文档库 最新最全的文档下载
当前位置:文档库 › 高中物理知识全解5.1原子结构

高中物理知识全解5.1原子结构

高中物理知识全解5.1原子结构
高中物理知识全解5.1原子结构

高中物理知识全解5.1原子结构

一:电子的发明

早在1858年,德国物理学家普吕克尔利用低压气体放电管研究气体放电时看到了玻璃壁上淡淡的荧光及管中物体在玻璃壁上的影。

1876年德国物理学家戈德斯坦认为管壁上的荧光是由于玻璃受到阴极发出的某种射线的撞击而引起的,并把这种射线命名为阴极射线。

19世纪后期,对阴极射线的本质的认识有两种观点:一种认为阴极射线像X 射线一样是电磁辐射,另一种认为阴极射线是带电微粒。

英国物理学家J.J.汤姆孙自1890年起开始对阴极射线进行了一系列的实验研究。他认为阴极射线是带电粒子流。〔闻名实验:气体放电管实验〕

1897年,汤姆孙依照阴极射线在电场和磁场中的偏转情况断定它的本质是带负电的粒子流并求出了这种粒子的比荷。

当汤姆孙在测定比荷实验时发明,用不同材料的阴极做实验,所发出射线的粒子都有相同的比荷,这说明不同物质都能发射这种带电粒子,它是构成各种物质的共有成分。由实验测得阴极射线的比荷约为质子〔氢离子〕比荷的近2000倍。他认为这可能表示阴极射线粒子电荷量的大小与一个氢离子一样,而质量比氢离子小得多。后来汤姆孙测得了这种粒子的电荷量与氢离子电荷量大致相同,由此能够看出他当初的猜测是正确的。后来阴极射线的粒子被称为电子。

进一步拓展研究对象:用不同的材料做成的阴极做实验,做光电效应实验、热离子发射效应实验、β射线〔研究对象普遍化〕等。他发明这些实验都能发射同样的带电粒子〔电子〕。这种带电粒子的质量只比最轻原子的质量的两千分之一稍多一点。由此可见电子是原子的组成部分,是比原子更差不多的物质单元。

由于电子特别小,当时的测量手段有限,美国科学家密立根通过“油滴实验”精确地测定了电子的电量,密立根实验更重要的发明是:电荷是量子化的,即任何带电体的电荷只能是e 的整数倍。

例:一个物体带91.610C -?的正电荷,这是它失去了10

10个电子的缘故。

注意:电子电荷的现代值为:

191.60217733(49)10e C -=-?,从实验测得到的电子比荷及e 的数值,能够确定电子的质量:319.109389710e m kg -=?,质子质量与电子质量的比值为:1836p

e m m =

二:原子结构模型的进展

①道尔顿模型

1808年,英国自然科学家约翰·道尔顿提出了世界上第一个原子的理论模型。他的理论要

紧有以下三点:1、原子基本上不能再分的粒子;2、同种元素的原子的各种性质和质量都相同;3、原子是微小的实心球体。

②汤姆生模型

1898年,英国物理学家汤姆生提出“枣糕模型”或“西瓜模型”,是第一个存在着亚原子结构的原子模型。他的理论要紧有以下二点:1、电子是平均地分布在整个原子上的,就如同散布在一个均匀的正电荷的海洋之中,它们的负电荷与那些正电荷相互抵消;2、在受到激发时,电子会离开原子,产生阴极射线。

③卢瑟福模型

1909年,英籍物理学家卢瑟福指导他的学生盖革和马斯顿进行了α粒子散射实验。实验过程:在一个铅盒里放有少量的放射性元素钋(Po),它发出的α射线从铅盒的小孔射出,形成一束特别细的射线射到金箔上。当α粒子穿过金箔后,射到荧光屏上产生一个个的闪光点,这些闪光点可用显微镜来观看。为了幸免α粒子和空气中的原子碰撞而妨碍实验结果,整个装置放在一个抽成真空的容器内,带有荧光屏的显微镜能够围绕金箔在一个圆周上移动。

实验现象:绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数α粒子发生了较大的偏转,并有极少数α粒子的偏转超过90°,有的甚至几乎达到180°而被反弹回来,这确实是α粒子的散射现象。

1、由不同元素对α粒子散射的实验数据能够确定各种元素原子核的电荷量Q ,由于原子是电中性的,因此能够推算出原子内含有的电子数。

2、α粒子散射实验是可能核半径的最简单的方法。关于一般的原子核,实验确定的核半径R 的数量级为1510m -,而整个原子半径的数量级是1010m -米,两者相差十万倍之多。可见原子内部是十分“空旷”的。

1911年,卢瑟福通过对α粒子散射实验数据及现象的分析,提出了自己的原子结构模型“核式结构模型”,他的理论要紧有以下三点:

I 、原子的大部分体积是空的。

II 、在原子的中心有一个特别小的原子核。

III 、原子的全部正电荷在原子核内,且几乎全部质量均集中在原子核内部。带负电的电子在核外空间进行绕核运动。

注意:在α粒子散射实验中,不考虑α粒子和电子的碰撞妨碍,是因为α粒子和电子因碰撞而损失的能量极少,可忽略不计。

④波尔模型

1、氢原子光谱

光谱:复色光通过色散系统〔如棱镜、光栅〕分光后,被色散开的单色光按波长〔或频率〕大小而依次排列的图案,全称为光学频谱。

I 、可见光谱:可见光谱是电磁波谱中人眼可见的一部分,在那个波长范围内的电磁辐射被称作可见光。

II 、线状光谱:光谱为一条条分立的亮线。

III 、连续光谱:光谱为连在一起的光带。

IV 、暗线光谱〔吸收光谱〕:具有连续谱的光波通过物质样品时,处于基态的样品原子或分子将吸收特定波长的光而跃迁到激发态,因此在连续谱的背景上出现相应的暗线或暗带组成的线光谱,称为暗线光谱。

例:甲物质发出的白光通过乙物质的蒸气形成的是乙物质的吸收光谱。

V 、明线光谱:稀薄气体发光的光谱是由不连续的亮线组成,这种发射光谱又叫做明线光谱。 应用举例:各种原子的发射光谱基本上线状谱,说明原子只发射几种特定频率的光。不同原子的亮线位置不同,说明不同原子的发光频率是不一样的,因此这些亮线被称作原子的特征谱线。既然每种原子都有自己的特征谱线,我们能够利用它来鉴别物质和确定物质组成成分。〔同理理解吸收光谱中的暗线也是原子的特征谱线〕

2、氢原子光谱的实验规律

从氢气放电管能够获得氢原子光谱,实验结果说明:氢原子光谱是线状谱,说明氢原子发光的频率是不连续的,对应的波长也是分立的值。

1885年,巴耳末对当时的,在可见光区的四条谱线做了分析,发明这些谱线的波长能够用一个公式表示,那个公式称为巴耳末公式,能够写作:

221

11R 2n λ=-()345n =,,,……〔波数:1νλ=〕

I 、式中R 叫做里德伯常数,71R .1m -?=1010,式中n 只能取整数,不能连续取值,波长也

只会对应分立的值。

II 、氢原子是最简单的原子,因此氢原子光谱也是最简单的原子光谱。 【例题】由巴耳末公式221

11R 2n λ=-()能够得出〔〕

A 、巴耳末系是氢原子光谱中含有可见光的一条线系。

B 、n 的无穷取值,决定着光谱有许多条明线。

C 、波长越大的波对应的量子数n 越大。

D 、量子数n 越大,光的频率越小。

答案:AB

【例题】依照巴耳末公式,指出氢原子光谱中巴耳末系的最短波长和最长波长所对应的n 值,并计算出这两个波长。

解:在巴耳末线系中,当n 取∞时对应的波长最短,设最短波长为min λ

2min 1

1R 02λ=-(),解得:7min 3.6410364m nm λ-=?=

当n=3时对应的波长最长,设最长波长为

max λ 22max 111R 23λ=-(),解得:7max 6.5510655m nm λ-=?=

【例题】在氢原子光谱中。电子从较高能级跃迁到n=2能级发出的谱线属于巴耳末线系。假设一群氢原子自发跃迁时发出的谱线中只有2条属于巴耳末线系,求这群氢原子自发跃迁时最多可发出几条不同频率的谱线?

3、经典理论的困难

I 、不能解释原子结构的稳定性。

依照经典电磁波理论,电子绕核做圆周运动,将会不断地向外辐射电磁波,电子的能量会越来越小,半径r 也会越来越小,电子最终会碰到原子核。而事实原子是个特别稳定的系统。 II 、不能解释原子光谱为分立的线状谱

依照经典电磁波理论,辐射电磁波的频率与电子圆周运动的频率是相同的,r 连续减小,因此向外辐射的电磁波频率也应该是连续的,而实验得出原子发射光谱是分立的线状谱。

4、波尔原子理论

1913年,波尔提出自己的原子结构模型即波尔模型,成功解释了氢原子光谱的规律性。玻尔原子结构模型的差不多观点如下:

I 、电子的轨道是量子化的:原子中的电子在具有确定半径的圆周轨道上绕原子核运动,不辐射能量。

∴解释了原子什么原因是稳定的。

II 、定态:当电子在不同的轨道上运动时,原子处于不同的状态。原子在不同的状态中具有不同的能量,因此原子的能量是量子化的,这些量子化的能量值叫做能级。原子中这些具有确定能量的稳定状态,称为定态。

〔1〕能量最低的状态叫基态〔即n=1〕,通常情况下原子处于基态,基态是最稳定的。其它的状态叫做激发态【即n=2,3,4,……〔其中n=2为第一激发态〕】,处于激发态的原子是不稳定的,会自发地向能量较低的能级跃迁,放出光子,最终回到基态。

〔2〕轨道用n=1,2,3,……来标志〔n 称为量子数〕,能级用123,,,E E E ……来标志。 〔3〕能级,基态和激发态基本上相对原子而言的,定态轨道是相对电子而言的。 III 、频率条件:当电子从能量较高的定态轨道〔其能量记为

m E 〕跃迁到能量较低的定态轨道〔其能量记为n E ,m n >〕时,会放出能量为h ν的光子〔h 是普朗克常量〕,那个光

子的能量由前后两个能级的能量差决定,即:

m n h E E ν=-

∴解释了什么原因原子发射光谱是分立的线状光谱

拓展:结合数学知识可知电子从定态轨道m 向定态轨道n 跃迁〔m>n 〕,能发射

21m n C -+种不同频率的光。

例:如下图为氢原子能级图,电子从定态轨道5向定态轨道2跃迁能产生

25216C -+=种不同

频率的光。

【例题】光子能量为E 的一束单色光照射到容器中的氢气上,氢原子吸收光子能量后处于激

发态,并能发射光子、现测得该氢气发射的光子共有3种,其频率分别为ν1、

ν2、ν3,且ν1>ν2>ν3,那么入射光光子的能量E 值是(设普朗克常量为

h)()

A 、h(ν1+ν2+ν3)

B 、h(ν2+ν3)

C 、h ν1

D 、h ν3

解析:因为这些氢气发射出的光子只有3种可能频率,因此它们必定处在第三能级上,如下图,向下的箭头表示三种可能的跃迁、结合玻尔对氢原子发光的解

拓展:反之,当电子吸收光子时会从能量较低的定态轨道跃迁到能量较高的定态轨道,而吸收的光子的能量同样由频率条件决定。

拓展:当电子远离原子核,不再受原子核的吸引力的状态叫做电离态,电离态的能级为0。 拓展:由于光子的能量是一份一份的,用大量光子轰击氢原子,光子的能量必须刚好等于氢原子两能级之差,如此光子才能被氢原子吸收发生能级跃迁,这由光子本身性质决定。而用大量电子去轰击氢原子,电子的能量能够只有一部分被氢原子吸收〔即碰撞〕,电子能够留下一部分能量,也确实是电子的能量只需大于氢原子两能级之差,就能使氢原子发生能级跃迁。【假如光子或电子的能量大于处于基态的氢原子的能量,那么用大量该种光子或电子轰击氢原子那么能使氢原子电离】

【例题】用大量具有一定能量的电子轰击大量处于基态的

氢原子,观测到了一定数目的光谱线。调高电子的能量再

次进行观测,发明光谱线的数目比原来增加了5条。用△n

表示两次观测中最高激发态的量子数n 之差,E 表示调高后

电子的能量。依照氢原子

的能级图能够判断,△n 和E 的可能值为:〔〕

A 、△n =1,13.22eV <E <13.32eV

B 、△n =2,13.22eV <E <13.32eV

C 、△n =1,12.75eV <E <13.06eV

D 、△n =2,12.75eV <

E <13.06eV

答案:AD

【例题】能量为Ei 的光子照射基态氢原子,刚好可使该原子中的电子成为自由电子,这一能量Ei 称为氢的电离能、现用一频率为ν的光子从基态氢原子中击出了一电子,该电子在远离核以后速度的大小为________(用光子频率ν、电子质量m 、氢的电离能Ei 与普朗克常量h 表示)

解:212i m h E υνυ=-?=

注意:在波尔原子理论中,电子的绕核运动除轨道量子化外,其它性质与万有引力中行星绕中心天体的运动具有相似的性质,有关电子定态轨道跃迁后的各物理量变化情况可由万有引力中行星绕中心天体的运动同理理解求解。

拓展:在波尔原子理论中:以无穷远为零电势,电子的绕核运动有以下公式和性质* 电子的电势能

Q p e

E q k

r ?=?=- 电子的动能222Q Q 122k e e k m E m k r

r r υυ=?== 原子的能级Q Q Q 22p k e e e E E E k k k r r r =+=-+=-〔解释了原子能级什么原因为负值〕 波尔原子理论的有用公式:21112n n n r n r n E E n υυ??=??=???=??

⑤现代模型〔电子云模型〕

波尔的原子理论成功地解释了氢原子光谱的实验规律,但对略微复杂一点的原子如氦原子,波尔理论就无法解释它的光谱现象。这说明波尔理论还没有完全揭示微观粒子的运动规律。它的不足之处在于保留了经典粒子的观念,把电子的运动仍看做经典力学描述下的轨道运动。

实际上,原子中的电子的坐标没有确定的值,因此,我们只能说某时刻电子在某点附近单位体积内出现的概率是多少,而不能把电子的运动看做一个具有确定坐标的质点的轨道运动。 20世纪20年代以来,现代模型〔电子云模型〕:当原子处于不同的状态时,电子在各处出现的概率是不一样的。假如用疏密不同的点子表示电子在各个位置出现的概率,画出图来,就像云雾一样,能够形象地称作电子云。

高中物理-《原子结构》单元测试题

高中物理-《原子结构》单元测试题 一、选择题 1.卢瑟福粒子散射实验的结果是 A.证明了质子的存在 B.证明了原子核是由质子和中子组成的 C.说明了原子的全部正电荷和几乎全部质量都集中在一个很小的核上 D.说明原子中的电子只能在某些不连续的轨道上运动 2.英国物理学家卢瑟福用α粒子轰击金箔,发现了α粒子的散射现象。图中O 表示金原子核的位置,则能正确表示该实验中经过金原子核附近的α粒子的运动轨迹的图是( ) 3.氢原子辐射出一个光子后,根据玻尔理论,下述说法中正确的是( ) A.电子绕核旋转的半径增大B.氢原子的能量增大 C.氢原子的电势能增大D.氢原子核外电子的速率增大 4.下列氢原子的线系中波长最短波进行比较,其值最大的是 ( ) A.巴耳末系B.莱曼系C.帕邢系D.布喇开系 5.关于光谱的产生,下列说法正确的是( ) A.正常发光的霓虹灯属稀薄气体发光,产生的是明线光谱 B.白光通过某种温度较低的蒸气后将产生吸收光谱 C.撒上食盐的酒精灯火焰发出的光是明线光谱 D.炽热高压气体发光产生的是明线光谱 6.仔细观察氢原子的光谱,发现它只有几条分离的不连续的亮线,其原因是( ) A.观察时氢原子有时发光,有时不发光 B.氢原子只能发出平行光 C.氢原子辐射的光子的能量是不连续的,所以对应的光的频率也是不连续的 D.氢原子发出的光互相干涉的结果 7.氢原子第三能级的能量为 ( ) A.-13.6eV B.-10.2eV C.-3.4eV D.-1.51eV 8.下列叙述中,符合玻尔氢原子的理论的是

1 2 3 4 5 ∞ ( ) A .电子的可能轨道的分布只能是不连续的 B .大量原子发光的光谱应该是包含一切频率的连续光谱 C .电子绕核做加速运动,不向外辐射能量 D .与地球附近的人造卫星相似,绕核运行,电子的轨道半径也要逐渐减小 9.氦原子被电离一个核外电子后,形成类氢结构的氦离子。已知基态的氦离子能量为E 1=-54.4 eV,氦离子能级的示意图如图所示。在具有下列能量的光子中,不能被基态氦离子吸收而发生跃迁的是 ( ) A .40.8 eV B .43.2 eV C .51.0 eV D .54.4 eV 10.μ子与氢原子核(质子)构成的原子称为μ氢原子,它在原子核物理的研究中有重要作用。图为μ氢原子的能级示意图。假定光子能量为E 的一束光照射容器中大量处于n =2能级的μ氢原子,μ氢原子吸收光子后,发出频率为ν1、ν2、ν3、ν4、ν5和ν6的光,且频率依次增 大 , 则E 等 于 ( ) A .h (ν3-ν1) B .h (ν5+ν6) C .h ν3 D .h ν4 11.已知氢原子基态能量为-13.6eV,下列说法中正确的有 ( ) A .用波长为600nm 的光照射时,可使稳定的氢原子电离 B .用光子能量为10.2eV 的光照射时,可能使处于基态的氢原子电离 C .氢原子可能向外辐射出11eV 的光子 D .氢原子可能吸收能量为1.89eV 的光子 12.红宝石激光器的工作物质红宝石含有铬离子的三氧化二铝晶体,利用其中的铬离子产生激光。铬离子的能级如图所示,E 1是基态,E 2是亚稳态,E 3是激发态,若以脉冲氙灯发出波长为λ1的绿光照射晶体,处于基态的铬离子受激发跃迁到E 3,然后自发跃迁到E 2,释放波长为λ2的光子,处于亚稳态E 2的离子跃迁到基态时辐射出的光就是激光,这种激光的波长为( ) A .122 1λλλλ- B .2121λλλλ- C .2121λλλλ- D .2 11 2λλλλ-

高中物理基础知识和基本公式总结

高中物理基础知识和基本公式总结 力学部分 一、高中阶段常见的几种力 1.重力 : G = mg (g 随高度、纬度而变化) 方向:竖直向下 2.弹力: 产生条件:两个物体接触并发生形变 常见的几种弹力: (1)压力、支持力:方向与支持面垂直 (2)细线的拉力:方向沿着绳 (3)弹簧力:F = kx (k-弹簧的劲度系数、x —弹簧的形变量) ——胡克定律 (4)杆的弹力:大小和方向需结合物体的运动状态由力的平衡条件或牛顿第二定律确定。 3.摩擦力: 滑: f =μ N 方向:与物体相对运动方向相反 静:大小: 0< f ≤ f m 方向:与物体相对运动趋势方向相反 大小、方向一般需由力的平衡条件或牛顿第二定律计算确定。 最大静摩擦力f m :一方面指明了静摩擦力变化的范围,另一方面也指明了使静止的物体运动起来所需的最小作用力。 说明: a 、摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一定夹角。 b 、摩擦力可以作正功,也可以作负功,还可以不作功。 c 、静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作用。 4.万有引力: F = G m 1 m 2 r 2 ——万有引力定律(适用于两个质点或均匀球体) 5.库仑力: F = k q 1q 2 r 2 (库仑定律——真空中两个点电荷之间的相互作用力) 6.电场力: F = q E 方向:+q 的受力方向与电场方向相同 -q 的受力方向与电场方向相反 7.安培力 : I ∥B 时 F = 0 I ⊥B 时 F = BIL 方向:F 与B 、I 垂直,由左手定则判断 8.洛仑兹力: v = 0或v ∥B 时 f = 0 v ⊥B 时 f = Bqv 方向;f 与B 、v 垂直,+q 所受f 的方向由左手定则判断,-q 所受f 的方向与+q 相反。 注意:洛仑兹力对带电粒子不做功。 二、基本的运动模型 1. 匀速直线运动: v 不变 s = vt a=0 2. 匀变速直线运动:v 均匀变化 a 不变 (1)基本公式: v = v 0 + at

高中物理重要知识点详细全总结(史上最全)

【精品文档,百度专属】完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 高 中 物 理 重 要 知 识 点 总 结 (史上最全)

高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡 1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是由于地球对物体的吸引而产生的. [注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,可以认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静

(完整版)高中物理知识点清单(非常详细)

高中物理知识点清单 第一章 运动的描述 第一节 描述运动的基本概念 一、质点、参考系 1.质点:用来代替物体的有质量的点.它是一种理想化模型. 2.参考系:为了研究物体的运动而选定用来作为参考的物体.参考系可以任意选取.通常以地面或相对于地面不动的物体为参考系来研究物体的运动. 二、位移和速度 1.位移和路程 (1)位移:描述物体位置的变化,用从初位置指向末位置的有向线段表示,是矢量. (2)路程是物体运动路径的长度,是标量. 2.速度 (1)平均速度:在变速运动中,物体在某段时间内的位移与发生这段位移所用时间的比值,即v =x t ,是矢量. (2)瞬时速度:运动物体在某一时刻(或某一位置)的速度,是矢量. 3.速率和平均速率 (1)速率:瞬时速度的大小,是标量. (2)平均速率:路程与时间的比值,不一定等于平均速度的大小. 三、加速度 1.定义式:a =Δv Δt ;单位是m/s 2 . 2.物理意义:描述速度变化的快慢. 3.方向:与速度变化的方向相同. 考点一 对质点模型的理解 1.质点是一种理想化的物理模型,实际并不存在. 2.物体能否被看做质点是由所研究问题的性质决定的,并非依据物体自身大小来判断. 3.物体可被看做质点主要有三种情况: (1)多数情况下,平动的物体可看做质点. (2)当问题所涉及的空间位移远大于物体本身的大小时,可以看做质点. (3)有转动但转动可以忽略时,可把物体看做质点. 考点二 平均速度和瞬时速度 1.平均速度与瞬时速度的区别 平均速度与位移和时间有关,表示物体在某段位移或某段时间内的平均快慢程度;瞬时速度与位置或时刻有关,表示物体在某一位置或某一时刻的快慢程度. 2.平均速度与瞬时速度的联系 (1)瞬时速度是运动时间Δt →0时的平均速度. (2)对于匀速直线运动,瞬时速度与平均速度相等. 考点三 速度、速度变化量和加速度的关系

高中物理重要知识点详细全总结(史上最全)

完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 物 理 重 要 知 识 点 总 结 (史上最全) 高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡

1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是因为地球对物体的吸引而产生的. [注意]重力是因为地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,能够认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:因为发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素相关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存有压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向能够相同也能够相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向. ②平衡法:根据二力平衡条件能够判断静摩擦力的方向. (4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解. ①滑动摩擦力大小:利用公式f=μF N实行计算,其中F N是物体的正压力,不一

高中物理知识点汇编概念重点

第四章 电磁感应 §4.1划时代的发现 §4.2探究感应电流的产生条件 1、了解奥斯特梦圆“电生磁”的发展史及其实验内容。 2、了解法拉第“磁生电”的发展史相关内容。 3、掌握并理解感应电流产生的条件: ①闭合电路;②磁通量发生变化。 §4.3楞次定律 1、掌握并理解楞次定律的内容和应用: 理解1:感应电流的磁场总是阻碍引起感应电流的磁通量的变化。即:“增反减同” 理解2:感应电流的效果总是要反抗产生感应电流的原因。即从运动的角度看“来拒去留”,从磁能量变化看,会使线圈产生形变。 应用:楞次定律的判定步骤: (1)明确原磁场的方向; (2)明确穿过闭合回路的磁通量是增加还是减少; (3)根据楞次定律,判定感应电流的磁场方向; (4)利用安培定则判定感应电流的方向。 2、熟练掌握并应用感应电流方向的判定。 3、感应电动势方向的判定: 当电路不闭合时,通过回路的磁通量发生改变时,电路中无感应电流,但有感应电动势。 感应电动势的方向与感应电流的方向一致,判定其方向①磁通量变化类用楞次定律;②切割用右手定则。 §4.4法拉第电磁感应定律 1、理解t φ φφ???、、 的含义及区别 2、掌握并理解法拉第电磁感应定律。 =n E t φ?? 注:①若 t φ??是恒定的,则E 是稳恒的,若t φ??变化,则感应电动势也是变化的 ② t φ ??是磁通量的变化率,即磁通量的变化快慢,t φ ?? 在t φ-图上为图线上某点的斜率。 ③当Δt 较长时,E 为平均感应电动势,因此这段时间内通过导体的电荷量为:E q I t t n R R φ ?=?=?=总总 3、平动切割感应电动势的计算: ①当B 、L 、v 相互垂直时:E=BLv ②当B 、I 、L 不垂直时: 【右上图】 注:高中阶段,对不垂直情况只要求做定性了解。 4、转动切割感应电动势的计算: 21 =BL = BL 2 E v ω中 注:感应电动势的方向可用右手定则确定 §4.5电磁感应规律的应用 1、了解感应电动的按产生的原因分可分为哪两种 2、掌握动生电动势的非静电力由什么提供: 注:动生电动势的非静电力是f 洛的一个分力;f 洛 永不做功。 3、掌握感生电动势的非静电力由什么提供: 如图所示,当B 减小时,在其周围空间会产生环形的感生电场,如果有电荷在此,则电荷将受感生电场力的作用而发生移动,形成感应电流,因此: 感生电动势的非静电力为感生电场力。 §4.6互感和自感 1、掌握自感和互感产生的原因 2、了解影响自感电动势大小的因素: I =L E t ?? v 与I 不垂直 ε =BL V ⊥ =BLVcos θ v 与 B 不垂直 F=BL V ⊥ =BLVsin θ I V V ⊥ V B O 杆 V 合 f f

高中物理选修3-5玻尔的原子模型教案课程设计

第十八章原子结构 新课标要求 1.内容标准 (1)了解人类探索原子结构的历史以及有关经典实验。 例1 用录像片或计算机模拟,演示α粒子散射实验。 (2)通过对氢原子光谱的分析,了解原子的能级结构。 例2 了解光谱分析在科学技术中的应用。 2.活动建议 观看有关原子结构的科普影片。 新课程学习 18.4 玻尔的原子模型 ★新课标要求 (一)知识与技能 1.了解玻尔原子理论的主要内容。 2.了解能级、能量量子化以及基态、激发态的概念。 (二)过程与方法 通过玻尔理论的学习,进一步了解氢光谱的产生。 (三)情感、态度与价值观 培养我们对科学的探究精神,养成独立自主、勇于创新的精神。 ★教学重点 玻尔原子理论的基本假设。 ★教学难点 玻尔理论对氢光谱的解释。 ★教学方法

教师启发、引导,学生讨论、交流。 ★教学用具: 投影片,多媒体辅助教学设备 ★课时安排 1 课时 ★教学过程 (一)引入新课 复习提问: 1.α粒子散射实验的现象是什么? 2.原子核式结构学说的内容是什么? 3.卢瑟福原子核式结构学说与经典电磁理论的矛盾 教师:为了解决上述矛盾,丹麦物理学家玻尔,在1913年提出了自己的原子结构假说。 (二)进行新课 1.玻尔的原子理论 (1)能级(定态)假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。这些状态叫定态。(本假设是针对原子稳定性提出的)(2)跃迁假设:原子从一种定态(设能量为E n )跃迁到另一种定态(设能量为E m )时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即 n m E E h -=ν(h 为普朗克恒量) (本假设针对线状谱提出) (3)轨道量子化假设:原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应。原子的定态是不连续的,因此电子的可能轨道的分布也是不连续的。(针对原子核式模型提出,是能级假设的补充)2.玻尔根据经典电磁理论和牛顿力学计算出氢原子的电子的各条可

高中物理知识点汇总

高考物理基本知识点汇总 一. 教学内容: 知识点总结 1. 摩擦力方向:与相对运动方向相反,或与相对运动趋势方向相反 静摩擦力:0gR 注意:若到最高点速度从零开始增加,杆对球的作用力先减小后变大。 3. 传动装置中,特点是:同轴上各点ω相同,A ω=C ω,轮上边缘各点v 相同,v A =v B 4. 同步地球卫星特点是:①_______________,②______________ ①卫星的运行周期与地球的自转周期相同,角速度也相同; ②卫星轨道平面必定与地球赤道平面重合,卫星定点在赤道上空36000km 处,运行速度3.1km/s 。 5. 万有引力定律:万有引力常量首先由什么实验测出:F =G 2 2 1r m m ,卡文迪许扭秤实验。 6. 重力加速度随高度变化关系: 'g =GM/r 2

说明:为某位置到星体中心的距离。某星体表面的重力加速度。 r g G M R 02 = g g R R h R h ' () = +2 2 ——某星体半径为某位置到星体表面的距离 7. 地球表面物体受重力加速度随纬度变化关系:在赤道上重力加速度较小,在两极,重力加速度较大。 8. 人造地球卫星环绕运动的环绕速度、周期、向心加速度'g =2 r GM 、r mv r GMm 2 2 = 、v = r GM 、 r mv r GMm 2 2 = =m ω2R =m (2π/T )2R 当r 增大,v 变小;当r =R ,为第一宇宙速度v 1=r GM =gR gR 2 =GM 应用:地球同步通讯卫星、知道宇宙速度的概念 9. 平抛运动特点: ①水平方向______________ ②竖直方向____________________ ③合运动______________________ ④应用:闪光照 ⑤建立空间关系即两个矢量三角形的分解:速度分解、位移分解 相位,求?y t x y t gT v S T v x v t v v y gt v gt S v t g t v v g t tg gt v tg gt v tg tg == =====+=+== =2 0002 02 2 24 0222 00 1214 21 2αθα θ ⑥在任何两个时刻的速度变化量为△v =g △t ,△p =mgt ⑦v 的反向延长线交于x 轴上的x 2处,在电场中也有应用 10. 从倾角为α的斜面上A 点以速度v 0平抛的小球,落到了斜面上的B 点,求:S AB

最详细的高中物理知识点总结(最全版)

高中物理知识点总结(经典版)

第一章、力 一、力F:物体对物体的作用。 1、单位:牛(N) 2、力的三要素:大小、方向、作用点。 3、物体间力的作用是相互的。即作用力与反作用力,但它们不在同一物体上,不是平衡力。作用力与 反作用力是同性质的力,有同时性。 二、力的分类: 1、按按性质分:重力G、弹力N、摩擦力f 按效果分:压力、支持力、动力、阻力、向心力、回复力。 按研究对象分:外力、内力。 2、重力G:由于受地球吸引而产生,竖直向下。G=mg 重心的位置与物体的质量分布与形状有关。质量均匀、形状规则的物体重心在几何中心上,不一定在物体上。 弹力:由于接触形变而产生,与形变方向相反或垂直接触面。F=k×Δx 摩擦力f:阻碍相对运动的力,方向与相对运动方向相反。 滑动摩擦力:f=μN(N不是G,μ表示接触面的粗糙程度,只与材料有关,与重力、压力无关。) 相同条件下,滚动摩擦<滑动摩擦。 静摩擦力:用二力平衡来计算。 用一水平力推一静止的物体并使它匀速直线运动,推力F与摩擦力f的关系如图所示。 力的合成与分解:遵循平行四边形定则。以分力F1、F2为邻边作平行四边形,合力F的大小和方向可用这两个邻边之间的对角线表示。 |F1-F2|≤F合≤F1+F2 F合2=F12+F22+ 2F1F2cosQ 平动平衡:共点力使物体保持匀速直线运动状态或静止状态。 解题方法:先受力分析,然后根据题意建立坐标 系,将不在坐标系上的力分解。如受力在三个以 内,可用力的合成。 利用平衡力来解题。 F x合力=0 F y合力=0 注:已知一个合力的大小与方向,当一个分力的 方向确定,另一个分力与这个分力垂直是最小 值。 转动平衡:物体保持静止或匀速转动状态。 解题方法:先受力分析,然后作出对应力的力臂(最长力臂是指转轴到力的作用点的直线距离)。分析正、负力矩。 利用力矩来解题:M合力矩=FL合力矩=0 或M正力矩= M负力矩 第二章、直线运动

高中物理-原子结构章末复习

高中物理-原子结构章末复习 【知识网络梳理】 【知识要点与方法指导】 一、重点、难点、方法 1.原子核式结构的提出与α粒子散射实验的关系 卢瑟福设计的α粒子散射实验是为了探究原子内电荷的分布,并非为了验证汤姆孙模型的正与误,他在做了α粒子散射实验后,根据实验现象的分析提出了原子的“核式结构”模型。 2.对氢原子能级跃迁的理解 (1)原子从低能级向高能级跃迁:吸收一定能量的光子,当一个光子的能量满足 hv E E =-末初时,才能被某一个原子吸收,使原子从低能级E 初向高能级E 末跃迁,而当光子能量hv 大于或小于E E -末初时都不能被原子吸收。 (2)原子从高能级向低能级跃迁,以光子的形式向外辐射能量,所辐射的光子能量恰等于发生跃迁时的两能级间的能量差。 (3)当光子能量大于或等于13.6eV 时,也可以被氢原子吸收,使氢原子电离;当氢原子吸收的光子能量大于13.6eV 。氢原子电离后,电子具有一定的初动能。 一群氢原子处于量子数为n 的激发态时,可能辐射出的光谱线条数为2 (1)2 n n n N C -= =。 (4)原子还可吸收外来实物粒子(例如自由电子)的能量而被激发,由于实物粒子的动能 原 子结构 ?? ? ? ? ? ??? ?? 电子的发现原子模型????? ????光谱光谱分析:用明线光谱和吸收光谱分析物质的化学组成 ?? ???吸收光谱发射光谱???连续谱 线状谱?? ?汤姆孙的发现:阴极射线为电子流 电子发现的意义:原子可以再分??????????? ???? 汤姆孙枣糕式模型卢瑟福核式结构模型玻尔原子结构模型氢原子光谱和光谱分析?? ???能量量子化轨道量子化能级跃迁

高中物理选修3-5原子结构知识点

第八章原子结构 一、电子的发现: (一)电子的发现: 1.电子是怎样发现的: 汤姆生用测定粒子的荷质比的方法发现了电子。 汤姆生发现阴极射线在电场和磁场中的偏转现象,根据偏转方向,确认阴极射线是带负电的粒子流。当他测定阴线射线粒子的荷质比时发现,不同物质做成的阴极发出的射极(粒子)都有相同的荷质比,这表明它们都能发射相同的带电粒子,因此这种带电粒子是构成物质的共同成份,这就是电子。 2.电子的发现对人类认识原子结构的重要性。 ①电子的发现使人们认识到原子不是组成物质的最小微粒,原子本身也具有结构。 ②由于原子含有带负电的电子,从物质的电中性出发,推想到原子中还有带正电的部分,这就提出了进一步探索原子结构、探索原子模型的问题。 (二)汤姆生的原子模型(枣糕模型) 葡萄干面包模型 二、原子的核式结构的发现 (一)原子核式结构的发现: 1.什么叫散射实验? 用各种粒子——x射线、电子和α粒子轰击很薄的物质层,通过观察这些粒子穿过物质层后的偏转情况,获得原子结构的信息,这种实验叫做散射实验。 2.为什么用α粒子的散射(实验)现象可以研究原子的结构? 原子的结构非常紧密,用一般的方法无法探测它内部的结构,要认识原子的结构,需要用高速粒子对它进行轰击。 ①由于α粒子具有足够的能量可以接近原子的中心, ②α粒子可以使荧光物质发光,如果α粒子与其他粒子发生相互作用,改变了运动的方向,荧光屏便能够显示出它的方向变化。 3.α粒子散射装置 ①放射源(Pa“坡”)玛丽·居里的祖国波兰。 ②金箔:1μm,能透光,有3000多层原子厚。 ③荧光屏荧光屏和显微镜能够围绕金箔在一个 ④显微镜圆周上转动,从而可以观察到穿过金箔后 ⑤转动圆盘偏转角度不同的α粒子 4.实验过程:实验室建在地下,通道大拐角(防光进入)

江苏省高中物理基本知识点总结

物理重要知识点总结 学好物理要记住:最基本的知识、方法才是最重要的。秘诀:“想” 学好物理重在理解 ........(概念、规律的确切含义,能用不同的形式进行表达,理解其适用条件) A(成功)=X(艰苦的劳动)十Y(正确的方法)十Z(少说空话多干实事) (最基础的概念,公式,定理,定律最重要);每一题中要弄清楚(对象、条件、状态、过程)是解题关健物理学习的核心在于思维,只要同学们在平常的复习和做题时注意思考、注意总结、善于归纳整理,对于课堂上老师所讲的例题做到触类旁通,举一反三,把老师的知识和解题能力变成自己的知识和解题能力,并养成规范答题的习惯,这样,同学们一定就能笑傲考场,考出理想的成绩! 对联: 概念、公式、定理、定律。(学习物理必备基础知识)对象、条件、状态、过程。(解答物理题必须明确的内容)力学问题中的“过程”、“状态”的分析和建立及应用物理模型在物理学习中是至关重要的。说明:凡矢量式中用“+”号都为合成符号,把矢量运算转化为代数运算的前提是先规定正方向。 答题技巧:“基础题,全做对;一般题,一分不浪费;尽力冲击较难题,即使做错不后悔”。“容易题不丢分,难题不得零分。“该得的分一分不丢,难得的分每分必争”,“会做?做对?不扣分” 在学习物理概念和规律时不能只记结论,还须弄清其中的道理,知道物理概念和规律的由来。

受力分析入手(即力的大小、方向、力的性质与特征,力的变化及做功情况等)。 再分析运动过程(即运动状态及形式,动量变化及能量变化等)。 最后分析做功过程及能量的转化过程; 然后选择适当的力学基本规律进行定性或定量的讨论。 强调:用能量的观点、整体的方法(对象整体,过程整体)、等效的方法(如等效重力)等解决 Ⅱ运动分类:(各种运动产生的力学和运动学条件及运动规律............. )是高中物理的重点、难点 高考中常出现多种运动形式的组合 追及(直线和圆)和碰撞、平抛、竖直上抛、匀速圆周运动等 ①匀速直线运动 F 合=0 a=0 V 0≠0 ②匀变速直线运动:初速为零或初速不为零, ③匀变速直、曲线运动(决于F 合与V 0的方向关系) 但 F 合= 恒力 ④只受重力作用下的几种运动:自由落体,竖直下抛,竖直上抛,平抛,斜抛等 ⑤圆周运动:竖直平面内的圆周运动(最低点和最高点);匀速圆周运动(关键搞清楚是什么力提供作向心力) ⑥简谐运动;单摆运动; ⑦波动及共振; ⑧分子热运动;(与宏观的机械运动区别) ⑨类平抛运动; ⑩带电粒在电场力作用下的运动情况;带电粒子在f 洛作用下的匀速圆周运动 Ⅲ。物理解题的依据: (1)力或定义的公式 (2) 各物理量的定义、公式 (3)各种运动规律的公式 (4)物理中的定理、定律及数学函数关系或几何关系 Ⅳ几类物理基础知识要点: ①凡是性质力要知:施力物体和受力物体; ②对于位移、速度、加速度、动量、动能要知参照物; ③状态量要搞清那一个时刻(或那个位置)的物理量; ④过程量要搞清那段时间或那个位侈或那个过程发生的;(如冲量、功等) ⑤加速度a 的正负含义:①不表示加减速;② a 的正负只表示与人为规定正方向比较的结果。 ⑥如何判断物体作直、曲线运动; ⑦如何判断加减速运动; ⑧如何判断超重、失重现象。 ⑨如何判断分子力随分子距离的变化规律 ⑩根据电荷的正负、电场线的顺逆(可判断电势的高低)?电荷的受力方向;再跟据移动方向?其做功情况?电势能的变化情况 V 。知识分类举要 1.力的合成与分解、物体的平衡 ?求F 、F 2两个共点力的合力的公式: F= θCOS F F F F 212 2212++ 合力的方向与F 1成α角: 1

高中物理-原子结构+练习

高中物理-原子结构+练习 一、研究进程 汤姆孙(糟糕模型)→卢瑟福由α粒子散射实验(核式结构模型)→ 波尔量子化模型 →现代原子模型(电子云模型) 二、α 粒子散射实验 a 、实验装置的组成:放射源、金箔、荧光屏 b 、实验的结果: 绝大多数α 粒子基本上仍沿原来的方向前进, 少数 α 粒子(约占八千分之一)发生了大角度偏转, 甚至超过了90o 。 C 、卢瑟福核式结构模型内容: ①在原子的中心有一个很小的原子核, ②原子的全部正电荷和几乎全部质量集中在原子核里, ③带负电的电子在核外空间里旋转。 原子直径的数量级为m 10 10-,而原子核直径的数量级约为m 1015-。 c 、卢瑟福对实验结果的解释 电子对α粒子的作用忽略不计。 因为原子核很小,大部分α粒子穿过原子时离原子核很远,受到较小的库仑斥力,运动几乎不改变方向。 极少数α粒子穿过原子时离原子核很近,因此受到很强的库仑斥力,发生大角度散射。 d 、核式结构的不足 认为原子寿命的极短;认为原子发射的光谱应该是连续的。 三、氢原子光谱 1、公式:)11(1 2 2n m R -=λ m=1、2、3……,对于每个m,n=m+1,m+2,m+3…… m=2时,对应巴尔末系,其中有四条可见光,一条红色光、一条是蓝靛光、 另外两条是紫光。

2、线状光谱:原子光谱(明线光谱)是线状光谱,比如霓虹灯发光。 3、吸收光谱(主要研究太阳光谱):吸收光谱是连续光谱背景上出现不连续的暗线。 吸收谱既不是线状谱又不是带状光谱(连续光谱) 4、实验表明:每种原子都有自己的特征谱线。(明线光谱中的亮线与吸收光谱中的暗线相对应,只是通常在吸收光谱中的暗线比明线光谱中的两线要少一些) 5、光谱分析原理:根据光谱来鉴别物质和确定它的化学组成。 6、连续光谱(带状光谱):炽热的固体、液体或高压气体的光谱是连续光谱。 三、波尔模型 1、电子轨道量子化r=n 2r 1 , r 1=0.053nm ——针对原子的核式结构模型提出。 电子绕核旋转可能的轨道是分立的。 2、原子能量状态量子化(定态)假设——针对原子稳定性提出。 电子在不同的轨道对应原子具有不同的能量。原子只能处于一系列 不连续的能量状态中,这些状态中原子是稳定的,电子虽然绕核旋转, 但不向外辐射能量,这些状态叫定态。 取氢原子电离时原子能量为0,用定积分求得E 1= -13.6ev. 21n E E n =,E 1 = —13.6ev 3、原子跃迁假设(针对原子的线状谱提出) 电子从能量较高的定态轨道跃迁到能量较低的定态轨道时,会放出光子。 电子吸收光子时会从能量较低的定态轨道跃迁到能量较高的轨道。末初E -E hv =。 注:电子只吸收或发射特定频率的光子完成原子内的跃迁。如果要使电子电离,光子的能量 与氢原子能量之和大于等于零即可。 4、局限性 保留了经典粒子的观念,把电子的运动仍然看成经典力学描述下轨道运动,没有彻底摆脱经典理论的框架。→无法解释较为复杂原子的光谱。 5、现代原子模型: 电子绕核运动形成一个带负电荷的云团,对于具有波粒二象性的微观粒子,在一个确定时刻其空间坐标与动量不能同时测准,这是德国物理学家海森堡在1927年提出的著名的测不准原理。

高中物理匀速圆周运动基本知识

第4讲匀速圆周运动基本知识 第一部分 知识点一、匀速圆周运动 1. 定义:做圆周运动的质点,若在相等的时间内通过的圆弧长度相等,这种运动就叫做匀速圆周运动。 2. 运动学特征:v大小不变,T不变,不变,大小不变;v和的方向时刻在变,匀速圆周运动是加速度不断改变的变速运动。 3. 动力学特征:合外力大小恒定,方向始终指向圆心。 二、描述圆周运动的物理量 1. 线速度 (1)物理意义:描述质点沿圆周运动的快慢。 (2)方向:质点在圆弧某点的线速度方向沿圆弧该点的切线方向。 (3)大小:(s是t时间内通过的弧长)。 2. 角速度 (1)物理意义:描述质点绕圆心转动的快慢。 (2)大小:(),是连接质点和圆心的半径在t时间内转过的角度。 3. 周期T,频率f

做匀速圆周运动的物体运动一周所用的时间叫做周期。 做匀速圆周运动的物体单位时间内沿圆周绕圆心转过的圈数,叫做频率,也叫转速。 4. v、、T、f的关系 5. 向心加速度 (1)物理意义:描述线速度方向改变的快慢。 (2)大小: (3)方向:总是指向圆心 三、向心力 1. 作用效果:产生向心加速度,不断改变质点的速度方向,维持质点做圆周运动,但不改变速度的大小。 2. 大小: 3. 来源:向心力是按效果命名的力,可以由某个力提供,也可以由几个力的合力提供或由某个力的分力提供,如同步卫星的向心力由万有引力提供,圆锥摆摆球所受向心力由重力和绳上的拉力的合力提供或由绳上拉力的水平分量提供。 4. 匀速圆周运动中向心力就是合外力,而在非匀速圆周运动中,向心力是合外力沿半径方向的一个分力,合外力的另一个分力沿切线方向,用来改变线速度的大小。

最新最全高中物理所有知识点总结(精华)

高考物理基本知识点总结 一. 教学内容: 知识点总结 1. 摩擦力方向:与相对运动方向相反,或与相对运动趋势方向相反 静摩擦力:0 注意:若到最高点速度从零开始增加,杆对球的作用力先减小后变大。 = 相同,,轮上边缘各点v 相同,v A =v B 3. 传动装置中,特点是:同轴上各点C A 4. 同步地球卫星特点是:①,② ①卫星的运行周期与地球的自转周期相同,角速度也相同; ②卫星轨道平面必定与地球赤道平面重合,卫星定点在赤道上空36000km 处,运行速度 3.1km/s。 m1m2 2 r F=G ,卡文迪许扭秤实验。 5. 万有引力定律:万有引力常量首先由什么实验测出: g' =GM/r 2 6. 重力加速度随高度变化关系: GM 说明:r为某位置到星体中心的距离。某星体表面的重力加速 度。 g 02 R

2 g' g R R ——某星体半径 h 为某位置到星体表面的距离 2 (R h) 7. 地球表面物体受重力加速度随纬度变化关系:在赤道上重力加速度较小,在两极,重力加速度较大。 2 2 GM r GM GMm mv r GMm mv r 2 2 2 g' = r r r 、v = 、 、 8. 人造地球卫星环绕运动的环绕速度、周期、向心加速度 = m ω 2R =m ( 2π /T ) 2 R GM r gR gR 2 = GM r =R ,为第一宇宙速度 v 1= = 当 r 增大, v 变小;当 应用:地球同步通讯卫星、知道宇宙速度的概念 9. 平抛运动特点: ①水平方向 ②竖直方向 ③合运动 ④应用:闪光照 ⑤建立空间关系即两个矢量三角形的分解:速度分解、位移分解 S ,求 v T gT 2 相位 v y 0 t x v 0 t v x v 0 1 2 2 y gt v y gt 1 4 2 2 2 2 4 2 2 S v 0 t g t v t v g t gt 2v 0 1 2 gt v 0 tg tg tg tg ⑥在任何两个时刻的速度变化量为△ v =g △ t ,△ p = mgt x 2 处,在电场中也有应用 ⑦v 的反向延长线交于 x 轴上的 10. 从倾角为 α的斜面 上 A 点以速度 v 0 平抛的小球,落到了斜面上的 B 点,求: S AB

(完整word版)高中物理原子与原子核知识点总结选修3-5

高中物理原子与原子核知识点总结(选修3-5) 原子、原子核这一章虽然不是重点,但是高考选择题也会涉及到,其实只要记住模型和方程式,就不会在做题上出错,下面的一些总结希望对同学们有所帮助. 一波粒二象性 1光电效应的研究思路 (1)两条线索: 10 J·S h为普朗克常数 h=6.63×34 ν为光子频率 2.三个关系 (1)爱因斯坦光电效应方程E k=hν-W0。 (2)光电子的最大初动能E k可以利用光电管实验的方法测得,即E k=eU c,其中U c是遏止电压。 (3)光电效应方程中的W0为逸出功,它与极限频率νc的关系是W0=hνc。 3波粒二象性 波动性和粒子性的对立与统一 (1)大量光子易显示出波动性,而少量光子易显示出粒子性。 (2)波长长(频率低)的光波动性强,而波长短(频率高)的光粒子性强。

(3)光子说并未否定波动说,E =h ν=hc λ 中,ν(频率)和λ就是波的概念。 光速C=λν (4)波和粒子在宏观世界是不能统一的,而在微观世界却是统一的。 3.物质波 (1)定义:任何运动着的物体都有一种波与之对应,这种波叫做物质波,也叫德布罗意波。 (2)物质波的波长:λ=h p =h mv ,h 是普朗克常量。 二 原子结构与原子核 (1)卢瑟福的核式结构模型 卢瑟福根据α粒子散射实验提出了原子的核式结构学说,玻尔把量子说引入到核式结构模型之中,建立了以下三个假说为主要内容的玻尔理论.认识原子核的结构是从发现天然放射现象开始的,发现质子的核反应是认识原子核结构的突破点.裂变和聚变是获取核能的两个重要途径.裂变和聚变过程中释放的能量符合爱因斯坦质能方程。 整个知识体系,可归结为:两模型(原子的核式结构模型、波尔原子模型);六子(电子、质子、中子、正电子、 粒子、 光子);四变(衰变、人工转变、裂变、聚变);两方程(核反应方程、质能方程)。 4条守恒定律(电荷数守恒、质量数守恒、能量守恒、动量守恒)贯串全章。 1.(1)电子的发现:1897年,英国物理学家汤姆孙通过对阴极射线的研究发现了电子。电子的发现证明了原子是可再分的。 (2)汤姆孙原子模型:原子里面带正电荷的物质均匀分布在整个原

高中物理知识点大全

高中物理知识点总结和公式大全 公式大全 高中物理知识点总结和公式大全 基本的力和运动 Ⅰ。力的种类:(13个性质力)这些性质力是受力分析不可少的“受力分析的基础”重力: G = mg (g随高度、纬度、不同星球上不同) 弹簧的弹力: F= Kx 滑动摩擦力: F 滑 = N 静摩擦力: O f 静 f m 万有引力: F 引 =G 电场力: F 电 =q E =q 库仑力: F=K (真空中、点电荷) 磁场力: (1)、安培力:磁场对电流的作用力。公式: F= BIL (B I)方向:左手定则 (2)、洛仑兹力:磁场对运动电荷的作用力。公式: f=BqV (B V) 方向:左手定则 分子力:分子间的引力和斥力同时存在,都随距离的增大而减小,随距离的减小而增大,但斥力变化得快。 核力:只有相邻的核子之间才有核力,是一种短程强力。 Ⅱ。运动分类:(各种运动产生的力学和运动学条件及运动规律)是高中物理的重点、难点 ① 匀速直线运动 F 合=0 V 0 ≠0 ② 匀变速直线运动:初速为零,初速不为零, ③ 匀变速直、曲线运动(决于F 合与V 0 的方向关系) 但 F 合 = 恒力

④ 只受重力作用下的几种运动:自由落体,竖直下抛,竖直上抛,平抛,斜抛等 ⑤ 圆周运动:竖直平面内的圆周运动(最低点和最高点);匀速圆周运动(关键搞清楚是向心力的来源) ⑥ 简谐运动:单摆运动,弹簧振子; ⑦ 波动及共振;分子热运动; ⑧ 类平抛运动; ⑨ 带电粒在电场力作用下的运动情况;带电粒子在f 洛作用下的匀速圆周运动Ⅲ。物理解题的依据:(1)力的公式 (2)各物理量的定义 (3)各种运动规律的公式 (4)物理中的定理、定律及数学几何关系 Ⅳ几类物理基础知识要点: 凡是性质力要知:施力物体和受力物体; 对于位移、速度、加速度、动量、动能要知参照物; 状态量要搞清那一个时刻(或那个位置)的物理量; 过程量要搞清那段时间或那个位侈或那个过程发生的;(如冲量、功等) 如何判断物体作直、曲线运动;如何判断加减速运动;如何判断超重、失重现象。Ⅴ。知识分类举要 1.力的合成与分解:求F 、F 2 两个共点力的合力的公式: F= 合力的方向与F 1 成角: tan = 注意:(1) 力的合成和分解都均遵从平行四边行法则。 (2) 两个力的合力范围: F 1 -F 2 F F 1 +F 2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。

超全高中物理重点知识点集合

一、力物体的平衡

二、画龙点睛 概念 1、力:力是物体对物体的作用。 ⑴力是一种作用,可以通过直接接触实现(如弹力、摩擦力),也 可以通过场来实现(重力、电场力、磁场力) ⑵力的性质:物质性(力不能脱离物体而独立存在);相互性(成 对出现,遵循牛顿第三定律);矢量性(有大小和方向,遵从矢量运算法则);效果性(形变、改变物体运动状态,即产生加速度) ⑶力的要素:力的大小、方向和作用点称为力的三要素,它们共 同影响力的作用效果。 力的描述:描述一个力,应描述力的三要素,除直接说明外,可以用力的图示和力的示意图的方法。 ⑷力的分类:按作用方式,可分为场力(重力、电场力)、接触力 (弹力、摩擦力);接效果分,有动力、阻力、牵引力、向心力、恢复力等;接性质分,有重力、弹力、摩擦力、分子力等;按研究系统分,内力、外力。 2、重力:由于地球吸引,而使物体受到的力。 (1)重力的产生:由于地球的吸引而使物体受到的力叫重力。(2)重力的大小:G=mg,可以用弹簧秤测量,重力的大小与物体的速度、加速度无关。

(3)重力的方向:竖直向下。 (4)重心:重力的作用点。重心的测定方法:悬挂法。重心的位置与物体形状的关系:质量分布均匀的物体,重心位置只与物体形状有关,其几何中心就是重心;质量分布不均匀的物体,其重心的位置除了跟形状有关外,还跟物体的质量分布有关。 3、弹力 (1)弹力的产生:发生弹性形变的物体,由于要恢复原来的形状,对跟它接触的物体产生力的作用,这种力叫弹力。 (2)产生的条件:两物体要相互接触;发生弹性形变。 (3)弹力的方向:①压力、支持力的方向总是垂直于接触面。 ②绳对物体的拉力总是沿着绳收缩的方向。 ③杆对物体的弹力不一定沿杆的方向。如果轻直杆 只有两个端点受力而处于平衡状态,则轻杆两端对 物体的弹力的方向一定沿杆的方向。 重心在P,静止在竖直墙和桌边之间。 解析:由于弹力的方向总是垂直于接触面,在A点,弹力 F1应该垂直于球面所以沿半径方向指向球心O;在B点弹力F2垂直 于墙面,因此也沿半径指向球心O。 注意弹力必须指向球心,而不一定指向重心。又由于F1、F2、G 为共点力,重力的作用线必须经过O点,因此P和O必在同一竖直 线上,P点可能在O的正上方(不稳定平衡),也可能在O的正下方

相关文档
相关文档 最新文档