文档库 最新最全的文档下载
当前位置:文档库 › 珩磨

珩磨

珩磨
珩磨

珩磨是磨削加工的一种特殊形式,属于光整加工。需要在磨削或精镗的基础上进行。珩磨加工范围比较广,特别是大批大量生产中采用专用珩磨机珩磨更为经济合理,对于某些零件,珩磨已成为典型的光整加工方法,如发动机的气缸套,连杆孔和液压缸筒等。

(1)珩磨原理

在一定压力下,珩磨头上的砂条(油石)与工件加工表面之间产生复杂的的相对运动,珩磨头上的磨粒起切削、刮擦和挤压作用,从加工表面上切下极薄的金属层。

(2)珩磨方法

珩磨所用的工具是由若干砂条(油石)组成的珩磨头,四周砂条能作径向张缩,并以一定的压力与孔表面接触,珩磨头上的砂条有三种运动;即旋转运动、往复运动和加压力的径向运动。珩磨头与工件之间的旋转和往复运动,使砂条的磨粒在孔表面上的切削轨迹形成交叉而又不相重复的网纹。珩磨时磨条便从工件上切去极薄的一层材料,并在孔表面形成交叉而不重复的网纹切痕,这种交叉而不重复的网纹切痕有利于贮存润滑油,使零件表面之间易形成—层油膜,从而减少零件间的表面磨损。

(3)珩磨的特点

1)珩磨时砂条与工件孔壁的接触面积很大,磨粒的垂直负荷仅为磨削的1/50~1/100。此外,珩磨的切削速度较低,一般在100m/min以下,仅为普通磨削的1/30~1/100。在珩磨时,注入的大量切削液,可使脱落的磨粒及时冲走,还可使加工表面得到充分冷却,所以工件发热少,不易烧伤,而且变形层很薄,从而可获得较高的表面质量。

2)珩磨可达较高的尺寸精度、形状精度和较低的粗糙度,珩磨能获得的孔的精度为

IT6~IT7级,表面粗糙度Ra为0.2~0.025。由于在珩模时,表面的突出部分总是先与沙条接触而先被磨去,直至砂条与工件表面完全接触,因而珩磨能对前道工序遗留的几何形状误差进行一定程度的修正,孔的形状误差一般小于0.005mm。

3)珩磨头与机床主轴采用浮动联接,珩磨头工作时,由工件孔壁作导向,沿预加工孔的中心线作往复运动,故珩磨加工不能修正孔的相对位置误差,因此,珩磨前在孔精加工工序中必须安排预加工以保证其位置精度。一般镗孔后的珩磨余量为0.05~0.08mm,铰孔后的珩磨余量为0.02~0.04mm,磨孔后珩磨余量为0.01~0.02mm。余量较大时可分粗、精两次珩磨。

4)珩磨孔的生产率高,机动时间短,珩磨一个孔仅需要2~3min,加工质量高,加工范围大,可加工铸铁件、淬火和不淬火的钢件以及青铜件等,但不宜加工韧性大的有色金属,加工的孔径为15~ 500mm,孔的深径比可达10以上。

发动机缸孔珩磨工艺是最后精密加工工序,形成发动机缸孔的最终形状、尺寸和表面精度,对发动机的服役性能起着决定性作用。因此,分析缸孔珩磨工艺过程意义重大。珩磨头的运动轨迹直接反映了珩磨头微观磨粒历经的空间位置。如果将珩磨头上的磨粒视为刚性体,忽略磨粒的破损,则所有磨粒轨迹与缸孔加工表面去除量具有直接映射关系,即油石的运动直接决定了缸孔的表面质量。已有文献研究表明,珩磨油石的运动轨迹与珩磨杆运动、油石分布等密切相关。珩磨头的珩磨速度、切削交叉角、下端停留时间、上下端越程等运动参数对珩磨精度具有较大影响。

该研究拟忽略油石压力因素的影响,通过分析珩磨头的运动轨迹与珩磨速度、切削交叉角、下端停留时间、上下端越程等运动参数的关系,建立珩磨缸孔表面精度控制模型。通过选取油石上的部分磨粒点,并重构这些磨粒点的运动轨迹,研究运动参数对珩磨头周向相位角变化的影响规律,预测珩磨轨迹的分布密度,并且将分布密度与缸孔表面材料去除量相关联,提供缸孔珩磨精度控制的理论基础。

调整珩磨头的运动参数可以获得任意的旋转相位角。其中旋转速度与旋转相位角成正比例函数,下端点停留时间、上下端越程与旋转相位角正相关;往复速度与旋转相位角反相关;下端点停留时间影响缸孔下端部分区域内的珩磨质量,但不会改变缸孔整体的网纹交角。旋转速度与往复速度共同决定网纹交角大小;在不改变珩磨旋转速度和往复速度的情况下,可以通过选取上下端越程与停留时间获得合理的旋转相位角,获得均匀的珩磨轨迹,从而有效提高发动机缸孔的珩磨精度。

珩磨加工是液压油缸和内燃机汽缸套等内孔表面进行精加工的一种相对低速的加工技术,国内普遍存在珩磨加工效率低,珩磨油石的磨削性能对珩磨加工过程及结果有着重要的影响,文中采用两种不同的国内外珩磨油石,以氧化铝为磨粒材料对工程油缸进行珩磨加工,

同时比较其加工效率的差异,另外,将加工前后的两种珩磨油石在扫描电镜下进行观察分析,研究其微观切削机理的不同。

内燃机车用的导管,煤矿和工程机械用的油缸,其孔的精度及表面质量要求较高。然而通过一般的加工方法难以达到设计要求,为此通过研究与实践设计了一种

即可安装使用的装置。该装置是

推镗滚压可在普通车床上将镗削、铰削和挤压相结合,使孔的加工一次完成,加工方法简单、快捷、经济实用,加工精度和表面粗糙度均能达到设计要求。

! 工作原理及结构

(I)工作原理推镗滚压装置如图I 所示。该装

置需安装在普通车床上,当机床主轴I 旋转时,动力通

过镗杆J 传递到镗刀" 上完成切削工作。镗刀及可调

滚压排列组合’通过导向套固定在固定套筒K 上,固

定套筒又固定在机床大拖板的左端,机床拖板的右端

同样固定一个固定套筒I$,左右套筒相距一个工件长

度。移动套筒I& 通过传动套筒I’移动手柄IK,连接

法兰I" 来调整左右固定套筒之间的距离,并通过定位

法兰L、! 实现工件的夹紧。

该装置适合各种孔类工件(尤其是深孔)的加工。

其结构简单,便于制造,通用性强

李爱姣,李兰勋.推镗滚压装置的设计[J].制造技术与机床.2007,(9):96.

Journal of Southern Yangtze University(Natural Science Edition)

Vol. 6 No . 2

Apr. 2007

文章编号: 1671- 7147( 2007) 02- 0220- 04

收稿日期: 2005- 05- 25; 修订日期: 2005- 10- 17.

基金项目: 江苏省自然科学基金项目( BK2004020) ; 留学回国启动基金项目( 教外司留[ 2004] 527 号) ; 清华大学摩

擦学国家重点实验室开放项目( SKLT04- 06) .

作者简介: 胡勤( 1973- ) , 男, 安徽淮南人, 机械设计及理论专业硕士研究生.

* 通讯联系人: 赵永武( 1962- ) , 男, 山东嘉祥人, 教授, 工学博士, 博士生导师. 主要从事摩擦学和先进表面技术

及制造技术等研究. Email: zhao yw@ sytu. edu. cn

胡勤,赵永武.珩磨油石的磨削性能和磨削机理[J].江南大学学报(自然科学

版),2007,6(2):220-223.

1、该装置的设计关键是滚压排列组合中的滚柱。为保证工作的可靠性,滚柱采用GCr15,淬火硬度不低于60HRC,各滚柱尺寸允差在0.01mm以内。滚压排列组合外径尺寸是待加工油缸孔径尺寸,其滚压量根据不同材料、硬度,通过调整镗刀尺寸来确定。

2、压力切削液的设计主要是为了保证加工中的冷却和润滑。根据加工孔径的大小和切削量的大小相应调整切削液的流量,以能够及时排除铁屑为宜。可用煤油、柴油代替乳化液,以便提高工件表面质量。

3、镗杆安装后必须达到靠近主轴端的径向跳动量不超过0.02mm;镗杆远端跳动量在无支撑

的情况下不超过0.05mm/m;两固定套筒的同轴度允差为0.02mm;加工余量应控制在单边2mm以内,滚压量应控制在0~0.05mm为宜。

珩磨缸孔网纹工艺技术

缸孔的平台网纹珩磨工艺 图1 缸孔珩磨自动线 箱体零件的孔加工是复杂与关键并存的工艺,近年来,平台网纹珩磨在汽油机缸体缸孔精加工中获得了广泛应用,保证了可靠的精度和性能,并且提高了加工效率,降低了成本。 汽车发动机缸体的缸孔与缸盖、活塞组成燃烧室,承受燃气燃烧的爆发压力和冲击,既要耐高温、高压和高温冲击负荷,又要为活塞高速往复运动提供基准,良好定位,准确导向。因此缸孔与活塞之间,配合间隙要合理,摩擦力要小。为此,要求缸孔表面粗糙度要低,缸孔尺寸精度要高,形状精度和位置精度要好。 为保证缸孔能满足上述要求,具备必要的性能,迫切需要良好可靠的缸孔精加工手段。近年来,平台网纹珩磨在汽油机缸体缸孔精加工中获得了越来越广泛地应用,因此,我们也将平台网纹珩磨用于缸孔精加工。 平台网纹珩磨的优点

所谓平台网纹珩磨,就是通过珩磨在缸孔表面形成细小的沟槽,这些沟槽有规律地排列形成网纹,并由专门的珩磨工艺削掉沟槽的尖峰,形成微小的平台。平台网纹珩磨在缸孔表面形成的这种特殊结构有如下优点: 1.微小的平台增加了接触面积,削掉尖峰,消除了表面的早期快速磨损,提高了表面的耐磨性。 2.细小的沟痕形成良好的储油空间,并在缸孔表面形成良好的油膜,降低了缸孔表面与活塞及活塞环的摩擦,因而可以使用低摩擦力的活塞环。 3. 细小的沟痕形成良好的储油空间,减小了机油的散失,进而降低了机油消耗。 4.珩磨后在缸孔表面形成了无数微小的平台,增加了缸孔与活塞及活塞环的接触面积,加大了缸孔表面的支撑度,减少了缸孔的初期磨损,因此减少了缸孔的磨合时间,甚至不用磨合。 平台网纹珩磨工艺 平台网纹珩磨的基本工艺为:粗珩→精珩→平台珩。 粗珩:消除前工序的加工痕迹,提高孔的形状精度,降低孔的表面粗糙度,为精珩做好准备。 精珩:更换珩磨油石,进一步提高孔的尺寸精度、形状精度、降低表面粗糙度,在缸孔表面形成均匀的交叉网纹。 平台珩:更换油石,去除沟痕波峰,形成平台表面,提高缸孔表面的支撑率。平台珩去掉表面波峰形成平台即可,加工余量较小,最好与精珩磨一次安装加工完成,否则重复定位误差将破坏平台珩磨精度。

珩磨

珩磨技术在高精度孔系加工中的应用 一、珩磨技术的引进 珩磨技术是随着汽车的诞生和发展应运而生的。发动机是汽车的心脏,发动机中的缸孔与活塞是最重要的摩擦副,其性能优劣和工作的状态直接影响到汽车产品的质量、品味、使用寿命和人类的生存环境,所以自汽车发明以来,一直在探讨缸孔工作表面精密制造技术。 珩磨是用镶嵌在珩磨头上的油石对工件表面施加一定压力,珩磨工具或工件同时作相对旋转和轴向直线往复运动,切除工件上极小余量的精加工方法。珩磨从汽车发动机(柴油机、汽油机)的应用,到摩托车、拖拉机缸体,广泛应用于飞机零部件、导弹、坦克、枪炮、船舶、工业缝纫机、空调压缩机、液压气动、制动器、油泵油嘴、轴承、工程机械、管乐器、光纤电缆的连接口等等。 二、珩磨的工作原理 珩磨条装在珩磨头上,由珩磨机主轴带动珩磨头作旋转和往复运动,并通过其中的胀缩机构使珩磨条伸出,向孔壁施压以作径向胀开运动,实施珩磨加工。珩磨加工时,珩磨头上圆周上的珩磨条与孔壁的重叠接触点相互干涉,一方面珩磨条将孔壁上的干涉点磨去,另一方面孔壁也相应地使珩磨条上面的磨粒尖角或整个磨粒破碎或脱落,珩磨条与孔壁在珩磨过程中相互修整。再由于珩磨头在珩磨过程中,既有旋转又有往复运动,使工件孔的加工表面形成交叉的螺旋线切削轨迹。由于每一次往复行程时间内珩磨头的转数为非整数,两次行程间又错开一定位置,这样复杂的运动使珩磨条的每一磨粒在孔壁上运动的轨迹不重复。在整个珩磨过程中,孔壁与珩磨条上的每一点相互干涉的机会差不多均等。这样在孔壁和珩磨条间的不断产生新的干涉点,又不断将这些干涉点磨去,使孔壁和珩磨条的接触面积不断增加,相互干涉的作用和切削作用不断减弱,孔与珩磨条面得圆度和圆柱度不断提高,孔壁的粗糙度降低,达到尺寸要求精度后,珩磨条缩回,珩磨头推出工件孔,完成孔的珩磨。 三、珩磨加工的应用 1、珩磨加工应用方式 在发动机加工中珩磨的加工分以下几种方式:(1)缸体内孔表面形成缸孔是气体压缩燃烧和膨涨的空间,并对活塞起导向作用,缸体内孔表面是

珩磨机的工作原理

珩磨机的工作原理 珩磨一般采用珩磨机,机床主轴与珩磨头一般是浮动联接;但为了提高纠正工件几何形状的能力,也可以 用刚性联接。 珩孔时,外周一般镶有2~10根油石,由机床主轴带动在孔内旋转,并同时作直线往复运动,这是 主运动;同时通过珩磨头中的弹簧或液压力控制油石均匀外涨,对被加工的孔壁作径向进给。珩磨头每分 钟往复次数与转数之比应取非整数,使磨料在工件表面形成的加工痕迹成为交叉的网纹而不相重复。图2 为单条油石在孔内珩磨时的运动轨迹。油石上下往复一次,工件回转一圈多。粗珩油石的磨料粒度为120 ~180,精珩用W28以下的细粒度油石。油石宽为3~20毫米,长度约为孔长的1/3~3/4。油石在孔内往复 移动时,两端超越孔外的长度不宜大于油石全长的1/3,否则易产生喇叭口;但超程小于油石长度1/4时,又 会使孔呈鼓形。外圆、平面的珩磨原理和操作要求与内圆珩磨相同。 余量一般不超过0.2毫米。珩磨的圆周速度,对钢材加工约为15~30米/分,对铸铁或有色金属加

工可提高到50米/分以上;珩磨的往复速度不宜超过15~20米/分。油石对孔壁的压力一般为0.3~0.5兆帕 ,粗珩时可达1兆帕左右,精珩可小于0.1兆帕。由于珩磨时油石与工件是面接触,每颗磨粒对工件表面的 垂直压力只有磨削时的1/50~1/100,加上珩磨速度低,故切削区的温度可保持在50~150℃范围内,有利于 减小加工表面的残余应力,提高表面质量。为了冲刷切屑,避免堵塞油石,同时降低切削区温度和降低表 面粗糙度,珩磨时采用的切削液要有一定的工作压力并经过滤。切削液大都采用煤油,或煤油加锭子油, 也有采用极压乳化液的。在没有专门珩磨机的情况下也可以将珩磨刀架安装在立式钻床上来实现珩磨内孔 的任务。

浅谈缸孔平台珩磨(一类参照)

浅析缸孔平台珩磨技术 吴勤 (东风本田发动机有限公司,广州510700) 摘要:本文从珩磨的原理、评价平台珩磨的各种参数以及影响平台珩磨加工质量的因素三个方面介绍了平台珩磨在缸孔加工领域上的应用。 关键词:平台珩磨、粗糙度、缸孔加工、油石 1、前言 这几年来,汽车行业在我国的蓬勃发展大家有目共睹。汽车在国内的人均保有量越来越大。全国各汽车公司之间的竞争更是越演越烈。怎样才能脱颖而出赢得市场是他们首要关心的问题。另一方面,随着人们环保意识的提高,加上油价攀升等众多因素的影响,购车群体对汽车的经济性、环保性越来越重视。改善发动机加工工艺、降低发动机的油耗及尾气排放是汽车赢得市场的重大突破口。 影响发动机的油耗和尾气排放的因素是很多的,其中一个重要的影响因素是发动机气缸与活塞环这对摩擦副的工作状况。润滑油对活塞环与气缸壁之间的工作状况起着决定性的影响。如果气缸壁的润滑油过多,在高温高压的情况下润滑油很容易燃烧而产生废气,使排放超标;相反如果气缸壁的润滑油过少,会大大增加活塞环对气缸壁的摩擦,降低发动机的效率,增加油耗,还会影响燃烧室的密封性能,增加废气的排放;甚至还有可能出现拉缸的现象。所以控制气缸壁的储油能力对发动机的性能有着重要的影响,这样发动机气缸壁的表面质量就显得尤为重要了。传统的发动机气缸壁的加工工艺已经很难对其表面质量作进一步的改善了,有必要研究和开发新型的发动机气缸壁的加工方法。平台珩磨是国内新型的发动机气缸精加工方法,它能在气缸壁形成良好的表明网纹,使气缸壁在拥有较高的承载率的同时还具有较好的储油能力,大大提高发动机的性能。平台珩磨的表面微观轮廓如下图所示: 2、珩磨的原理 珩磨是利用安装在珩磨头圆周上的多条油石,由张开机构将油石沿径向张开,使其压向工件孔壁,以便产生一定的面接触。同时使珩磨头旋转和往复运动,零件不动;或者珩磨头只作旋转运动,工件往复运动从而实现珩磨。 珩磨时,油石上的磨粒以一定的压力、较低的速度对工件表面进行磨削、挤压和刮擦。油石作旋转运动和上下往复运动,使油石上的磨粒在孔表面所形轨迹成为交叉而又不重复的网纹。与内孔磨削相比,珩磨参加切削的磨粒多,加在每粒磨粒上的切削力非常小,珩磨切速低,仅为砂轮磨削速度的几十份之一,在珩磨过程中又旋转加大量的冷却夜,使工件表面得到充分的冷却,不易烧伤,加工变形层薄,故能得到很理想的表面纹理。 珩磨头与机床采用浮动连接,这样能减少机床静态精度对珩磨精度的影响。还能保证余量均匀,但也决定了珩磨不能修正被加工孔的轴线位置度误差。由于油石很长,珩磨时工件的突出部分先与油石接触,接触压力较大,使突出部分很快被磨去,直至修正到工件表面与沙条全部接触,因此珩磨能修正前道工序产生的几何形状误差和表面波度误差。 珩磨的切削分为定压切削和定量切削两种。定压进给中进给机构以恒定的压力压向孔壁,共分三个阶段: 第一个阶段是脱落切削阶段,这种定压珩磨,开始时由于孔壁粗糙,油石与孔壁接触面

珩磨机进给机构原理分析及改进方案探讨-1

论文 题目:珩磨机主要结构机构原理及数控改进方案探讨作者:郭均政 内容简介:本论文主要介绍了珩磨机主要结构如砂条进给、冲程控制 等机构的液压、机械原理,为了提高珩磨工件的表面质量 质量,经过对其工作原理进行了认真的分析,并根据实际 的加工跟踪情况,提出了改进方案,经过论证后现已实施, 效果良好,缸孔质量得到了很大的提高,完全满足了被加 工工件的工艺要求。

珩磨机进给机构原理及数控改进方案探讨 一、发动机缸体珩磨工艺要求 目前在汽车发动机行业的制造工艺中,发动机缸孔的精加工大都采用珩磨加工,这是因为缸孔的表面有严格并特殊的要求,发动机缸孔除了尺寸、几何精度比如圆度,柱度等一般要求外,还对表面质量有特殊的要求,为了能使发动机工作时能得到很好的润滑,表面要能够储存少量的润滑油以便建立良好的油膜,因而发动机表面要求有按一定方向有规律排列的网纹,同时还要有足够的支撑面积。依维柯发动机缸孔的表面质量要求:表面粗糙度Ra0.3-0.6;网纹角度45°-50°;网纹宽度L=0.03-0.05mm;网纹节距P=1.5mm,表面支撑面积TP值80%-95%。详细的要求见图1:珩磨工序工艺附图。从工艺图上我们知道,主轴孔的圆柱度要求为0.005mm,同轴度为0.03mm,为了保证缸孔的尺寸,缸孔要在孔的轴向分别为10mm、50mm、142mm 三个截面进行测量,在圆周方向要测量A、B两个方向,并且在三个截面当中,A向测量必须要保证:三个截面的的平均值与最小值的差要小于0.008mm,最大值与平均值的差小于0.008mm。在B向的测量值必须保证:三个截面的的平均值与最小值的差要小于0.008mm,最大值与平均值的差小于0.008mm。要达到以上的表面质量要求,当然选择合适的珩磨砂条是很重要的,但是网纹的角度、宽度、TP值等比较重要的指标光靠砂条是不能满足的,必须要有合适的珩磨冲程,冲程速度,珩磨主轴的回转速度以及砂条的进给精度,这些要素参数对于珩磨质量的保证起着至关重要的作用。

珩磨原理

7.3.2珩磨 珩磨是磨削加工的 1 种特殊形式,属于光整加工。需要在磨削或精镗的基础上进行。珩磨加工范围比较广,特别是大批大量生产中采用专用珩磨机珩磨更为经济合理,对于某些零件,珩磨已成为典型的光整加工方法,如发动机的气缸套,连杆孔和液压缸筒等。 (1)珩磨原理 在一定压力下,珩磨头上的砂条(油石)与工件加工表面之间产生复杂的的相对运动,珩磨头上的磨粒起切削、刮擦和挤压作用,从加工表面上切下极薄的金属层。 (2)珩磨方法 珩磨所用的工具是由若干砂条 ( 油石 ) 组成的珩磨头,四周砂条能作径向张缩,并以一定的压力与孔表面接触,珩磨头上的砂条有 3 种运动 ( 如图 7.3 a ) ;即旋转运动、往复运动和加压力的径向运动。珩磨头与工件之间的旋转和往复运动,使砂条的磨粒在孔表面上的切削轨迹形成交叉而又不相重复的网纹。珩磨时磨条便从工件上切去极薄的一层材料,并在孔表面形成交叉而不重复的网纹切痕 ( 如图 7.3 b ), 这种交叉而不重复的网纹切痕有利于贮存润滑油,使零件表面之间易形成—层油膜,从而减少零件间的表面磨损。 (3)珩磨的特点 1)珩磨时砂条与工件孔壁的接触面积很大,磨粒的垂直负荷仅为磨削的 1/50~1/100 。此外,珩磨的切削速度较低,一般在 100m/min 以下,仅为普通磨削的 1/30~1/100 。在珩磨时,注入的大量切削液,可使脱落的磨粒及时冲走,还可使加工表面得到充分冷却,所以工件发热少,不易烧伤,而且变形层很薄,从而可获得较高的表面质量。 2)珩磨可达较高的尺寸精度、形状精度和较低的粗糙度,珩磨能获得的孔的精度为 IT6~IT7 级,表面粗糙度 Ra 为 0.2~0.025 。由于在珩模时,表面的突出部分总是先与沙条接触而先被磨去,直至砂条与工件表面完全接触,因而珩磨能对前道工序遗留的几何形状误差进行一定程度的修正,孔的形状误差一般小于 0.005mm 。 3)珩磨头与机床主轴采用浮动联接,珩磨头工作时,由工件孔壁作导向,沿预加工孔的中心线作往复运动,故珩磨加工不能修正孔的相对位置误差,因此,珩磨前在孔精加工工序中必须安排预加工以保证其位置精度。一般镗孔后的珩磨余量为 0.05~0.08mm ,铰孔后的珩磨余量为 0.02~0.04mm ,磨孔后珩磨余量为 0.01~0.02mm 。余量较大时可分粗、精两次珩磨。 4)珩磨孔的生产率高,机动时间短,珩磨 1 个孔仅需要 2~3min ,加工质量高,加工范围大,可加工铸铁件、淬火和不淬火的钢件以及青铜件等,但不宜加工韧性大的有色金属,加工的孔径为15~ 500mm ,孔的深径比可达 10 以上。 珩磨工艺及其在汽车零部件制造中的应用 作者:熊元一郭建忠侯军丽李贵贤 摘要:珩磨工艺(HoningProcess)是磨削加工的一种特殊形式,又是精加工中的一种高效加工方法。这种工艺不仅能去除较大的加工余量,而且是一种提高零件尺寸精度、几何形状精度和表面粗糙度的有效加工方法,在汽车零部件的制造中应用很广泛。珩磨加工原理珩磨是利用安装于珩磨头圆周上的一条或多条油石,由涨开机构(有旋转式和推进)。

气缸孔珩磨技术简介

摘要 气缸是内燃机重要零件之一,它与活塞、气缸盖等组成燃烧室。燃料在气缸内部燃烧,膨胀的气体推动活塞往复移动,通过连杆驱动曲轴转动,将热能转化为机械能。气缸表面质量较差或长期工作磨损到一定程度,内燃机的动力性能将显著下降,燃润料的消耗急剧增加,使内燃机的经济性变坏。因此, 内燃机机缸体表面质量将直接影响发动机的技术性能和使用寿命。 平顶珩磨、滑动滚磨与普通珩磨相比,是一种先进的珩磨工艺,具有缸孔表面微观形貌呈光滑的平顶(而不是峰尖),与相对较深的波谷(与普通珩磨相比波谷较深)规律性地间隔分布、发动机的磨合周期短、润滑条件好、生产效率高等优点。是目前缸孔珩磨工艺的主流。引进平顶珩磨和滑动滚磨对于提高汽车发动机的缸体质量、提高生产效率有着重要的意义。 本文介绍了国内外缸孔珩磨工艺历程和现状,对普通珩磨。平顶珩磨、滑动珩磨工艺进行了一些对比研究。 关键字:气缸,珩磨工艺,平顶珩磨,滑动珩磨

一、绪论 1.1选题背景 当代社会,汽车作为城市生活的代步工具,已经进入了大多数家庭当中,他不再是一种奢侈品的象征,而是一种必备的交通工具。在我国,现在汽车年产销售量已经达到1800万辆,随着人们对汽车使用的普及,人们对它的要求也在不断提高,人们对整车的安全性、动力性乘坐舒适性、操作灵活性、外观设计及环保方面都提出了较高的要求,与此同时对汽车发动机的性能要求也越来越高。发动机作为汽车的核心部件,其生产、制造技术也在飞速发展,各种全新技术手段及工艺在逐步推广和应用于汽车制造业的各个环节当中。 对承受高温、高压、高负荷工作的缸孔表面来说润滑极为重要,珩磨后形成的微观支撑平台和珩磨网纹的夹角是保证良好润滑的关键。如果支撑平台过小,发动机磨合期延长,容易造成缸筒早期磨损,支撑平台过大则会造成润滑油量不足而无法形成有效的润滑油膜,不利于活塞环的润滑;如果晰磨网纹夹角太小,发动机趋于无润滑状态,如果珩磨网纹夹角过大,则机油消耗增大。发动机的这些特殊要求在实际生产中使用普通加工方法是难以实现的,这也是世界各国的汽车制造业无一例外地采用珩磨作为缸孔的最终精加主的原因。 1.2国内外珩磨发展的技术水平 国内汽车行业最早采用的是手动珩磨技术,近几年,随着技术的发展,汽车制造业普遍采用的是滑动珩磨技术,少部分先进的汽车加工企业采用平顶珩磨技术。现在在国外的先进汽车、船舶等企业正在逐步推进使用更为先进的珩磨技术如超声珩磨、电解珩磨、螺旋滑动珩磨、刷珩磨、激光珩磨等。目前最新开发的珩磨技术为激光珩磨,这种技术可以使缸孔表面槽的宽度、深度、间距等参数具有较高的一致性,只有这样的储油槽才能在缸孔表面形成均匀有效的油膜,更能有效的保护缸孔和活塞,更能提升发动机性能,适应当代发展需求。

缸孔平台网纹珩磨的评定方法和工艺实践

缸孔平台网纹珩磨的评定方法和工艺实践 2010-2-6 16:49:00 来源:一汽轿车股份有限公司第二发动机厂阅读:801次我要收藏 【字体:大中小】 缸孔的表面粗糙度的形成一般要经过粗镗、半精镗、粗珩、精珩等多个步骤才能达到期望的质量,近年来,各发动机制造厂和机床制造商都在进行着缸孔表面加工新工艺方法的研究。本文重点介绍了缸孔平台网纹珩磨工艺的评定方法及其在发动机加工中的实际应用。 缸孔平台珩磨工艺及评定方法缸孔平台珩磨技术作为内燃机缸孔或缸套精加工的一种新工艺,初期主要用于高压缩比的柴油机,近几年有了进一步的发展,在汽油机上也得到了广泛的应用。平台珩磨技术可在缸孔或缸套表面形成一种特殊的结构,这种结构由具有储油功能的深槽及深槽之间的微小支承平台表面组成。典型的平台珩磨形成的表面如图1所示。 这种表面结构具有以下优点: ● 良好的表面耐磨性; ● 良好的油膜储存性,可使用低摩擦力的活塞环; ● 降低机油消耗;

● 减少磨合时间(几乎可省掉)。 1、缸孔平台珩磨的工艺过程 为形成平台珩磨表面,在大批量生产时一般需要进行粗珩、精珩、平台珩磨三次珩磨,其作用分别是: ● 粗珩:预珩阶段,主要是要形成几何形状正确的圆柱形孔和适合后续加工的基本表面粗糙度。 ● 精珩:基础平台珩磨阶段,形成均匀的交叉网纹。 ● 平台珩:平台珩磨阶段,形成平台断面。 要想获得理想的表面平台网纹结构,对精珩和平台珩的同轴度要求很高,因此将两个阶段合并成一次加工更为合理,通过设计成有双进给装置和装有精珩、平台珩两种珩磨条的珩磨头,能够实现一次装夹即可完成精珩和平台珩,消除了重复定位误差的影响,可以减轻前加工的压力和对机床过高精度的要求。 2、平台珩磨表面质量的评定方法 由于采用国际标准中的Ra、Rz等参数不足以精确表示并测量平台珩磨表面,因此,发动机制造商纷纷制定了自己的平台珩磨表面标准。经过几年的实践和发展日趋完善,但至今没有统一的平台珩磨技术规范,由于一汽大众公司及一汽轿车公司均采用德国设备和德国标准,这里主要介绍德国用于评定平台珩磨表面质量的几个参数及相应标准。 (1)均峰谷高度Rz(DIN)(Meanpeak-to-valley height) 在滤波后轮廓的5个彼此相连的取样长度范围内局部峰谷高度Zi的算术平均值。即: 局部峰谷高度Z则是两条平行于中线的,在取样长度范围内通过轮廓的最高点和最低点的平行线之间的距离,如图2所示。

珩磨工艺

珩磨工艺(Honing Process)是磨削加工的一种特殊形式,又是精加工中的一种高效加工方法。这种工艺不仅能去除较大的加工余量,而且是一种提高零件尺寸精度、几何形状精度和表面粗糙度的有效加工方法,在汽车零部件的制造中应用很广泛。 珩磨加工原理 珩磨是利用安装于珩磨头圆周上的一条或多条油石,由涨开机构(有旋转式和推进式两种)将油石沿径向涨开, 使其压向工件孔壁,以便产生一定的面接触。同时使珩磨头旋转和往复运动,零件不动;或珩磨头只作旋转运动,工件往复运动,从而实现珩磨。 在大多数情况下,珩磨头与机床主轴之间或珩磨头与工件夹具之间是浮动的。这样,加工时珩磨头以工件孔壁作导向。因而加工精度受机床本身精度的影响较小,孔表面的形成基本上具有创制过程的特点。所谓创制过程是油石和孔壁相互对研、互相修整而形成孔壁和油石表面。其原理类似两块平面运动的平板相互对研而形成平面的原理。 珩磨时由于珩磨头旋转并往复运动或珩磨头旋转工件往复运动,使加工面形成交叉螺旋线切削轨迹,而且在每一往复行程时间内珩磨头的转数不是整数, 因而两次行程间,珩磨头相对工件在周向错开一定角度,这样的运动使珩磨头上的每一个磨粒在孔壁上的运动轨迹亦不会重复。此外,珩磨头每转一转,油石与前一转的切削轨迹在轴向上有一段重叠长度,使前后磨削轨迹的衔接更平滑均匀。这样,在整个珩磨过程中,孔壁和油石面的每一点相互干涉的机会差不多相等。因此,随着珩磨的进行孔表面和油石表面不断产生干涉点,不断将这些干涉点磨去并产生新的更多的干涉点,又不断磨去,使孔和油石表面接触面积不断增加,相互干涉的程度和切削作用不断减弱,孔和油石的圆度和圆柱度也不断提高,最后完成孔表面的创制过程。为了得到更好的圆柱度,在可能的情况下,珩磨中经常使零件掉头,或改变珩磨头与工件轴向的相互位置。 需要说明的一点:由于珩磨油石采用金刚石和立方氮化硼等磨料,加工中油石磨损很小,即油石受工件修整量很小。因此,孔的精度在一定程度上取决于珩磨头上油石的原始精度。所以在用金刚石和立方氮化硼油石时,珩磨前要很好地修整油石,以确保孔的精度。 珩磨的切削过程 定压进给珩磨

设备远程实时监测系统的研究

设备远程实时监测系统的研究 陈新宇1 周锋2 王丽华1 荀东升3 1.天津科技大学 2.天津电气传动设计研究所 3.天津普辰电子公司 摘要:论述了基于Internet的设备远程实时监测系统的实现方法,采用虚拟仪器技术,研究了以D ataSocket 和A ctiveX技术来实现远程设备运行状态参数的传输和显示,以德国进口的大型珩磨机为例,采用C lient2serv2 er(C S)模式,实现了设备的远程实时监测和简单的故障诊断。 关键词:远程监测 数据采集 C S模式 Study on Rea l-ti m e M on itor i ng Syste m for Re m ote Equ ip m en t Chen X inyu Zhou Feng W ang L ihua Xun Dongsheng Abstract:T he m ethods of real ti m e monito ring fo r remo te equi pm ent are discussed based on virtual instru2 m ents(V I).A new m ethod of data trans m issi on and disp lay of running status of the equi pm ent is studied by D ataSocket and A ctiveX techno logy.T ake ger m an i m po rted grinding m ach ine fo r examp le,the real2ti m e moni2 to ring system fo r the remo te equi pm ent is realized in client2server(C S)mode. Keywords:remo te monito ring data acquisiti on client2server(C S)mode 1 概述 网络测控是融合通信网络技术、自动化测控技术、计算机技术的一门前沿应用学科。实现测控技术网络化的实用意义至少有以下3点。 1)有利于降低测控系统的成本。利用网络技术将分散在不同地理位置不同功能的检测设备联系在一起,使昂贵的硬件、软件在网络内得以共享,减少设备的重复投资。 2)有利于实现远距离测量和控制。通过网络,一台计算机采集的数据可以立即传输到另一台计算机;操作人员也可以在另一台计算机控制这台计算机的采集及输出。 3)有利于实现设备的远距离诊断和维护。特别是进出口设备,如果能实现基于In ternet跨国的远程监测和诊断,将大大降低维修费用。因此,网络测控是当今测控技术发展的方向。 2 实现原理与构成 2.1 实现原理 设备远程监测的原理是:用户连接到网络上,通过远程访问的客户程序发送客户身份验证信息和与远程主机连接的要求,远程主机的服务器端程序验证客户身份,如果验证通过,就与客户建立连接,并向用户发送验证通过和已建立连接的信息。这时,用户便可以通过客户端程序监控或向远程主机发送要执行的指令,而服务器端程序则执行这些指令,然后把执行的结果传递给客户端,并在客户端按一定规则显示出来。远程控制软件一般为C S模式,即客户 服务器模式。这种模式包含2个部分:一个客户端程序,一个服务器端程序。使用前需要将客户端程序安装到主控端计算机上,将服务器程序安装到被控端计算机上。2.2 系统的硬件构成 设备远程监测系统根据被测设备的配制而异,通常系统组成如图1所示。有些设备本身具有联网能力,可以直接接入网络;而大多数设备不具备这样的接口,因此,一般须通过传感系统将被测设备运行状态转换成电量,信号调理单元将转换的电信号进行适当的处理(诸如放大、调制、滤波等),直到便于计算机数据采集和处理,服务器通过In ternet将信息传输到网上,并传输到远程监 84  电气传动 2005年 第35卷 第2期设备远程实时监测系统的研究

珩磨安全技术操作规程简易版

The Daily Operation Mode, It Includes All The Implementation Items, And Acts To Regulate Individual Actions, Regulate Or Limit All Their Behaviors, And Finally Simplify Management Process. 编订:XXXXXXXX 20XX年XX月XX日 珩磨安全技术操作规程简 易版

珩磨安全技术操作规程简易版 温馨提示:本操作规程文件应用在日常的规则或运作模式中,包含所有的执行事项,并作用于规范个体行动,规范或限制其所有行为,最终实现简化管理过程,提高管理效率。文档下载完成后可以直接编辑,请根据自己的需求进行套用。 1 必须遵守《磨床安全技术操作规程》。 2 工件要卡牢固,调节行程时要注意是否 有可能发生碰撞,第一次行程要缓慢进给。 3 测量工件、调整行程挡块必须停车进 行。 4 开车前磨头前端必须先进入工件内再开 车。操作时要防止夹伤手指。 5 自动进刀时,必须将行程限位调节适当 并坚固牢靠,方可开机。 6 工件动转中,不准调整行程。 7 电气设备上防止沾染润滑油、冷却液及 灰尘。电气导线不准外露,防止因磨擦破损发

生漏电。 8 安全装置必须齐全可靠,不准任意拆除。 9 数控珩磨机还要遵守《数控机床安全技术操作规程》有关规定。 该位置可填写公司名或者个人品牌名 Company name or personal brand name can be filled in this position

高精度珩磨机控制系统设计_陆永耕

第12卷第2期 2009年6月 上海电机学院学报 JO U RN A L O F SH A NG H AI DI AN JI U N IV ERSIT Y Vol.12No.2 Jun.2009 收稿日期:2009-04-17 作者简介:陆永耕(1963-),男,教授,博士,专业方向为工业自动化、超声电机控制及数字图象处理,E -mail:luyg @https://www.wendangku.net/doc/959253062.html, 文章编号 1671-2730(2009)02-0095-04 高精度珩磨机控制系统设计 陆永耕 (上海电机学院电气学院,上海200240) 摘 要:根据珩磨车床加工工艺原理和控制要求,利用可编程控制PLC 技术,设计了珩磨车床控制系统。阐述了系统PLC 主控制器系统硬件组成和I/O 端口设计、控制参数设置及运行控制方式。 关键词:珩磨;控制系统;PLC 中图分类号:T G 589.023.5 文献标识码:A Design of the Control System for High Precision Honing Machines L U Yong geng (Scho ol of Electric,Shanghai Dianji University,Shanghai 200240,China) Abstract:The control system o f a ho ning machine based on the PLC techno logy is desig ned in this paper,accor ding to the pro cessing principle and the control requirements of the ho ning m achine.T he system hardw are construction o f PLC main contr oller,the I/O po rts and control param eter setting and m ode o f operation co ntro l are presented. Key words:honing;contr ol system;PLC 早期的珩磨实际上是一种摩擦工艺,最初生产的珩磨头装于钻床上珩磨,切削量非常小(最大为0.15mm )。现代珩磨可定义为一种切削金属的方法,实现对工件尺寸、圆度、直线度、位置度和表面粗糙度的要求。珩磨作为一种万能的孔加工方法,在粗珩工序上采用大切削的工艺,最大切削量可达0.70~1.00mm;并取消了传统的精镗、精磨工序,广泛地应用于油缸、气缸套和泵体缸孔等的加工作业[1]。 现代珩磨机大量采用高新控制、振动珩磨头制造、多种材质珩磨条制造和现代测量等技术,特别是随着珩磨工件要求的不断提高,对与之配套的刀具 材料也提出了越来越高的要求,由单一的油石向金刚石、刚玉、氮化硼、碳化硅发展,从而实现大加工余量的切削。同时,控制系统也由传统的机-电-液压控制系统,向数字控制、数字控制工艺参数的数控(CNC)车床方向发展 [2-4] 。 作为油缸加工的核心设备之一,珩磨机的研制开发成为许多精密加工厂家急需解决的问题。通过对国内外重点生产厂家同类产品的比较,在总结德 国格林、美国德隆、美国善能产品的基础上,结合油缸、喷嘴、异形工件等深孔产品的精加工特点和实际工作经验,制订了适合冷拔、镗孔等管坯加工使用的强力珩磨机设计方案,在满足加工工艺指标的前提

缸孔平台珩磨相关知识

缸孔平台珩磨技术 摘要:本文从珩磨的原理、评价平台珩磨的各种参数以及影响平台珩磨加工质量的因素三个方面介绍了平台珩磨在缸孔加工领域上的应用。 关键词:平台珩磨、粗糙度、缸孔加工、油石 1、前言 这几年来,汽车行业在我国的蓬勃发展大家有目共睹。汽车在国内的人均保有量越来越大。全国各汽车公司之间的竞争更是越演越烈。怎样才能脱颖而出赢得市场是他们首要关心的问题。另一方面,随着人们环保意识的提高,加上油价攀升等众多因素的影响,购车群体对汽车的经济性、环保性越来越重视。改善发动机加工工艺、降低发动机的油耗及尾气排放是汽车赢得市场的重大突破口。 影响发动机的油耗和尾气排放的因素是很多的,其中一个重要的影响因素是发动机气缸与活塞环这对摩擦副的工作状况。润滑油对活塞环与气缸壁之间的工作状况起着决定性的影响。如果气缸壁的润滑油过多,在高温高压的情况下润滑油很容易燃烧而产生废气,使排放超标;相反如果气缸壁的润滑油过少,会大大增加活塞环对气缸壁的摩擦,降低发动机的效率,增加油耗,还会影响燃烧室的密封性能,增加废气的排放;甚至还有可能出现拉缸的现象。所以控制气缸壁的储油能力对发动机的性能有着重要的影响,这样发动机气缸壁的表面质量就显得尤为重要了。传统的发动机气缸壁的加工工艺已经很难对其表面质量作进一步的改善了,有必要研究和开发新型的发动机气缸壁的加工方法。平台珩磨是国内新型的发动机气缸精加工方法,它能在气缸壁形成良好的表明网纹,使气缸壁在拥有较高的承载率的同时还具有较好的储油能力,大大提高发动机的性能。平台珩磨的表面微观轮廓如下图所示: 图一 2、珩磨的原理 珩磨是利用安装在珩磨头圆周上的多条油石,由张开机构将油石沿径向张开,使其压向工件孔壁,以便产生一定的面接触。同时使珩磨头旋转和往复运动,零件不动;或者珩磨头只作旋转运动,工件往复运动从而实现珩磨。 珩磨时,油石上的磨粒以一定的压力、较低的速度对工件表面进行磨削、挤压和刮擦。油石作旋转运动和上下往复运动,使油石上的磨粒在孔表面所形轨迹成为交叉而又不重复的网纹。与内孔磨削相比,珩磨参加切削的磨粒多,加在每粒磨粒上的切削力非常小,珩磨切速低,仅为砂轮磨削速度的几十份之一,在珩磨过程中又旋转加大量的冷却夜,使工件表面得到充分的冷却,不易烧伤,加工变形层薄,故能得到很理想的表面纹理。 珩磨头与机床采用浮动连接,这样能减

珩磨工艺原理

珩磨工艺原理 Prepared on 22 November 2020

珩磨工艺原理 一、珩磨工艺原理 珩磨是磨削加工的特殊形式,又是精加工中一种高效加工方法。这种工艺不仅能往除较大的加工余量(在50年代珩磨还是作为抛光用),而且是一种高精密零件尺寸、几何外形精度和表面粗糙度的有效加工方法。 (一)珩磨加工的特点: 1.加工精度高: 特别是一些中小型的光通孔,其圆柱度可达以内。一些壁厚不均匀的零件,如连杆,其圆度能达。对于大孔(孔径在200mm以内),圆度也可达,假如没有环槽或径向孔等,直线度在以内也是有可能的。珩磨比磨削加工精度高,磨削时支撑砂轮的轴承位于被珩孔之外,会产生偏差,特别是小孔加工,磨削比珩磨精度更差。珩磨一般只能改变被加工件的外形精度,要想改变零件的位置精度,需要采取一些必要的措施。如用面板改善零件端面与轴线的垂直度(面板安装在冲程臂上,调它与旋转主轴垂直,零件靠在面板上加工即可)。 表面为交叉网纹,有利于润滑油的存储及油膜的保持。有较高的表面支承率(孔与轴的实际接触面积与两者之间配合面积之比),因而能承受较大载荷,耐磨损,从而进步了产品的使用寿命。珩磨速度低(是磨削速度的几十分之一),且油石与孔是面接触,因此每一个磨粒的均匀磨削压力小,这样工件的发热量很小,工件表面几乎无热损伤和变质层,变形小。珩磨加工面几乎无嵌砂和挤压硬质层。磨削比珩磨切削压力大,磨具和工件是线接触,有较高的相对速度。因而会在局部区域产生高温,会导致零件表面结构的永久性破坏。 主要加工各种圆柱形孔:光通孔。轴向和径向有中断的孔,如有径向孔或槽的孔、键槽孔、花键孔。盲孔。多台阶孔等。另外,用专用珩磨头,还可加工圆锥孔,椭圆孔等,但由于珩磨头结构复杂,一般不用。用外圆珩磨工具可以珩磨圆柱体,但其往除的余量远远小于内圆珩磨的余量。几乎可以加工任何材料,特别是金刚石和立方氮化硼磨料的应用。同时也进步了珩磨加工的效率。 (二)珩磨加工原理: 1.珩磨是利用安装于珩磨头圆周上的一条或多条油石,由涨开机构(有旋转式和推进式两种)将油石沿径向涨开,使其压向工件孔壁,以便产生一定的面接触。同时使珩磨头旋转和往复运动,零件不动;或珩磨头只作旋转运动,工件往复运动,从而实现珩磨。 2.大多数情况下,珩磨头与机床主轴之间或珩磨头与工件夹具之间是浮动的。这样,加工时珩磨头以工件孔壁作导向。因而加工精度受机床本身精度的影响较小,孔表面的形成基本上具有创制过程的特点。所谓创制过程是油石和孔壁相互对研、互相修整而形成孔壁和油石表面。其原理类似两块平面运动的平板相互对研而形成平面的原理 珩磨时由于珩磨头旋转并往复运动或珩磨头旋转工件往复运动,使加工面形成交叉螺旋线切削轨迹,而且在每一往复行程时间内珩磨头的转数不是整数,因而两次行程间,珩磨头相对工件在周向错开一定角度,这样的运动使珩磨头上的每一个磨粒在孔壁上的运动轨迹不会重复。此外,珩磨头每转一转,油石

珩磨孔

二、珩磨孔 1.珩磨原理及珩磨头 珩磨是利用带有磨条(油石)的珩磨头对孔进行精整、光整加工的方法。珩磨时,工件固定不动,珩磨头由机床主轴带动旋转并作往复直线运动。在相对运动过程中,磨条以一定压力作用于工件表面,从工件表面上切除一层极薄的材料,其切削轨迹是交叉的网纹。为使砂条磨粒的运动轨迹不重复,珩磨头回转运动的每分钟转数与珩磨头每分钟往复行程数应互成质数。 2.珩磨的工艺特点及应用范围 1)珩磨能获得较高的尺寸精度和形状精度,加工精度为IT7~IT6级,孔的圆度和圆柱度误差可控制在3~5μm的范围之内,但珩磨不能提高被加工孔的位置精度。

2)珩磨能获得较高的表面质量,表面粗糙度Ra为0.2~0.025μm,表层金属的变质缺陷层深度极微(2.5~25μm)。 3)与磨削速度相比,珩磨头的圆周速度虽不高,但由于砂条与工件的接触面积大,往复速度相对较高,所以珩磨仍有较高的生产率。 珩磨在大批大量生产中广泛用于发动机缸孔及各种液压装置中精密孔的加工,孔径范围一般为φ15~500㎜或更大,并可加工长径比大于10的深孔。但珩磨不适用于加工塑性较大的有色金属工件上的孔,也不能加工带键槽的孔、花键孔等断续表面。 珩磨工艺(图) 作者:邦得资讯 | 来源:互联网 | 日期:2007-04-09 21:09 | 点击84 次 用镶嵌在珩磨头上的油石(也称珩磨条)对精加工表面进行的精整加工(见切削加工)。珩磨主要用于加工孔径为5~500毫米或更大的各种圆柱孔﹐如缸筒﹑阀孔﹑连杆孔和箱体孔等﹐孔深与孔径之比可达10﹐甚至更大。在一定条件下﹐珩磨也能加工外圆﹑平面﹑球面和齿面等。圆柱珩磨的表面粗糙度一般可达R0.32~0.08微米﹐精珩时可达R0.04微米以下﹐并能少量提高几何精度﹐加工精度可达IT7~4。平面珩磨的表面质量略差。 珩磨一般采用珩磨机﹐机床主轴与珩磨头一般是浮动联接﹔但为了提高纠正工件几何形状的能力﹐也可以用刚性联接。珩孔时﹐珩磨头外周一般镶有2~10根油石﹐由机床主轴带动在孔内旋转﹐并同时作直线往复运动﹐这是主运动﹔同时通过珩磨头中的弹簧或液压力控制油石均匀外涨﹐对被加工的孔壁作径向进给。图1 内圆珩磨示意图

金工实习报告车铣刨磨

如对您有帮助,请购买打赏,谢谢您! 第四周,我们的实习内容是铣刨磨。到了车间,老师把我们领到机器前。一台台外表已显岁月的机器,老师说这就是车床了。 铣床刨床磨床是金属切削机床中使用最广,生产历史最悠久,种类最多的一类机床。车床的种类型号很多,按其用途,结构可分为:仪表车床、卧式车床、单轴自动车床、多轴自动和半自动车床、转塔车床、立式车床、多刀半自动车床、专门化车床等。近年来,计算机技术被广泛运用到机床制造业,随之出现了数控车床、车削加工中心等机电一体化的产品。我们使用的是沈阳第一机床厂的普通车床。 首先,老师给我们讲解车床的工作原理。 铣床的工作原理很简单,主要用铣刀在工件上加工各种表面,通常铣刀旋转运动为主运动,工件(和)铣刀的移动为进给运动。它可以加工平面、沟槽,也可以加工各种曲面、齿轮等。铣床的种类很多,按其结构分主要有: (1)台式铣床:小型的用于铣削仪器、仪表等小型零件的铣床。 (2)悬臂式铣床:铣头装在悬臂上的铣床,床身水平布置,悬臂通常可沿床身一侧立柱导轨作垂直移动,铣头沿悬臂导轨移动。 (3)滑枕式铣床:主轴装在滑枕上的铣床,床身水平布置,滑枕可沿滑鞍导轨作横向移动,滑鞍可沿立柱导轨作垂直移动。 (4)龙门式铣床:床身水平布置,其两侧的立柱和连接梁构成门架的铣床。铣头装在横梁和立柱上,可沿其导轨移动。通常横梁可沿立柱导轨垂向移动,工作台可沿床身导轨纵向移动。用于大件加工。 (5)平面铣床:用于铣削平面和成型面的铣床,床身水平布置,通常工作台沿床身导轨纵向移动,主轴可轴向移动。它结构简单,生产效率高。 (6)仿形铣床:对工件进行仿形加工的铣床。一般用于加工复杂形状工件。 (7)升降台铣床:具有可沿床身导轨垂直移动的升降台的铣床,通常安装在升降台上的工作台和滑鞍可分别作纵向、横向移动。 (8)摇臂铣床:摇臂装在床身顶部,铣头装在摇臂一端,摇臂可在水平面内回转和移动,铣头能在摇臂的端面上回转一定角度的铣床。 (9)床身式铣床:工作台不能升降,可沿床身导轨作纵向移动,铣头或立柱可作垂直移动的铣床。 (10)专用铣床:例如工具铣床:用于铣削工具模具的铣床,加工精度高,加工形状复杂。 磨床是指用磨具或磨料加工工件各种表面的机床。一般用于对零件淬硬表面做磨削加工。通常,磨具旋转为主运动,工件或磨具的移动为进给运动,其应用广泛、加工精度高、表面粗糙度Ra值小,磨床可分为十余种: (1)外圆磨床:是普通型的基型系列,主要用于磨削圆柱形和圆锥形外表面的磨床。 (2)内圆磨床:是普通型的基型系列,主要用于磨削圆柱形和圆锥形内表面的磨床。 (3)座标磨床:具有精密座标定位装置的内圆磨床。 (4)无心磨床:工件采用无心夹持,一般支承在导轮和托架之间,由导轮驱动工件旋转,主要用于磨削圆柱形表面的磨床。 (5)平面磨床:主要用于磨削工件平面的磨床。 (6)砂带磨床:用快速运动的砂带进行磨削的磨床。 (7)珩磨机:用于珩磨工件各种表面的磨床。 (8)研磨机:用于研磨工件平面或圆柱形内,外表面的磨床。 (9)导轨磨床:主要用于磨削机床导轨面的磨床。 (10)工具磨床:用于磨削工具的磨床。 (11)多用磨床:用于磨削圆柱、圆锥形内、外表面或平面,并能用随动装置及附件磨削

格林珩磨机的珩磨头涨刀机构浅析

格林格林缸缸孔珩磨珩磨机的珩磨头机的珩磨头机的珩磨头涨刀机构涨刀机构涨刀机构浅浅析 一、引言 汽车发动机缸体的缸孔表面粗糙度要低,缸孔尺寸精度要高,形状精度和位置精度要好。为保证缸孔能满足此要求,迫切需要良好可靠的缸孔精加工手段。近年来,平台网纹珩磨在发动机缸体缸孔精加工中获得了越来越广泛地应用,珩磨机无疑成为缸体加工中的关键设备,而珩磨头的涨刀机构是珩磨机的重要部件,为了大家更好的理解珩磨技术及设备,下面就以Z4-600-125型格林珩磨机为例,对缸孔珩磨机的涨刀机构及涨刀液压控制进行简单地分析介绍。 二、概述 Z4-600-125型格林珩磨机对缸体的缸孔进行粗、精珩,精珩包括基础珩和平台珩,粗珩是为了消除前工序的加工痕迹,提高孔的形状精度,降低孔的表面粗糙度,为精珩做好准备。基础珩则进一步提高孔的尺寸精度、形状精度、降低表面粗糙度,并在缸孔表面形成均匀的交叉网纹。平台珩则去掉表面波峰形成平台即可,加工余量较小。粗、精珩工位各有两个珩磨头,对两个缸孔同时进行珩磨加工。粗珩的涨刀机构由伺服电机驱动;精珩涨刀机构由液压驱动。精珩磨头为双涨珩磨结构,即基础珩的珩磨条与平台珩的珩磨条两两相间安装在同一珩磨头上,由两套涨刀机构分别实现涨刀,先进行缸孔的基础珩,基础珩的油石涨出并开始珩磨,然后,平台珩磨的油石再涨出,进行平台珩磨。由于缸孔的基础珩磨和平台珩磨一次安装定位完成,避免了重复定位误差,确保了珩磨精度。 三、粗珩粗珩的珩的珩的珩磨头涨刀结构磨头涨刀结构

伺服电机通过齿轮1、齿轮2、齿轮3带动螺纹套旋转运动,而螺纹杆端部有限位键,使螺纹杆不能旋转,只能沿键槽上、下移动,从而带动涨刀轴上、下移动,即实现涨刀动作(见图1)。 四、基础珩与平台珩涨刀结构 图1 1、齿轮1 2、伺服电机 3、珩磨头上下往复运动驱动油缸 4、齿轮3 5、限位键 6、键槽 7、涨刀轴 8、螺纹杆 9、螺纹套 10、齿轮2 1 10 4 9 8 5 6 2 7 3

相关文档