 1、直线的倾斜角与斜率 (1)倾斜角的范围 0 180 (2)经过两点的直线的斜率公式是 (3)每条直线都有倾斜角,但并不是每条直线都有斜率 2.两条直线平行与垂直的判定 (1)两条直线平行 对于两条不重合的直线l1,l2 ,其斜率分别为k1, k2 ,则有 l1 / /l2 k1 k2 。特别地, 当直线 l1,l2 的斜率都不存在时,l1与l2 的关系为平行。 (2)两条直线垂直 如果两条直线l1,l2 斜率存在,设为k1, k2 ,则l1 l2 k1 k2 1 注:两条直线l1 ,l2 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率 之积为 -1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1。如果 l1,l2 中 有一条直线的斜率不存在,另一条直线的斜率为0 时, l1与l2 互相垂直。 二、直线的方程 1、直线方程的几种形式 名称方程的形式已知条件局限性 点斜式 不包括垂直于x 轴的直 线为直线上一定点,k 为斜率 斜截式k 为斜率, b 是直线在y 轴上的截距不包括垂直于x 轴的直线两点式 不包括垂直于x 轴和 y 轴的是直线上两定点 直线 截距式 a 是直线在x 轴上的非零截距, b 是直不包括垂直于x 轴和 y 轴或

线在 y 轴上的非零截距过原点的直线 一般式 A ,B,C 为系数无限制,可表示任何位置的 直线 三、直线的交点坐标与距离公式 三、直线的交点坐标与距离公式 1.两条直线的交点 设两条直线的方程是,两条 直线的交点坐标就是方程组的解,若方程组有唯一解,则这两条 直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平 行;反之,亦成立。 2.几种距离 (1 )两点间的距离平面上的两点间的距离公式 (2)点到直线的距离 点到直线的距离; (3)两条平行线间的距离 两条平行线间的距离 注:(1)求点到直线的距离时,直线方程要化为一般式; (2)求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用 公式计算 (二)直线的斜率及应用 利用斜率证明三点共线的方法: 已知A(x , y ), B(x , y ), C (x , y ), 若 x 1 x 2 x3或k AB k AC ,则有 A 、B、 C 三点共 1 1 2 2 3 3 线。

平面解析几何测试题带答案

1.(本小题满分12分)已知:圆C:x2+y2-8y+12=0,直线l:ax+y+2a=0. (1)当a为何值时,直线l与圆C相切; (2)当直线l与圆C相交于A、B两点,且AB=22时,求直线l的方程. 2.设椭圆ax2+by2=1与直线x+y-1=0相交于A、B两点,点C是AB的中点,若|AB|=22,OC的斜 率为 2 2 ,求椭圆的方程. 3.(本小题满分12分)(2010·南通模拟)已知动圆过定点F(0,2),且与定直线l:y=-2相切. (1)求动圆圆心的轨迹C的方程; (2)若AB是轨迹C的动弦,且AB过F(0,2),分别以A、B为切点作轨迹C的切线,设两切线交点为Q, 证明:AQ⊥BQ . 4.已知圆(x-2)2+(y-1)2=20 3 ,椭圆b2x2+a2y2=a2b2(a>b>0)的离心率为 2 2 ,若圆与椭圆相交于A、B, 且线段AB是圆的直径,求椭圆的方程.

5.已知m 是非零实数,抛物线)0(2:2 >=p px y C 的焦点F 在直线2 :02 m l x my --=上. (I )若m=2,求抛物线C 的方程 (II )设直线l 与抛物线C 交于A 、B 两点,F AA 1?,F BB 1?的重心分别为G,H. 求证:对任意非零实数m,抛物线C 的准线与x 轴的焦点在以线段GH 为直径的圆外。 6. (本小题满分14分)(2010·东北四市模拟)已知O 为坐标原点,点A 、B 分别在x 轴,y 轴上运动,且|AB | =8,动点P 满足AP u u u r =35 PB u u u r ,设点P 的轨迹为曲线C ,定点为M (4,0),直线PM 交曲线C 于另外一 点Q . (1)求曲线C 的方程; (2)求△OPQ 面积的最大值. 7.(文)有一个装有进出水管的容器,每单位时间进出的水量各自都是一定的,设从某时刻开始10分钟内只进水、不出水,在随后的30分钟内既进水又出水,得到时间x(分)与水量y(升)之间的关系如图所示,若40分钟后只放水不进水,求y 与x 的函数关系.

高考数学专题复习与策略专题平面解析几何突破点圆锥曲线中的综合问题专题限时集训理

专题限时集训(十五)圆锥曲线中的综合问题 [建议用时:45分钟] 1.(2016·中原名校联盟二模)已知椭圆C :x 2a 2+y 2 b 2=1(a >b >0)的左、右焦点分别为F 1, F 2,点B (0,3)为短轴的一个端点,∠OF 2B =60°. 图15-4 (1)求椭圆C 的方程; (2)如图15-4,过右焦点F 2,且斜率为k (k ≠0)的直线l 与椭圆C 相交于D ,E 两点,A 为椭圆的右顶点,直线AE ,AD 分别交直线x =3于点M ,N ,线段MN 的中点为P ,记直线PF 2的斜率为k ′.试问k ·k ′是否为定值?若为定值,求出该定值;若不为定值,请说明理由. [解] (1)由条件可知a =2,b =3,故所求椭圆方程为x 24+y 2 3=1.4分 (2)设过点F 2(1,0)的直线l 的方程为y =k (x -1). 由????? y =k x -1,x 24+y 23 =1,可得(4k 2+3)x 2-8k 2x +4k 2 -12=0.5分 因为点F 2(1,0)在椭圆内,所以直线l 和椭圆都相交,即Δ>0恒成立.设点E (x 1,y 1), D (x 2,y 2), 则x 1+x 2=8k 2 4k 2+3,x 1x 2=4k 2 -124k 2+3.6分 因为直线AE 的方程为y =y 1x 1-2(x -2),直线AD 的方程为y =y 2 x 2-2 (x -2), 令x =3,可得M ? ? ??? 3, y 1x 1-2,N ? ????3,y 2x 2-2,所以点P 的坐标? ????3,12? ????y 1x 1-2+y 2x 2-2.8分 直线PF 2的斜率为k ′=12? ?? ??y 1 x 1-2+y 2x 2-2-0 3-1 =14·x 1y 2+x 2y 1-2y 1+y 2x 1x 2-2x 1+x 2+4=14·2kx 1x 2-3k x 1+x 2+4k x 1x 2-2x 1+x 2+4

最新专题五平面解析几何

专题五平面解析几何

专题五平面解析几何 第14讲直线与圆 [云览高考] 二轮复习建议 命题角度:该部分主要围绕两个点展开命题.第一个点是围绕直线与圆的方程展开,设计考查求直线方程、圆的方程、直线与圆的位置关系等问题,目的是考查平面解析几何初步的基础知识和方法,考查运算求解能力,试题一般是选择题或者填空题;第二个点是围绕把直线与圆综合展开,设计考查直线与圆的相互关系的试题,目的是考查直线与圆的方程在解析几何中的综合运用,这个点的试题一般是解答题. 预计2013年该部分的命题方向不会有大的变化,以选择题或者填空题的形式重点考查直线与圆的方程,而在解答题中考查直线方程、圆的方程的综合运用.复习建议:该部分是解析几何的基础,涉及大量的基础知识,在复习时要把知识进一步系统化,在此基础上,在本讲中把重点放在解决直线与圆的方程问题上. 主干知识整合

1.直线的概念与方程 (1)概念:直线的倾斜角θ的范围为[0°,180°),倾斜角为90°的直线的斜率不存在,过 两点的直线的斜率公式k =tan α=y 2-y 1x 2-x 1(x 1≠x 2 ); (2)直线方程:点斜式y -y 0=k (x -x 0),两点式y -y 1y 2-y 1=x -x 1x 2-x 1(x 1 ≠x 2,y 1≠y 2),一般式Ax +By +C =0(A 2+B 2≠0); (3)位置关系:当不重合的两条直线l 1和l 2的斜率存在时,两直线平行l 1∥l 2?k 1=k 2,两直线垂直l 1⊥l 2?k 1·k 2=-1,两直线的交点就是以两直线方程组成的方程组的解为坐标的点; (4)距离公式:两点间的距离公式,点到直线的距离公式,两平行线间的距离公式. 2.圆的概念与方程 (1)标准方程:圆心坐标(a ,b ),半径r ,方程(x -a )2+(y -b )2=r 2,一般方程:x 2+y 2+Dx +Ey +F =0(其中D 2+E 2-4F >0); (2)直线与圆的位置关系:相交、相切、相离 ,代数判断法与几何判断法; (3)圆与圆的位置关系:相交、相切、相离、内含,代数判断法与几何判断法. 要点热点探究 ? 探究点一 直线的概念、方程与位置关系 例1 (1)过点(5,2),且在y 轴上的截距是在x 轴上的截距的2倍的直线方程是( B ) A .2x +y -12=0 B .2x +y -12=0或2x -5y =0 C .x -2y -1=0 D .x -2y -1=0或2x -5y =0 (2)[2012·浙江卷] 设a ∈R ,则“a =1”是“直线l 1:ax +2y -1=0与直线l 2:x +(a + 1)y +4=0平行”的( A ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 点评] 直线方程的四种特殊形式(点斜式、斜截式、两点式、截距式)都有其适用范围,在解题时不要忽视这些特殊情况,如本例第一题易忽视直线过坐标原点的情况;一般地,直线A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0平行的充要条件是A 1B 2=A 2B 1且A 1C 2≠A 2C 1,垂直的充要条件是A 1A 2+B 1B 2=0. 变式题 (1)将直线y =3x 绕原点逆时针旋转90°,再向右平移1个单位,所得的直线方程为( A ) A .y =-13x +13 B .y =-13x +1 C .y =3x -3 D .y =13 x +1 (2)“a =-2”是“直线ax +2y =0垂直于直线x +y =1”的( C ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 ? 探究点二 圆的方程及圆的性质问题 例2 (1)已知圆(x -a )2+(y -b )2=r 2的圆心为抛物线y 2=4x 的焦点,且与直线3x +4y +2=0相切,则该圆的方程为( C ) A .(x -1)2+y 2=6425 B .x 2+(y -1)2=6425 C .(x -1)2+y 2=1 D .x 2+(y -1)2=1 (2)[2012·陕西卷] 已知圆C :x 2+y 2-4x =0,l 是过点P (3,0)的直线,则( A ) A .l 与C 相交 B .l 与 C 相切 C .l 与C 相离 D .以上三个选项均有可能 [点评] 确定圆的几何要素:圆心位置和圆的半径,求解圆的方程就是求出圆心坐标和

高考数学压轴专题(易错题)备战高考《平面解析几何》知识点总复习附答案解析

高中数学《平面解析几何》期末考知识点 一、选择题 1.已知椭圆22 1259 x y +=上一点M 到椭圆的一个焦点的距离等于4,那么点M 到另一个 焦点的距离等于( ) A .1 B .3 C .6 D .10 【答案】C 【解析】 由椭圆方程可得225210a a =∴= ,由椭圆定义可得点M 到另一焦点的距离等于6.故选C . 2.已知椭圆2 2 :12 y C x +=,直线:l y x m =+,若椭圆C 上存在两点关于直线l 对称, 则m 的取值范围是( ) A .? ?? B .? ?? C .? ?? D .? ?? 【答案】C 【解析】 【分析】 设()11,A x y ,()22,B x y 是椭圆C 上关于l 对称的两点,AB 的中点为()00,M x y ,根据椭圆C 上存在两点关于直线:l y x m =+对称,将A ,B 两点代入椭圆方程,两式作差可得 002y x =,点M 在椭圆C 内部,可得2221m m +<,解不等式即可. 【详解】 设()11,A x y ,()22,B x y 是椭圆C 上关于l 对称的两点,AB 的中点为()00,M x y , 则1202x x x +=,1202y y y +=,1AB k =-. 又因为A ,B 在椭圆C 上,所以2211 12y x +=,2 2 2212 y x +=, 两式相减可得 1212 1212 2y y y y x x x x -+?=--+,即002y x =. 又点M 在l 上,故00y x m =+,解得0x m =,02y m =. 因为点M 在椭圆C 内部,所以2221m m +<,解得m ?∈ ?? . 故选:C 【点睛】 本题考查了直线与椭圆的位置关系以及在圆锥曲线中“设而不求”的思想,属于基础题.

专题11 平面解析几何大题强化训练(省赛试题汇编)(原卷版)

专题11平面解析几何大题强化训练(省赛试题汇编) 1.【2018年广西预赛】已知中心在原点O,焦点在x轴上,离心率为的椭圆过点设不过原点O的直线l与该椭圆交于P,Q两点,且直线OP,PQ,OQ的斜率依次成等比数列,求面积的取值范围. 2.【2018年安徽预赛】设O是坐标原点,双曲线C:上动点M处的切线,交C的两条渐近线于 A、B两点. ⑴求证:△AOB的面积S是定值; ⑵求△AOB的外心P的轨迹方程. 3.【2018年湖南预赛】已知抛物线的顶点,焦点,另一抛物线的方程为 在一个交点处它们的切线互相垂直.试证必过定点,并求该点的坐标. 4.【2018年湖南预赛】如图,在凸四边形ABCD中,M为边AB的中点,且MC=MD.分别过点C、D作边BC、AD的垂线,设两条垂线的交点为P.过点P作与Q.求证:. 5.【2018年湖北预赛】已知为坐标原点,,点为直线上的动点,的平分线与直线 交于点,记点的轨迹为曲线. (1)求曲线的方程; (2)过点作斜率为的直线,若直线与曲线恰好有一个公共点,求的取值范围. 6.【2018年甘肃预赛】已知椭圆过点,且右焦点为. (1)求椭圆的方程;

(2)过点的直线与椭圆交于两点,交轴于点.若,求证:为定值;(3)在(2)的条件下,若点不在椭圆的内部,点是点关于原点的对称点,试求三角形面积的最小值. 7.【2018年吉林预赛】如图,已知抛物线过点P(-1,1),过点Q(,0)作斜率大于0的直线l 交抛物线与M、N两点(点M在Q、N之间),过点M作x轴的平行线,交OP于A,交ON于B.△PMA 与△OAB的面积分别记为,比较与3的大小,说明理由. 8.【2018年山东预赛】已知圆与曲线为曲 线上的两点,使得圆上任意一点到点的距离与到点的距离之比为定值,求的值.9.【2018年天津预赛】如图,是双曲线的两个焦点,一条直线与双曲线的右支相切,且分别交两条渐近线于A、B.又设O为坐标原点,求证:(1);⑵、A、B四点在同一个圆上. 10.【2018年河南预赛】已知方程平面上表示一椭圆.试求它的对称中心及对称轴.

平面解析几何高考专题复习

第八章 平面解析几何 第一节 直线的倾斜角与斜率、直线的方程 1.直线的倾斜角 (1)定义:x 轴正向与直线向上方向之间所成的角叫做这条直线的倾斜角.当直线与x 轴平行或重合时,规定它的倾斜角为0°. (2)倾斜角的范围为[0,π). 2.直线的斜率 (1)定义:一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k 表示,即k =tan_α,倾斜角是90°的直线没有斜率. (2)过两点的直线的斜率公式: 经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率公式为k =y 2-y 1x 2-x 1=y 1-y 2 x 1-x 2. 3.直线方程

1.利用两点式计算斜率时易忽视x 1=x 2时斜率k 不存在的情况. 2.用直线的点斜式求方程时,在斜率k 不明确的情况下,注意分k 存在与不存在讨论,否则会造成失误. 3.直线的截距式中易忽视截距均不为0这一条件,当截距为0时可用点斜式. 4.由一般式Ax +By +C =0确定斜率k 时易忽视判断B 是否为0,当B =0时,k 不存在;当B ≠0时,k =-A B . [试一试] 1.若直线(2m 2+m -3)x +(m 2-m )y =4m -1在x 轴上的截距为1,则实数m 是( ) A .1 B .2 C .-12 D .2或-1 2 解析:选D 当2m 2+m -3≠0时,即m ≠1或m ≠-3 2时,在x 轴上截距为4m -12m 2+m -3= 1,即2m 2-3m -2=0, 故m =2或m =-1 2 . 2.过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为________. 解析:∵k MN =m -4 -2-m =1,∴m =1. 答案:1 3.过点M (3,-4),且在两坐标轴上的截距相等的直线的方程为________. 解析:①若直线过原点,则k =-4 3, 所以y =-4 3x ,即4x +3y =0. ②若直线不过原点. 设x a +y a =1,即x +y =a . 则a =3+(-4)=-1, 所以直线的方程为x +y +1=0. 答案:4x +3y =0或x +y +1=0 1.求斜率可用k =tan α(α≠90°),其中α为倾斜角,由此可见倾斜角与斜率相互联系不可分割,牢记:“斜率变化分两段,90°是分界线,遇到斜率要谨记,存在与否需讨论”. 2.求直线方程的一般方法 (1)直接法:根据已知条件,选择适当的直线方程形式,直接写出直线方程,选择时,应

平面解析几何知识点总结.doc

基本要求① .掌握两条直线平行、垂直的条件,能根据直线方程判断两条直线的位置关系; ②.掌握两条直线的夹角公式、到角公式和点到直线的距离公式。 ③ . 掌握圆的标准方程和一般方程 . ④ . 掌握圆的方程的两种形式,并能合理合理运用; ⑤. 灵活运用圆的几何性质解决问题 . 1 直线方程的五种形式 点斜式:y y0k ( x x0 ) ,(斜率存在 ) 斜截式:y kx b (斜率存在 ) 两点式: y y1 x x 1, (不垂直坐标轴 ) y2 y1 x2 x1 截距式:x y 1 (不垂直坐标轴 ,不过原点 ) a b 一般式: Ax By C 0 2.直线与直线的位置关系: ( 1)有斜率的两直线 l1:y=k 1x+b1; l2:y=k 2x+b2;有:① l1∥ l2 k1=k2且 b1≠ b2;② l 1⊥ l2 k1·k2 =-1 ; ③ l 1与 l 2相交k 1≠ k2 ④l 1与 l 2重合k1=k2 且 b1=b2。( 2)一般式的直线l : A x+B y+C =0, l : A x+B y+C =0 有:① l ∥ l 2 AB-A B=0;且 BC-B 2 C ≠ 0 1 1 1 1 2 2 2 2 1 1 2 2 1 1 2 1 ② l1⊥ l2A1A2+B1B2=0 ③ l1与 l2相交 A 1B2-A 2B1≠ 0 ④ l1与 l2重合 A 1B2-A 2B1=0 且 B1C2-B 2C1=0。 3.点与直线的位置关系: 点 P( x , y )到直线 Ax+By+C=0的距离: d Ax0 By0 C 。 00 A2 B 2 平行直线 Ax+By+C1=0 与 Ax+By+C2=0 之间的距离为 d C1 C2 A2 B 2 两点间距离公式:| PP | (x x )2 ( y y )2 1 2 1 2 1 2 .4 直线系方程 ①过直线 l 1:A1x+B1y+C1=0, l 2:A2x+B2y+C2=0交点的直线系方程为:A1x+B1y+C1+λ( A2x+B2y+C2)=0(λ∈R)( 除l2外 ) 。 ②过定点 M ( x0 , y0 ) 的直线系方程为 y y0 k( x x0 ) (其中不包括直线x x0) ③和直线 Ax By C 0 平行的直线方程为Ax By C ' 0 (C C ') ④和直线 Ax By C 0 垂直的直线方程为Bx Ay C ' 0 5.圆的定义 : 平面内与定点距离等于定长的点的集合( 轨迹 ) 叫圆 . 在平面直角坐标系内确定一个圆需要三个独立条件: 如三个点 , 半径和圆心 ( 两个坐标 ) 等 . 2 2 2 6. 圆的方程 (1)标准式: (x-a) +(y-b) =r (r>0),其中 r 为圆的半径, (a, b)为圆心。 2 2 2 2 D E 1 D 2 E 2 4F (2)一般式: x +y +Dx+Ey+F=0(D+E -4F>0),其中圆心为( , ) ,半径为 2 2 2 (3) 参数方程 : x r cos , x a r cos (是参数) . 消去θ可得普通方程y r sin y b r sin ( 4) A(x 1, y1)B(x 2,y2)为直径的圆: (x-x1)(x-x 2)+(y-y 1)(y-y 2)=0; (5) .过圆与直线(或圆)交点的圆系方程: i)x2+y2+Dx+Ey+F+λ (Ax+By+C)=0,表示过圆与直线交点圆的方程

专题55 平面解析几何专题训练(新高考地区专用)(解析版)

专题55 平面解析几何专题训练 一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。 1.若2222c b a =+(0≠c ),则直线0=++c by ax 被圆122=+y x 所截得的弦长为( )。 A 、 2 1 B 、22 C 、1 D 、2 【答案】D 【解析】∵圆心)00(,到直线0=++c by ax 的距离2 2 2 2= += b a C d , 因此根据直角三角形的关系,弦长的一半就等于2 2)22( 12=-,∴弦长为2,故选D 。 2.若P 、Q 分别为直线01243=-+y x 与0586=++y x 上任意一点,则||PQ 的最小值为( )。 A 、 59 B 、1029 C 、518 D 、5 29 【答案】B 【解析】∵ 5 12 8463-≠ =,∴两直线平行,将直线01243=-+y x 化为02486=-+y x , 由题意可知||PQ 的最小值为这两条平行直线间的距离,即 10 29 865242 2= +--,故选B 。 3.若圆4)()(22=-+-a y a x 上有且仅有两个点到原点的距离为2,则实数a 的取值范围为( )。 A 、)022(, - B 、)220()022(,, - C 、)221()122(,, -- D 、)220(, 【答案】B 【解析】由题意已知圆与圆422=+y x 相交,∴222222+<+<-a a , 解得2222<<-a 且0≠a ,故选B 。 4.双曲线122=-my x 的实轴长是虚轴长的2倍,则=m ( )。 A 、 41 B 、2 1 C 、2 D 、4 【答案】D 【解析】12 2 =-my x 可化为1122 =-m y x ,则12=a ,m b 12=,∵实轴长是虚轴长的2倍, ∴b a 222?=,即b a 2=,即224b a =,∴4=m ,故选D 。

平面解析几何知识点归纳

平面解析几何知识点归纳

平面解析几何知识点归纳 ◆知识点归纳 直线与方程 1.直线的倾斜角 规定:当直线l 与x 轴平行或重合时,它的倾斜角为0 范围:直线的倾斜角α的取值范围为),0[π 2.斜率:)2 (tan πα≠=a k ,R k ∈ 斜率公式:经过两点),(1 1 1 y x P ,),(2 2 2 y x P ) (21 x x ≠的直线的斜率公 式为1 21 22 1x x y y k P P --= 3.直线方程的几种形式

能力提升 斜率应用 例1.已知函数) 1(log )(2+=x x f 且0>>>c b a ,则c c f b b f a a f ) (, )(,)(的大小关系 例2.已知实数y x ,满足) 11(222 ≤≤-+-=x x x y ,试求2 3++x y 的最大值和最小值

的夹角α:)2(πθθα≤=或)2 (π θθπα>-=; 距离问题 1.平面上两点间的距离公式 ) ,(),,(222111y x P y x P 则 )()(1 2 1 2 2 1y y x x P P -+-= 2.点到直线距离公式 点),(0 y x P 到直线0:=++C By Ax l 的距离为:2 2 00B A C By Ax d +++= 3.两平行线间的距离公式 已知两条平行线直线1 l 和2 l 的一般式方程为1 l :0 1 =++C By Ax , 2 l :0 2 =++C By Ax ,则1 l 与2 l 的距离为2 2 21B A C C d +-= 4.直线系方程:若两条直线1 l :011 1 =++C y B x A ,2 l :0 2 2 2 =++C y B x A 有交点,则过1 l 与2 l 交点的直线系方程为)(1 1 1 C y B x A +++ )(222=++C y B x A λ或 ) (222C y B x A +++0)(1 1 1 =++C y B x A λ (λ为常数) 对称问题 1.中点坐标公式:已知点),(),,(2 2 1 1 y x B y x A ,则B A ,中点),(y x H 的坐标公式为 ??? ??? ? +=+=222121y y y x x x 点),(0 y x P 关于),(b a A 的对称点为)2,2(0 y b x a Q --,直线关于点对 称问题可以化为点关于点对称问题。 2.轴对称: 点),(b a P 关于直线)0(0≠=++B c By Ax 的对称点为

高考数学专题复习与策略专题平面解析几何突破点圆锥曲线中的综合问题教师用书理

突破点15圆锥曲线中的综合问题(酌情自选) (对应学生用书第167页) 提炼1 解答圆锥曲线的定值、定点问题,从三个方面把握 (2)直接推理、计算,在整个过程中消去变量,得定值. (3)在含有参数的曲线方程里面,把参数从含有参数的项里面分离出来,并令其系数为零,可以解出定点坐标. 提炼2 用代数法求最值与范围问题时从下面几个方面入手 (2)若已知曲线上任意一点、一定点或与定点构成的图形,则利用圆锥曲线的性质(性质中的范围)求解. (3)利用隐含或已知的不等关系式直接求范围. (4)利用基本不等式求最值与范围. (5)利用函数值域的方法求最值与范围. 提炼3 与圆锥曲线有关的探索性问题 常要对已知关系进行观察、比较、分析,然后概括出一般规律. (2)对于只给出条件,探求“是否存在”类型问题,一般要先对结论作出肯定存在的假设,然后由假设出发,结合已知条件进行推理,若推出相符的结论,则存在性得到论证;若推出矛盾,则假设不存在. 回访1 圆锥曲线的定值、定点问题 1.(2015·全国卷Ⅱ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22 ,点(2,2)在C 上. (1)求C 的方程; (2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为 M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.

[解] (1)由题意有a 2-b 2a =22,4a 2+2 b 2=1,2分 解得a 2 =8,b 2 =4.3分 所以C 的方程为x 28+y 2 4 =1.4分 (2)证明:设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ). 将y =kx +b 代入x 28+y 2 4=1,得 (2k 2 +1)x 2 +4kbx +2b 2 -8=0.6分 故x M = x 1+x 2 2=-2kb 2k 2+1,y M =k ·x M +b =b 2k 2+1 .8分 于是直线OM 的斜率k OM =y M x M =-1 2k , 即k OM ·k =-1 2 .11分 所以直线OM 的斜率与直线l 的斜率的乘积为定值.12分 回访2 圆锥曲线中的最值与范围问题 2.(2016·山东高考)已知椭圆C :x 2a 2+y 2 b 2=1(a >b >0)的长轴长为4,焦距为2 2. (1)求椭圆C 的方程. (2)过动点M (0,m )(m >0)的直线交x 轴于点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长QM 交C 于点B . ①设直线PM ,QM 的斜率分别为k ,k ′,证明k ′ k 为定值; ②求直线AB 的斜率的最小值. 图15-1 [解] (1)设椭圆的半焦距为c . 由题意知2a =4,2c =22,所以a =2,b =a 2 -c 2 = 2. 所以椭圆C 的方程为x 24+y 2 2=1.2分 (2)①证明:设P (x 0,y 0)(x 0>0,y 0>0). 由M (0,m ),可得P (x 0,2m ),Q (x 0,-2m ).3分

平面解析几何高考题(解析版)

平面解析几何高考题(选择题、填空题) 1.【2019年高考浙江卷】渐近线方程为x ±y =0的双曲线的离心率是 A . 2 B .1 C D .2 【答案】C 【解析】因为双曲线的渐近线方程为0x y ±=,所以a b =,则c ==,所以双曲线的离 心率c e a = =故选C. 【名师点睛】本题根据双曲线的渐近线方程可求得a b =,进一步可得离心率,属于容易题,注重了双曲线基础知识、基本计算能力的考查.理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误. 2.【2019年高考全国Ⅰ卷文数】双曲线C :22 221(0,0)x y a b a b -=>>的一条渐近线的倾斜角为130°,则C 的离心率为 A .2sin40° B .2cos40° C . 1 sin50? D . 1 cos50? 【答案】D 【解析】由已知可得tan130,tan 50b b a a - =?∴=?, 1cos50c e a ∴======?, 故选D . 【名师点睛】对于双曲线:()222210,0x y a b a b -=>>,有c e a == 对于椭圆()222210x y a b a b +=>>,有c e a ==,防止记混. 3.【2019年高考全国Ⅰ卷文数】已知椭圆C 的焦点为121,01,0F F -(),(),过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为

A .2 212 x y += B .22 132x y += C .22 143 x y += D .22 154 x y += 【答案】B 【解析】法一:如图,由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=. 在1AF B △中,由余弦定理推论得22214991cos 2233 n n n F AB n n +-∠==??. 在12AF F △中,由余弦定理得2 2 14422243n n n n +-??? = ,解得n = 2 2 2 24,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22 132 x y +=,故选B . 法二:由已知可设2F B n =,则212,3AF n BF AB n ===, 由椭圆的定义有121224,22a BF BF n AF a AF n =+=∴=-=. 在12AF F △和12BF F △中,由余弦定理得222122 2144222cos 4422cos 9n n AF F n n n BF F n ?+-???∠=?+-???∠=?, 又2121,AF F BF F ∠∠互补,2121cos cos 0AF F BF F ∴∠+∠=,两式消去2121cos cos AF F BF F ∠∠,,得 223611n n += ,解得n = .22224,312,a n a b a c ∴==∴=∴=-=-=∴所求椭圆方程为22 132 x y +=,故选B . 【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地

平面解析几何知识点归纳

平面解析几何知识点归纳 ◆知识点归纳 直线与方程 1.直线的倾斜角 规定:当直线l 与x 轴平行或重合时,它的倾斜角为0 范围:直线的倾斜角α的取值范围为),0[π 2.斜率:)2 (tan π α≠ =a k ,R k ∈ 斜率公式:经过两点),(111y x P ,),(222y x P )(21x x ≠的直线的斜率公式为1 21 22 1x x y y k P P --= 3.直线方程的几种形式

能力提升 斜率应用 例1.已知函数)1(log )(2+=x x f 且0>>>c b a ,则c c f b b f a a f ) (, )(,)(的大小关系 例2.已知实数y x ,满足)11(222 ≤≤-+-=x x x y ,试求 2 3 ++x y 的最大值和最小值 两直线位置关系 两条直线的位置关系 设两直线的方程分别为: 222111:b x k y l +=或0 :22221111=++C y B x A l ;当21k k ≠或1221B A B A ≠时它们 相交,交点坐标为方程组?? ?+=+=2211b x k y b x k y 或???=++=++00 222 111C y B x A C y B x A

直线间的夹角: ①若θ为1l 到2l 的角,12121tan k k k k +-= θ或2 1211 221tan B B A A B A B A +-=θ; ②若θ为1l 和2l 的夹角,则12121tan k k k k +-= θ或2 1211 221tan B B A A B A B A +-=θ; ③当0121=+k k 或02121=+B B A A 时,o 90=θ;直线1l 到2l 的角θ与1l 和2l 的夹角α:) 2 (π θθα≤ =或 )2 (π θθπα>-=; 距离问题 1.平面上两点间的距离公式),(),,(222111y x P y x P 则 )()(121221y y x x P P -+-= 2.点到直线距离公式 点),(00y x P 到直线0:=++C By Ax l 的距离为:2 2 00B A C By Ax d +++= 3.两平行线间的距离公式 已知两条平行线直线1l 和2l 的一般式方程为1l :01=++C By Ax , 2l :02=++C By Ax ,则1l 与2l 的距离为2 2 21B A C C d +-= 4.直线系方程:若两条直线1l :0111=++C y B x A ,2l :0222=++C y B x A 有交点,则过1l 与2l 交点的直线系方程为)(111C y B x A +++0)(222=++C y B x A λ或 )(222C y B x A +++0)(111=++C y B x A λ (λ为常数) 对称问题 1.中点坐标公式:已知点),(),,(2 211y x B y x A ,则B A ,中点),(y x H 的坐标公式为??? ???? +=+=222121y y y x x x 点),(00y x P 关于),(b a A 的对称点为)2,2(00y b x a Q --,直线关于点对称问题可以化为点关于点对称问

平面解析几何专题突破习题 顾效禹

第一部分基本知识 直线和圆的方程 (1) 理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式.掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程。 (2) 掌握两条直线平行与垂直的条件.两条直线所成的角和点到直线的距离公式能够根据直线的方程判断两条直线的位置关系。 (3) 了解二元一次不等式表示平面区域。 (4) 了解线性规划的意义.并会简单的应用。 (5) 了解解析几何的基本思想,了解坐标法。 (6) 掌握圆的标准方程和一般方程.了解参数方程的概念。理解圆的参数方程。 圆锥曲线方程 (1) 掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程。 (2) 掌握双曲线的定义、标准方程和双曲线的简单几何性质。 (3) 掌握抛物线的定义、标准方程和抛物线的简单几何性质。 (4) 了解圆锥曲线的初步应用。 (一)直线与圆知识要点 1.直线的倾斜角与斜率k=tgα(),直线的倾斜角α一定存在,范围是[0,π),但斜率不一定存在。 斜率的求法: 依据直线方程 依据倾斜角 依据两点的坐标 2.直线方程的几种形式,能根据条件,合理的写出直线的方程;能够根据方程,说出几何意义。 3.两条直线的位置关系,能够说出平行和垂直的条件。会判断两条直线的位置关系。(斜率相等还有可能重合) 4.两条直线的交角:区别到角和夹角两个不同概念。 5.点到直线的距离公式。 6.会用一元不等式表示区域。能够解决简单的线性规划问题。 7.曲线与方程的概念,会由几何条件列出曲线方程。 8. 圆的标准方程:(x-a)2+(y-b)2=r2 圆的一般方程:x2+y2+Dx+Ey+F=0注意表示圆的条件。 圆的参数方程:

相关文档
相关文档 最新文档