文档库 最新最全的文档下载
当前位置:文档库 › 毛细管气相色谱法测定乙二醇的含量_邱永坚

毛细管气相色谱法测定乙二醇的含量_邱永坚

毛细管气相色谱法测定乙二醇的含量_邱永坚
毛细管气相色谱法测定乙二醇的含量_邱永坚

气相色谱毛细管柱使用知识

气相色谱毛细管柱使用知识 气相色谱毛细管柱因其高分离能力、高灵敏度、高分析速度等独特优点而得到迅速发展。随着弹性石英交联毛细管柱技术的日益成熟和性能的不断完善,已成为分离复杂多组分混合物、及多项目分析的主要手段,在各领域应用中大有取代填充柱的趋势。现在新型气相色谱仪、气相色谱-质谱联用仪基本上都是采用毛细管色谱柱进行分离分析。但是,毛细管色谱柱柱内径较小,固定液的膜薄,用于食品中残留物分析时,若使用不当,色谱柱性能很快就会下降。 毛细管柱只能安装在配有专用毛细管柱连接装置的气相色谱仪上。现在购买仪器时最常规的配置是配毛细管分流/不分流进样口。 毛细管色谱柱的类型 毛细管色谱柱的类型有很多种,但目前最常用和商品化的,是开口熔融石英交联毛细管色谱柱。下面介绍此类毛细管色谱柱的性能特点。 一、熔融石英毛细管柱 (1) 熔融石英毛细管柱材料 现在市售商品化的气相色谱用毛细管柱几乎都是由熔融石英制作的,简称石英毛细管柱。制作毛细管柱用的石英纯度非常高,几乎无其它杂质。它具有熔点高(近2000℃)、热膨胀系数低、化学稳定性好和抗张强度高等特点,是制备毛细管柱的理想材料。

毛细管柱内壁存在有许多具有吸附活性的基团,这些基团的存在直接影响固定相涂渍效果,所以,在涂渍固定相之前,柱表面必须经过适当预处理,以期得到较高的柱效和对称的色谱图形。 (2) 石英毛细管柱的聚酰亚胺外涂层 石英毛细管柱很脆,只有在毛细管柱外涂一层聚酰亚胺保护材料后才具有很好的弹性,在使用这样的色谱柱时应十分小心,避免将聚酰亚胺涂层损坏,导致毛细管柱易折断。 通常商品毛细管柱出厂时都固定在一个金属丝制作的柱架上,柱架的直径与毛细管柱的直径成正比,即:毛细管柱的直径越大,固定架的直径也就越大。对于0.53mm 内径的毛细管柱,过度弯曲很容易折断,使用安装时要格外小心。 石英毛细管柱外涂层还有采用镀铝膜的,这类柱子适用于高温分析。但日常分析工作中使用较少,这里不作详细介绍。 二、液体固定相 将固定相均匀涂渍在毛细管柱的内壁,制成壁涂型毛细管柱,这类毛细管柱属非交联型毛细管柱。现在只有少部分的非交联固定相的毛细管柱在使用。非交联毛细管柱的固定相容易流失,不能清洗,因此使用寿命较短,但制作成本较低,涂渍相对较容易,往往在毛细管柱研制前期过程中采用此方法。在使用这类毛细管色谱柱时,应注意使用温度不要超过液体固定相的最高使用温度。建议不要在气相色谱-质谱联用仪上使用。 三、交联固定相 现在市售的商品毛细管色谱柱基本上均采用交联技术,将固定相与石英表面结合起来,在毛细管柱表面形成一层不溶的类似橡胶的非常稳固的涂层。被交联的固定相与涂渍的固定相相比,流失低,抗污染,热稳定性好,使用寿命长。

水质氨氮的测定

水质氨氮的测定 氨氮(NH3-N)以游离氨(NH3)或铵盐(NH4+)形式存在于水中,两者的组成比取决于水的pH值和水温。当pH值偏高时,游离氨的比例较高。反之,则铵盐的比例高,水温则相反。 氨氮的测定方法主要有纳氏比色法、气相分子吸收法、苯酚——次氯酸盐(或水杨酸——次氯酸盐)比色法和电极法等。本节将主要介绍纳氏比色法和蒸馏——酸滴定法。 当水样带色或浑浊以及含有其他一些干扰物质,影响氨氮的测定。为此,在分析时需作适当的预处理。对较清洁的水,可采用絮凝沉淀法(加适量的硫酸锌于水样中,并加氢氧化钠使成碱性,生成氢氧化锌沉淀,再经过滤除去颜色和浑浊);对污染严重的水或工业废水,则用蒸馏法消除干扰(调节水样的pH值使在6.0-7.4的范围,加入适量氧化镁使成微碱性,蒸馏释放出的氨被吸收于硫酸或硼酸溶液中。采用纳氏比色法或酸滴定法时,以硼酸溶液为吸收液;采用水杨酸——次氯酸盐比色法时,则以硫酸溶液为吸收液)。 本实验的主要目的: 1 掌握水样预处理的方法; 2 掌握氨氮的测定原理及测定方法的选择 3 掌握分光光度计的使用方法,学习标准系列的配制和标准曲线的制作 一、纳氏试剂光度法(A1) 1 实验原理 碘化汞和碘化钾与氨反应生成淡红棕色胶态化合物,此颜色在较宽的波长内具强烈吸收。通常测量用410~425nm范围。 2 实验仪器 2.1 分光光度计 2.2 pH计 2.3 20mm比色皿 2.4 50mL比色管 1本方法与GB7479-87等效。

3 实验试剂 3.1 纳氏试剂:可任择以下两种方法中的一种配制。 3.1.1 称取20g碘化钾溶于约100ml水中,边搅拌边分次少量加入二氯化汞结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不易溶解时,停止滴加二氯化汞溶液。 另称取60g氢氧化钾溶于水,并稀释至250ml,充分冷却至室温后,将上述溶液在搅拌下,徐徐注入氢氧化钾溶液中,用水稀释至400ml,混匀。静置过夜。将上清液移入聚乙烯瓶中,密塞保存待用。 3.1.2 称取16g氢氧化钠,溶于50ml水中,充分冷却至室温。 另称取7g碘化钾和10g碘化汞溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml,贮于聚乙烯瓶中,密塞保存待用。 3.2 酒石酸钾钠溶液:称取50g酒石酸钾钠(KNaC4H4O6·4H2O)溶于100ml水中,加热煮沸以去除氨,放冷,定容100ml。 3.3 铵标准贮备溶液:称取3.819g经100℃干燥过的优级纯氯化铵(NH4Cl)溶于水中,移入1000ml容量瓶中,稀释至标线。此溶液每毫升含1.00mg氨氮。 3.4 铵标准使用液:移取5.00ml铵标准贮备液(3.3)于500ml容量瓶中,用水稀释至标线。此溶液每毫升含0.010mg氨氮。 4 实验步骤 4.1 标准曲线的制作 4.1.1 吸取0、0.50、1.00、3.00、 5.00、7.00和10.00ml铵标准使用液(3.4)于50ml 比色管中,加水至标线,加1.0ml酒石酸钾钠溶液(3.2),摇匀。加1.5ml纳氏试剂(3.1.1或3.1.2),混匀。放置10min后,在波长420nm出,用光程20mm比色皿,以水为参比,测量吸光度。 4.1.2 由测得的吸光度减去空白的吸光度后,得到校正吸光度,以氨氮含量(mg)对校正吸光度的统计回归标准曲线。 4.2 水样的测定 4.2.1 分取适量经絮凝沉淀预处理后的水样(使氨氮含量不超过0.1mg),加入50ml 比色管中,稀释至标线,加1.0ml酒石酸钾钠溶液。以下同标准曲线的制作(4.1)。 4.2.2 分取适量经蒸馏预处理后的馏出液,加入50ml比色管中,加一定量1mol/L氢

毛细管柱气相色谱法

第六章毛细管柱气相色谱法 第一节毛细管气相色谱仪 现代的实验室用的气相色谱仪大都既可用作填充柱气相色谱又可用作毛细管色谱仪。毛细管色谱仪应用范围广,可用于分析复杂有机物,如石油成分,天然产物,环境污染,农药残留等。图6-1是毛细管气相色谱仪示意图,与填充柱色谱仪比,毛细管色谱仪在柱前多一个分流-不分流进样器,柱后加一个尾吹气路。由于毛细管柱体积很小,柱容量很小,出峰快,所以死体积一定要小,要求瞬间注入极小量样品,因此柱前要分流。对进样技术要求高,对操作条件要求严。尾吹的目的是减小死体积和柱末端效应。毛细管柱对固定液的要求不苛刻,一般2-3根不同极性的柱子可解决大部分的分析问题。毛细管柱一般配有响应快,灵敏度高的质量型检测器。 高分辨率毛细管气相色谱仪的三要素是:要选择好的毛细管柱及最佳分析条件;按样品选择合适的毛细管进样系统;选择高性能的毛细管气相色谱仪。 图6-1 毛细管气相色谱仪示意图 第二节毛细管色谱柱 1957年,美国科学家Golay提出毛细管柱的气相色谱法。Golay称毛细管色谱柱为开管柱。因这种色谱柱中心是空的。毛细管柱是内径为Φ0.1-0.5mm左右、长度为10-300m的毛细柱,虽然每米理论板数约为2000-5000,与填充柱相当,但由于柱子很长,总柱效可高达106。 一、毛细管色谱柱组成 通常来说,一根毛细管色谱柱由管身和固定相两部分组成。管身采用熔融二氧化硅(熔融石英),通常在其表面涂上一层聚酰亚胺保护层。涂层后的熔融石英毛细管呈褐色:但是涂层后的毛细管之间

的颜色却不尽相同。色谱柱的颜色对于其色谱性能没有什么影响。经过持续的较高温度处理后.聚酰亚胺涂层管的的温度会变得比以前更深:标准的聚酰亚胺涂层管熔融石英管的温度上限为360℃,高温聚酰亚胺涂层管的温度上限为400℃。固定相种类很多,大部分的固定相是热稳定性好的聚合物,常用的有聚硅氧烷和聚乙二醇。另外还有一类是小的多孔粒子组成的聚合物或沸石(例如氧化铝、分子筛等)。 熔融石英管的内表面会用一些化学方法进行处理,尽量的减小样品和管壁之间可能存在的相互作用。所用的试剂和处理方法一般是依据将要涂在内壁上的固定相种类来确定的。硅烷化处理则是最为常用的处理方式,使用硅烷类的试剂和管壁内表面上的硅基醇基团进行反应,使其变为甲基硅烷基或苯甲基甲基硅烷基。 当实验要求更高的使用温度时,我们可以来用不锈钢毛细柱来代替熔融石英毛细柱。不锈钢毛细柱在使用温度(耐高温)及日常维护(不易折断等)的性能和指标上都优于熔融石英毛细柱。但是不锈钢材质的惰性没有熔融石英好,它可以和许多的化合物相互作用,产生反应。所以通常可以用化学方法对其进行处理,或者是在它的内壁再涂上薄薄的一层熔融石英,以增加不锈钢管的隋性:经过适当处理后,不锈钢毛细柱的惰性与熔融石英毛细柱的不相上下。 二、毛细管色谱柱固定相 (一)气-液色谱固定相 1.聚硅氧烷 聚硅氧烷有优良的稳定性, 用途广,是目前最为常用的固定相。标准的聚硅氧烷是由许多单个的硅氧烷重复联接构成,每个硅原子与两个功能基团相连,功能基团的类型和数量决定了固定相总体类型和性质,常见的四种功能基团为甲基、氰丙基、三氟丙基和苯基。最基本的聚硅氧烷是由100%甲基取代的。当有其他种类的取代基出现时,该基团的数量将由一个百分数来表示。例如:5%二苯基—95%二甲基聚硅氧烷表示其包含有5%的苯基基团和95%的甲基基团。“二”是表示每个硅原子包含有两个特定基团,但当两个特定基团完全相同时,我们有时也会省略这种叫法。如果甲基的百分数没有表征,则表示它的含量可能是100%(如50%苯基—甲基聚硅氧烷表示甲基的含量为50%)。有时我们可能对氰丙基苯基的百分含量产生错误的理解,如14%氰丙基苯基—二甲基聚硅氧烷表示的是其含有7%氰丙基和7%苯基(另有86%的甲基),因为一个氰丙基和一个苯基连接于同一个硅原子上,所以14%是一种加和的表征方式。 我们有时会用低流失来表征一类固定相。这一类固定相是在硅氧烷聚合物中链接一定数量的苯基或苯基类的基团,通常我们称之为“亚芳基”。由于它们的加入,聚合物的链接变得更加坚固稳定,保证了在较高温度时,固定相不会产生降解。也就是说,进一步降低了色谱柱的柱流失,提高了色谱柱的使用温度。与原始的非亚芳基类型的固定相相比,亚芳基固定相不仅拥有相同的分离指数,而且在色谱柱的维护等方面也有许多的调整(例如SE-52和SE-54)。尽管同类普通型和低流失型固定相的分离性能相同或极为相似,但是在某些方面还有微小的区别。另外,我们也使用一些独特低流失固定相。 2.聚乙二醇 聚乙二醇是另外一类广泛应用的固定相。有时我们称之为“WAX”或“FFAP”。聚乙二醇不像聚硅氧烷那样有多种取代基团,它是100%固定基质的聚合物。相对于聚硅氧烷,聚乙二醇固定相色谱柱的寿命较短,而且容易受温度和环境(有氧环境等)的影响。另外,聚乙二醇固定相在相应的GC实验条件下需保持液态。但由于其独特的分离性能,聚乙二醇仍是我们常用的固定相之一。

乙二醇溶液冰点测定实验报告

乙二醇溶液的冰点测定实验

一、实验目的:测定不同浓度的乙二醇溶液的冰点 二、仪器试剂:乙二醇(分析纯),高低温试验箱,电子天平,100ml容量 瓶,量筒 三、实验步骤: 1、配置溶液:用100ml量筒分别量取25ml,30ml,40ml,50ml,55ml的乙 二醇(分析纯),用100ml的容量瓶定容。配置成体积浓度分别为25%,30%,40%,50%,55%的乙二醇溶液。 2、用电子天平称量配置溶液的质量。结果如下表: 浓度(体积) 质量/g 25% 103.4270 30% 103.9378 40% 105.2428 50% 54.2414 55% 106.8160 3、通过查阅资料可知不同浓度的乙二醇溶液冰点如下表: 体积分数,%冰点/℃体积分数,%冰点/℃体积分数,%冰点/℃ 0.00.027.7-14.141.5-26.4 4.4-1.428.7-14.842.5-27.5 8.9-3.229.6-15.443.5-28.8 13.6-5.430.6-16.244.5-29.8 18.1-7.831.6-17.045.5-31.1 19.2-8.432.6-17.946.5-32.6 20.1-8.933.5-18.647.6-33.8 21.0-9.534.5-19.448.6-35.1 22.0-10.235.5-20.349.6-36.4 22.9-10.736.5-21.350.6-37.9 23.9-11.437.5-22.351.6-39.3 24.8-12.038.5-23.252.7-41.1 25.8-12.739.5-24.353.7-42.6 26.7-13.340.5-25.354.7-44.2 4、将几种溶液置于高低温试验箱中,以上表中的冰点为依据,分别在不同温 度下维持一段时间,观察现象。

气相色谱法检测时色谱柱的选择

气相色谱法检测时色谱柱的选择 气相色谱柱是样品中残留溶剂测定的理论与物质基础,所以对色谱柱的选择也是最关键的步骤。气相色谱柱可分为填充柱和毛细管柱两大类,其中填充柱又分玻璃柱和不锈钢柱;毛细管柱按柱__口直径一般又有0153mm和0132mm两种规格,前者又叫大口径毛细管柱,柱容量大,在残留溶剂测定中应用较多。由于毛细管柱造价高,中国药典2000年版结合中国国情,用填充柱测定,美国药典24版(USPXXIV)和英国药典2000年版(BP2000)要求用毛细管柱。从填料来分,填充柱一般选用高分子多孔小球系列(GDX101,GDX102,GDX103,GDX301,GDX401)直接测定。GDX的表面积大(1~500m2/g),有一定的机械强度,可在250℃以下应用。无论极性还是非极性物质,在这种固定相上的拖尾现象都降到最低限度;它和羟基的化合物亲和力极小,可使水、醇类物质大大提前流出柱子;氧化氮、HCN、NH3、SO2、COS等活泼气体可以很快流出,不干扰测定,这些优点对残留溶剂测定来说是比较理想的。 这类填料的应用约占填充柱测定残留溶剂的文献的90%。GDX既是性能优良的吸附剂,能直接作为气相色谱的固定相,直接用于气固分析,也能作为担体涂布 PEG系(PEG20M,PEG2M,PEG10000,PGE5000),DEGS(丁二酸二乙二醇酯),DG (缩二甘油),丙二醇乙二酸聚酯,OV- 225,SE52(苯基甲基硅酮)等固定液,用于残留溶剂测定,当然担体的选择也有多种,如6201、硅藻土、PoraparkQ等。在柱子的选择上,一般选用GDX系列就能解决问题,但对于某些样品,就需要用某些固定液来进行分离才能满足要求,如二甲基甲酰胺26。选择原则是相似相溶,对于醇、胺等能形成氢键的物质,除上面介绍的GDX外,也可选择极性固定液。另外也可将不同极性的固定液混合涂布在担体上进行分离27。 毛细管柱的种类也很多,如 OV-101,SE-54,CP-Sil-5CB28,AC-20,SE-30,HP-5,HP-20M,100%二甲基硅氧 烷,AT- 624,TFAP等,一般长10~30m不等。填充柱价格便宜,易得,一直占据溶剂残留量检测的主导地位,只是柱效较低,只有500~1000左右,分离复杂样品的能力差。杨绍英、陈志华在测定心痛定中两种残留溶剂时就分别用两种色谱条件,比较麻烦29。但填充柱仍然是我们的首要选择。张咏梅、洪铮在紫杉醇原料药中有机溶剂残留量的气相色谱分析中,应用GDX401填充柱同时检测甲醇、乙酸乙酯、二氯甲烷,方法准确可靠30。王卫、高立勤在测定盐酸莫索尼定有机溶剂残留量时以正丙醇为内标,用GDX-401填充柱测定乙醚和异丙醇的残留量,方法灵敏、准确、可信31。 邓湘昱也用GDX-401填充柱测定盐酸土霉素中残留甲醇,结果证明方法简单可靠32。黄剑英、顾以振用GDX-401填充柱、用恒温条件建立同时测定中国药典规定的7种溶剂的测定方法,方法分离度较好,准确可靠33。这些均说明填充柱在测定残留溶剂中的重要作用。近年来,毛细管柱应用越来越多,有取而代之的趋势。特别是近两年,文献报道关于残留溶剂测定的文章中,用毛细管柱测定的约占总数的90%,填充柱只占10%,由此可见其趋势。毛细管柱的理论塔板数约为10万左右,与填充柱相比柱效和灵敏度均要高的多,对复杂和微量残留溶剂的分析能力有极大的提高,所以选择毛细管柱一般都能解决分离问题。其中柱口直径为0153mm的大口径毛细管柱因其柱容量大尤其应用广泛。姚倩、李章万、张

氨氮的测定纳氏试剂法

实验4 水中氨氮的测定(纳氏试剂比色法) HJ535-2009代替GB 7479-87 一.实验目的 1. 了解水中氨氮的测定意义。 2. 掌握水中氨氮的测定方法和原理。 二.实验原理 氮是蛋白质、核酸、酶、维生素等有机物中的重要组分。纯净天然水体中的含氮物质是很少的,水体中含氮物质的主要来源是生活污水和某些工业废水。当含氮有机物进入水体后,由于微生物和氧的作用,可以逐步分解或氧化为无机氨(NH 3)、铵(NH 4+)、亚硝酸 盐(NO 2-)和最终产物(NO 3-)。 氨和铵中的氮称为氨氮(Ammonia nitrogen 简称NH 3-N )。水中氨氮的含量在一定程度 上反映了含氮有机物的污染情况。在污水综合排放标准(GB8978-1996)和地表水环境质量标准(GB3838-2002)中,氨氮都是重要的监测指标。 以游离态的氨或铵离子等形式存在的氨氮与纳氏试剂反应生成淡红棕色络合物,该络合物的吸光度与氨氮含量成正比,于波长420 nm 处测量吸光度。 氨氮与纳氏试剂反应生成棕色胶态化合物, 干扰及消除:水样中含有悬浮物、余氯、钙镁等金属离子、硫化物和有机物时会产生干扰,含有此类物质时要作适当处理,以消除对测定的影响。 若样品中存在余氯,可加入适量的硫代硫酸钠溶液去除,用淀粉-碘化钾试纸检验余氯是否除尽。在显色时加入适量的酒石酸钾钠溶液,可消除钙镁等金属离子的干扰。若水样

浑浊或有颜色时可用预蒸馏法或絮凝沉淀法处理。 三. 仪器与试剂 1.尤尼柯WFJ7200型可见分光光度计,具20mm比色皿。 2.纳氏试剂(碘化汞-碘化钾-氢氧化钠(HgI2-KI-NaOH)溶液): 称取 16.0g氢氧化钠(NaOH),溶于50ml水中,冷却至室温。称取7.0g碘化钾(KI) 和10.0g碘化汞(HgI 2 ),溶于水中,然后将此溶液在搅拌下,缓慢加入到上述50ml氢氧化钠溶液中,用水稀释至100ml。贮于聚乙烯瓶内,用橡皮塞或聚乙烯盖子盖紧,于暗处存放,有效期1年。 3.酒石酸钾钠溶液:称取50.0g酒石酸钾钠(KNaC4H4O6·4H2O)溶于100mL水中,加热煮沸以驱除氨,充分冷却后稀释至100ml。 4.氨氮标准贮备溶液(1000μg/ml):称取3.8190g氯化铵(NH4Cl,优级纯,在100~105℃干燥2h),溶于无氨水中,移入1000ml容量瓶中,稀释至刻度,摇匀。可在2~5℃保存1个月。 5.氨氮标准工作溶液(10μg/mL):吸10.00ml氨氮标准贮备溶液于1000ml容量瓶内,用无氨水稀释至刻度,摇匀。临用前配制。 以下为水样需预处理时所需试剂 6. 硫代硫酸钠溶液(3.5g/L):称取3.5g硫代硫酸钠(Na 2S 2 O 3 )溶于水中,稀释至1000ml。 7. 硫酸锌溶液(100g/L):称取10.0g硫酸锌(ZnSO 4·7H 2 O)溶于水中,稀释至100ml。

离子色谱测定乙二醇氯离子含量

离子色谱测定一、二、三乙二醇中无机氯的含量 2012-11-13 建立了一种测定一、二、三乙二醇中无机氯含量的离子色谱方法。将样品用二次去离子水以1:1的比例进行稀释,以3.6mmol/L的碳酸钠作为淋洗液,经阴离子交换色谱柱进行分离,采用电导检测器测定氯离子。结果表明:氯离子含量在0.02~0.4mg/kg范围内,方法的线性关系良好(相关系数为0.9999),加标回收率在97.0%~102.8%之间,方法的日内相对标准偏差小于2%,日间相对标准偏差小于3%。方法简便、稳定性好,可实现对一、二、三乙二醇中无机氯含量的快速和准确测定。 关键词:离子色谱法;一、二、三乙二醇;氯离子 乙二醇(ethyleneglycol)又名“甘醇”、“1,2-亚乙基二醇”,简称EG,乙二醇存在三个种类:乙二醇(MEG)、二乙二醇(DEG)和三乙二醇(TEG)。乙二醇用于配制发动机的抗冻剂,还用于工业冷量的输送,一般称呼为载冷剂。抗冻剂和载冷剂中过量的氯离子存在会对设备产生腐蚀而使之发生渗漏,影响发动机及工业设备的寿命,因此有必要对乙二醇中的氯离子含量进行测定,实现对乙二醇进行质量控制。 1实验部分 1.1仪器与试剂 离子色谱仪;超纯水机; 移液管1mL和2mL,一次性1mL注射器,50mL容量瓶,100mL容量瓶。 Na2CO3基准试剂,,NaOH优级纯,NaCl基准试剂。 1.2色谱条件 阴离子分析柱(4×250mm)及其WY-AG-1保护柱(4×50mm),电导检测器,阴离子抑制器,抑制电流40mA,淋洗液:3.6mmol/LNa2CO3溶液,流速0.8mL/min,样品环100μL,柱温45℃,检测

气相色谱法

气相色谱法测定丁醇中少量甲醇含量 一、实验目的 1. 掌握用外标法进行色谱定量分析的原理和方法。 2. 了解气相色谱仪氢火焰离子检测器FID的性能和操作方法。 3. 了解气相色谱法在产品质量控制中的应用。 4. 学习气相色谱法测定甲醇含量的分析方法。 二、实验原理 在丁醇生产的过程中,不可避免地有甲醇产生。甲醇是无色透明的具有高度挥发性的液体,是一种对人体有害的物质。甲醇在人体内氧化为甲醛、甲酸,具有很强的毒性,对神经系统尤其是视神经损害严重,人食入 5 g 就会出现严重中毒,超过 12. 5 g 就可能导致死亡,在白酒的发酵过程中,难以将甲醇和乙醇完全分离,因此国家对白酒中甲醇含量做出严格规定。根据国家标准(GB10343-89),食用酒精中甲醇含量应低于0.1g?L-1(优级)或0.6 g?L-1(普通级)。 气相色谱法是一种高效、快速而灵敏的分离分析技术,具有极强的分离效能。一个混合物样品定量引入合适的色谱系统后,样品被气化后,在流动相携带下进入色谱柱,样品中各组分由于各自的性质不同,在柱内与固定相的作用力大小不同,导致在柱内的迁移速度不同,使混合物中的各组分先后离开色谱柱得到分离。分离后的组分进入检测器,检测器将物质的浓度或质量信号转换为电信号输给记录仪或显示器,得到色谱图。利用保留值可定性,利用峰高或峰面积可定量。 外标法是在一定的操作条件下,用纯组分或已知浓度的标准溶液配制一系列不同含量的标准溶液,准确进样,根据色谱图中组分的峰面积(或峰高)对组分含量作标准曲线。在相同操作条件下,依据样品的峰面积(或峰高),从标准曲线上查出其相应含量。利用气相色谱可分离、检测丁醇中的甲醇含量,在相同的操作条件下,

水质氨氮的测定纳氏试剂分光光度法HJ

精心整理 1.范围 1.1 本方法规定了用纳氏试剂分光光度法测定水中的氨氮。 1.2 本方法适用于地下水、地表水、生活污水和工业废水中氨氮的测定。 1.3 当水样体积为50mL,使用20mm比色皿时,本方法检出限为0.025mg/L,测定下限为0.10mg/L, 测定上限为2.0mg/L(均以N计)。 2.参考标准 水质氨氮的测定纳氏试剂分光光度法HJ535-2009 3.职责 4. 5. 5.1 5.2 6.试剂 6.1制备6.1 6.1.2蒸馏法:在1000mL的蒸馏水中,加0.1mL硫酸(ρ=1.84g/mL),在全玻璃蒸馏器中重蒸 馏,弃去前50mL馏出液,然后将约800mL馏出液收集在带有磨口玻璃塞的玻璃瓶内。每升 馏出液加10g强酸性阳离子交换树脂(氢型)。 6.2 盐酸,ρ(HCl)=1.18g/mL。 6.3 硫酸,ρ(H2SO4)=1.84g/mL。 6.4 无水乙醇 6.5 轻质氧化镁(MgO):不含碳酸盐,在500℃下加热氧化镁,以除去碳酸盐。

6.6 氢氧化钠(NaOH) 6.7 可溶性淀粉 6.8 碘化钾(KI) 6.9 碘化汞(HgI) 6.10 氢氧化钾(KOH) 6.11 二氯化汞(HgCl2) 6.12 纳氏试剂 ?碘化汞–碘化钾–氢氧化钠(HgI2-KI-NaOH)溶液: (6.8) 氢氧化? 6.13 6.14 6.15 6.16 。6.17 硫酸锌(ZnSO4·7H2O) 6.18 硫酸锌溶液,ρ=100g/L,称取10.0g硫酸锌(6.17)溶于水中,稀释至100mL。 6.19 氢氧化钠溶液,ρ=250g/L。称取25g氢氧化钠(6.6)溶于水中,稀释至100mL。 6.20 氢氧化钠溶液,c(NaOH)=1mol/L。称取4g氢氧化钠(6.6)溶于水中,稀释至100mL。 6.21 盐酸溶液,c(HCl)=1mol/L。用吸量管吸取8.5mL盐酸(6.2)于100mL容量瓶中,用水稀释 至标线。 6.22 硼酸(H3BO3)

水质分析中氨氮测定的标准方法

水质分析中氨氮测定的标准方法 氨氮 氨氮(NH3-N)以游离氨(NH3)或铵盐(NH4+)形式存在于水中,两者的组成比取决于水的pH值。当pH值偏高时,游离氨的比例较高。反之,则铵盐的比例为高。 水中氨氮的来源主要为生活污水中含氮有机物受微生物作用的分解产物,某些工业废水,如焦化废水和合成氨化肥厂废水等,以及农田排水。此外,在无氧环境中,水中存在的亚硝酸盐亦可受微生物作用,还原为氨。在有氧环境中,水中氨亦可转变为亚硝酸盐、甚至继续转变为硝酸盐。 测定水中各种形态的氮化合物,有助于评价水体被污染和“自净”状况。 氨氮含量较高时,对鱼类则可呈现毒害作用。 测定方法一:纳氏试剂光度法(GB7479--87) 1.方法原理 碘化汞和碘化钾的碱性溶液与氨反应生成淡红棕色胶态化合物,此颜色在较宽的波长范围内具强烈吸收。通常测量用波长在410—425nm范围。 2.干扰及消除 脂肪胺、芳香胺、醛类、丙酮、醇类和有机氯胺类等有机化合物,以及铁、锰、镁、硫等无机离子,因产生异色或浑浊而引起干扰,水中颜色和浑浊亦影响比色。为此,须经絮凝沉淀过滤或蒸馏预处理,易挥发的还原性干扰物质,还可在酸性条件下加热除去。对金属离子的干扰,可加入适量的掩蔽剂加以消除。 3.方法适用范围 本法最低检出浓度为0.025molL(光度法),测定上限为2mgL。采用目视比色法,最低检出浓度为0.02mgL。水样作适当的预处理后,本法可适用于地表水、地下水、工业废水和生活污水。 仪器 (1)分光光度计:UV-2800(UNICO) (2)pH计。

试剂 配制试剂用水应为无氨水。 1.纳氏试剂 可选择下列一种方法制备。 (1)称取20g碘化钾溶于约25ml水中,边搅拌边分次少量加入二氯化汞(HgCI2)结晶粉末(约10g),至出现朱红色沉淀不易溶解时,改为滴加饱和二氯化汞溶液,并充分搅拌,当出现微量朱红色沉淀不再溶解时,停止滴加二氯化汞溶液。 另称取60g氢氧化钾溶于水,并稀释至250ml,冷却至室温后,将上述溶液在边搅拌下,徐徐注入氢氧化钾溶液中,用水稀释至400ml,混匀。静置过夜,将上清液移入聚乙烯瓶中,密塞保存。 (2)称取16g氢氧化钠,溶于50ml充分冷却至室温。 另称取7g碘化钾和10g碘化汞(HgI2)溶于水,然后将此溶液在搅拌下徐徐注入氢氧化钠溶液中,用水稀释至100ml,贮于聚乙烯瓶中,密塞保存。 2.酒石酸钾钠溶液 称取50g酒石酸钾钠(KnaC4H4O6·4H2O)溶于100ml水中,加热煮沸以除去氨,放冷,定容至100ml。 3.铵标准贮备溶液 称取3.819g经100℃干燥过的氯化铵(NH4Cl)溶于水中,稀释至标线。此溶液每毫升含1.00mg氨氮。 4.铵标准使用溶液 移取5.00ml铵标准贮备液于500ml容量瓶中,用水稀释至标线。此溶液每毫升含0.010mg 氨氮。 步骤 1.校准曲线的绘制 吸取0、0.50、1.00、3.00、5.00、7.00、和10.0ml铵标准使用液于50ml比色管中,加水至标线。加1.0ml酒石酸钾钠溶液,混匀。加1.5ml纳氏试剂,混匀。放置10min后,在波长4250nm处,用光程20mm比色皿,以水作参比,测量吸光度。

毛细管气相色谱法

毛细管气相色谱法条件及定量分析 指导老师:李建国 实验人:王壮 同组实验:陆潇、戈畅 实验时间:2016.4.18 一、实验目的 1.熟悉色谱分析的原理及色谱工作站的使用方法; 2、掌握气相色谱仪操作方法与氢火焰离子化检测器的原理; 3.用保留时间定性;用归一化法定量;用分离度对实验数据进行评价。 二、实验原理 不同组分在同一分离色谱柱上,在相同实验条件下有不同的保留行为,其保留时间的差异可以用来定性分析,每一组分的质量与相应色谱峰的积分面积成正比,因此可以公式计算,用归一化方法测定每一组分的质量百分含量。 1122100A is i i A A A s s ns n f A w f A f A f A =?++???+% 本实验是用气相色谱测定乙酸乙酯、乙酸丁酯及其混合试样,检测器用FID 。用色谱软件进行谱图处理和定量计算,让学生掌握用已知物对照定性、用归一化法测定混合物组分定量的实验。 混和试样的成功分离是气相色谱法定量分析的前提和基础,衡量一对色谱峰分 离的程度可用分离度:12121()2 R R t t R W W -=?+,式中1R t 、2R t 和1W 、2W 分别指两组分的保留时间和峰底宽度,R=1.5时两组分完全分离,实际中R=1.0(分离度98%)即可满足要求。 三、仪器与试剂 仪器:GC7890F 型气相色谱仪、氢火焰离子化检测器(FID )、氮气钢瓶、空气钢瓶、氢气发生器,微量注射器、3mm x 200cm 的10% SE-54不锈钢分离柱。GC5400型气相色谱仪、空气发生器、氮气发生器、氢气发生器,微量注射器、15m 毛细管分离柱。 试剂:乙酸乙酯、乙酸丁酯标准试样及其未知混合试样。 四、实验内容 1.按操作说明书使色谱仪正常运行,并调节至如下条件: 柱温:110C ? 检测器温度:120C ? 气化温度:120C ? 载气、氢气和空气流量分别为30、50和200mL/min 。 2.分别改变柱温至80、90、100、110、120C ?。每改变一次柱温,注入0.5L μ混合

分光光度法测定水中氯含量

·分析测试· 分光光度法测定微量氯离子的研究与应用 STUDY AND APPLICATION OF SPECTROPHOTOMETRIC METHOD FOR DETERMINATION OF MICRO CHLORION 1 前言 含有有机物工艺水中氯离子的测定, 是化工生产中常用的分析指标,其含量的高低,对生产的稳定性、生产过程参数的调节至关重要。目前,含有有机物工艺水中的氯离子的测定方法有硝酸银滴定法、汞量滴定法、比色法、离子选择电极法等。这些方法各有利弊,在生产中直接应用有一定的难度。分光光度法以其灵敏度高,选择性好,操作简单等优点广泛用于各种微量以及痕量组分的分析。由于氯化银沉淀不稳定, 直接应用分光光度法测定结 果不理想。笔者通过研究氯化银沉淀在明胶- 乙醇水溶液中的稳定性。建立了一种新的测定微量氯离子的分光光度法,并应用到有机物工艺水中微量氯离子的测定,结果令人满意。线性范围为0~6 mg/ L , 方法的标准偏差为01108 , 变异系数为01026 。回收率为101 %~105 %。 2 实验部分 211 试剂 明胶- 乙醇水溶液: 称取011250 g 明胶, 溶于100 ml 水中, 取其20mL 明胶溶液+ 30 mL 乙醇, 放于100 mL 容量瓶中,用水稀释到满刻度。硝酸溶液:1 + 2 。氯标准溶液:012 mg/ mL 。称取116439 (称准至010002 g) 氯化钠溶解后,全部转移到1000 mL 容量瓶中,用水稀释至满刻度,摇匀,取此

溶液50 mL 稀释到250 mL 。硝酸银溶液:20 g/ L 。称取2 g 硝酸银于100 mL 容量瓶中, 用无氯化物水稀释到刻度。 212 仪器 3 运行效果 根据该厂污水处理场的实际情况, 在两间浮选池上各装一套溶气设备,经过试运行,在认为设备运行正常的情况下,进行了检验和验收,结果如下: (1) 污水泵、循环加气泵及电机运行平稳, 无振动和异常声音。 (2) 污水泵和循环加气泵压力均在013~0134MPa 之间。 (3) 气泡微细。 (4) 截止目前射流加压溶气设备运行情况良好,除油效果显著,提高了污水处理的质量。 4 结论 (1)JDAF - Ⅱ型射流加压溶气设备应用效果良好,运行稳定,操作简单,根除了释放器堵塞现象,减轻了操作人员的劳动强度。 (2) 该设备采用内循环式,所需的溶解空气经循环射流器和真空进气阀自吸气作用完成, 毋需空气压缩机供给,因此减轻了噪声污染。 (3) 除油效果显著。浮选出水含油由原来的6018 %提高到现在的7310 % , 浮选出水含油量可控制在20 mg/ L 以下。 (4) 自动化程度高。该设备自动调整溶气罐内气液平衡,无需人工控制。 一般实验室仪器及7550 紫外可见分光光度计。 213 测定步骤 于100 mL 比色管中,依次加入氯标准溶液、水、明胶- 乙醇水溶液、硝酸溶液,混匀后再加

水体中氨氮含量的测定 浙江大学实验报告

实验报告 实验名称: 水体中氨氮含量的测定 实验类型: 定量实验 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、实验材料与仪器(必填) 四、操作方法和实验步骤(必填) 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 八、参考文献 一、实验目的和要求 1、了解分光光度计的使用方法、标准曲线的绘制及有关计算方法; 2、学会水样的蒸馏预处理; 3、掌握纳氏试剂分光光度法测定水样中低浓度氨氮的原理和操作。 二、实验内容和原理 1、与氮有关的水质指标 (1)总氮:水中各种形态无机和有机氮的总量。包括NO 3-、NO 2-和NH 4+ 等无机氮及蛋白质、氨基酸和有机胺等有机氮,以每升水含氮毫克数计算。常被用来表示水体受营养物质污染的程度,紫外分光光度法测定。 (2)凯式氮:指以凯氏法测得的含氮量,它包括了氨氮和在此条件下能被转化为铵盐而测定的有机氮化合物。测定凯氏氮主要是为了了解水体受污染状况,尤其在评价湖泊和水库的富营养化时。 (3)氨氮:指水中以游离氨(NH 3)和铵离子(NH 4+ )形式存在的氮,其组成取决于溶液的pH 值。 (4)亚硝酸盐氮:指亚硝酸盐中所含的氮元素。 (5)硝酸盐氮:指硝酸盐中所含的氮元素,是含氮有机物氧化分解的最终产物。 2、水处理中氮的转化 水中的氨在氧的作用下可以生成亚硝酸盐,并进一步形成硝酸盐。同时水中的亚硝酸盐也可以在厌氧条件下受微生物作用转化为氨。 3、氨氮的测定

测定原因:当发现水中氨氮浓度很高时,表明水体刚刚受到污染,其潜在的危害较大。 测定方法:纳氏试剂分光光度法、水杨酸-次氯酸盐分光光度法、气相分子吸收光谱法、离子选择电极法和滴定法。 测定原理(纳氏试剂分光光度法): 水样中的氨氮在碱性条件下与纳氏试剂作用,生成黄棕色络合物,在420nm波长处进行光度测定。水样的色度、浊度和其他干扰物的存在会影响氨氮的测定,必须作适当的处理。对比较清洁的水样可采用絮凝沉淀法,对污染严重的水样则应采用蒸馏法以消除干扰。 最低检出质量浓度为0.025mg/L,测定上限为2mg/L,适用于各种水体的测定。 反应方程式: 三、实验材料与仪器 材料:河水样本。 仪器:分光光度计,取样器,水样过滤装置,锥形瓶,50mL容量瓶,移液管,洗耳球等。 试剂:铵标准使用液,酒石酸钾钠溶液,无氨水,纳氏试剂。 四、操作方法和实验步骤 1、工作曲线的绘制 (1)分别移取0、0.50、1.00、3.00、5.00、7.00mL铵标准使用液于50mL容量瓶中,各加入1.0mL酒石酸钾钠溶液,并用无氨水加至约40mL左右,摇匀; (2)各加入1.5mL纳氏试剂,并用无氨蒸馏水稀至标线,摇匀; (3)放置10min后,在420nm处用光程为10mm的比色皿,以空白为参比,测量吸光度; (4)绘制以氨氮含量对吸光度的工作曲线。 2、水样氨氮含量的测定 (1)用取样器在护校河中定点采集水样,用过滤装置对水样进行初步过滤,装入锥形瓶中备用;(2)取19.5mL水样经蒸馏后的馏出液于50mL容量瓶中,加入1.0mL酒石酸钾钠溶液,加无氨水至40mL左右,摇匀; (3)再加入1.5mL纳氏试剂,并用无氨蒸馏水稀释至标线,摇匀; (4)放置10min,同工作曲线步骤测量吸光度,根据标准取钱计算水体的氨氮含量。 五、实验数据记录和结果 1 吸光度0.000 0.006 0.044 0.189 0.388 0.397

毛细管气相色谱

毛细管气相色谱 一、毛细管柱与填充柱的区别 ◆与填充柱相比,毛细管柱的特点为: 1.分离效能高 2.分析速度快 3.样品用量少 可在几十分钟内分离出包含几百种化合物的汽油馏分,然而样品用量仅有数微克 在快速分析方面,可在几秒钟内分离含十几个组份的样品。 ◆其独特的特点在于: ◇渗透性大,分析速度快 ◇传质阻力小,可用长柱,并得高的总柱效。 ◇色谱动力学认为:填充柱可看作是一束长毛细管的组合,其内径约等于粒子粒度,因其弯曲,多径扩散严重,故理论板数少。 毛细管柱完全没有这些缺陷,故理论板数可高大106数量级。 ◆用毛细管柱,有利于: ⊙提高色谱分离能力, ⊙加快色谱分析速度, ⊙促进色谱的应用都是十分必要的: 二、毛细管色谱法的相关理论 ◆在毛细管柱,柱内只有一个流路,故多径项2λdp为0,弯曲因子γ=1,且用其液膜厚代替了填 充柱中载体的颗粒直径dp。 2.毛细管柱的最小理论板高 ◆毛细管柱的H—U图也是一个双曲线,在U值是最佳值时,H值最小。 ◆式中Cg、C1的大小取决于分配系数及柱的几何性(以相比β为代表),但一般毛细管柱液膜 薄,β值较大,液相传质阻力C1项不起控制作用。 ◆当被测物质的k﹥10时,如果每米理论板数大于1000/d时,则所用柱子的性能较好 ◆表中为K值很大时最好柱效(每米板数)值,其值由H/L = 1000 / d ◆一般认为直径在0.1—0.7mm较好 小于0.1mm,入口压力增加,柱负荷减少 大于0.7mm,虽柱负荷增大,但柱效下降 ◆目前流行0.53mm的大口径管,不必分流。 3.载气线速

◆从速率方程可知,最小板高时的最佳线速为: ◆如果Cl很小,则有: 可见,细管径,轻载气更适合于快速分析。 4.样品容量 一根色谱柱的最大允许进样量,约为一块理论板的有效体积。 ◆可见最大允许进样量与柱半径、柱长、分配比成正比,与塔板数成反比 比较填充柱和毛细管柱的柱容量 一根长20米,内径为0.25毫米的毛细管柱,一般可涂上6 mg的固定液,柱内体积 而一根长两米,内径3毫米的不锈钢填充柱,柱内体积 按12:100的液载比,可涂上800mg固定液。 ◆可见,一根2米长的填充柱中固定液的含量是一根20米长毛细管柱中固定液含量约150倍,故允许进样量也在一百倍以上。 5、柱效能 ◆毛细管柱每米塔片数通常在2000-5000之间,长20米的毛细管柱总柱效为4万至10万。 ◆填充柱每米塔片数在1000-1500之间,长2米的填充柱的柱效为2000-3000 ★所以毛细管柱的总柱效可以比填充柱高10-100倍。 根据上式,分离度正比于总塔片数N。即毛细管柱色谱总效高,其分离效能也高。 如果柱效高,K值也大是最理想的,目前流行大孔厚膜毛细管柱可望具有这两重性质。 6、分析时间 ◆根据公式,样品的保留时间正比于柱长,在以氮为载气时,毛细管柱的线速可达16厘米/秒, 而填充柱在4厘米/秒 ◆毛细管柱可采用很高的载气线速来缩短保留时间。且毛细管柱的K值比填充柱小,因此保留 时间小。 ◆故:毛细管柱上可实现快速分析。 三、毛细管柱的色谱系统 ◆与填充柱系统基本一样。 ◆因毛细管柱内径细,柱容量小,出峰快、峰形窄,因此对色谱仪本身(如进样系统、检测器、 记录器等)有些特殊的要求。 1、进样系统 ◆毛细管柱进样量必须极小(一般液样10—2~10—3微升,气样约1微升)。

EPA8082气相色谱法测定多氯联苯(中文版)

方法8082 气相色谱法测定多氯联苯 1.0适用范围 方法8082用于检测多氯联苯浓度如固-液萃取物中的亚老格尔或单独的多氯联苯化合物。开口毛细管柱用于电子捕获器或电解传导检测器。对比于填充柱,熔融石英开口毛细管柱提高了检测性能,即更好的选择性、更好的灵敏度及更快的检测速度。下表所列的目标化合物都可由单柱或者双柱分析系统来检测。这些PCB化合物都有此法试验过,且此法还适用于其它的化合物。

International Union of Pure and Applied Chemistry 国际理论和应用化学联合会 1.2亚老格尔是种多组分的混合物。当样品中含有多于一种的亚老格尔,就需要更好的分析技术人员来进行定性及定量分析。对于环境降解中的亚老格尔或者人为降解中的亚老格尔分析也需要专门分析技术人员,因为降解后的多组分混合物对比于亚老格尔标准峰参数将有显著不同。 1.3作为亚老格尔的PCBs定量分析与很多常规仪器检测类似,但当亚老格尔在环境中暴露而降解后则有很大的不同。因此,本方法提供了从检测结果中挑选单个PCB化合物的程序。上面所列的19种PCB化合物均用此法进行了检测。 1.4当知道PCB存在的情况下,PCB化合物的检测可以得到更高的精确度。因此这种方法依据需求的计划需要,可以用于检测亚老格尔、单个PCB化合物或者PCBs总合。此化合物的方法对降解的亚老格尔检测具有特殊意义。然而,分析者在使用这个化合物分析方法时应当谨慎,即在调整条件时应基于亚老格尔的浓度。 1.5基于单柱分析的化合物确定应当由另一根柱子来验证,或者有至少一种定性方法来支持。第二根气相色谱柱的分析条件能够确认第一根柱子的检测法。在灵敏度允许的情况下气相色谱质谱(GC/MS)8270方法可以作为一个确认方法。 1.6此方法同样描述了一个双柱方法选择。这个方法需要配置一个硬件是两根分析柱相连成为单一进样口。此法需要在双柱分析时使用一个进样口。分析者应当注意的是在仪器受机械压力影响一些样品进样周期短,或者分析高污染的样品时,双柱方法可能并不合适。 1.7分析者必须针对所研究的目标分析物选择柱子、检测器、校准方法。必须建立特殊基质操作步骤、针对每个分析基质的稳定的分析系统及仪器校准系统。提供色谱实例和气相色谱条件。 1.8亚老格尔的方法检出限变化范围在水中为0.054到0.90μg/kg ,在土壤中为57到70μg/kg。可以利用表一来估计定量限。 1.9这个方法在使用时受到限制,或者在监督之下才能使用。分析者要在使用气相色谱方面有丰富的经验,又或者能熟练的阐述气相色谱原理。每个分析人员都必须能够证明具有使用这个方法得到合理的数据的能力。 2.0方法概述 2.1用适当的样品基质萃取技术对一定量体积或一定质量的样品(液体1升,固体2到30克)进行萃取。 2.2液体样品在中性条件下用二氯甲烷依据方法3510(分液漏斗)、方法3520(连续液液萃取),或其他适合的方法进行萃取。 2.3固体样品以正己烷-丙酮(1∶1)或者二氯甲烷-丙酮(1∶1),用方法3540(索氏法),

相关文档
相关文档 最新文档