文档库 最新最全的文档下载
当前位置:文档库 › 实验二 用立式光学计测量轴径

实验二 用立式光学计测量轴径

实验二 用立式光学计测量轴径
实验二 用立式光学计测量轴径

实验二 用立式光学计测量轴径

一、实验目的

1. 了解立式光学计的测量原理。

2. 熟悉用立式光学计测量外径的方法。

3. 加深理解计量器具与测量方法的常用术语。

二、实验内容

1. 用立式光学计测量轴径。

2. 根据测量结果,按国家标准GB1957—81《光滑极限量规》查出被测轴径的尺寸公差和形状公差,作出适用性结论。

三、测量原理及计量器具说明

立式光学计是一种精度较高而结构简单的常用光学量仪。用量块作为长度基准,按比较测量法来测量各种工件的外尺寸。

图1为立时光学计的外形图。它由底座1、立柱5、支臂3、直角光管6和工作台11等几部分组成。光学计是利用光学杠杆放大原理进行测量的仪器,其光学系统如图2b 所示。照明光线经反射镜1照射到刻度尺8上,再经直角棱镜2、物镜3,照射到反射镜4上。由于刻度尺8位于物镜3的焦平面上,故从刻度尺8上发出的光线经物镜3后成为一平行光束,若反射镜4与物镜3之间相互平行,则反射光线折回到 焦平面,刻度尺象7与刻度尺8对称。若被测尺寸变动

使测杆5推动反射镜4饶支点转动某一角度α(图2a ), 则反射光线相对于入射光线偏转2α角度,从而使刻度 尺象7产生位移t (图2c ),它代表被测尺寸的变动量。 物镜至刻度尺8间的距离为物镜焦距f ,设b 为测杆中 心至反射镜支点间的距离,s 为测杆移动的距离,则仪 器的放大比K 为:

α

αbtg ftg s t K 2==

当α很小时,αα22≈tg ,αα≈tg ,因此: b

f

K 2=

图 1 光学计的目镜放大倍数为12,mm f 200=,mm b 5=,故仪器的总放大倍数n 为: 9605

200

212212

12=??===b f K n 由此说明,当测杆移动0.001mm 时,在目镜中可见到0.96mm 的位移量。

四、测量步骤

1. 测头的选择:测头有球形、平面形和刀口形三种,根据被测零件表面的几何形状来

选择,使测头与被测表面尽量满足点接触。所以,测量平面或圆柱面工件时,选用球形测头。测量球面工件时,选用平面形测头。测量小于10mm的圆柱面工件时,选用刀口形测头。

图2

图 3

2. 按被测轴径的基本尺寸组合量块。

3. 调整仪器零位

(1)参看图1,选好量块组后,将下测量面置于工作台11的中央,并使测头10对准上测量面中央。

(2)粗调节:松开支臂紧固螺钉4,转动调节螺母2,使支臂3缓慢下降,直到测头与量块上测量面轻微接触,并能在视场中看到刻度尺象时,将螺钉4锁紧。

(3)细调节:松开紧固螺钉8,转动调节凸轮7,直至在目镜中观察到刻度尺象与μ指示线接近为止(图3a)。然后拧紧螺钉8。

(4)微调节:转动刻度尺寸微调螺钉6(图2b),使刻度尺的零线影象与μ指示线重合(图3b)。然后压下测头提升杠杆9数次,使零位稳定。

(5)将测头抬起,取下量块。

4. 测量轴径:按实验规定的部位(在三个横截面上两个相互垂直的径向位置上)进行测量,把测量结果填入实验报告。

5. 由轴径零件图(由学生自己设计、画出)的要求,判断轴径的合格性。

思考题

1. 用立式光学计测量轴径属于什么测量方法?绝对测量与相对测量个有何特点?

2. 什么是分度值、刻度间距?它们与放大比的关系如何?

3. 仪器工作台与测杆轴线不垂直,对测量结果有何影响?工作台与测杆轴线垂直度如何调节?

4. 仪器的测量范围和刻度尺的示值范围有何不同?

实验二用立式光学计测量轴径实验报告

作图求直线度误差:

35 35

30 30

25 25

20 20

15 15

10 10

5 5

0 0

ⅠⅡⅢⅠⅡⅢ-B

-

B'

A

A'

35 35

30 30

25 25

20 20

15 15

10 10

5 5

0 0

ⅠⅡⅢⅠⅡⅢ

B-'

A-'B

A

各种测量方法

各种测量方法 各种测量方法 一、轴径 在单件小批生产中,中低精度轴径的实际尺寸通常用卡尺、千分尺、专用量表等普通计量器具进行检测;在大批量生产中,多用光滑极限量规判断轴的实际尺寸和形状误差是否合格;;高精度的轴径常用机械式测微仪、电动式测微仪或光学仪器进行比较测量,用立式光学计测量轴径是最常用的测量方法。 、孔径单件小批生产通常用卡尺、内径千分尺、内径规、内径摇表、内测卡规等普通量具、通用量仪;大批量生产多用光滑极限量规;高精度深孔和精密孔等的测量常用内径百分表(千分表)或卧式测长仪(也叫万能测长仪)测量,用小孔内视镜、反射内视镜等检测小孔径,用电子深度卡尺测量细孔(细孔专用)。

三、长度、厚度长度尺寸一般用卡尺、千分尺、专用量表、测长仪、比测仪、高度仪、 气动量仪等;厚度尺寸一般用塞尺、间隙片结合卡尺、千分尺、高度 尺、量规;壁厚尺寸可使用超声波测厚仪或壁厚千分尺来检测管类、薄壁件 等的厚度,用膜厚计、涂层测厚计检测刀片或其他零件涂镀层的厚度;用偏 心检查器检测偏心距值,用半径规检测圆弧角半径值, 用螺距规检测螺距尺寸值,用孔距卡尺测量孔距尺寸。 四、表面粗糙度 借助放大镜、比较显微镜等用表面粗糙度比较样块直接进行比较;用 光切显微镜(又称为双管显微镜测量用车、铣、刨等加工方法完成的金属平 面或外圆表面;用干涉显微镜(如双光束干涉显微镜、多光束干涉显微镜) 测量表面粗糙度要求高的表面;用电动轮廓仪可直接显示Ra0.025?6.3卩m 的值;用某些塑性材料做成块状印模贴在大型笨重零件和难以用仪器直接测 量或样板比较的表面(如深孔、盲孔、凹槽、内螺纹等)零件表面上,将零 件表面轮廓印制印模上,然后对印模进行测量,得出粗糙度参数值(测得印 模的表面粗糙度参数值比零件实际参数值要小,因此糙度测量结果需要凭经 验进行修正);用 激光测微仪激光结合图谱法和激光光能法测量RaO.01?0.32卩m的 表面粗糙度。 五、角度 1.相对测量:用角度量块直接检测精度高的工件;用直角尺检验直角;用多

互换性实验指导书

互换性与测量技术实验指导书 测控技术教研室 机械与汽车工程学院

实验一尺寸误差测量 一、实验目的 1.了解立式光学计的测量原理。 2.熟悉用立式光学计测量外径的方法。 3.加深理解计量器具与测量方法的常用术语。 二、实验容 1.用立式光学计测量赛规。 2.根据测量结果,按国家标准GBl957—81《光滑极限量规》查出被测塞规的尺寸公差和形状公差,作出适用性结沦。 三、测量原理及计量器具说明 投影立式光学计用于长度测量,其测量方法属于接触测量,一般用相对测量法测量轴的尺寸。光学计比较仪是一种精密度较高、结构简单的常用光学仪器,除主要用于轴类零件的精密测量外,还用来检定5等(3、4级)量块。本仪器采用光学投影读数方法,它操作方便、工作效率较高。同时本仪器的投影屏采用腊屏新技术,并在其腊屏前设置一块读数放大镜,对提高刻线的成像质量及整个视场获得较匀称的主观亮度有一定的效果。 (一)仪器结构: 仪器结构如图1-1所示,投影光学计管是由上端壳体12及下端测量管17二部分组成的,上端壳体12装有隔热片、分线板、反射棱镜、投影物镜、直角棱镜、反射镜、投影屏及放大镜等光学零件,在壳体的右侧上装有调节零位的微动螺钉4,转动微动螺钉4可使分划板得到一个微小的移动而使投影屏上的刻线迅速对准零位。 测量管17插入仪器主体横臂7,其外径为φ28d,在测量管17装有准直物镜,平面反射镜及光学杠杆放大系统的测量杆,测帽9装在测量杆上,测量杆上下移动时,测量杆上端的钢珠顶起平面反射镜,致使平面反射镜座以杠杆板上的另二颗钢珠为摆动轴,而倾斜一个φ角,其平面反射镜与测量杆是由二个抗拉弹簧牵制,对测定量块或量规有一定的压力。 测量杆下端露在测量管17外,以备套上各种带有硬质合金头的测帽。测量杆的上下升降是借助于测帽提升器9的杠杆作用,立式提升器9上有一个滚花螺钉,可以调节其上升距离,达到方便地使被测工件推入测帽下端,并靠两个抗拉弹簧的拉力使测头与被测工件良好接触。 (二)仪器规格 Ⅰ投影光学计管的主要规格:

实验一 用立式光学计测量塞规

实验一用立式光学计测量塞规 一.实验目的 1.了解立式光学计的测量原理。 2.熟悉用立式光学计测量外径的方法。 3.加深理解计量器具与测量方法的常用术语。 二.实验内容 1.用立式光学计测量塞规。 2.根据测量结果,按国家标准GB1957——81《光滑极限量规》查出被测塞规的尺寸公差和形状公差,作出适用性结论。 三.测量原理及计量器具说明 立式光学计是一种精度较高而结构简单的常用光学量仪。用量块作为长度基准,按比较测量法来测量各种工件的外尺寸。 图1为立式光学计外形图。 图1 它由底座1、立柱5、支臂3、直角光管6和工作台11等几部分组成。光学计是利用光学杠杆放大原理进行测量的仪器,其光学系统如图2(b)所示。照明光线经反射镜1照射到刻度尺8上,再经直角棱镜2、物镜3,照射到反射镜4上。由于刻度尺8位于物镜3的焦平面上,故从刻度尺8上发出的光线经物镜3后成为平行光束。若反射镜4与物镜3之间相互平行,则反射光线折回到焦平面,刻度尺象7与刻度尺8对称。若被测尺寸变动使测杆推动反射镜4绕支点转动某一角度a(图2(a)),则反射光线相对于入射光线偏转2a角度,从而使刻度尺象7产生位移t(图2(c)),它代表被测尺寸的为动 量。物镜至刻度尺8之间的距离为物镜焦距f,设b为测杆中心至反射镜支点间的距离,s为测杆5移动的距离,则仪器的放大比K为:

α αbtg ftg s t K 2== 当a 很小时,tg2a=2a, tga=a, 因此:K= b f 2 光学计的目镜放大倍数为12,f=200mm,b=5mm, 故仪器 的总放大倍数n 为: n=12K= 5 200 212212 ?? =b f =960 由此说明,当测杆移动0.001mm 时,在目镜中可见到0.96mm 的位移量。 图2 四、测量步骤 1、测头的选择:测头有球形、平面形和刀口形三种,根据被测零件表面的几何形状来选择,使测 头与被测表面尽量满足点接触。所以,测量平面或圆柱表工作时,先用球形测头。测量球面工作时,选用平面形测头。测量小于10mm 的圆柱面工件时,选用刀口形测头。 2、按被测塞规的基本尺寸组合量块。 3、调整仪器零位 (1)参看图1,先好量块组后,将下测量面置于工作台11的中央,并使测头10对准上测量面中央。 (2)粗调节:松开支臂紧固螺钉4,转动调节螺母2,使支臂3缓慢下降,直到测头与量块,并能在视场中看到刻度尺象时,将螺钉4锁紧。 (3)细调节:松开紧固螺钉8,转动调节螺母2,使支臂3缓慢下降,直到测头与量块上测量面轻微接触,并能在视场中看到刻度尺象时,将螺钉4锁紧。 (4)细调节:松开紧固螺钉8,转动调节凸轮7,直至在目镜中观察到刻度尺象与μ指示接近为止(图3a )。然后拧紧螺钉8。

光学干涉测量技术

光学干涉测量技术 ——干涉原理及双频激光干涉 1、干涉测量技术 干涉测量技术和干涉仪在光学测量中占有重要地位。干涉测量技术是以光波干涉原理为基础进行测量的一门技术。相干光波在干涉场中产生亮、暗交替的干涉条纹,通过分析处理干涉条纹获取被测量的有关信息。 当两束光亮度满足频率相同,振动方向相同以及相位差恒定的条件,两束光就会产生干涉现象,在干涉场中任一点的合成光强为: 122I I I πλ=++ 式中△是两束光到达某点的光程差。明暗干涉条纹出现的条件如下。 相长干涉(明): min 12I I I I ==+ ( m λ=) 相消干涉(暗): min 12I I I I ==+-, (12m λ? ?=+ ??? ) 当把被测量引入干涉仪的一支光路中,干涉仪的光程差则发生变化。通过测量干涉条纹的变化量,即可以获得与介质折射率和几何路程有关的各种物理量和几何量。 按光波分光的方法,干涉仪有分振幅式和分波阵面式两类。按相干光束传播路径,干涉仪可分为共程干涉和非共程干涉两种。按用途又可将干涉仪分为两类,一类是通过测量被测面与参考标准波面产生的干涉条纹分布及其变形量,进而求得试样表面微观几何形状、场密度分布和光学系统波像差等,即所谓静态干涉;另一类是通过测量干涉场上指定点干涉条纹的移动或光程差的变化量,进而求得试样的尺寸大小、位移量等,即所谓动态干涉。 下图是通过分波面法和分振幅法获得相干光的途径示意图。光学测量常用的是分振幅式等厚测量技术。 图一 普通光源获得相干光的途径 与一般光学成像测量技术相比,干涉测量具有大量程、高灵敏度、高精度等特点。干涉测量应用范围十分广泛,可用于位移、长度、角度、面形、介质折射率的变化及振动等方面的测量。在测量技术中,常用的干涉仪有迈克尔逊干涉仪(图二)、马赫-泽德干涉仪、菲索

实验1 用立式光学计测量轴

仲恺农业工程学院实验报告 用立式光学计测量轴 张旺海机械132 学号201310824237 1.实验目的 1、立式光学计的工作原理及使用方法。 2、熟悉轴的直径及其形状误差的测量方法。 3、学会基本的测量误差处理方法。 2.设备与器材 立式光学计1台、被测轴和相同尺寸量块各1组。 3.实验原理与方案 立式光学计主要用于作长度比较测量。要先用量块将标尺和指针调到零位,被测尺寸对量块的偏差可从仪器标尺上读得。并可对某轴的固定部位进行多次重复测量,计算测量误差。 立式光学计主要组成见外形图1-3。由底座1、立柱2、支臂3、直角光管4和工作台11等几部分组成。 立式光学计的光学系统图1-4所示。光 线由进光反射镜6进入光学计管中,由通光 棱镜7将光线转折90度,照亮了分划板4 上的刻度尺9。刻度尺上有±100格的刻线, 此处刻线作为目标,位于物镜2的焦平面上。 由刻度尺9发出的光线经棱镜3后转折90 度,透过物镜2成为平行光线,射向平面反 射镜,平行光线被反射回来,重新透过物镜 2,再经棱镜3汇聚于分划板4的另一半上, 此处有一指示线8。当测量杆5上下移动时, 图1-3 立式光学计外形图

推动平面反射镜1产生摆动,于是刻度尺9的像相对于指示线产生了移动,移动量可通过目镜10进行读数。 4.实验步骤、方法与注意事项 根据被测零件表面的几何形状来选择测量头,使测量头与被测表面尽量满足点接触。测量头有:球形、平面和刀口形三种。测量平面或圆柱面零件时选用球形测头。测量球面零件时选用平面形测头。测量小圆柱面工件时选用刀口形测头。 4.1 按被测零件的基本尺寸组合量块和选择测量头。 4.2 仪器调零位:如图1-3,将组合好量块组的下测量面置于工作台11中央,并使测量头12对准上测量面中央。粗调:松开支臂紧固螺钉8,转动调节螺母7,使支臂3缓慢下降,直至到测量头与量块上测量面轻微接触,并在视场中看到刻度尺象,将螺钉8锁紧。细调:松开紧固螺钉10,转动调节轮9,直至在目镜中观察到刻度尺象与指示线接近为止,然后拧紧螺钉10。微调:转动刻度尺微调螺钉13见图1-4。使刻度尺的零线影象与指示线重合后,用手指压下测头提升杠杆5不少于三次,使零位稳定,调零结束。 4.3 将测头抬起取下量块,放入被测量件,按实验规定的部位测量,并将测量的结果填入实验报告中。 图1-4立式光学计光学系统图

互换性与技术测量实验报告

实验一量块的使用 一、实验目的 1、能正确进行量块组合,并掌握量块的正确使用方法; 2、加深对量值传递系统的理解; 3、进一步理解不同等级量块的区别; 二、实验仪器设备 量块;千分表;测量平板;千分尺校正棒。 三、实验原理 1量块的测量平面十分光洁和平整,当用力推合两块量块使它们的测量平面互相紧密接触时,两块量块便能粘合在一起,量块的这种特性称为研合性。利用量块的研合性,就可以把各种尺寸不同的量块组合成量块组。 四、实验内容与步骤 (一)实验内容 采用合理的量块组合,测量千分尺校正棒。 (二)实验步骤 1 用千分表测量千分尺校正棒 2 据所需要的测量尺寸,自量块盒中挑选出最少块数的量块。(每一个尺寸所拼凑的量块数目不得超过 4~5 块,因为量块本身也具有一定程度的误差,量块的块数越多,便会积累成较大的误差。) 3量块使用时应研合,将量块沿着它的测量面的长度反向,先将端缘部分测量面接触,使初步产生粘合力,然后将任一量块沿着另一个量块的测量面按平行方向推滑前进,最后达到两测量面彼此全部

研合在一起。 4正常情况下,在研合过程中,手指能感到研合力,两量块不必用力就能贴附在一起。如研合立力不大,可在推进研合时稍加一些力使其研合。推合时用力要适当,不得使用强力特别在使用小尺寸的量块时更应该注意,以免使量块扭弯和变形。 5如果量块的研合性不好,以致研合有困难时,可以将任意一量块的测量面上滴一点汽油,使量块测量面上沾有一层油膜,来加强它的黏结力,但不可使用汗手擦拭量块测量面,量块使用完毕后应立即用煤油清洗。 6量块研合的顺序是:先将小尺寸量块研合,再将研合好的量块与中等尺寸量块研合,最后与大尺寸量块研合。 7. 记录数据; 六思考题 量块按“等”测量与按“级”测量哪个精度比较高?

各种测量方法

各种测量方法 一、轴径 在单件小批生产中,中低精度轴径的实际尺寸通常用卡尺、千分尺、专用量表等普通计量器具进行检测;在大批量生产中,多用光滑极限量规判断轴的实际尺寸和形状误差是否合格;;高精度的轴径常用机械式测微仪、电动式测微仪或光学仪器进行比较测量,用立式光学计测量轴径是最常用的测量方法。 二、孔径 单件小批生产通常用卡尺、内径千分尺、内径规、内径摇表、内测卡规等普通量具、通用量仪;大批量生产多用光滑极限量规;高精度深孔和精密孔等的测量常用内径百分表(千分表)或卧式测长仪(也叫万能测长仪)测量,用小孔内视镜、反射内视镜等检测小孔径,用电子深度卡尺测量细孔(细孔专用)。 三、长度、厚度 长度尺寸一般用卡尺、千分尺、专用量表、测长仪、比测仪、高度仪、气动量仪等;厚度尺寸一般用塞尺、间隙片结合卡尺、千分尺、高度尺、量规;壁厚尺寸可使用超声波测厚仪或壁厚千分尺来检测管类、薄壁件等的厚度,用膜厚计、涂层测厚计检测刀片或其他零件涂镀层的厚度;用偏心检查器检测偏心距值,用半径规检测圆弧角半径值,

用螺距规检测螺距尺寸值,用孔距卡尺测量孔距尺寸。 四、表面粗糙度 借助放大镜、比较显微镜等用表面粗糙度比较样块直接进行比较;用光切显微镜(又称为双管显微镜测量用车、铣、刨等加工方法完成的金属平面或外圆表面;用干涉显微镜(如双光束干涉显微镜、多光束干涉显微镜)测量表面粗糙度要求高的表面;用电动轮廓仪可直接显示Ra0.025~6.3μm 的值;用某些塑性材料做成块状印模贴在大型笨重零件和难以用仪器直接测量或样板比较的表面(如深孔、盲孔、凹槽、内螺纹等)零件表面上,将零件表面轮廓印制印模上,然后对印模进行测量,得出粗糙度参数值(测得印模的表面粗糙度参数值比零件实际参数值要小,因此糙度测量结果需要凭经验进行修正);用激光测微仪激光结合图谱法和激光光能法测量Ra0.01~0.32μm的表面粗糙度。 五、角度 1.相对测量:用角度量块直接检测精度高的工件;用直角尺检验直角;用多面棱体测量分度盘精密齿轮、涡轮等的分度误差。 2.直接测量:用角度仪、电子角度规测量角度量块、多面棱体、棱镜等具有反射面的工作角度;用光学分度头测量工件的圆周分度或;用样板、角尺、万能角度尺直接测量精度要求不高的角度零件。3.间接测量:常用的测量器具有正弦规、滚柱和钢球等,也可使用三坐标测量机。 4.小角度测量:测量器具有水平仪、自准直仪、激光小角度测量仪

实验一 用立式光学计测量塞规

实验一 用立式光学计测量塞规 一、实验目的 1. 了解立式光学计的测量原理。 2. 熟悉用立式光学计测量外径的方法。 3. 加深理解计量器具与测量方法的常用术语。 二、实验内容 1. 用立式光学计测量塞规。 2. 根据测量结果,按国家标准GB1957—81《光滑极限量规》查出被测塞规的尺寸公差和形状公差,作出适用性结论。 三、测量原理及计量器具说明 立式光学计是一种精度较高而结构简单的常用光学量仪。用量块作为长度基准,按比较测量法来测量各种工件的外尺寸。 图1为立时光学计的外形图。它由底座1、立柱5、支臂3、直角光管6和工作台11等几部分组成。光学计是利用光学杠杆放大原理进行测量的仪器,其光学系统如图2b 所示。照明光线经反射镜1照射到刻度尺8上,再经直角棱镜2、物镜3,照射到反射镜4上。由于刻度尺8位于物镜3的焦平面上,故从刻度尺8上发出的光线经物镜3后成为一平行光束,若反射镜4与物镜3之间相互平行,则反射光线折回到 焦平面,刻度尺象7与刻度尺8对称。若被测尺寸变动 使测杆5推动反射镜4饶支点转动某一角度α(图2a ), 则反射光线相对于入射光线偏转2α角度,从而使刻度 尺象7产生位移t (图2c ),它代表被测尺寸的变动量。 物镜至刻度尺8间的距离为物镜焦距f ,设b 为测杆中 心至反射镜支点间的距离,s 为测杆移动的距离,则仪 器的放大比K 为: α αbtg ftg s t K 2== 当α很小时,αα22≈tg ,αα≈tg ,因此: b f K 2= 图 1 光学计的目镜放大倍数为12,mm f 200=,mm b 5=,故仪器的总放大倍数n 为: 9605 20021221212=??===b f K n 由此说明,当测杆移动0.001mm 时,在目镜中可见到0.96mm 的位移量。 四、测量步骤 1. 测头的选择:测头有球形、平面形和刀口形三种,根据被测零件表面的几何形状来选择,使测头与被测表面尽量满足点接触。所以,测量平面或圆柱面工件时,选用球形测头。测量球面工件时,选用平面形测头。测量小于10mm 的圆柱面工件时,选用刀口形测头。

JDG-S1型数字显示式立式光学计

JDG-S1型数字显示式立式光学计 一. 仪器概述. JDG-S1型数字显示式立式光学计是一种精密测微仪。利用光栅传感器将被测工件尺寸变化转换成电信号,经处理后数字显示出测量结果。其技术参数为: 测量范围:≤180mm 示值范围:≤±0.1mm 显示分辨率:0.1um 测量力:(2±0.2)N 示值变动性:±0.1um 图1.JDG-S1型数字显示式立式光学计 二.仪器结构与原理 由光源1发出的光经聚光镜2照亮位于准直物镜焦面上的标尺光栅3,经立方棱镜6反射,并经过准直物镜7以平行光出射,投射至平面反射镜8上。由平面反射镜8反射的光束又重新进入准直物镜7、立方棱镜6,经立方棱镜6分光面透射,将光栅刻线成像在指示光栅5上,并在指示光栅5上形成光闸莫尔条纹。当测杆有微小位移时,光栅刻线的像将沿另一光栅表面移动,莫尔条纹光强产生周期性变化,光电元件4接受该光强变化,经过光电转换、前置放大、细分、辨相、可逆计数和数字显示等单元,最后在显示窗口上显示测量值。 1—光源 2—聚光镜 3—标尺光栅 4—光电传感器 5-指示光栅 6-立方棱镜 7-准直物镜 8-平面反射镜 9—测杆 光线流程图如2所示:

图2.仪器结构及光线流程图 三.主要模块及其原理介绍 (1).光栅 在该仪器中有一对光栅3-标尺光栅,5-指示光栅。他们和细分电路共同决定了仪器的分辨力。栅柵距d=0.025mm,当光电信号实现一个周期变化,柵距移动一个单位,而此时杆位移对应为S=d/k=0.025/31.25mm=0.8um。如果电路实现8倍细分对应的分辨力为0.8um/8=0.1um。 (2).光学杠杆 当测杆有微小位移时,光栅刻线的像将沿另一光栅表面移动,莫尔条纹光强产生周期性变化,光电元件4接受该光强变化。在这个过程中,光学杠杆实际上起着一个转换放大作用。 原理图如图3:

《互换性与技术测量》实验指导书(三个实验,前两个必做,最后一个演示和选做)

实验一直线度误差的测量 一、实验目的 掌握按“节距法”测量直线度误差的方法。 二、测量原理及数据处理 对于很小表面的直线度误差的测量常按“节距法”,应是将被测平面分为若干段,用小角度度量仪(水平仪、自准直仪)测出各段对水平线的倾斜角度,然后通过计算或图解来求得轮廓线的直线度误差。本实验用合像水平仪。 具体测量方法如下: 将被测表面全长分为n段,每段长l=L/N应是桥板的跨距。将桥板置于第一段,桥板的两支承点放在分段点处,并把水平仪放在桥板上,使两者相对固定(用橡皮泥粘住)记下读数a1(单位为格)。然后将桥板沿放测表面移动,逐段测量下去,直至最后一段(第n段)。如图1每次移l,并要使支承点首尾相接,记下每段读数(单位为格)a1、a2、……a n。最后按下列步骤(见例)列表计算出各测量点对两端点连线的直线度偏差Δh i,并取最大负偏差的绝对值之和作为所求之直线度误差。 [例]设有一机床导轨,长2米(L=2000mm),采用桥板跨距l=250mm,用分度值c=0.02mm/m的水平仪,按节距法测得各点的读数a i(格)如表1。 表1

也可用作图法求出直线度误差,如图2。 作图法是在坐标纸上,以导轨长度为微坐标,各点读数累积为纵坐标,将测量得到的各点读数累积后标在坐标上,并将这些坐标点连成折线,以两端点连线作为评定基准,取最大正偏差与最大负偏差的绝对值之和,再换算为线值(μ),即为所求之直线度误差。 测量导轨直线度误差时,数据处理的根据,可由下图看出:(图3) A i — 导轨实际轮廓上的被测量点(i =0、1、2、……、n ); a i — 各段上水平仪的读数(格); Y i — 前后两测量点(i -1,i )的高度差; h i — 各测点(A i )到水平线(通过首点A 0)的距离(μ),显然 1 'i n i i h y == ∑

《互换性与技术测量》课程实验指导书1解析

互换性与技术测量 实验指导书 机械设计制造及其自动化教研室编 2011.09 目录

实验1 用立式光学计测量塞规 (2) 实验2用内径百分表测量内径 (4) 实验3 直线度误差的测量 (7) 实验4 平行度与垂直度误差的测量 (11) 实验5 表面粗糙度的测量 (14) 实验6 工具显微镜长度、角度测量 (18) 实验1 用立式光学计测量塞规 一、实验目的 1、了解立式光学计的测量原理;

2、熟悉立式光学计测量外径的方法; 3、加深理解计量器具与测量方法的常用术语。 二、实验内容 1、用立式光学计测量塞规; 2、由国家标准GB/T 1957—1981《光滑极限量规》查出被测塞规的尺寸公差和形状公差,与测量结果进行比较,判断其适用性。 三、计量器具及测量原理 立式光学计是一种精度较高而结构简单的常用光学测量仪。其所用长度基准为量块,按比较测量法测量各种工件的外尺寸。 图1为立式光学计外形图。它由底座1、立柱5、支臂3、直角光管6和工作台11等几部分组成。光学计是利用光学杠杆放大原理进行测量的仪器,其光学系统如图2b 所示。照明光线经反射镜l照射到刻度尺8上,再经直角棱镜2、物镜3,照射到反射镜4上。由于刻度尺8位于物镜3的焦平面上,故从刻度尺8上发出的光线经物镜3后成为平行光束。若反射镜4与物镜3之间相互平行,则反射光线折回到焦平面,刻度尺的像7与刻度尺8对称。若被测尺寸变动使测杆5推动反射镜4绕支点转动某一角度α(图2a),则反射光线相对于入射光线偏转2α角度,从而使刻度尺像7产生位移t(图2c),它代表被测尺寸的变动量。物镜至刻度尺8间的距离为物镜焦距f,设b为测杆中心至反射镜支点间的距离,s为测杆5移动的距离,则仪器的放大比K为 当a很小时,,因此 光学计的目镜放大倍数为12,f=200mm,b=5mm,故仪器的总放大倍数n为 由此说明,当测杆移动0.001mm时,在目镜中可见到0.96mm的位移量。

光学测量技术详解

光学测量技术详解(图文) 光学测量是生产制造过程中质量控制环节上重要的一步。它包括通过操作者的观察进行的快速、主观性的检测,也包括通过测量仪器进行的自动定量检测。光学测量既可以在线下进行,即将工件从生产线上取下送到检测台进行测量;还可以在线进行,即工件无须离开产线;此外,工件还可以在生产线旁接受检测,完成后可以迅速返回生产线。 人的眼睛其实就是一台光学检测仪器;它可以处理通过晶状体映射到视网膜上的图像。当物体靠近眼球时,物体的尺寸感觉上会增加,这是因为图像在视网膜上覆盖的“光感器”数量增加了。在某一个位置,图像达到最大,此时再将物体移近时,图像就会失焦而变得模糊。这个距离通常为10英寸(250毫米)。在这个位置上,图像分辨率大约为0.004英寸(100微米)。举例来说,当你看两根头发时,只有靠得很近时才能发现它们之间是有空隙的。如果想进一步分辨更加清楚的细节的话,则需要进行额外的放大处理。 本部分设定了隐藏,您已回复过了,以下是隐藏的内容 人的眼睛其实就是一台光学检测仪器;它可以处理通过晶状体映射到视网膜上的图像。本图显示了人眼成 像的原理图。 人眼之外的测量系统 光学测量是对肉眼直接观察获得的简单视觉检测的强化处理,因为通过光学透镜来改进或放大物体的图像,可以对物体的某些特征或属性做出准确的评估。大多数的光学测量都是定性的,也就是说操作者对放大的图像做出主观性的判断。光学测量也可以是定量的,这时图像通过成像仪器生成,所获取的图像数据再用于分析。在这种情况下,光学检测其实是一种测量技术,因为它提供了量化的图像测量方式。 无任何仪器辅助的肉眼测量通常称为视觉检测。当采用光学镜头或镜头系统时,视觉检测就变成了光学测量。光学测量系统和技术有许多不同的种类,但是基本原理和结构大致相同。

立式光学计

立式光学计 光学计有立式、卧式之分,两者所用的光学计管完全相同。卧式光学计除能测量外尺寸外,还能测量内尺寸 立式光学计分为刻线读数、数显两种,利用光学杠杆原理提高精度。 测量范围-100μm~+100μm,分度值为1μm,精度为±0.5μm。 立式光学计主要用于微差比较测量,是使工件与量块相比较测量它们之间的微差尺寸 它的原理之所在就在这个光管里,首先由下往上说,测帽、测杆、反光镜、物镜、棱镜、通光棱镜、标准尺。 反光镜有三个支点支撑,其中两个支点为固定点,另一个支点就是测杆。测杆的上下移动带着反光镜上下偏转,当杠杆往下走时,反光镜向下偏,这时目镜中的像越模糊;反之则越清晰。 当光源进入打到标准尺上将标准尺的像偷狗棱镜、物镜打到反光镜上,这时再由反光镜按原来的线路将标准尺的像反射到目镜中,进行观察。 (由光源1 聚光镜2滤光片3隔热玻璃5 仪器投影箱4 刻度尺6(刻度尺6

上的刻划面在准直物镜8的焦平面上、刻划轴线与整个照明系统的光轴偏离2.5mm)被照亮的刻度尺经棱镜7和准直物镜8 后成平行光射向反射镜9,由9反射后再经物镜成像在刻划面上光轴的另一侧(为了利用影屏观察,在棱镜7 的右边,设计成一个的反射面,它使刻度尺的自准直像转向,在投影物镜10的物平面上成像)再经投影物镜放大及棱镜11、反射镜12的反射,把刻度尺像成在影屏13上,影屏上刻着固定的指标线,观察放大镜14把整个影屏再放大,从而提高了观察效果。) 介绍一下用立式光学计检定4等量块的使用方法: 1.首先选取两块标称值之差不大于100μm 的4等量块,并用120#汽油进行清洗,放到立式光学计的工作台上。 2.将其中一块量块放到工作台中心,打开臂架制动螺钉,旋转臂架升降用螺母,将测帽对准量块的中心与其之间留下一点缝隙,然后观看目镜,继续调节臂架升降用螺母,直到有标准尺像出现,尽量调到零位,锁紧臂架制动螺钉,打拨叉。 3.打开微调臂架制动螺钉,旋转微调臂架升降用螺母,观察目镜,继续调零,然后锁紧微调臂架制动螺钉打拨叉,若与零位差的不多,则调节目镜上的分划板旋钮,然后继续打拨叉,反复几次,直到指针不动,指到零位。 4抬起拨叉,将量块取出,换上另一量块,观察目镜,不断打拨叉,知道指针不再移动,读数。与两量块标称值差值作比较。 测帽的选择: 根据工件的形状,应选择与工件接触面尽量小的工作台和测帽。

光学测量原理与技术

第一章、对准、调焦 ?对准、调焦的定义、目的; 1.对准又称横向对准,是指一个对准目标与比较标志在垂直瞄准轴方向像的重合或置 中。目的:瞄准目标(打靶);精确定位、测量某些物理量(长度、角度度量)。 2、调焦又称纵向对准,是指一个目标像与比较标志在瞄准轴方向的重合。 目的: --使目标与基准标志位于垂直于瞄准轴方向的同一个面上,也就是使二者位于同一空间深度; --使物体(目标)成像清晰; --确定物面或其共轭像面的位置——定焦。 人眼调焦的方法及其误差构成; 清晰度法:以目标和标志同样清晰为准则; 消视差法:眼睛在垂直视轴方向上左右摆动,以看不出目标和标志有相对横移为准则。可将纵向调焦转变为横向对准。 清晰度法误差源:几何焦深、物理焦深; 消视差法误差源:人眼对准误差; 几何焦深:人眼观察目标时,目标像不一定能准确落在视网膜上。但只要目标上一点在视网膜上生成的弥散斑直径小于眼睛的分辨极限,人眼仍会把该弥散斑认为是一个点,即认为成像清晰。由此所带来的调焦误差,称为几何焦深。 物理焦深:光波因眼瞳发生衍射,即使假定为理想成像,视网膜上的像点也不再是一个几何点,而是一个艾里斑。若物点沿轴向移动Δl后,眼瞳面上产生的波像差小于λ/K(常取K=6),此时人眼仍分辨不出视网膜上的衍射图像有什么变化。 (清晰度)人眼调焦扩展不确定度: (消视差法)人眼调焦扩展不确定度: 人眼摆动距离为b ?对准误差、调焦误差的表示方法; 对准:人眼、望远系统用张角表示;显微系统用物方垂轴偏离量表示; 调焦:人眼、望远系统用视度表示;显微系统用目标与标志轴向间距表示 ?常用的对准方式; 22 22 122 8 e e e D KD αλ φφφ ???? ''' =+=+ ? ? ???? 121 11e e l l D α φ'=-= 22 21 118 e l l KD λ φ'=-= e b δ φ'=

用立式光学计测量轴的直径实验报告

实验用立式光学计测量轴的直径 一、实验目的 1.了解立式光学计的测量原理。 2.熟悉用立式光学计测量外径的方法。 3.加深理解计量器具与测量方法的常用术语。 4. 掌握零件的验收原则和验收方法。 二、实验设备 1.立式光学计 2.量块 三、实验原理及实验设备说明 1.立式光学计 立式光学计是一种精度较高而结构简单的常用光学机械式长度计量器具。用量块作为长度基准,按比较测量法来测量各种工件的外形尺寸。 型号为JD3的立式光学计基本技术参数如下: 测量范围:0-180mm;分度值:0.001mm;示值范围:±0.1mm;仪器最大不确定:0.00025 mm;测量最大不确定度:±(0.5+L/100)μm 图1-1为立式光学计外形结构图。 1.投影灯 2.投影灯固定螺钉 3.支柱 4.零位微动螺钉 5.立柱 6.支臂固定螺钉 7.支臂8微动偏心手轮 9立式测头提升器 10.工作台调整螺钉 11.工作台12.壳体 13.微动托圈 14.微动托圈固定螺钉 15.光管定位螺钉 16.测量管固定螺钉 17.直角光管 18.测帽 19.6V15W变压器 图1-1 立式光学计外形图 它主要是由带有特殊螺纹的立柱5、支臂7、直角光管17和工作台11等几部分组成。立式光学计是利用光学自准原理和机械的正切杠杆原理进行测量的仪器。其光学系统如图1-2a所示,由白炽灯泡1发出的光线经过聚光镜2和滤光片6,通过隔热片7照明分划板8的刻线面,再通过反射棱镜9后射向准直物镜12。由于分划板8的刻线面置于准直物镜12的焦平面上,所以成像光束通过准直物镜12后成为一束平行光入射于平面反射镜13上,根据自准直原理,分划板刻线的像被平面反光镜13反射后,再经准直物镜12被反射棱镜9反射成像在投影物镜4的物平面上,然后通过投影物镜4、直角棱镜3和反射镜5成像在投影屏

用立式光学计测量轴径实验报告

实验一用立式光学计测量轴径实验报告 仪器名称分度值 (μm) 示值范围 (mm) 测量范围 (mm) 器具的不确定 度(μm) 被测零件 名称 图样上给定的极限尺寸 (mm) 安全裕度 A (μm) 器具不确定度 的允许值 (μm) 最大最小 验收极限尺寸 (mm)基本尺寸 (mm) 最大最小 形位公差(μm) 素线直线度公差素线平行度公差 测 量 示 意 图 测量数据实际偏差 (μm)实际尺寸 (mm)测量位置Ⅰ—ⅠⅡ—ⅡⅢ—ⅢⅠ—ⅠⅡ—ⅡⅢ—Ⅲ 测量方向 A A' - B B' - A A-' B B-' 形位误差(μm) 素线直线度误差素线平行度误差合格性结论理由审阅

作图求直线度误差: 35 35 30 30 25 25 20 20 15 15 10 10 5 5 0 0 Ⅰ Ⅱ Ⅲ Ⅰ Ⅱ Ⅲ A A '- B B '- 35 35 30 30 25 25 20 20 15 15 10 10 5 5 0 0 Ⅰ Ⅱ Ⅲ Ⅰ Ⅱ Ⅲ A A -' B B -'

实验二用内径千分表测量孔径实验报告 仪器名称 分度值 (μm) 示值范围 (mm) 测量范围 (mm) 器具的不确定度 (μm) 被测零件名称 基本尺寸 (mm) 图样上给定的极限尺寸(mm) 器具不确定度的 允许值(μm) 最大最小 安全裕度 A (μm) 验收极限尺寸(mm) 最大最小 形位公差(μm) 圆度公差(μm) 测 量 示 意 图 测量数据实际偏差(μm) 实际尺寸(mm)测量位置Ⅰ—ⅠⅡ—ⅡⅢ—ⅢⅠ—ⅠⅡ—ⅡⅢ—Ⅲ 测量方向 A A' - B B' - 圆度误差f0=(μm) 合格性结论理由审阅

用立式光学计测量塞规

实验1—1 用立式光学计测量塞规 一. 实验目的 1. 了解立式光学计的测量原理。 2. 熟悉用立式光学计测量外径的方法。 3. 加深理解计量器具与测量方法的常用术语。 二. 实验内容 1. 用立式光学计测量塞规。 2. 根据测量结果,按国家标准GB1957——81《光滑极限量规》查出被测塞规的尺寸公差和形状公差,作出适用性结论。 三. 测量原理及计量器具说明 立式光学计是一种精度较高而结构简单的常用光学量仪。用量块作为长度基准,按比较测量法来测量各种工件的外尺寸。 图1为立式光学计外形图。 图1 它由底座1、立柱5、支臂3、直角光管6和工作台11等几部分组成。光学计是利用光学杠杆放大原理进行测量的仪器,其光学系统如图2(b )所示。照明光线经反射镜1照射到刻度尺8上,再经直角棱镜2、物镜3,照射到反射镜4上。由于刻度尺8位于物镜3的焦平面上,故从刻度尺8上发出的光线经物镜3后成为平行光束。若反射镜4与物镜3之间相互平行,则反射光线折回到焦平面,刻度尺象7与刻度尺8对称。若被测尺寸变动使测杆推动反射镜4绕支点转动某一角度a (图2(a )),则反射光线相对于入射光线偏转2a 角度,从而使刻度尺象7产生位移t (图2(c )),它代表被测尺寸的为动量。物镜至刻度尺8之间的距离为物镜焦距f ,设b 为测杆中心至反射镜支点间的距离,s 为测杆5移动的距离,则仪器的放大比K 为: α αbtg ftg s t K 2== 当a 很小时,tg2a=2a, tga=a,

因此:K= b f 2 光学计的目镜放大倍数为12,f=200mm,b=5mm, 故仪器 的总放大倍数n 为: n=12K= 5 200212212??=b f =960 由此说明,当测杆移动0.001mm 时,在目镜中可见到0.96mm 的位移量。 图2 四、测量步骤 1、测头的选择:测头有球形、平面形和刀口形三种,根据被测零件表面的几何形状来选择,使测头与被测表面尽量满足点接触。所以,测量平面或圆柱表工作时,先用球形测头。测量球面工作时,选用平面形测头。测量小于10mm 的圆柱面工件时,选用刀口形测头。 2、按被测塞规的基本尺寸组合量块。 3、调整仪器零位 (1)参看图1,先好量块组后,将下测量面置于工作台11的中央,并使测头10对准上测量面中央。 (2)粗调节:松开支臂紧固螺钉4,转动调节螺母2,使支臂3缓慢下降,直到测头与量块,并能在视场中看到刻度尺象时,将螺钉4锁紧。 (3)细调节:松开紧固螺钉8,转动调节螺母2,使支臂3缓慢下降,直到测头与量块上测量面轻微接触,并能在视场中看到刻度尺象时,将螺钉4锁紧。 (4)细调节:松开紧固螺钉8,转动调节凸轮7,直至在目镜中观察到刻度尺象与μ指示接近为止(图3a )。然后拧紧螺钉8。 (5)微调节:转动刻度尺微调螺钉6(图2b ),使刻度尺的零线影象与μ指示线重合(图3b ),然后压下测头提升杠杆9数次,使零位稳定。 (6)将测头抬起,取下量块。 4、测量塞规:按实验规定的部位(在三个横截面上的两个相互垂直的径向位置上)进行测量,把

光学测试技术复习资料

光学检测原理复习提纲 第一章 基本光学测量技术 一、光学测量中的对准与调焦技术 1、对准和调焦的概念(哪个是横向对准与纵向对准?) P1 对准又称横向对准,指一个目标与比较标志在垂轴方向的重合。调焦又称纵向对准,是指一个目标像与比较标志在瞄准轴方向的重合。 2、常见的五种对准方式。 P2 压线对准,游标对准。。。。 3、常见的调焦方法 最简便的调焦方法是:清晰度法和消视差法。p2 二、光学测试装置的基本部件及其组合 1、平行光管的组成、作用;平行光管的分划板的形式(abcd )。P14 作用:提供无限远的目标或给出一束平行光。 组成:由一个望远物镜(或照相物镜)和一个安置在物镜 焦平面上的分划板。二者由镜筒连在一起,焦距 1000mm 以上的平行光管一般都带有伸缩筒,伸缩筒 的滑动量即分划板离开焦面的距离,该距离可由伸 缩筒上的刻度给出,移动伸缩筒即能给出不同远近 距离的分划像(目标)。 2、什么是自准直目镜(P15)(可否单独使用?),自准直法? 一种带有分划板及分划板照明装置的目镜。Zz 自准直:利用光学成像原理使物和像都在同一平面上。 3、;高斯式自准直目镜(P16)、阿贝式自准直目镜(P16)、双分划板式自准直目镜(P17)三种自准直目镜的工作原理、特点。P15—p17(概念,填空或判断) 1高斯式自准直目镜缺点--分划板只能采用透明板上刻不透光刻线的形式,不能采用不透明板上刻透光刻线的形式,因而像的对比度较低,且分束板的光能损失大,还会产生较强的杂光。 2阿贝式自准直目镜---特点射向平面镜的光线不能沿其法线入射,否则看不到亮“+”字线像。阿贝目镜大大改善了像的对比度,且目镜结构紧凑,焦距较短,容易做成高倍率的自准直仪。 主要缺点:直接瞄准目标时的视轴(“+”字刻度线中心与物镜后节点连线)与自准直时平面 (a )"+"字或"+"字 刻线分划板; (b )分辨率板; (c )星点板; (d )玻罗板

立式光学计的测量不确定度分析

立式光学计的测量不确定度分析 减小字体增大字体作者:谢艳平许海燕来源:https://www.wendangku.net/doc/9b6633215.html, 发布时间:2008-05-26 14:53:29 安徽省活塞厂谢艳平合肥工业大学许海燕 一、工作原理 立式光学计应用自准直原理和正切杠杆原理,将光学杠杆和正切杠杆机构结合在一起实现长度尺寸的测量。 二、测量装置的不确定度分析 在立式光学计上用标称值为6mm的四等量块作标准,对本厂专用标称尺寸为的活塞环槽塞规(工件工作部位材料为硬质合金)进行相对测量。测量温度为(20±0.5)℃。在立式光学计上作相对测量时,其标准不确定度主要来源于以下几方面。 1.示值误差的标准不确定度分量 由检定规程查得,立式光学计的示值误差为±0.25μm,在测量范围内误差的分布符合正态分布,覆盖因子k=3,其标准不确定度分量为 u1=0.25/3=0.083μm 2.标准量块极限误差的标准不确定度分量 四等量块的极限误差为 ΔL1=(0.2+2L)μm =(0.2+2×6×10-3)μm =0.0212μm 式中:L——量块的长度(L=6mm);ΔL1——量块的极限误差。 误差分布符合正态分布,覆盖因子k=3。 标准量块的标准不确定度分量为u2=0.212/3=0.071μm 3.定位误差的标准不确定度分量 在立式光学计上相对测量,由工作台工作平面定位,平面对测量轴线不垂直所产生的测量误差与被测件长度无直接关系,而仅决定于被测件和标准件的长度差。 δ位=±1/2a2ΔL2 式中:ΔL2——被测件与标准件的长度差(ΔL2=0.0344mm);a——工作台平面与仪器测量轴线的垂直度误差;δ位——定位误差。 对可调试工作台,影响工作台表面与测量轴线的不垂直的因素有以下三方面: (1)工作台的调整误差,用四等量块接触φ8平面测帽的一半时,在前、后、左、右四个位置允许示值差为0.3μm,相当于测帽平面与工作台平面的平行性误差,其值为

光学三维测量技术与应用

光学三维测量技术 1. 引言 人类观察到的世界是一个三维世界, 尽可能准确和完备地获取客观世界的三维信息才能尽可能准确和完备地刻画和再现客观世界。对三维信息的获取和处理技术体现了人类对客观世界的把握能力,因而从某种程度上来说它是体现人类智慧的一个重要标志。 近年来, 计算机技术的飞速发展推动了三维数字化技术的逐步成熟, 三维数字化信息获取与处理技术以各种不同的风貌与特色进入到各个不同领域之中 [1]:在工业界, 它已成为设计进程中的一环, 凡产品设计、模具开发等, 无一不与三维数字化测量有着紧密的结合; 虚拟现实技术需要大量景物的三维彩色模型数据, 以用于国防、模拟训练、科学试验; 大量应用的三坐标测量机和医学上广泛应用的 CT 机和 MRI 核磁共振仪器,也属于三维数字化技术的典型应用;文化艺术数字化保存(意大利的古代铜像数字化、中国的古代佛像数字化、古文物数字化保存、 3D 动画的模型建构(电影如侏罗纪公园、太空战士、医学研究中的牙齿、骨头扫描, 甚至人类学的考古研究等, 都可运用三维扫描仪快速地将模型扫描、建构; 而随着宽频与计算机速度的提升, Web 3D的网络虚拟世界将更为普及,更带动了三维数字化扫描技术推广到商品的电子商务、产品简报、电玩动画等, 这一切都表明未来的世界是三维的世界。 目前, 有很多种方法可用来获取目标物体的三维形状数据, 光学三维测量技术(Optiacl Three-dimensional Measurement Techniques因为其“非接触”与“全场”的特点,是目前工程应用中最有发展前途的三维数据采集方法。光学三维测量技术是二十世纪科学技术飞速发展所催生的丰富多彩的诸多实用技术之一, 它是以现代光学为基础, 融光电子学、计算机图像处理、图形学、信号处理等科学技术为一体的现代测量技术。它把光学图像当作检测和传递信息的手段或载体加以利用, 其目的是从图像中提取有用的信号, 完成三维实体模型的重构 [2]。随着激光技术、精密计量光栅制造技术、计算机技术以及图像处理等高新技术的发展, 以及不断推出的高

光学测量原理和技术

第一章、 对准、调焦 ? 对准、调焦的定义、目的; 1. 对准又称横向对准,是指一个对准目标与比较标志在垂直瞄准轴方向像的重合或置 中。目的:瞄准目标(打靶);精确定位、测量某些物理量(长度、角度度量)。 2、调焦又称纵向对准,是指一个目标像与比较标志在瞄准轴方向的重合。 目的: --使目标与基准标志位于垂直于瞄准轴方向的同一个面上,也就是使二者位于同一空间深度; --使物体(目标)成像清晰; --确定物面或其共轭像面的位置——定焦。 人眼调焦的方法及其误差构成; 清晰度法:以目标和标志同样清晰为准则; 消视差法:眼睛在垂直视轴方向上左右摆动,以看不出目标和标志有相对横 移为准则。可将纵向调焦转变为横向对准。 清晰度法误差源:几何焦深、物理焦深; 消视差法误差源:人眼对准误差; 几何焦深:人眼观察目标时,目标像不一定能准确落在视网膜上。但只要目标上一点在视网膜上生成的弥散斑直径小于眼睛的分辨极限,人眼仍会把该弥散斑认为是一个点,即认为成像清晰。由此所带来的调焦误差,称为几何焦深。 物理焦深:光波因眼瞳发生衍射,即使假定为理想成像,视网膜上的像点也不再是一个几何点,而是一个艾里斑。若物点沿轴向移动Δl 后,眼瞳面上产生的波像差小于λ/K(常取K=6),此时人眼仍分辨不出视网膜上的衍射图像有什么变化。 (清晰度)人眼调焦扩展不确定度: (消视差法)人眼调焦扩展不确定度: 人眼摆动距离为b ,所选对准扩展不确定度为δe , ? 对准误差、调焦误差的表示方法; 对准:人眼、望远系统用张角表示;显微系统用物方垂轴偏离量表示; 调焦:人眼、望远系统用视度表示;显微系统用目标与标志轴向间距表示 ? 常用的对准方式; φ'==12111e e l l D αφ'=-= 2 2 21118e l l KD λ φ'=-= e b δφ'=

相关文档
相关文档 最新文档