文档库 最新最全的文档下载
当前位置:文档库 › 对技术悖论的一点思考关于悖论的思考

对技术悖论的一点思考关于悖论的思考

对技术悖论的一点思考关于悖论的思考
对技术悖论的一点思考关于悖论的思考

对技术悖论的一点思考:关于悖论的思考

技术的进步促进了社会物质文明和精神文明的进化,在现代社会,技术已经成为社会发展的第一生产力。科学技术作用的发挥远远超出了任何时代,可以用“技术社会”一词来对我们所处的时代进行简单地概括。然而,正如其他任何事物的发展都具有两面性一样,作为改造世界的重要实践形式的技术,其发展的“非人化”趋势随着技术生产力功能的张扬也得到了进一步地强化,技术在推动社会进步的同时也形成了技术悖论。

一、技术悖论的根源追溯

技术悖论是我们这个时代不可逃避的现实,要想实现超越,就不得不重新反思造成技术悖论的根源。

1.技术的社会选择

从技术的社会产生过程来看,技术是社会选择的产物。但是,人类的选择具有强烈的功利主义色彩。人类之所以利用技术是因为技术是实践性的知识体系,技术能够提高劳动生产率,契合了人类追求效率的观念。同时,人类的认识能力在有限的时间内是有限的,思维的有限性与客观存在的无限性之间的矛盾使我们无法在社会中将技术的作用完全合理化地加以规范。因此,技术可能带来的负面影响是人类不能够完全认识技术活动的结果的产物。由于社会存在着大量的难以预测的社会因素与自然因素,以及在选择技术时,技术系统本身的复杂性和人类内部利益的冲突,使得人类在选择技术时并不能够完全达到理性的程度。

2.人类中心主义走向极端

随着人的主体地位的确定,事物变成了人所控制和操纵的对象,外物的价值完全被人所赋予,人类也从此进入了对作为对象的世界的征服过程。在这一过程中,人与世界处于对立状态,产生了人与世界关系的危机。整个世界变成了主体按自身的意图进行创造和活动的场所,作为主体的人把世界看作占有的对象和取之不尽、用之不竭的原材料产地。事物的其他尺度逐渐丧失,人类生存的根基遭到破坏。技术本来是人所创造和发明出来的,但当它被极端的人类中心主义者当作手段和工具去肆意地掠夺和处置自然时,无疑会成为危害人类利益的帮凶,形成技术悖论。

二、正确对待技术悖论

从技术本身来看,技术具有“双刃剑”作用,技术给我们带来积极正面作用的同时本身也会产生一些负面影响。纯粹“好”的技术是不存在的,这意味着任何技术都包含着一定的风险,也包含着违背人类伦理道德的可能性。

那么,人类究竟应该如何控制和使用技术,如何让技术服务于人的生存和发展,如何避免技术给人类带来有害的影响呢?我们认为最重要的是对技术主体进行改造,重建技术理性。技术在社会发展中的巨大成功使技术理性与价值理性发生分离,并且使技术理性占据了主导地位。然而,技术理性缺乏价值理性的约束,仅仅根据“技术—效率”评价技术,忽视了技术对社会的全面的复杂的影响,以至于忽视了人在社会中的作用、社会责任以及人的命运等问题。因此,必须建立“技术—伦理”

良性互动机制,使技术承载社会价值。对此,可以考虑以下原则:

1.主体性原则。技术决定论者认为技术的发展只能由它自身决定,技术一旦被引入社会,就会使接受它的社会体系屈从于它的指令。正如法国社会学家埃吕尔认为:“技术已变成自主的事实给了它一个至上的地位,没有什么在它之上能评判它的东西,它把自己变成了一个超级权威,任何事物都要以技术标准来评判,任何事只要是为了技术就可据此得到肯定。”但是,我们应当看到,技术是人的创造物,是人类认识世界、改造世界的手段和工具。人是技术的主体,技术发展的趋势、方向、规模和速度都是由人决定的。无论技术发展到什么程度,人类都不会失去对技术的判断、选择、约束、控制的能力。

2.人性化原则。弗洛姆曾经说过:“必须是人,而不是技术成为价值的最终源泉;是人的最优发展,而不是生产的最大化,才是制定所有计划的标准。”倡导人性化技术,就是将人性赋予技术,在技术中融入人性的因子,使技术在创造经济效益的同时,既能尊重人的价值,维护人的尊严,张扬人的个性,又能维护自然生态环境的平衡与稳定。一方面,坚持以人为本的技术,把人的价值和需求放在第一位,关注人的生存环境,维护人的价值尊严,使人的心理更健康,情感更丰富,人格更完善;另一方面,使技术的发展与进步回归到人类发展的本源需要上来,回归到人类的全面进步这个终极目标上来。

3.生态性原则。生态性原则是指技术的发明与应用要突出生态关怀,以人与自然的和谐共处为出发点和归宿,不再是对自然巧取豪夺,而是积极维护生态系统的稳定与平衡,促进人与自然的协调发展。要改变传

统的技术范式,凡是不利于人和自然和谐的技术,不管能产生出多么大的经济效益,也要坚决摒弃。

4.前瞻性原则。前瞻性原则就是要求对技术的产生、发展和应用担负一种预防性的责任,对可能出现的后果加以预测,尽可能减少甚或消除技术在未来发展中的危险因素。德国技术伦理学家汉斯·尤纳斯在《责任伦理———工业技术文明之伦理的一种尝试》中指出,在技术时代应该大力提倡“卜凶”,而不是“卜吉”,就是为了预防可能会出现的危险而提前设想灾难的严重性和可怕性。”

社会的发展离不开技术,技术运用产生技术悖论同样不可避免。我们不能够因为技术对社会产生负面影响,就必须克服技术悖论。恰恰相反,技术悖论的存在显示了技术自身的脆弱性,技术的脆弱性往往成为技术的动力与方向。既然技术悖论已经存在,而且从技术上讲,克服技术悖论也是困难的,那么我们所能够做的就是朝着最有利于人类的方向去组合和塑造它们。我们的主要任务就在于自觉地把握技术和改造技术,实现技术的“人化”。

社会正在转型,技术在社会发展中的作用应该更加突显。技术的发展应该从“人”的角度出发,通过社会系统的调节,抑制技术悖论的发挥与扩散,创造出持续发展的技术发展模式,推动技术向有利于保持社会持续发展的“人化”技术转变。

(责任编辑李翔)

悖论及其科学意义

悖论及其科学意义 西班牙的小镇塞维利亚有一个理发师,他有一条很特别的规定: 只给那些不给自己刮胡子的人刮胡子。 这个拗口的规定看起来似乎没什么不妥,但有一天,一个好事的人跑去问这个理发师一个问题,着实让他很为难,也暴露了这个特别规定的矛盾。那个人的问题是: “理发师先生,您给不给自己刮胡子呢?” 让理发师为难的是: 如果他给自己刮胡子,他就是自己刮胡子的人,按照他的规定,他不能给自己刮胡子;如果他不给自己刮胡子,他就是不自己刮胡子的人,按照他的规定,他就应该给自己刮胡子。不管怎样的推论,理发师的做法都是自相矛盾的。这真是令人哭笑不得的结果。 这就是悖论。 悖,中文的含义是混乱、违反等。 悖论,在英语里是paradox,来自希腊语“para+ dokein”。意思是“多想一想”。悖论是指一种导致矛盾的命题。 悖论都有这样的特征: 它看上去是合理的,但结果却得出了矛盾——由它的真,可以推出它为假;由它的假,则可以推出它为真。 悖论与谬论不同,谬论是用目前的理论就能够证明、判断其为错误的理论、观点,总体来说,谬论是完全错误的;而悖论则看起来是是非难辨的。但这种“是非难辨”并非是永远不能分辨的,随着人们认识能力的不断提高,随着科学的不断发展,悖论是可以逐步得到消除的,矛盾是可以解决的。

广义上说,凡似是而非或似非而是的论点,都可以叫做悖论,如欲速则不达、大智若愚等都是典型的悖论;还有一些对常识的挑战也可称为悖论。 狭义上说,悖论是从某些公认正确的背景知识中逻辑地推导出来的两个相互矛盾(或相互反对)命题的等价式。通俗地说,如果承认它是真的,经过一系列正确的推理,却又得出它是假的;如果承认它是假的,经过一系列正确的推理,却又得出它是真的。这就是悖论。狭义的悖论又可称为严格意义上的悖论或真正的悖论。 “我说的这句话是假的”,这就是典型的悖论,因为从这句话所包含的大前提来看,这是一句假话,其内容必定就是“假”的;既然是假的,则其意必然与其所指相反,所以,这句话应该是“真”的。但如果假设这句话是真的,其本身又恰恰证明它是假的。所以,你无从分辨这句话的真假。 悖论一般可以分为语义悖论和逻辑悖论两种。如果从一命题为真可推出其为假,又从该命题为假可推出其为真,则这个命题就构成语义悖论。前面所说的“我说的这句话是假的”就是如此。 逻辑悖论总是相对于一个公理系统而言,如果在一个公理系统中既可以证明A又可以证明非A,则我们就说在这个公理系统中含有一个悖论。集合论中著名的罗素悖论就是一个逻辑悖论。实际上,自然科学中出现的悖论一般都是逻辑悖论。 自然科学中的悖论一般还被称为佯谬。在英文中,佯谬与悖论是同一词paradox。它们都是由于前提、判断和结论的运用而产生的,具有相同的逻辑本性。如由爱因斯坦等提出的EPR悖论,也可称为EPR佯谬。 悖论有很多种称谓。古希腊的亚里士多德称之为难题;中世纪的经院哲学家们称之为不可解命题;近现代的科学家一般称之为悖论或佯谬,哲学家则称之为二律背反(“悖论”在英文中还有一个词antinomy)。 1979年,美国数学家霍夫斯塔德(D.R.Hofstad—ter)认为悖论是一个“怪 圈”(strange loop,又译为奇异的循环),是由于“自我相关”而导致的。这种怪圈不仅存在于数学和思维中,也存在于绘画和音乐中。埃

浅谈数学思想方法教学

浅谈数学思想方法教学 发表时间:2015-06-17T17:13:25.433Z 来源:《少年智力开发报》2014-2015学年第13期供稿作者:黄娜 [导读] 数学思想是分析、处理和解决数学问题的根本想法,是对数学规律的理性认识. 山东郯城县郯城街道办事处初级中学黄娜 一、数学思想方法教学的心理学意义 “不论我们选教什么学科,务必使学生理解该学科的基本结构.”所谓基本结构就是指“基本的、统一的观点,或者是一般的、基本的原理.”“学习结构就是学习事物是怎样相互关联的.”数学思想与方法为数学学科的一般原理的重要组成部分.下面从基本结构学说中来看数学思想、方法教学所具有的重要意义. 第一.“懂得基本原理使得学科更容易理解”.心理学认为“由于认知结构中原有的有关观念在包摄和概括水平上高于新学习的知识,因而新知识与旧知识所构成的这种类属关系又可称为下位关系,这种学习便称为下位学习.”当学生掌握了一些数学思想、方法,再去学习相关的数学知识,就属于下位学习了.下位学习所学知识“具有足够的稳定性,有利于牢固地固定新学习的意义,”即使新知识能够较顺利地纳入到学生已有的认知结构中去.学生学习了数学思想、方法就能够更好地理解和掌握数学内容. 第二.有利于记忆.除非把一件件事情放进构造得好的模型里面,否则很快就会忘记.学习基本原理的目的,就在于保证记忆的丧失不是全部丧失,而遗留下来的东西将使我们在需要的时候得以把一件件事情重新构思起来.高明的理论不仅是现在用以理解现象的工具,而且也是明天用以回忆那个现象的工具. 由此可见,数学思想、方法作为数学学科的“一般原理”,在数学学习中是至关重要的.无怪乎有人认为,对于中学生“不管他们将来从事什么业务工作,唯有深深地铭刻于头脑中的数学的精神、数学的思维方法、研究方法,却随时随地发生作用,使他们受益终生.” 第三.学习基本原理有利于“原理和态度的迁移”.这种类型的迁移应该是教育过程的核心——用基本的和一般的观念来不断扩大和加深知识.曹才翰教授也认为,“如果学生认知结构中具有较高抽象、概括水平的观念,对于新学习是有利的,”“只有概括的、巩固的和清晰的知识才能实现迁移.”美国心理学家贾德通过实验证明,“学习迁移的发生应有一个先决条件,就是学生需先掌握原理,形成类比,才能迁移到具体的类似学习中.”学生学习数学思想、方法有利于实现学习迁移,特别是原理和态度的迁移,从而可以较快地提高学习质量和数学能力. 第四.强调结构和原理的学习,“能够缩短‘高级’知识和‘初级’知识之间的间隙.”一般地讲,初等数学与高等数学的界限还是比较清楚的,特别是中学数学的许多具体内容在高等数学中不再出现了,有些术语如方程、函数等在高等数学中要赋予它们以新的涵义.而在高等数学中几乎全部保留下来的只有中学数学思想和方法以及与其关系密切的内容,如集合、对应等.因此,数学思想、方法是联结中学数学与高等数学的一条红线. 二、中学数学教学内容的层次 中学数学教学内容从总体上可以分为两个层次:一个称为表层知识,另一个称为深层知识.表层知识包括概念、性质、法则、公式、公理、定理等数学的基本知识和基本技能,深层知识主要指数学思想和数学方法. 表层知识是深层知识的基础,是教学大纲中明确规定的,教材中明确给出的,以及具有较强操作性的知识.学生只有通过对教材的学习,在掌握和理解了一定的表层知识后,才能进一步的学习和领悟相关的深层知识. 深层知识蕴含于表层知识之中,是数学的精髓,它支撑和统帅着表层知识.教师必须在讲授表层知识的过程中不断地渗透相关的深层知识,让学生在掌握表层知识的同时,领悟到深层知识,才能使学生的表层知识达到一个质的“飞跃”,从而使数学教学超脱“题海”之苦,使其更富有朝气和创造性.那种只重视讲授表层知识,而不注重渗透数学思想、方法的教学,是不完备的教学,它不利于学生对所学知识的真正理解和掌握,使学生的知识水平永远停留在一个初级阶段,难以提高;反之,如果单纯强调数学思想和方法,而忽略表层知识的教学,就会使教学流于形式,成为无源之水,无本之木,学生也难以领略到深层知识的真谛.因此,数学思想、方法的教学应与整个表层知识的讲授融为一体,使学生逐步掌握有关的深层知识,提高数学能力,形成良好的数学素质. 三、中学数学中的主要数学思想和方法 数学思想是分析、处理和解决数学问题的根本想法,是对数学规律的理性认识.由于中学生认知能力和中学数学教学内容的限制,只能将部分重要的数学思想落实到数学教学过程中,而对有些数学思想不宜要求过高.我们认为,在中学数学中应予以重视的数学思想主要有三个:集合思想、化归思想和对应思想.其理由是: (1)这三个思想几乎包摄了全部中学数学内容; (2)符合中学生的思维能力及他们的实际生活经验,易于被他们理解和掌握; (3)在中学数学教学中,运用这些思想分析、处理和解决数学问题的机会比较多; (4)掌握这些思想可以为进一步学习高等数学打下较好的基础. 此外,符号化思想、公理化思想以及极限思想等在中学数学中也不同程度地有所体现,应依据具体情况在教学中予以渗透. 数学方法是分析、处理和解决数学问题的策略,这些策略与人们的数学知识,经验以及数学思想掌握情况密切相关.从有利于中学数学教学出发,本着数量不宜过多原则,我们认为目前应予以重视的数学方法有:数学模型法、数形结合法、变换法、函数法和类分法等.一般讲,中学数学中分析、处理和解决数学问题的活动是在数学思想指导下,运用数学方法,通过一系列数学技能操作来完成的. 四、数学思想方法的教学模式 数学表层知识与深层知识具有相辅相成的关系,这就决定了他们在教学中的辩证统一性.基于上述认识,我们给出数学思想方法教学的一个教学模式: 操作——掌握——领悟 对此模式作如下说明: (1)数学思想、方法教学要求教师较好地掌握有关的深层知识,以保证在教学过程中有明确的教学目的; (2)“操作”是指表层知识教学,即基本知识与技能的教学.“操作”是数学思想、方法教学的基础; (3)“掌握”是指在表层知识教学过程中,学生对表层知识的掌握.学生掌握了一定量的数学表层知识,是学生能够接受相关深层知识

关于“寻根文学”的再思考

关于“寻根文学”的再思考 文章编号:0257—5876(2005)06—0007—08 关于"寻根文学"的再思考 吴俊 内容提要本文主要就"寻根文学"发生的宏观历史条件,特定的文化观念,创作与理论的悖论 现象以及相关的文学批评等,对其理论和价值立场的暧昧性进行探讨,立论大多循着"寻根文学"(理 论)相反的方向展开.因此,本文的旨趣既体现为个人的思考倾向,也体现为批评和质疑的倾向. 关键词"寻根文学"文化现代主义 l——— 对于"寻根文学"现象的历史 考察,研究者一般以1985年为时间 点,由此往前可以追溯到80年代 初,往后则基本上不会逾越80年代末.这意 味着"寻根文学"是在"新时期"文学范畴或 时间段中发生和流变的."新时期"构成了 "寻根文学"的基本时空环境. "新时期"上承"文革"结束而来,它的命 名首先且主要是缘于中国当代政治的转折及 其需要.新时期伊始,社会各方面的变化几 乎都围绕着政治的轴心发生和展开.在文学 领域,其时的"伤痕文学","反思文学","改 革文学",也莫不如此.但是,进入80年代 未久,社会思潮的发展开始渐渐出现了类似 "拐点"的迹象,政治轴心的时代尚未结束,

种以文化为主要视点的观念和思维方式却已悄然呈现.到了80年代中期,以文化为思想旨归的"文化轴心"时代俨然形成."文化热"成为当时的思想时尚."寻根文学"也随 之达到高潮. 为什么"文化热","寻根文学"会在80 年代中前期取代政治的激情而成为思想和文学的兴奋点?究竟如何理解"寻根文学"的 发生和兴起?对此,当然可就"文化热"和 "寻根文学"的整个流变过程寻绎出某些基 本的认识.但我觉得,仅以文化和文学的自 身逻辑作为历史判断的依据恐怕很难圆满回答这种明显具有社会思潮性质的问题.或许应该将其置于更为宏观的社会历史进程及其结构关系中去才能获得比较妥帖的答案. "寻根文学"(乃至"文化热")的理论和 思考方式无疑主要是在"历史一文化"的层 面上展开的,这与"五四"新文化的思想特点极其相似.换种说法也就是,这两者都未刻 意寻求其政治作为.那么,这是一种理论的 自觉还是策略?或者,这主要是一种社会历 史逻辑的必然(演绎)结果?我想不妨简单 地说,不管是"五四"新文化还是"寻根文学","文化热",都是在既定的且被社会所充 分认可的政治框架中展开的,即其从一开始(天生)就没有预设明确或强烈的政治诉求, 而只是希望在政治的范畴以外(超越政治) 一

《四次数学危机与世界十大经典数学悖论》

《“四次”数学危机与世界十大经典数学悖论》 “四次”数学危机 第一次危机发生在公元前580~568年之间的古希腊,数学家毕达哥拉斯建立了毕达哥拉斯学派。这个学派集宗教、科学和哲学于一体,该学派人数固定,知识保密,所有发明创造都归于学派领袖。当时人们对有理数的认识还很有限,对于无理数的概念更是一无所知,毕达哥拉斯学派所说的数,原来是指整数,他们不把分数看成一种数,而仅看作两个整数之比,他们错误地认为,宇宙间的一切现象都归结为整数或整数之比。该学派的成员希伯索斯根据勾股定理(西方称为毕达哥拉斯定理)通过逻辑推理发现,边长为1的正方形的对角线长度既不是整数,也不是整数的比所能表示。希伯索斯的发现被认为是“荒谬”和违反常识的事。它不仅严重地违背了毕达哥拉斯学派的信条,也冲击了当时希腊人的传统见解。使当时希腊数学家们深感不安,相传希伯索斯因这一发现被投入海中淹死,这就是第一次数学危机。 最后,这场危机通过在几何学中引进不可通约量概念而得到解决。两个几何线段,如果存在一个第三线段能同时量尽它们,就称这两个线段是可通约的,否则称为不可通约的。正方形的一边与对角线,就不存在能同时量尽它们的第三线段,因此它们是不可通约的。很显然,只要承认不可通约量的存在使几何量不再受整数的限制,所谓的数学危机也就不复存在了。 我认为第一次危机的产生最大的意义导致了无理数地产生,比如说我们现在说的,都无法用来表示,那么我们必须引入新的数来刻画这个问题,这样无理数便产生了,正是有这种思想,当我们将负数开方时,人们引入了虚数i(虚数的产生导致复变函数等学科的产生,并在现代工程技术上得到广泛应用),这使我不得不佩服人类的智慧。但我个人认为第一次危机的真正解决在1872年德国数学家对无理数的严格定义,因为数学是很强调其严格的逻辑与推证性的。 第二次数学危机发生在十七世纪。十七世纪微积分诞生后,由于推敲微积分的理论基础问题,数学界出现混乱局面,即第二次数学危机。其实我翻了一下有关数学史的资料,微积分的雏形早在古希腊时期就形成了,阿基米德的逼近法实际上已经掌握了无限小分析的基本要素,直到2100年后,牛顿和莱布尼兹开辟了新的天地——微积分。微积分的主要创始人牛顿在一些典型的推导过程中,第一步用了无穷小量作分母进行除法,当然无穷小量不能为零;第二步牛顿又把无穷小量看作零,去掉那些包含它的项,从而得到所要的公式,在力学和几何学的应用证明了这些公式是正确的,但它的数学推导过程却在逻辑上自相矛盾.焦点是:无穷小量是零还是非零?如果是零,怎么能用它做除数?如果不是零,又怎么能把包含着无穷小量的那些项去掉呢? 直到19世纪,柯西详细而有系统地发展了极限理论。柯西认为把无穷小量作为确定的量,即使是零,都说不过去,它会与极限的定义发生矛盾。无穷小量应该是要怎样小就怎样小的量,因此本质上它是变量,而且是以零为极限的量,至此柯西澄清了前人的无穷小的概念,另外Weistrass创立了极限理论,加上实数理论,集合论的建立,从而把无穷小量从形而上学的束缚中解放出来,第二次数学危机基本解决。 而我自己的理解是一个无穷小量,是不是零要看它是运动的还是静止的,如果是静止的,我们当然认为它可以看为零;如果是运动的,比如说1/n,我们说,但n个1/n相乘就为1,这就不是无穷小量了,当我们遇到等情况时,我们可以用洛比达法则反复求导来考查极限,也可以用Taylor展式展开后,一阶一阶的比,我们总会在有限阶比出大小。 第三次数学危机发生在1902年,罗素悖论的产生震撼了整个数学界,号称天衣无缝,绝对正确的数学出现了自相矛盾。 我从很早以前就读过“理发师悖论”,就是一位理发师给不给自己理发的人理发。那

悖论的产生和意义

对于悖论存在及其意义的探究 摘要:悖论的存在已有数千年历史,悖论到底如何定义的?是为什么会存在的?历史上人们又是怎么对待悖论的?悖论能够怎样被解决?悖论的存在又有什么意义?这一切问题都需要我们深入思考研究。 关键词:悖论;逻辑哲学;存在;本体论;形而上学 一、什么是悖论? 在人类思想史上,已经提出了各种各样的谜题与悖论,它们对人类理智构成了严重的挑战,许多大家、巨擘以及无名氏前仆后继地对其进行了艰辛的探索。从古希腊、中国先秦时期到现代数学、逻辑学等众多学科中,已经发现了各种各样的悖论或怪论,悖论已经成为数学、逻辑学、哲学、语言学、计算机科学、思维科学等多学科专家共同探讨的课题,谈论“悖论”几乎成为时髦。那么,到底什么是悖论呢?悖论,亦称为吊诡或诡局,是指一种导致矛盾的命题。通常从逻辑上无法判断正确或错误称为悖论,似非而是称为佯谬;有时候违背直觉的正确论断也称为悖论。悖论的英文paradox一词,来自希腊语paradoxos,意思是“未预料到的”,“奇怪的”。如果承认它是真的,经过一系列正确的推理,却又得出它是假的;如果承认它是假的,经过一系列正确的推理,却又得出它是真的。 二、悖论与逻辑哲学 说谎者悖论被认为是世界上最早的悖论,由公元前六世纪的哲学家克利特人艾皮米尼地斯提出:“所有克利特人都说谎,他们中间的一个诗人这么说。”这个悖论最简单的表述形式是:“我在说谎”。如果他在说谎,那么“我在说谎”就是一个谎,因此他说的是实话;但是如果这是实话,他又在说谎。矛盾不可避免。这类悖论的一个标准形式是:如果事件A 发生,则推导出非A,非A发生则推导出A,这是一个自相矛盾的无限逻辑循环。悖论的存在显然是因为某些命题正在逻辑上存在不合理性从而引起了众多学者的探究。 虽然逻辑不能等同于逻辑哲学,但是逻辑哲学基本上是和逻辑同时产生的,任何逻辑学家都在无形中进行着对逻辑哲学的研究。尤其是对于数学这样的极其讲究严密的逻辑性的研究领域,逻辑哲学的研究根本无法避免。著名的“罗素悖论”的出现甚至引起了第三次数学危机。所谓的罗素悖论是罗素针对当时建立不久的集合论体系提出的一个基础上存在的矛盾:“定义两个集合:P={A∣A∈A} ,Q={A∣A?A} 。问题:Q∈P 还是 Q?P?”。显然,无论是指定哪个判断为真,最后都能够推断出与其相反的结论。为了使其更容易被理解,罗素悖论又被称为“理发师悖论”:“有一个理发师说:‘我将为本城所有不给自己刮脸的人刮脸,我也只给这些人刮脸’”。那么这个理发师要不要给自己刮脸呢?无论他怎么做,最后都一定会违背自己当初的话。 悖论的流行引发了世界上的思想风暴。越来越多的人认识到我们现有社会中存在的不完美,思维方式不能再局限于既定逻辑,而要尝试打破规则,因为悖论的存在充分说明了现有的规则有着无法忽视的漏洞,甚至会动摇社会根基。 三、悖论与本体论 西方哲学从古希腊开始一直以研究世界的本原为己任, 形成了西方哲学的本体论传统。本体论的最主要特征就是研究存在问题, 即关于什么样的实体存在, 以及作为实体在资格

简析模型思想在小学数学教学中的应用

简析模型思想在小学数学教学中的应用 所谓建模思想就是指在小学数学教学中,使学生体会并理解数学与外部世界之间的联系,即连接数学与学生日常生活的桥梁。在小学数学教学中,教师通过为学生融入模型思想有助于培养学生的逻辑性思维,培养学生通过建立数学模型解决生活中的抽象的数学问题,加强学生对数学知识的理解,从而提升学生的数学学习效率。本文就从数学教学的视阈出发对模型思想在小学数学教学中的应用进行一些探究。 数学是小学课程体系中一门重要的基础性学科,其中蕴含着很多概念性、抽象性且难理解的数学知识,所以部分小学生对数学知识的学习兴趣不高。针对这一情况,教师可以通过模型思想将教材中的数学知识进行整合分析,采用多样化的教学方法为学生讲解相关的数学知识,培养学生的数学意识,促进学生数学素养的全面提升。下面笔者就对模型思想在小学数学教学中的应用提出几点建议: 一、创设情境,感知模型思想 教师的最终目的还是在于回归生活,而传统的小学数学教学中,大部分教师课堂教学中多以教材为教学的依据,过于重视教材知识,没有将学生作为学生的主人,也没有意识到教材是辅助学生学习的工具。导致小学数学教学知识与学生日常生活联系甚远,学生不易理解。对此,教师可以在小学数学教学中渗透模型思想,并为学生创设相应的教学情境。 以小学数学“表内除法”这一教学内容为例,教师若直接为学生讲解除法知识可能造成部分学生的不易理解,所以,教师可以为学生创设生活化的教学情境:将班级学生随机分成若干小组,第一组中有5名学生均为班级尖子生,而第二组有8名学生成绩一般,但是第一组学生的数学总成绩低于第二组学生数学总成绩。于是教师问学生“第二组学生的数学成绩比第一组好,这样的描述对吗?”这样学生就会根据日常生活经验考虑这样的说法是不正确的。通过为学生渗透这样的模型思想从而培养学生的逻辑思维。在此基础之上,教师可以为学生引出表内除法的相关内容,继续深入刚才的问题,让学生对除法知识有一个更为深刻的理解。通过这样的情境创设的方法循序渐进的为学生渗透模型思想,从而提升学生的数学意识。 二、筛选内容,构建数学模型 分析小学数学教材可以发现,大部分数学知识具有抽象性、概念性的特点,而小学生的认知能力尚发育不完全。所以对部分数学知识不能很好的理解,尤其是逻辑性、空间性较强的知识。因此,教师在讲解这些知识的相关内容时可以对教学知识进行整理分析,筛选合适的内容,通过模型思想教学为学生渗透相关的数学知识。 小学数学教师在讲到教材中“图像、几何”相关的数学知识,如:长方形、正

悖论及其对数学发展的影响

悖论及其对数学发展的影响 【开场白:一个传说】一个讼师招收徒弟时约定,徒弟学成后第一场官司如果打赢,则交给师傅一两银子,如果打输,就可以不交银子。后来,弟子满师后却无所事事,迟迟不参与打官司。老讼师得不到银子,非常生气,告到县衙里,和这位弟子打官司。这位弟子却不慌不忙地说:“这场官司如果我打赢了当然不给您银子,如果打输了按照约定也不交给您银子,反正我横竖不交银子。”一句话把老讼师给气死了。 类似的: 1)我正在说谎?!! 2)鸡与鸡蛋何为先? 一、悖论的定义 “悖论”(英语:Paradox,俄语:Πарадокс)的字面意思是荒谬的理论,然而其内涵远没有这么简单,它是在一定理论系统前提下的看起来没有问题的矛盾。 关于悖论,目前并没有非常权威性1 的定义,以下的解释,在一定程度上是合理的。 通常认为,一个论断,如果不论是肯定还是否定它,都会导出一个与原始判断相反的结论,而要推翻它却又很难给出正当的根据时,这种论断称为悖论;或者,如果一个命题及其否定命题均可以用逻辑上等效的推理加以证明,而其推导又无法明确提出错误时,这种自相矛盾的命题叫做悖论。这种“定义”,比单纯从字面理解有所细化,也比较容易理解,但仍不够准确。 下述说法是A.A.富兰克尔给出的:如果某种理论的公理及其推理规则看上去是合理的,但在这个理论中却推出了两个互相矛盾的命题,或者证明了这样一个复合命题,它表现为两个矛盾命题的等价式,我们称这个理论包含了一个悖论。这里强调了悖论是依赖于一定的理论体系的,但是,只是说,某个理论体系包含了悖论,而没有言明什么是悖论。 悖论不同于通常的诡辩或谬论。诡辩、谬论可以通过已有的理论、逻辑论述其错误的原因,是与现有理论相悖的;而悖论虽感其不妥,但从它所在的理论体系中,不能阐明其错误的原因,是与现有理论相容的。悖论是(在当时)解释不了的矛盾。 悖论蕴涵真理,但常被人们描绘为倒置的真理; 悖论富有魅力,既让您乐在其中,又使您焦躁不安,欲罢不能; 数学历史中出现的悖论,为数学的发展提供了契机。 二、悖论的起源 起源之一:芝诺悖论(公元前五世纪) 芝诺(Zenon Eleates,约公元前490年——约公元前429年)出生于意大利南部的埃利亚(Elea)城,是古希腊埃利亚学派的主要代表人物之一。他是古希腊著名哲学家巴门尼德(Parmennides)的学生。他否定现实世界的运动,信奉巴门尼德关于世界上真实的东西只能是“唯一不动的存在”的信条。在他那个时代,人们对时间和空间的看法有两种截然不同的观点。一种观点认为,空间和时间无限可分,运动是连续而又平顺的;另一种观点则认为,时间和空间是由一小段一小段不可分的部分组成,运动是间断且跳跃的。芝诺悖论是针对上述二观点而提出的。他关于运动的四个悖论,被认为是悖论的起源之一。其中前两个悖论是针对那种连续的时空观而提出的,后两个悖论则是针对间断时空观提出的。 (1) 一物体要从A点到达B D点;而要到达D点,又必先抵达其1/8处之E点。如此下去,永无止境,因此,运动不可能存在。

趣味数学:数学教你玩转各类魔方

趣味数学:数学教你玩转各类魔方魔方大概是现在最有影响力的智力游戏了,它是一个3×3×3的正方体,初始状态下每个面的9个方格都涂上同样颜色,6个面一共6种颜色。作为一个智力游戏,它的目标就是将任意拧乱的魔方尽快还原为每面所有小方格同色的初始状态。为了赢得比赛,大家都致力于找到更快的魔方复原方法。 大概一年前,Google的一帮人验证了任意拧乱的魔方可以在20步内复原。但是,一般人要在20步内复原任意魔方的话,就要记住一个硕大无比的表格(大约8EB,一EB大约是一百万TB),这东西只有拥有全知全能的上帝及其类似物(比如说团长、春哥或者高斯)才能做到,所以20这个数又被称为魔方的“上帝之数”。 魔方当然不只有一种。最简单的变化方法就是将魔方的“边长”(或者叫阶数)变大。原版的魔方是3阶的,也就是3×3×3的立方体。我们可以扩展到4阶 (4×4×4),5阶,一直到7阶,甚至有人目击过11阶的魔方。魔方的阶数越大,解起来也越复杂,需要的步数也越多,它们的上帝之数也越大而且越难计算。 现在,一帮在MIT的由Erik Demaine领衔的数学家,竟然说他们找到了任意阶数魔方的上帝之数,而且还给出了一个复原的算法,需要的步数与上帝之数相差不远!我们现在

就来看个究竟。 怎么转都转不出那24个陷阱 初看起来,魔方每个面可以拧得千变万化,让人无从捉摸。然而对于魔方面上涂色的小方块来说,它们可去的地方并不多(假设我们能做的操作就是将魔方的某排拧动90度)。 无论魔方被如何拧动,图中所示的小色块一共只能到达最多24个位置。我们把这些位置称作一个位置群。一个n阶的魔方,不算边角上的色块,只有大约(n-2)²/4个位置群。这些位置群都是相互独立的。要复原魔方,就相当于要将所有位置群复原。 Demaine从玩魔方的人们那里了解到,有标准的手法可以单单将一个位置群内的小色块复原,而不影响别的位置群的色块。这就是为什么我们说这些位置群是独立的。而因为每个位置群内色块的数目都是固定的(不多于24个),所以要复原一个位置群里的所有色块,只需要固定步数的操作。这些知识,魔方社区早就一清二楚。 但是,如果单靠这种方法来解n阶魔方的话,因为至少有(n-2)²/4个位置群,所以用这种方法复原魔方需要的步数大约与n²成正比。有没有可能用更少的步数复原魔方呢?复原所有魔方的步数有没有下限呢? 上帝之数不能太小 为了方便,我们记n阶魔方的上帝之数为D(n)。他们首

浅谈小学数学教学中渗透数学思想方法

浅谈小学数学教学中渗透数学思想方法 发表时间:2017-08-04T10:46:43.663Z 来源:《高等教育》2016年10月作者:王雪平 [导读] 从实际发展角度分析,在小学数学教学中渗透数学思想具有十分重要的意义。 湖北省十堰市郧阳区鲍峡中心小学王雪平 摘要:在数学知识的传授中数学思想方法占据了重要的地位,从本质上分析,数学思想是人们对数学知识的整合,是一种具有稳定性的思想内容,对人们学习数学知识具有重要的推动作用。在小学数学教学中积极掌握数学思想,不仅可以增强学生的学习能力,并且也在一定程度上提高学生的理解能力,因此,从实际发展角度分析,在小学数学教学中渗透数学思想具有十分重要的意义。 关键词:小学数学;数学思想; 数学思想方法在小学数学教学中起着不可或缺的重要作用。数学的学习不仅仅在于内容知识,更重要的是在于它的思想方法的学习。在数学教学中,小学数学教师应将各类数学思想方法渗透到小学数学教学中,提高学生的数学能力。 一、在教学中渗透数学思想方法 1.通过提炼和形成概念渗透数学思想方法 数学概念是引导小学数学学习的一个重要参考依据,概念是对知识的综合概括,对于小学生而言,他们对抽象的数学知识的学习,理解起来难度比较大,教师要对学生进行具体的数学思想的教学,可以通过对概念的提炼,对学生渗透数学思想方法。数学概念是在对数学知识的整合得到的基本概念,简单而涵盖了整体想要表达的内容,通过这种概念的提炼和整合,也能够体现出数学教学中的一种思想方法,那就是归纳法。归纳既可以是对知识内容的归纳,还可以是对具体的知识概念的归纳总结,教师在教学中,可以引导学生通过对具体的知识特点的总结,加强对学生的知识归纳能力培养,在这个过程中,学生不仅能够深入认识到数学归纳的思想,同时也能够对数学概念有更全面的理解。 2.通过引导学生探索规律渗透数学思想方法 规律的探索也是对学生数学思想的一种培养,教师只有在教学中,培养学生探索知识中存在的规律,通过对规律的研究,提升学生对知识的理解能力。比如我们在讲到比较数的大小的课程时,就可以充分运用教师的引导的方法,在课程开始之前,教师可以先给同学们列举一些案例,在这个过程中也认识到数学的思想方法。 3.通过数学活动的操作实践渗透数学思想方法 数学知识有很多都是比较抽象的,一些抽象的数字知识可以用图形表现出来,同时,也可以在教学中加入一些具体的实践的内容,通过实践做好对数学知识的解释,并且在实践中给学生渗透进一些数学思想。例如,小学数学中讲到规律的认识,就可以运用具体的实践活动来引导学生认识规律。“规律”这个词对于小学生来说是抽象的,难懂的,教师可以把生活中的具体问题引入到规律的解答中来。“国庆节就要到了,学校里买了很多花摆放到国旗杆下,有黄色的,有红色的,小朋友们可以看一看,这些花的摆放有没有什么特点呢?”通过提出这个问题,引导小学生观察花盆的摆放次序是红色和黄色的花交错摆放的。这就是一种摆放的规律,小朋友们认识到什么是具体的规律以后,也可以自己按照规律做一些事情,进行一些具体的实践,来充分认识规律的效应。 4.通过引导学生解决问题渗透数学思想方法 数学学习应该是一个主动的学习过程,对于数学知识的讲解,大多数是需要通过一个一个的典型例题来实现的,因此,数学知识的学习,就是一个发现问题解决问题的过程。教师要充分认识到数学知识教学的特点,不仅仅要带领同学们认识问题,解决问题,还要给学生机会,引导学生自己主动解决问题。通过解决问题这种形式,也能够实现对学生的数学思想的渗透。从解决问题的角度做好对数学思想的灌输渗透,以类比思想方法的使用为例,在小学数学教材中,类比思想解题方法运用多的是在一些公式,定理的推导过程中,例如,通过长方形的面积公式推导出三角形的面积公式,这就是一种类比思想的运用,而这种类比思想的渗透,和例题是分不开的。教师在讲授三角形面积的计算公式时,让学生做相应的例题,先解答出长方形的面积,再对三角形的面积和长方形的面积进行对比,通过这种类比和推敲,能够引导学生认识到三角形面积的计算。这就是要在例题的解答中发现规律,解决问题,实现了数学思想的渗透。 二、数学思想方法渗透于学生的课后生活中 1、将数学思想方法渗透在课后作业中 小学数学教师在布置课后作业时应将知识与教学思想方法的巩固放到首要位置。可以布置一些简单的应用题,巩固所学知识以及数学思想方法。例如,有6位小朋友要去动物园游玩,每人门票3元,那么小朋友总共需要带多少钱呢?这是学生平时练习的基本习题,学生解答后,教师可以引导学生利用发散思维自主提问,将这些想象空间留到学生的课后作业中,不仅有助于学生巩固与理解所学的知识,而且可以培养学生的发散思维. 2、使学生在生活体验中理解数学思想方法 小学数学中绝大部分知识是源于生活的,将数学思维运用于具体的生活中,可以提升学生解决实际问题的能力。因此,教师应注重培养学生的数学实践能力,让学生在生活中运用数学知识的同时理解数学思想方法。 作为小学数学教师,我们必须进一步更新观念,充分认识数学思想方法在数学教育中的价值和在培养学生数学素养方面的作用,把渗透数学思想方法真正纳人教与学的目标。同时,努力提高自身的数学素养,深入钻研教材,充分挖掘显性内容中隐含的数学思想方法,抓准数学思想方法与显性知识的结合点,精心设计教学情境,优化教学过程,采用教者有意学者无心的方式,不直接点明所蕴涵的数学思想方法,有机地,自然而然地渗透,着意引导学生在数学活动中,在学习数学理解数学的过程中逐步地感悟数学思想方法,使他们经过几年、十几年潜移默化的逐步积累,对数学思想方法的理解由浅人深由表及里以逐步达到一定的高度,促进科学思维品质的形成,实现数学素养的提升。

十大数学悖论

十大数学悖论 1.理发师悖论(罗素悖论):某村只有一人理发,且该村的人都需要理发,理发师规定,给且只给村中不自己理发的人理发。试问:理发师给不给自己理发? 如果理发师给自己理发,则违背了自己的约定;如果理发师不给自己理发,那么按照他的规定,又应该给自己理发。这样,理发师陷入了两难的境地。 2.说谎者悖论:公元前6世纪,古希腊克里特岛的哲学家伊壁门尼德斯有如此断言:“所有克里特人

所说的每一句话都是谎话。” 如果这句话是真的,那么也就是说,克里特人伊壁门尼德斯说了一句真话,但是却与他的真话——所有克里特人所说的每一句话都是谎话——相悖;如果这句话不是真的,也就是说克里特人伊壁门尼德斯说了一句谎话,则真话应是:所有克里特人所说的每一句话都是真话,两者又相悖。 所以怎样也难以自圆其说,这就是著名的说谎者悖论。 : 公元前4世纪,希腊哲学家又提出了一个悖论:“我现在正在说的这句话是假的。”同上,这又是难以

自圆其说! 说谎者悖论至今仍困扰着数学家和逻辑学家。说谎者悖论有许多形式。如:我预言:“你下面要讲的话是‘不’,对不对?用‘是’或‘不是’来回答。” 又如,“我的下一句话是错(对)的,我的上一句话是对(错)的”。 3.跟无限相关的悖论: {1,2,3,4,5,…}是自然数集: {1,4,9,16,25,…}是自然数平方的数集。 这两个数集能够很容易构成一一对应,那么,在每个集合中有

一样多的元素吗? 4.伽利略悖论:我们都知道整体大于部分。由线段BC上的点往顶点A连线,每一条线都会与线段DE(D点在AB上,E点在AC上)相交,因此可得DE与BC一样长,与图矛盾。为什么? 5.预料不到的考试的悖论:一位老师宣布说,在下一星期的五天内(星期一到星期五)的某一天将进行一场考试,但他又告诉班上的同学:“你们无法知道是哪一天,只有到了考试那天的早上八点钟才通知你们下午一点钟考。 你能说出为什么这场考试无

[马丁加德勒]从惊讶到思考数学悖论奇景 第一章 逻辑学悖论

[马丁·加德勒]从惊讶到思考——数学悖论奇景第一 章逻辑学悖论 第一章逻辑学悖论 如果你曾向学生介绍过逻辑学的基本概念,就会发现,没有什么比一个使人主意忽左忽右的悖论更能引起他们的兴趣了。他们被一步一步地引上繁花似锦的小道,遵循着一条无懈可击的推理思路往前走,结果他们忽然发现自己已陷入矛盾之中。到底是什么错了?难道就在演绎推理这一过程背后有可能隐伏着什么倒霉的缺陷吗? 这一章的主要目的,是尽可能用娱乐的方式,通过提出现代逻辑学中最重要的悖论来引起学生的兴趣。在这里,“悖论”这个词意思比其他部分要窄一点。在其他几章中,悖论是强烈违反我们直觉的问题。在这里,悖论只是直接导致彼此矛盾的结果,就像证明2+2又等于4,又不等于4一样。逻辑悖论是“不可解”的,除非能找到一种方法来完全消除这种恶性的矛盾。 尽管从古希腊起到今天,逻辑悖论一直人们带来很大乐趣,可是最伟大的数学家都总是极严肃地对待它。在发展现代逻辑学和集合论中一些巨大进展正是努力解决经典悖论的直 接结果。在这里,你会看到引自伯特兰德·罗素的话,

他谈到他花了好些年的时间研究悖论而没有成功,后来他和阿尔弗雷德·怀特里德合作,写了《数学原理》,这是一本奠基了现代形式逻辑的代表性论著。 作为一个数学教师,不用人提醒就懂得,逻辑学是一切演绎推理的基础,一个不懂基础逻辑的学数学的学生是没有能力来掌握数学基础的。对这些基础的理解往往是较困难的,它使初学学生丧失对数学的兴趣。幸好,这组故事可以帮助你使学生认识到,逻辑学并不像他们想象的那样枯燥无味,而是一个对数学很重要的、生动有趣的课题、其中有很多令人兴奋的问题尚待解决。 在这组故事中有三个中心问题。 1.在我们谈论语句的真实价值时,为什么需要以一种更高级的语言(称为“元语言”)来谈论它? 2.为什么现代集合论有一些规则禁止一个集合是此集合本身的元素? 3.在什么样的特殊情况下,预言未来在逻辑上是不可能的?最好是在学习逻辑学、集合论或演绎(推理)证明的时候来认真阅读这一部分。现代几何学教科书,如雅可比的《几何学》,和很多代数以及普通数学教科书一样是以演绎推理开头的。如果你使用的是这类教科书.那末在教课(或学习)之前最好先看看这一章。 这一章的内容为展开演绎推理方面的讨论提供了丰富的背

魔方思维_初三议论文

魔方思维 本文是关于初三议论文的魔方思维,感谢您的阅读! 相信大家都玩过或者至少知道魔方,它是立体的六面体,所谓魔方思维,就是立体多面思维。 中国有一句俗话“三个臭皮匠,顶个诸葛亮”,因为每个人看待事物都有着不同态度,所以每个人对这句话的理解也是各不相同。我是这样理解的――因为诸葛亮十分聪明,可以从不同的方面分析事物。而像皮匠这样的平常人,大多只是片面的思维,所以就需要多个人看待事物的方面加在一起,才能和诸葛亮相抗衡。聪明的人都能从多个方面看问题。 春秋时期鲁国有一条规定,鲁国人在其它国家赎回自己国家沦为奴隶的人,可以找政府报账,政府如数奉还。而孔子的一个学生赎回人后却没有去报账,人们都夸他品行好,孔子却严厉地批评了他。说他妨碍了更多的鲁国人被救回。因为以后人们如果去政府报账,则说明自己的品行不如孔子的学生,于是只能当作没看见,这个故事里面的学生就是用片面的思维看事情,他万万没想到自己的行为会造成那么严重的后果,这就是没有从多个方面分析。 孔子的另一个学生与上面这位学生的遭遇完全不同。他看到有个孩子掉进河里,就奋不顾身地跳下去救了孩子,为表示感谢,孩子的父亲送了一头牛给他,他没有推辞高兴地收下了。人们说他太贪心,而孔子却说他做的很好,原因是他带动了更多的人做好事,这个学生的思维方式有两种可能:一是多面,二是片面,若是前者,则说明他很聪明;若是后者,那么他很幸运。 还有这样一个十分正面的多样思维的例子。 不知道有多少人了解这个数学上的故事――苏格拉黑山羊。 内容是:有一行人来到苏格拉,忽然发现一只黑色的山羊。第一个人说原来苏格拉的山羊都是黑色的;第二个人说不是,这只能说明苏格拉有黑山羊;第三个人说:不对,你们都错了,应该说此时此刻,在此地,我们在苏格拉看到了黑山羊。 这个故事的意思是:第一个人的观点是以偏概全,就好像只看到魔方的一面是黑色的,就认为整个魔方都是黑色的。第二个人忽略了时间的变动和自己位置的变化,因为活动的黑山羊就像转动的魔方,不同时间、不同地点看到的是不一

浅谈小学数学教学中数学思想方法的渗透

浅谈小学数学教学中数学思想方法的渗透 小学数学教学内容贯穿着两条主线,数学基础知识和数学思想方法。数学基础知识是一条明线,直接用文字的形式写在教材里,反映着知识间的纵向联系。数学思想方法则是一条暗线,反映着知识间的横向联系,隐藏在基础知识的背后,需要教师加以分析、提炼才能使之显露出来。数学知识是对生活的提炼,数学思想方法是对数学知识的提炼。 美国教育心理学家布鲁纳指出:掌握基本的数学思想和方法,能使数学更易于理解和更利于记忆,领会基本数学思想和方法是通向迁移大道的“光明之路”。在一个人的一生中,最有用的不仅是数学知识,更重要的是数学的思想和数学的意识。因此在小学数学的教学中要不失时机地对学生进行数学思想方法的渗透,掌握数学思想方法是数学学习的最高境界。 一、通过学习数学史了解数学思想方法。 小学数学思想方法主要有:化归思想、优化思想、符号化思想、集合思想、函数思想、极限思想、分类思想、概率统计思想等;归纳与演绎,分析与综合,抽象与概括,联想与猜想等方法。 数学史本身就蕴涵一些重要的数学思想和方法。例如:向学生介绍十进制计数法的由来,介绍祖冲之关于圆周率的探索史等让学生了解数学知识产生的背景和发展的过程,知道来龙去脉,也就把握了知识本源和数学思想方法。 二、通过挖掘教材体验数学思想方法。

小学教材中数学思想方法呈现隐蔽形式,教师要认真分析和研究教材,理清教材的体系和脉络,统揽教材全局,高屋建瓴,建立各类概念、知识点之间的联系,归纳和揭示其蕴含在数学知识中的数学思想方法。 极限思想在教材中有许多地方渗透,如在“自然数”、“奇数”、“偶数”这些概念教学时,教师可让学生体会自然数是数不完的,奇数、偶数的个数有无限多个,初步体会“极限”思想。在循环小数这一部分内容,在教学l÷3=0.333……是一循环小数,它的小数点后面的数字是写不完的,是无限的。在直线、射线、平行线的教学时,可让学生体会线的两端是可以无限延长的。再如,在“圆的面积”这节中圆面积的求法:先把圆分成相等的两部分,再把两个半圆分成若干等分,然后把它剪开,再拼成近似于长方形的图形。如果把圆等分的份数越多,拼成的图形越接近于长方形。这时长方形的面积就越接近圆的面积了。这部分内容应让学生体会到这是一种用“无限逼近”的方法来求得圆面积的,也就是验极限思想的运用。 三、通过教学过程渗透数学思想方法。 如果在学生获得知识和解决问题的过程中能有效地引导学生经历 知识形成的过程,让学生在观察、实验、分析、抽象、概括的过程中看到知识负载的方法、蕴涵的思想,那么,学生所掌握的知识就是鲜活的,可迁移的,学生的数学素质才能得到质的飞跃。 如,在“面积与面积单位”一课教学中,当学生无法直接比较两个图形面积的大小时,引进“小方块”,并把它一个一个地铺在被比较的两个图形上,这样,不仅比较出了两个图形的大小,而且,使两个图形的面积都得到了“量化”。使形的问题转化为数的问题。在这一过程中,学生亲身体验到“小方块”所起的作用。接着又通过“小方块大小必须统一”的教学过程,使学生深刻地认识到:任何量的量化都必须有一个标准,而且标准要统一。很自然地渗透了“单位”思想。

数学悖论论文

数学悖论论文 悖论是一个涉及数理科学、哲学、逻辑学、语义学等非常广泛的论题,对科学发展意义不言而喻。从数学方面来看,悖论对数学发展的影响是深刻的、巨大的。因而研究悖论的概念、特征以及对数学发展的影响也就非常必要。 数学是一门有趣的学问,严谨中包含着各种各样有趣的规律。从几条简简单单的公理出发,就可以推理出一整套的体系。可就是这门严密可靠的学科,却也有着像孩子一样顽皮的一面。这其中最好的体现,就是悖论的存在。 早在两千多年前的古希腊,人们就发现了让人难以解释的矛盾,用正确的方法去证明一个命题,如果认为这个命题成立,就会发现它的否定命题也成立。相反的,如果认为这个命题的否定命题成立,又会发现这个命题成立。这便使人们产生里难以解释的困惑。随着时光的流逝,越来越多这样的问题被人们发现,于是,悖论就诞生了。 1.1相对存在性 一方面,由于科学的无止境性,自相矛盾的系统将和科学理论体系永远并存,它从前有,现在有,将来仍然有,所以说,悖论是永远存在的。另一方面,悖论只是产生并存在于人类思维及其产物中,客观物质世界的本质及规律并不因为人类意识中的矛盾有丝毫改变。因此,悖论只与人的思维方式和理论有着密切的联系. 2.2悖论是一种特殊的逻辑矛盾 科学理论中的“逻辑矛盾”有层次之分。表层的是普通的逻辑矛盾,可以凭借实验、经验和思辨,在不触动科学理论“硬核”的情况下,清除矛盾并弥合它们对科学理论整体造成的缝隙;深层的是特殊的逻辑矛盾。这是在普通的逻辑矛盾被清理之后又显现出来的关涉科学理论体系核心假说可信与否的逻辑矛盾。这种矛盾常常危及科学理论的“硬核”。悖论就是这样一种特殊的逻辑矛盾。 2.3可解决性 人类思维应该没有悖论,应消除悖论。然而,由于现阶段人类思维与大自然的割裂性,人所构造的思维及其符号系统必然会有悖论,所以悖论研究应该是通过深入分析,找出人所构造的思维系统或符号系统的起始基点,明确其向另一方向解释的两重性和可能性,限定其有效性范围,制定对本系统的理解和使用规则,避免因误解、误用而引起的思维纷争。许多悖论都是由系统构造基点本身引起的,只有跳到系统外,从整体上去审视该系统的特点,才能解决,局限于系统内是难以解决的。在对人所构造的思维系统或符号系统基点研究的基础上,可以进一步研究系统或学科的扩展,或不同系统或学科的融通。这样,原来系统的基点就不再是基点,而成了更大的系统的子系统中的东西,从而,悖论也就在更大的系统中得到了解决. 2.4创新性 科学史实已经表明,在科学发展极为迅速的20世纪,凡是获得重大创新的领域都与悖论问题紧紧地联系在一起。数学基础领域的巨大成就与1900年前后发现的布拉里福蒂悖论、康托尔悖论、罗素悖论等一系列集合论悖论联系在一起,物理学领域的重大发展则与光速悖论密切相关,甚至在社会经济领域,从法国社会学家孔多塞等人发现的“投票悖论”,到肯尼斯·阿罗获得诺贝尔经济学奖,也都与悖论问题有着重要关联……悖论之于科学理论创新的作用已经得到充分彰显。因此,有意识地发现悖论,进而分析并解决悖论应当是我们从逻辑理性层面创新科学理论的一个重要维度。 悖论的“提出”是科学理论的发展和进步;悖论的解决更是一种科学理论的创新。通过悖论的消解而自我超越,往往使理论发生革命性的重大变革。 悖论的种类有很多很多,其中最著名的有如下几个:

相关文档
相关文档 最新文档