文档库 最新最全的文档下载
当前位置:文档库 › 单片机C8051F020的初始化设置

单片机C8051F020的初始化设置

单片机C8051F020的初始化设置
单片机C8051F020的初始化设置

单片机C8051F020的初始化设置

在喧闹的世界中,能静下心来研究技术也是很有趣的事情。好多年没作些具体的技术工作了,幸好领导给分配一个单片机任务。现在把研究的技术写下来,与朋友们分享。

研究C8051F020编程不能离开初始化设置。对于简单程序,读技术手册,将用到的I/O口,中断,串口,晶振等正确初试化后,已经成功一半了。

晶振需要初始化,C8051F020有内部晶振,精度不高,一般电路都使用外部晶振。初始化晶振主要是OSCXCN和OSCICN两个寄存器的设置。具体初始化代码可由Silicon的配置程序自动生成:

void Oscillator_Init()

{

int i = 0;

OSCXCN = 0x67;

for (i = 0; i < 3000; i++);

while ((OSCXCN & 0x80) == 0);

OSCICN = 0x08;

}

上面程序包括了晶振初始化的全部过程:

1、使能外部振荡器:

OSCXCN = 0x67;

2、等待至少1m钟,等待外部振荡器起稳:

for (i = 0; i < 3000; i++);

3、查询OSCXCN的第八位XTLVLD是否为1,1表明外部振荡器起稳:

while ((OSCXCN & 0x80) == 0);

4、关内部晶振,切换到外部晶振 OSCICN = 0x08;

而同事们的设置是OSCICN= 0x88;应该是使用外部振荡器,但是内部振荡器也没关,这样MCU耗能高些。

串口0(UART0)也需要配置:

void UART0_Init (void)

{

SCON0 = 0x50; // SCON0: 模式1,可接收,8位串口

TMOD = 0x20; // TMOD: 定时器1, 模式2, 8位自动重载

TH1 = -(SYSCLK/BAUDRATE/16); // 设置定时器1

TR1 = 1; // 开始定时

CKCON |= 0x10; // 定时器用SYSCLK作基准时间

PCON |= 0x80; // 禁止UART0波特率/2

}

SCON0是UART0控制寄存器,用来选择传输模式。第7位SM00和第6位SM10用来配置UART0的工作坊式,SCON0=0x50即选择模式1,8位UART可变波特率异步传输。

PCON是电源控制寄存器:PCON的第7位SMOD0,0表示使能UART0的波特率

/2的功能,1表示禁止UART0的波特率/2功能,它主要用于计算一个合适的UART0波特率。第6位SSTAT0是UART0增强状态选择,0表示读/写SM20-SM00时即访问UART0的SM20-SM00,如果SSTAT0为1,读写SM20-SM00时即是访问帧错误(FE0)、RX溢出(RXOV0),TX冲突状态位(TXCOL0)。

串口模式1的波特率时钟依靠定时器T1或者T2来产生。因此还需要对定时器进行设置。定时器2控制寄存器T2CON中的RCLK0和TCLK0用来选择T1还是T2。发送和接收可以选择不同的定时器。T2CON复位值是00000000,因此默认串口0模式1的波特率依靠T1产生。

TMOD是定时器方式寄存器,TMOD的第五位T1M1和第四位T1M0决定定时器工作方式,T1M1和T1M0为10时,定时器工作在方式2,自动重装载的8位定时器。

CKCON是时钟控制寄存器,其中的T1M位决定T1的时钟选择,1表示T1使用系统时钟,0表示T1使用系统时钟的12分频。

SPI0是串口外设接口总线,其初始化主要由三个SPI0寄存器,SPI0CN,SPI0CFG,SPI0CKR。

void SPI0_Init (void)

{

SPI0CFG = 0x07; //SPI0配置寄存器

SPI0CN = 0x03; //SPI主模式

SPI0CKR = SYSCLK/2/2000000; // SPI时钟

}

C8051F020的I/O,外部中断等都需要进行配置,此外,C8051F020内部还具有数字交叉开关,可以将内部各种资源,中断、定时器等配置到不同I/O口引脚。

C51单片机和电脑串口通信电路图

C51单片机和电脑串口通信电路图与源码 51单片机有一个全双工的串行通讯口,所以单片机和电脑之间可以方便地进行串口通讯。进行串行通讯时要满足一定的条件,比如电脑的串口是RS232电平的,而单片机的串口是TTL电平的,两者之间必须有一个电平转换电路,我们采用了专用芯片MAX232进行转换,虽然也可以用几个三极管进行模拟转换,但是还是用专用芯片更简单可靠。我们采用了三线制连接串口,也就是说和电脑的9针串口只连接其中的3根线:第5脚的GND、第2脚的RXD、第3脚的TXD。这是最简单的连接方法,但是对我们来说已经足够使用了,电路如下图所示,MAX232的第10脚和单片机的11脚连接,第9脚和单片机的10脚连接,第15脚和单片机的20脚连接。 串口通讯的硬件电路如上图所示 在制作电路前我们先来看看要用的MAX232,这里我们不去具体讨论它,只要知道它是TTL和RS232电平相互转换的芯片和基本的引脚接线功能就行了。通常我会用两个小功率晶体管加少量的电路去替换MAX232,可以省一点,效果也不错,下图就是MAX232的基本接线图。

按图7-3加上MAX232就可以了。这大热天的拿烙铁焊焊,还真的是热气迫人来呀:P串口座用DB9的母头,这样就可以用买来的PC串口延长线进行和电脑相连接,也可以直接接到电脑com口上。

为了能够在电脑端看到单片机发出的数据,我们必须借助一个WINDOWS软件进行观察,这里我们利用一个免费的电脑串口调试软件。本串口软件在本网站https://www.wendangku.net/doc/906210964.html,可以找到 软件界面如上图,我们先要设置一下串口通讯的参数,将波特率调整为4800,勾选十六进制显示。串口选择为COM1,当然将网站提供的51单片机实验板的串口也要和电脑的COM1连接,将烧写有以下程序的单片机插入单片机实验板的万能插座中,并接通51单片机实验板的电源。

51单片机密码锁制作的程序和流程图

51单片码锁制作的程序和流程图(很详细) 一、基本组成: 单片机小系统+4*4矩阵键盘+1602显示+DC电机 基本电路: 键盘和和显示 键盘接P1口,液晶的电源的开、关通过P2.7口控制 电机(控制口P2.4) 二、基本功能描述: 1.验证密码、修改密码 a)锁的初始密码是123456(密码最长为10位,最短为1位)。 2.恢复初始密码 a)系统可以恢复初始密码,否则一旦忘记密码而又不能恢复初始密码,该锁就永远打不开。但是又不能让用户自行修改密码,否则其他人也可以恢复该初始密码,使得锁的安全性大大下降。

3.使系统进入低功耗状态 a)在实际使用中,锁只有在开门时才被使用。因而在大多数的时间里,应该让锁进入休眠状态、以降低功耗,这使系统进入掉电状态,可以大大降低系统功耗。 b)同时将LCD背光灯关闭 4.DC电机模拟开锁动作。 a)DC电机启动时解除开锁把手的锁定,允许通过把手开锁。DC电机不直接开锁,使得DC电机的功率不用太大,系统的组成和维护将变得简单,功耗也降了下来。 三、密码锁特点说明: 1.0 输入将被以字符形式输入,最长为10位。 超过10位时系统将自动截取前10位、但不作密码长度溢出提示。 2.0 开锁10秒后不允许更改密码、并提示修改超时_进入初始态,需要重新输入密码方可再次修改密码。 3.0 系统未使用存储器存储密码故掉电后密码自动恢复为初始密码。 4.0 若2分钟无任何操作,系统自动进入省电模式运行,同时关闭液晶显示,以节省电力。 5.0 输入密码正确后、电机允许开锁时间为5秒, 5秒后需要再次输入密码才可以再次开锁。 6.0 修改密码键和恢复初始密码键最好置于室。 这是Proteus仿真结果: 输入密码123456: 显示结果: 密码正确时电机启动、电机将持续5秒:

51单片机串口通信异常的调试一例

51单片机串口通信异常的调试一例 单片机与DSP在硬件结构和程序编写方面存在很多共同之处,所以最近几周试着用了一下51单片机开发板,希望进一步熟悉中断的概念、串口通信、I2C协议、存储扩展等常用的知识。 在进行串口通信的实验时,预期功能不能实现。实验的设计方案是:通过上位机给单片机发送一个16bit的字符串,单片机对字符串进行接收并立刻回显给上位机,接收并回显完毕后依次将这些字符(只能是0-9,a-f这几个字符,可以重复)在数码管上进行显示。 程序编写完成后,通过上位机发送字符串9876543210abcdef,单片机串口接收并回显9876543210abcde,然后数码管依次显示f9876543210abcde,数码管显示完成后,单片机串口回显的字符串中的e后面又多了一个f。 对实验现象进行分析不难发现,串口的接收和回显功能正常,但是存在2个问题:1.串口接收并回显和数码管显示的时序有点混乱;2.数码管的显示出现异常,本应该依次显示9876543210abcdef,实际上显示的却是f9876543210abcde。 对源代码进行分析发现,时序混乱的原因是中断响应及中断返回的执行时序出现问题,修改代码后问题1被解决。 问题2的解决思路:源代码中,通过串口接收到的字符串被存储在一个一维数组array[16]中,该数组有16个元素,每个元素都是unsigned char型。在源代码中,先注释掉数码管显示的那一段代码,然后添加串口打印代码,串口打印实现的功能是依次显示array[0]到array[15]这16个元素的值。编译通过后,将程序烧写到单片机。使用串口调试助手,以十六进制的形式观察array[0]到array[15]的取值,结果如下:

单片机原理与应用及C51程序设计(第三版)(1、2、3、4、7章课后习题答案)

第一章: 1. 给出下列有符号数的原码、反码和补码(假设计算机字长为8位)。 +45 -89 -6 +112 答:【+45】原=00101101,【+45】反=00101101,【+45】补=00101101 【-89】原=11011001,【-89】反=10100110,【-89】补=10100111 【-6】原=10000110,【-6】反=11111001,【-6】补=11111010 【+112】原=01110000,【+112】反=01110000,【+112】补=01110000 2. 指明下列字符在计算机内部的表示形式。 AsENdfJFmdsv120 答:41H 73H 45H 4EH 64H 66H 4AH 46H 6DH 64H 73H 76H 31H 32H 30H 3.何谓微型计算机硬件?它由哪几部分组成?并简述各部分的作用。 答:微型计算机硬件由中央处理器、存储器、输入/输出设备和系统总线等组成,中央处理器由运算器和控制器组成,是微型计算机运算和控制中心。存储器是用来存放程序和数据的记忆装置。输人设备是向计算机输人原始数据和程序的装置。输出设备是计算机向外界输出信息的装置。I/O接口电路是外部设备和微型机之间传送信息的部件。总线是连接多个设备或功能部件的一簇公共信号线,它是计算机各组成部件之间信息交换的通道。微型计算机的各大功能部件通过总线相连。 4.简述8086CPU的内部结构。 答:8086微处理器的内部分为两个部分:执行单元(EU)和总线接口单元(BIU)。执行部件由运算器(ALU)、通用寄存器、标志寄存器和EU控制系统等组成。EU从BIU的指令队列中获得指令,然后执行该指令,完成指今所规定的操作。总线接口部件BIU由段寄存器、指令指针寄存器、地址形成逻辑、总线控制逻辑和指令队列等组成。总线接口部件负责从内部存储器的指定区域中取出指令送到指令队列中去排队。 5.何谓总线?总线按功能可分为哪几种? 答:总线是连接多个设备或功能部件的一簇公共信号线,它是计算机各组成部件之间信息交换的通道。总线功能来划分又可分为地址总线(Address Bus)、数据总线(Date Bus)和控制总线(Control Bus)三类。 6.内部存储器由哪几部分组成? 答:包括随机存储器(RAM)和只读存储器(ROM)。 7.简述8086中的存储器管理? 答:8086把1M空间分成若干块(称为“逻辑段”),各个逻辑段之间可在实际存储空间中完全分开,也可以部分重叠,甚至可以完全重叠。每个逻辑段容量不超过64K字节,这样就可用16位寄存器提供地址访问。一个存储单元的地址可由段基址和偏移地址组成,这个地址我们称为逻辑地址,一般表示为“段基址:偏移地址”。而1M存储空间中的20位地址称为物理地址。逻辑地址是程序中使用的地址,物理地址是访问存储器的实际地址。 物理地址=段基址×16 + 段内偏移地址 8.什么是接口电路?接口电路有何功能? 答:I/O接口电路是外部设备和微型机之间传送信息的部件。接口电路主要功能。(1) 数据的寄存和缓冲功能。(2) 信号转换功能。(3) 设备选择功能。(4) 外设的控制和监测功能。(5) 中断或DMA管理功能。(6) 可编程功能。 9.外部设备与CPU之间的数据传送方式常见有几种?各有什么特点? 答:外部设备与微机之间的信息传送传送方式一般有无条件传送方式、查询传送方式、中断控制方式等。无条件传送方式是指CPU直接和外部设备之间进行数据传送。查询传送方式又称为条件传送方式,是指CPU通过查询I/O设备的状态决定是否进行数据传输的方式。中断是一种使CPU暂停正在执行的程序而转去处理特殊事件的操作。即当外设的输入数据准备好,或输出设备可以接收数据时,便主动向CPU发出中断请求,CPU可中断正在执行的程序,转去执行为外设服务的操作,服务完毕,CPU再继续执行原来的程序。 10.什么是单片机? 答:单片机是把微型计算机中的微处理器、存储器、I/O接口、定时器/计数器、串行接口、中断系统等电路集成到一个集成电路芯片上形成的微型计算机。因而被称为单片微型计算机,简称为单片机。 11.和一般微型计算机相比,单片机有何特点? 答:主要特点如下: 1) 在存储器结构上,单片机的存储器采用哈佛(Harvard)结构 2) 在芯片引脚上,大部分采用分时复用技术 3) 在内部资源访问上,采用特殊功能寄存器(SFR)的形式

STC89C52RC单片机用户手册

STC89C52RC单片机介绍 STC89C52RC单片机是宏晶科技推出的新一代高速/低功耗/超强抗干扰的单片机,指令代码完全兼容传统8051单片机,12时钟/机器周期和6时钟/机器周期可以任意选择。 主要特性如下: 1.增强型8051单片机,6时钟/机器周期和12时钟/机器周期可以任意 选择,指令代码完全兼容传统8051. 2.工作电压:5.5V~ 3.3V(5V单片机)/3.8V~2.0V(3V单片机) 3.工作频率范围:0~40MHz,相当于普通8051的0~80MHz,实际工作 频率可达48MHz 4.用户应用程序空间为8K字节 5.片上集成512字节RAM 6.通用I/O口(32个),复位后为:P1/P2/P3/P4是准双向口/弱上拉, P0口是漏极开路输出,作为总线扩展用时,不用加上拉电阻,作为 I/O口用时,需加上拉电阻。 7.ISP(在系统可编程)/IAP(在应用可编程),无需专用编程器,无 需专用仿真器,可通过串口(RxD/P3.0,TxD/P3.1)直接下载用户程 序,数秒即可完成一片 8.具有EEPROM功能 9.具有看门狗功能 10.共3个16位定时器/计数器。即定时器T0、T1、T2 11.外部中断4路,下降沿中断或低电平触发电路,Power Down模式可 由外部中断低电平触发中断方式唤醒 12.通用异步串行口(UART),还可用定时器软件实现多个UART 13.工作温度范围:-40~+85℃(工业级)/0~75℃(商业级) 14.PDIP封装 STC89C52RC单片机的工作模式 掉电模式:典型功耗<0.1μA,可由外部中断唤醒,中断返回后,继续执行原程序

51单片机密码锁制作的程序和流程图

51单片机密码锁制作的程序和流程图(很详细) 一、基本组成: 单片机小系统+4*4矩阵键盘+1602显示+DC电机 基本电路: 键盘和和显示 键盘接P1口,液晶的电源的开、关通过P2.7口控制 电机(控制口P2.4) 二、基本功能描述: 1.验证密码、修改密码 a)锁的初始密码是123456(密码最长为10位,最短为1位)。 2.恢复初始密码 a)系统可以恢复初始密码,否则一旦忘记密码而又不能恢复初始密码,该锁就永远打不开。但是又不能让用户自行修改密码,否则其他人也可以恢复该初始密码,使得锁的安全性大大下降。

3.使系统进入低功耗状态 a)在实际使用中,锁只有在开门时才被使用。因而在大多数的时间里,应该让锁进入休眠状态、以降低功耗,这使系统进入掉电状态,可以大大降低系统功耗。 b)同时将LCD背光灯关闭 4.DC电机模拟开锁动作。 a)DC电机启动时解除开锁把手的锁定,允许通过把手开锁。DC电机不直接开锁,使得DC电机的功率不用太大,系统的组成和维护将变得简单,功耗也降了下来。 三、密码锁特点说明: 1.0 输入将被以字符形式输入,最长为10位。 超过10位时系统将自动截取前10位、但不作密码长度溢出提示。 2.0 开锁10秒后不允许更改密码、并提示修改超时_进入初始态,需要重新输入密码方可再次修改密码。 3.0 系统未使用存储器存储密码故掉电后密码自动恢复为初始密码。 4.0 若2分钟内无任何操作,系统自动进入省电模式运行,同时关闭液晶显示,以节省电力。 5.0 输入密码正确后、电机允许开锁时间为5秒, 5秒后需要再次输入密码才可以再次开锁。 6.0 修改密码键和恢复初始密码键最好置于室内。 这是Proteus仿真结果: 输入密码123456: 显示结果: 密码正确时电机启动、电机将持续5秒:

单片机串口通信C程序及应用实例

一、程序代码 #include//该头文件可到https://www.wendangku.net/doc/906210964.html,网站下载#define uint unsigned int #define uchar unsigned char uchar indata[4]; uchar outdata[4]; uchar flag; static uchar temp1,temp2,temp3,temp; static uchar R_counter,T_counter; void system_initial(void); void initial_comm(void); void delay(uchar x); void uart_send(void); void read_Instatus(void); serial_contral(void); void main() { system_initial(); initial_comm(); while(1) { if(flag==1) { ES = 0; serial_contral(); ES = 1; flag = 0; } else read_Instatus(); } } void uart_send(void) { for(T_counter=0;T_counter<4;T_counter++) { SBUF = outdata[T_counter]; while(TI == 0);

TI = 0; } T_counter = 0; } uart_receive(void) interrupt 4 { if(RI) { RI = 0; indata[R_counter] = SBUF; R_counter++; if(R_counter>=4) { R_counter = 0; flag = 1; } } } void system_initial(void) { P1M1 = 0x00; P1M0 = 0xff; P1 = 0xff; //初始化为全部关闭 temp3 = 0x3f;//初始化temp3的值与六路输出的初始值保持一致 temp = 0xf0; R_counter = 0; T_counter = 0; } void initial_comm(void) { SCON = 0x50; //设定串行口工作方式:mode 1 ; 8-bit UART,enable ucvr TMOD = 0x21; //TIMER 1;mode 2 ;8-Bit Reload PCON = 0x80; //波特率不加倍SMOD = 1 TH1 = 0xfa; //baud: 9600;fosc = 11.0596 IE = 0x90; // enable serial interrupt TR1 = 1; // timer 1 RI = 0; TI = 0; ES = 1; EA = 1; }

stc系列单片机μCOSⅡ在C8051F系列单片机上的移植及其应用系统开发

stc系列单片机μCOSⅡ在C8051F系列单片机上的移植及其 应用系统开发 随着微处理器技术的飞速发展和嵌入式系统实时性要求的不断提高,应用实时多任务操作系统(RTOS)作为嵌入式设计的开发平台已逐步成为嵌入式应用设计的主流。本研究讨论将μC/OS-Ⅱ移植到C8051F系列高性能8位单片机中,并以C8051F060为例阐述了其应用系统的开发过程。 一、μC/OS-Ⅱ的基本工作原理 1.任务管理 ?C/OS-II中的任务可以是一个无限的循环,也可以在一次执行完毕后被“删除”掉,即该任务可以认为CPU完全属于该任务本身,实时应用程序的设计过程包括将问题分割为多个任务。?C/OS-II可以管理64个任务,每个任务有一定的优先级,且优先级不重复。 2.任务调度机制的实现 ?C/OS-II是可剥夺型内核,优先级高的任务一旦就绪就能剥夺优先级较低任务的CPU使用权,这提高了系统的实时响应能力。在没

有中断情况下,任务间的切换一般会调用OSSched()函数。?C/OS-II 的中断服务子程序和一般前/后台的操作有所不同。 3.任务之间的通信 在?C/OS-II中,可以通过信号量、消息邮箱和消息队列等机制,实现数据共享和任务通信。消息邮箱用一个指针型变量,一个任务或一个中断服务子程序通过内核服务,将一则消息放入邮箱,一个或多个任务通过内核服务接受这则消息。每个邮箱有相应的等待消息任务表,等待消息的任务在无消息时被置挂起态,并记入邮箱等待消息任务表中。消息放入邮箱,内核将运行等待消息任务表中优先级最高的任务。 二、移植及应用 C8051F060系列单片机特别适用于任务繁重的小型化测控系统。当芯片具有的功能被较多地使用时,系统要处理的任务就较多,编程头绪也多。为了简化应用程序实现程序模块化,提高应用程序的实时性和可靠性,将μCOS2Ⅱ移植到C8051F060中就成为一件很有意义的事。 1.?C/OS-II的移植

单片机串口初始化

单片机串口初始化:TMOD=0X20; TH1=0Xfd; TL1=0xfd; PCON=0x00;

TR1=1; SCON=0x50; EA=0; 模数转换子程序: MOV R0,#30H ;设立数据存储区指针 MOV R2, #08H ;设置 2 路采样计数值 SETB IT0 ;设置外部中断 0 为边沿触发方式SETB EA ;CPU 开放中断 SETB EX0 ;允许外部中断 0 中断 MOV DPTR,#FEF8H ;送入地址并指向 IN0 LOOP: MOVX @DPTR, A ;启动 A/D 转换,A 的值无意义HERE: SJMP HERE ;等待中断 中断服务程序: MOVX A, @DPTR ;读取转换后的数字量 MOV @R0, A ;存入片内RAM 单元 INC DPTR ;指向下一模拟通道 INC RO ;指向下一个数据存储单元DJNZ R2, INT0 ;8 路未转换完,则继续 CLR EA ;已转换完,则关中断 CLR EX0 ;禁止外部中断 0 中断 RETI ;中断返回 INT0: MOVX @DPTR, A ;再次启动 A/D 转换 RETI ;中断返回 判断比较子程序: CLR C ;清进位位 MOV A, 30H ;取气体传感器值 SUBB A,#90H ;与阀值比较 JNC BAOJIN ;超过值转报警 发送 AT 命令子程序:

for (i=0;i<4;i++) {hh=&doc0[0] ;发送 ATE0 SBUF=doc0[i]; while(TI==0);TI=0; delay(); for (j=0;j<4;j++) { while(RI==0);RI=0 ;接收 OK mnk[j]=SBUF; if ((mnk[j]^0x4b)==0) { hh=mnk[j]; break;}

STC51单片机IO口模式快速设置

STC51单片机IO口模式的快速设置新型51单片机STC系列,较传统51单片机在性能和速度上有根本性的提高。速度提高8—12倍;片上RAM大量增加;片上外围模块大量增加,等等。 其中IO口的模式增加为4种(传统51只有1中),以P0口为例:这里,每个端口新增两个寄存器PxM0, PxM1(x=0,1,2,3)。在设置每一个IO端的模式时都需要对这两个寄存器进行操作。 比如:要将设为推挽输出, 设为准双向口, 设为高阻输入; 设为开路模式, 都设为准双向口, 那么需要如下的代码: IO_Init() { P0M0=0x30;//0011 0000 P0M1=0x90;//1001 0000 } 这样的设置不便于记忆,很容易写错,且写好的代码可读性差,为此,我们可以通过一个宏定义来解决,具体如下: #define PORT0 0 #define PORT1 1 #define PORT2 2 #define PORT3 3 #define BIT0 0 #define BIT1 1 #define BIT2 2

#define BIT3 3 #define BIT4 4 #define BIT5 5 #define BIT6 6 #define BIT7 7 #define STANDARD 0 #define PP_OUT 1 #define Z_IN 2 #define OD 3 #define IOMODE(Port,bit_n,mode) { \ switch(Port)\ {\ case 0:\ switch(mode) { \ case STANDARD: P0M0&=~(1<

51单片机中断系统编程

51单片机中断系统编程 51单片机中断系统编程 上传的图片 抱歉,您所在的组无权下载附件,请注册或登陆中断是指如下过程(如下图所示):CPU 与外设同时工作,CPU执行主程序,外设做准备工作。当外设准备好时向CPU发中断请求信 号,若条件满足,则CPU终止主程序的执行,转去执行中断服务程序。在中断服务程序中 CPU与外设交换信息,待中断服务程序执行完后,CPU再返回刚才终止的主程序继续执行。 5.3.1 中断系统 MCS-51单片机提供了5个固定的可屏蔽中断源,3个在片内,2个在片外,它们在程序存储 器中各有固定的中断入口地址,由此进入中断服务程序。5个中断源的符号、名称及产生 的条件如下。 ? INT0:外部中断0,由P3.2端口线引入,低电平或下跳沿引起。 ? INT1:外部中断1,由P3.3端口线引入,低电平或下跳沿引起。 ? T0:定时器/计数器0中断,由T0计数溢出引起。 ? T1:定时器/计数器l中断,由T1计数溢出引起。 ? TI/RI:串行I/O中断,串行端口完成一帧字符发送/接收后引起。 中断源有两级中断优先级,可形成中断嵌套。两个特殊功能寄存器用于中断控制和条件设 置。整个中断系统的结构框图如图所示。 上传的图片 抱歉,您所在的组无权下载附件,请注册或登陆 中断系统结构框图 2 中断系统的控制寄存器 中断系统有两个控制寄存器(IE和IP),它们分别用来设定各个中断源的打开/关闭和中

断优先级。此外,在TCON中另有4位用于选择引起外部中断的条件并作为标志位。 (1)中断允许寄存器IE IE在特殊功能寄存器中,字节地址为A8H,位地址(由低位到高位)分别是A8H-AFH。IE 用 来打开或关断各中断源的中断请求,基本格式如下: 上传的图片 抱歉,您所在的组无权下载附件,请注册或登陆 ? EA:全局中断允许位。EA=0,禁止一切中断;EA=1,打开全局中断控制,此时,由各 个中断控制位确定相应中断的打开或关闭。 ? ×:无效位。 ? ES:串行I/O中断允许位。ES=1,允许串行I/O中断;ES=0,禁止串行I/O中断。 ? ETl;定时器/计数器T1中断允许位。ETl=1,允许T1中断;ETl=0,禁止T1中断。 ? EXl:外部中断l中断允许位。EXl=1,允许外部中断1中断;EXl=0,禁止外部中断1中 断。 ? ET0:定时器/计数器T0中断允许位。ET0=1,允许T0中断;ET0=0,禁止TO中断。 ? EX0:外部中断0中断允许位。EX0=1,允许外部中断0中断;EX0=0,禁止外部中断0中 断。 (2)中断优先级寄存器IP IP在特殊功能寄存器中,字节地址为B8H,位地址(由低位到高位)分别是B8H一BFH。 MCS-51单片机的中断分为两个优先级,IP用来设定各个中断源属于两级中断中的哪一级, 其基本格式如下: 上传的图片

STC系列单片机内部AD的应用

STC系列单片机内部AD的应用 作者:郭天祥来源:原创更新时间:2008-11-27 22:16:38 浏览次数:7668 STC89LE52AD、54AD、58AD、516AD这几款89系列的STC单片机内部自带有8路8位的AD转换器,分布在P1口的8位上,当时钟在40MHz以下时,每17个机器周期可完成一次AD转换。 与AD相关的几个寄存器如表1所示。 表1 STC89系列单片机AD相关寄存器 P1_ADC_EN:P1.X口的AD使能寄存器。 相应位设置为“1”时,对应的P1. X口作为AD转换使用,内部上拉电阻自动断开。 ADC_CONTR:AD 转换控制寄存器。 ADC_START:AD转换启动控制位,设置为“1”时,AD开始转换。

ADC_FLAG:AD转换结束标志位,当AD转换完成后,ADC_FLAG=1。 CHS2、CHS1、CHS0:为模拟输入通道选择,如表2所示。 表2 STC89系列单片机AD模拟通道选择设置 ADC_DATA:AD 转换结果寄存器。模拟/数字转换结果计算公式如下: 结果=256×Vin / Vcc Vin为模拟输入通道输入电压,Vcc为单片机实际工作电压,用单片机工作电压作为模拟参考电压。 下面一个例程演示STC89LE516AD/X2系列单片机的A/D转换功能。时钟11.0592MHz,转换结果以16进制形式输出到串行口,可以用串行口调试程序观察输出结果。(本代码摘自宏晶科技芯片手册,经作者调试可正常运行)。 新建文件part3.4.5.c,程序代码如下: #include #include // 定义与ADC 有关的特殊功能寄存器 sfr P1_ADC_EN = 0x97; //A/D转换功能允许寄存器 sfr ADC_CONTR = 0xC5; //A/D转换控制寄存器 sfr ADC_DATA = 0xC6; //A/D转换结果寄存器 typedef unsigned char INT8U; typedef unsigned int INT16U; void delay(INT8U delay_time) // 延时函数 { INT8U n; INT16U m; for (n=0;n

基于STC系列单片机的串联型开关电源设计与实现

单片机及模数综合系统设计 课题名称:基于STC12系列单片机的串联型开关电源设计与实现 --单片机控制部分

一、实验目的:本模拟电路课程设计要求制作开关电源的模拟电路部分,在掌 握原理的基础上将其与单片机相结合,完成开关电源的设计。本报告旨在详述开关电源的原理分析、计算、仿真波形、相关控制方法以及程序展示。 二、总体设计思路 本设计由开关电源的主电路和控制电路两部分组成,主电路主要处理电能,控制电路主要处理电信号,采用负反馈构成一个自动控制系统。开关电源采用PWM 控制方式,通过给定量与反馈量的比较得到偏差,通过调节器控制PWM 输出,从而控制开关电源的输出。当键盘输入预置电压后,单片机通过PWM输出一个固定频率的脉冲信号,作用于串联开关电源的二极管和三极管,使三极管以一定的频率导通与断开,然后输出进行AD转化,转化后的结果再给单片机进行输出,进行数码管显示。 系统的基本框图及控制部分如下: 控制过程原理分析:单片机所采用的芯片为STC12C5A60S2,该芯片在拥有8051内核的基础上加入了10为AD和PWM发生器。通过程序,即可控制单片机产生一定占空比的PWM 脉冲,将此脉冲输入到模拟电路部分,在模拟电路的输出端即可产生一定的输出电压,可比较容易的通过程序来实现对输出电压的控制。但上述的开环控制是无法达到精确的调节电压,因此需要采用闭环控制来精确调制。即,对输出电压进行AD采样,将其输入回单片机中进行数据处理。单片机根据处理的结果来对输出电压做出修正,经过这样的逐步调节即可达到闭

环的精密输出。由此原理,可以将整个过程分成一下模块:PWM波形输出模块,模拟电路模块,AD转换模块,数码管显示模块,键盘输入模块。 控制过程基本思路为:首先从键盘输入一个电压值,并把该电压值在数码管上面显示出来,再由A/D转换模块对串联开关电源电路的输出端进行电压采集,将采集到的电压值与键盘输入的电压值进行比较,通过闭环算法,控制PWM的脉宽输出,由此控制串联开关电压电源电路,改变输出的电压值,使得输出值与设定的电压值相等。 三、系统各单元模块电路设计 1、键盘输入数据部分 分别接到单片机的P2.4,P2.5,P2.6,P2.7。每路通过电阻进行上拉,可以编程实现控制单片机运行不同程序。为了判断键盘上面的按键是否有按下的,可以事先对P2.4,P2.5,P2.6,P2.7端口赋值,便可以知道具体是哪个按键被按下了。例如:P2.4=0,便可知道P2.4对应的按键已经按下了。 键盘输入模块程序如下: void key( ) //键盘扫描函数 { if(P2_6== 0) { delay(10);//延时去抖动 if(P2_6== 0) { while(P2_6== 0)

单片机流程图

单片机总流程图

主函数程序 #include #include #define uchar unsigned char #define uint unsigned int #define OSC_FREQ 12000000 #define __10ms (65536 - OSC_FREQ/(12000000/9970)) #define COM8255 XBYTE[0XFFF3] #define PA8255 XBYTE[0XFFF0] #define PB8255 XBYTE[0XFFF1] #define PC8255 XBYTE[0XFFF2] uchar code tab[]={0xFC,0x60,0xDA,0xF2,0x66,0xB6,0xBE,0xE0,0xFE,0xF6}; uchar code dis_HELLO[]={0x89,0x86,0xc7,0xc7}; uchar code dis_op51[]={0xc0,0x8c,0x92,0xf9}; uchar code dis_code[]={0xcf,0xa4,0xcf,0xa4}; uchar ucCnt_10ms=99; uchar i=0; uchar J=0; uchar n=0; uchar led1; uchar led2; sbit P2_4=P2^4; sbit P3_7=P3^7; sbit P1_0=P1^0; sbit P1_1=P1^1; sbit P1_2=P1^2; void Disp_op51 (); void Disp_HELLO(); void Set_Init_Xint(); void Set_Init_Timer(); void Disp_t(); void DelayX1ms(uint count); void Disp_8255(); void main() { for(;;) { Set_Init_Xint(); Set_Init_Timer(); Disp_8255(); //ucCnt_10ms =99; //ucLed1 = 6; //ucLed2 = 8;

单片机简答+编程复习题

单片机简答复习题 1.MCS51的中断系统有几个中断源?几个中断优先级?中断优先级是如何控制的?在出现同级中断申请时,CPU按什么顺序响应(按由高级到低级的顺序写出各个中断源)?各个中断源的入口地址是多少? 答:MCS51单片机有5个中断源,2个中断优先级,中断优先级由特殊功能寄存器IP控制,在出现同级中断申请时,CPU按如下顺序响应各个中断源的请求:INT0、T0、INT1、T1、串口,各个中断源的入口地址分别是0003H、000BH、0013H、001BH、0023H。 2.已知单片机系统晶振频率为6MHz,若要求定时值为10ms时,定时器T0工作在方式1时,定时器T0对应的初值是多少?TMOD的值是多少?TH0=?TL0=?(写出步骤) 答:定时值为10ms时,定时器T0工作在方式1时,定时器T0对应的初值是1388H TMOD的值是00000001B,TH0=13H;TL0=88H。 3.MCS51系列单片机的内部资源有哪些?说出8031、8051和8751的区别。 答:MCS51系列单片机上有1个8位CPU、128B的RAM、21个SFR、4个并行口、1个串行口、2个定时计数器和中断系统等资源。8031、8051和8751的区别是8031内无ROM;8051内有4KB的掩膜ROM;8751内有4KB的EPROM。 4.如何正确使用P3口? (1)说明P3口有第一功能和第二功能的使用。 (2)P3口的第二功能各位线的含义。 (3)使用时应先按需要选用第二功能信号,剩下的口线才作第一功能I/O线用。 (4)读引脚数据时,必需先给锁存器输出“1”。 5.简述累加器的ACC的作用。 (1)8位专用寄存器。 (2)运算时存放一个操作数。 (3)运算后存放运算结果,所以称它为累加器。 6.简述寄存器间接寻址方式及其寻址范围。 (1)寄存器中存放的是操作数的地址,操作数是通过寄存器间接得到,这种寻址方式称为寄存器间接寻址方式。 (2)寻址范围: ①内部RAM低128单位,形式@Ri(i=0,1)。 ②外部RAM64K使用DPTR作间址寄存器,形式为@DPTR。 7.简述MCS-51单片机的中断入口地址。 中断入口地址为中断响应后PC的内容即中断服务的入口地址。 它们是:外部中断0 0003H 定时器T0中断 000BH 外部中断1 0013H 定时器T1中断 001BH 串行口中断 0023H 8.简述串行数据传送的特点。 (1)传送按位顺序进行,速度慢。 (2)传输线少,成本低。 (3)传送距离远,可达几公尺到几千公里。 9.51系列单片机具有几个中断源,分别是如何定义的?其中哪些中断源可以被定义为高优先级中断,如何定义? 答:具有5个中断源,分别是外部中断INT0和外部中断INT1、定时器溢出中断0和定时器溢出中断1以及串行中断。通过对中断优先级寄存器IP的设置,每个中断源都可以被定义为高优先级中断。

单片机串口通信的发送与接收

51单片机的串口,是个全双工的串口,发送数据的同时,还可以接收数据。 当串行发送完毕后,将在标志位TI 置1,同样,当收到了数据后,也会在RI 置1。 无论RI 或TI 出现了1,只要串口中断处于开放状态,单片机都会进入串口中断处理程序。在中断程序中,要区分出来究竟是发送引起的中断,还是接收引起的中断,然后分别进行处理。 看到过一些书籍和文章,在串口收、发数据的处理方法上,很多人都有不妥之处。 接收数据时,基本上都是使用“中断方式”,这是正确合理的。 即:每当收到一个新数据,就在中断函数中,把RI 清零,并用一个变量,通知主函数,收到了新数据。 发送数据时,很多的程序都是使用的“查询方式”,就是执行while(TI ==0); 这样的语句来等待发送完毕。 这时,处理不好的话,就可能带来问题。 看了一些网友编写的程序,发现有如下几条容易出错: 1.有人在发送数据之前,先关闭了串口中断!等待发送完毕后,再打开串口中断。 这样,在发送数据的等待期间内,如果收到了数据,将不能进入中断函数,也就不会保存的这个新收到的数据。 这种处理方法,就会遗漏收到的数据。 2.有人在发送数据之前,并没有关闭串口中断,当TI = 1 时,是可以进入中断程序的。但是,却在中断函数中,将TI 清零! 这样,在主函数中的while(TI ==0);,将永远等不到发送结束的标志。 3.还有人在中断程序中,并没有区分中断的来源,反而让发送引起的中断,执行了接收中断的程序。 对此,做而论道发表自己常用的方法: 接收数据时,使用“中断方式”,清除RI 后,用一个变量通知主函数,收到新数据。 发送数据时,也用“中断方式”,清除TI 后,用另一个变量通知主函数,数据发送完毕。 这样一来,收、发两者基本一致,编写程序也很规范、易懂。 更重要的是,主函数中,不用在那儿死等发送完毕,可以有更多的时间查看其它的标志。 实例: 求一个PC与单片机串口通信的程序,要求如下: 1、如果在电脑上发送以$开始的字符串,则将整个字符串原样返回(字符串长度不是固定的)。 2、如果接收到1,则将P10置高电平,接收到0,P10置低电平。(用来控制一个LED)单片机是STC89C52RC/晶振11.0592/波特率要求是9600或4800。谢谢!

有关51单片机中断的形式和C语言编程格式

有关51单片机中断的形式和C语言编程格式 void INT0()interrupt 0 using 1 {.... ..... } interrupt 0 指明是外部中断0; interrupt 1 指明是定时器中断0; interrupt 2 指明是外部中断1; interrupt 3 指明是定时器中断1; interrupt 4 指明是串行口中断; using 0 是第0组寄存器; using 1 是第1组寄存器; using 2 是第2组寄存器; using 3 是第3组寄存器; 例如: /*------------------------------------------------ 外部中断程序 ------------------------------------------------*/ void ISR_Key(void) interrupt 0 using 1

{ P1=~P1; //s3按下触发一次,P1取反一次 } /*------------------------------------------------ 串口中断程序 ------------------------------------------------*/ void UART_SER (void) interrupt 4 //串行中断服务程序 { unsigned char Temp; //定义临时变量 if(RI) //判断是接收中断产生 { RI=0; //标志位清零 Temp=SBUF; //读入缓冲区的值 P1=Temp; //把值输出到P1口,用于观察 SBUF=Temp; //把接收到的值再发回电脑端} if(TI) //如果是发送标志位,清零 TI=0; }

51单片机串口通信讲解

51系列单片机串口通信实例教程 单片机的串口通信看起来是很复杂的,主要是因为他用到了更多的寄存器,与前面的知识相比他更具综合能力,写起来考虑的问题自然也变多了.而前面学习过的定时器与中断将是单片机通信的基础. 单片机的中断系统中第4个中断就是串口中断,要进行串口通信首先就要打开CPU总中断EA,还要打开串口通信中断ES,这是串口通信的前堤,而串口通信也跟计时器一样有很多的模式,因此我们还要设置SCON寄存器来指定采用哪一种方式进行通信,而在通信的过程中,我们还要设定通信的波特率,不然的话,单片机是没办法进行采样的,这样也不会得到正确的结果了.我在实验过程中用到的是1号定时器来设定的波特率,用到了计时器方式2,也就是8位自动重装,这样可以简化编程,她的实现思想就是将常数放入TH,而TL中则是初始化参数,当溢出时,单片机会自动将TH中的常数装入TL中. 再来说说波特率,我们为什么要设定波特率,因为单片机会以16倍波特率的速度进行采样,而在实验中我们用的是10位异步收发方式,因此要将SM0置0,SM1置1.而其中的10位

有8位数据位,第一位和最后一位是发送数据的起始与结束.采用高的皮特率就不会出错啦.而波特率是有一个公式的: 方式0的波特率 = fosc/12 方式2的波特率 =(2SMOD/64)· fosc 方式1的波特率 =(2SMOD/32)·(T1溢出率) 方式3的波特率 =(2SMOD/32)·(T1溢出率) T1 溢出率= fosc /{12×[256 -(TH1)]} 根据公式我们很容易就算出当晶振为110592HZ时,要达到9600的波特率,我们只需要将TL1置FDH即可,如下图: 除此之外,你还要将SCON中的REN位置1,不然的话,单片机是不会接收数据的. 还有不要忘了选择定时器的工作方式,设置TMOD为0x20既是工作方式2,8位自动重装定时器. 这样一来,初始批工作算是差不多了.而串口通信分为中断方式,和查询方式,如果你想用查询方式你也不用设置IE寄存器了. 在串口通信中,还有一个很重要的寄存器SBUF,其实也不是一个,是两个,只是它们共用同一个地址,再热气表达式的不同,单片机会自动选择使用哪一个SBUF. 下面是我写的一个例子程序,产生的效果是:向单片机发送任一个0~255之间的数,将会被显示到数码管上.并且单片机还会自动把刚才传过去的数又发送回来 ,实验过程中用到了几个工具如下:

相关文档