文档库 最新最全的文档下载
当前位置:文档库 › 等差数列及其前n项和习题与答案

等差数列及其前n项和习题与答案

等差数列及其前n项和习题与答案
等差数列及其前n项和习题与答案

第六章 第二节

1.{a n }为等差数列,a 10=33,a 2=1,S n 为数列{a n }的前n 项和,则S 20-2S 10等于( ) A .40 B .200 C .400

D .20

解析:选C S 20-2S 10=20(a 1+a 20)2-2×10(a 1+a 10)

2

=10(a 20-a 10)=100d .又a 10=a 2+8d ,∴33=1+8d . ∴d =4.∴S 20-2S 10=400.故选C.

2.已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 2

2=1,则数列{a n }的公差是( )

A.1

2

B .1

C .2

D .3

解析:选C 因为S n =n (a 1+a n )2,所以S n n =a 1+a n 2.由S 33-S 22=1,得a 32-a 2

2=1,即a 3-a 2

=2,所以数列{a n }的公差为2.故选C.

3.(2014·临川一中质检)已知数列{a n },{b n }都是公差为1的等差数列,其首项分别为a 1,b 1,且a 1+b 1=5,a 1,b 1∈N *.设c n =a b n (n ∈N *),则数列{c n }的前10项和等于( )

A .55

B .70

C .85

D .100

解析:选C 由题知a 1+b 1=5,a 1,b 1∈N *.设c n =a b n (n ∈N *),则数列{c n }的前10项和等于a b 1+a b 2+…+a b 10=a b 1+a b 1+1+…+a b 1+9,a b 1=a 1+(b 1-1)=4,∴a b 1+a b 1+1+…+a b 1+9=4+5+6+…+13=85,选C.

4.(2014·中原名校联盟摸底考试)若数列{a n }通项为a n =an ,则“数列{a n }为递增数列”的一个充分不必要条件是( )

A .a ≥0

B .a >1

C .a >0

D .a <0

解析:选B 数列{a n }为递增数列,则a >0,反之a >0,则数列{a n }为递增数列,a >0是数列{a n }为递增数列的充要条件,“数列{a n }为递增数列的一个充分不必要条件是a 的范围比a >0小,即包含于a >0中,故选B.

5.(2012·浙江高考)设S n 是公差为d (d ≠0)的无穷等差数列{a n }的前n 项和,则下列命题错误的是( )

A .若d <0,则数列{S n }有最大项

B .若数列{S n }有最大项,则d <0

C .若数列{S n }是递增数列,则对任意n ∈N *,均有S n >0

D .若对任意n ∈N *,均有S n >0,则数列{S n }是递增数列

解析:选C 设数列{a n }的首项为a 1,则S n =na 1+12n (n -1)d =d

2n 2+????a 1-d 2n .由二次函数性质知S n 有最大值时,则d <0,故A 、B 正确;因为{S n }为递增数列,但d >0,不妨设a 1=-1,d =2,显然{S n }是递增数列,但S 1=-1<0,故C 错误;对任意n ∈N *,S n 均大于0时,a 1>0,d >0,{S n }必是递增数列,D 正确.

6.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意自然数n 都有S n T n =2n -3

4n -3,

a 9

b 5+b 7+a 3

b 8+b 4的值为( ) A.19

41

B.4

5 C.27

43

D.2431

解析:选A ∵{a n },{b n }为等差数列, ∴

a 9

b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6

=a 9+a 32b 6=a 6

b 6.

∵S 11T 11=11

2(a 1+a 11)

112(b 1+b 11)=2a 62b 6=2×11-34×11-3=1941

, ∴a 6b 6=19

41

.故选A. 7.(2011·广东高考)等差数列{a n }前9项的和等于前4项的和.若a 1=1,a k +a 4=0,则k =________.

解析:10 由题意S 9=S 4得a 5+a 6+a 7+a 8+a 9=0. ∴5a 7=0,即a 7=0.

又a k +a 4=0=2a 7,a 10+a 4=2a 7,∴k =10.

8.(2014·阜宁中学调研)在等差数列{a n }中,a 2=6,a 5=15,b n =a 2n ,则数列{b n }的前5项和S 5=________.

解析:90 在等差数列{a n }中,由a 2=6,a 5=15易知公差d =15-63=3,

∴a n =a 2+(n -2)d =3n ,∴b n =a 2n =6n , 所以数列{b n }为公差为6的等差数列, 所以前5项和S 5=5

2

(b 1+b 5),

又易知b 1=6,b 5=30,所以S 5=90.

9.(2014·江苏调研)对于数列{a n },定义数列{a n +1-a n }为数列{a n }的差数列.若a 1=2,{a n }的“差数列”的通项公式为2n ,则数列{a n }的前n 项和S n =________.

解析:2n +

1-2 由已知a n +1-a n =2n ,a 1=2得a 2-a 1=2,0=22,…,a n -a n -1=2n -

1,由

累加法得a n =2+2+22+…+2

n -1

=2n

,从而S n =2(1-2n )1-2

=2n +1

-2.

10.(2014·哈尔滨联考)已知各项为正数的等差数列{a n }的前20项和为100,那么a 7a 14的最大值为________.

解析:25 因为{a n }为各项为正数的等差数列,且前20项和为100,所以20(a 1+a 20)2=100,

即a 1+a 20=10,

所以a 7+a 14=10.所以a 7·a 14≤??

??a 7+a 1422

=25,

当且仅当a 7=a 14=5时等号成立.

11.(2013·新课标全国高考Ⅱ)已知等差数列{a n }的公差不为零,a 1=25 ,且a 1,a 11,a 13

成等比数列.

(1)求{a n }的通项公式; (2)求a 1+a 4+a 7+…+a 3n -2. 解:(1)设{a n }的公差为d . 由题意得a 211=a 1a 13, 即(a 1+10d )2=a 1(a 1+12d ). 于是d (2a 1+25d )=0.

又a 1=25,所以d =-2或d =0(舍去). 故a n =-2n +27.

(2)令S n =a 1+a 4+a 7+…+a 3n -2. 由(1)知a 3n -2=-6n +31,

所以数列{a 3n -2}是首项为25,公差为-6的等差数列. 从而S n =n 2(a 1+a 3n -2)=n

2

(-6n +56)=-3n 2+28n .

12.(2014·黑龙江联考)已知各项都不相等的等差数列{a n }的前6项和为60,且a 6为a 1和a 21的等比中项.

(1)求数列{a n }的通项公式;

(2)若数列{b n }满足b n +1-b n =a n (n ∈N *),且b 1=3,求数列????

??

1b n 的前n 项和T n .

解:(1)设等差数列{a n }的公差为d (d ≠0),

则????? 6a 1+15d =60,a 1(a 1+20d )=(a 1+5d )2,解得?????

d =2,a 1=5.

∴a n =2n +3.

(2)由b n +1-b n =a n ,得b n -b n -1=a n -1(n ≥2,n ∈N *), b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1 =a n -1+a n -2+…+a 1+b 1 =(n -1)(n -1+4)+3=n (n +2), ∴b n =n (n +2),n ∈N *. ∴1b n =1n (n +2)=12????1

n -1n +2.

∴T n =1

2????1-13+12-14+…+1n -1n +2

=12????3

2-1n +1-1n +2=3n 2+5n 4(n +1)(n +2).

13.(2014·济宁模拟)已知数列{a n }的前n 项和S n =-a n -????12n -1+2(n ∈N *),数列{b n }满足b n =2n ·a n .

(1)求证:数列{b n }是等差数列,并求数列{a n }的通项公式; (2)设c n =log 2

n a n ,数列????

??2c n c n +2的前n 项和为T n ,求满足T n <25

21(n ∈N *)的n 的最大值. (1)证明:在S n =-a n -????12n -1

+2中, 令n =1,可得S 1=-a 1-1+2=a 1,得a 1=12.

当n ≥2时,S n -1=-a n -1-????12n -2

+2, ∴a n =S n -S n -1=-a n +a n -1+????12n -1, 即2a n =a n -1+????12n -1. ∴2n ·a n =2n -

1·a n -1+1.

∵b n =2n ·a n ,∴b n =b n -1+1.

又b 1=2a 1=1,∴{b n }是以1为首项,1为公差的等差数列. 于是b n =1+(n -1)·1=n ,∴a n =n 2n .

(2)解∵c n =log 2n

a n =log 22n =n .

2c n c n +2=2n (n +2)=1n -1n +2

.

∴T n =????1-13+???

?12-1

4+…+???

?1n -1n +2 =1+12-1n +1-1

n +2

.

由T n <2521,得1+12-1n +1-1n +2<25

21,

1n +1+1n +2>1342,f (n )=1n +1+1n +2

单调递减, ∵f (3)=920,f (4)=1130,f (5)=1342,

∴n 的最大值为4.

1.(2014·石家庄模拟)已知数列{a n }(n ∈N *)中,a 1=35,a n =2-1

a n -1

(n ≥2,n ∈N *),数列{b n }

满足b n =1

a n -1

(n ∈N *),则关于数列{b n }的判断正确的是( )

A .数列{b n }一定是等差数列

B .数列{b n }一定是等比数列

C .数列{b n }可以是等差数列,也可以是等比数列

D .数列{b n }既不是等差数列,也不是等比数列

解析:选A 因为a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1,所以当n ≥2时,b n -b n -1=

1

a n -1-

1

a n -1-1=

1??

?

?2-1a

n -1

-1-1a n -1-1=a n -1a n -1-1-1a n -1-1=1,又b 1=1a 1-1=-5

2,所以数列{b n }

是以-5

2

为首项,1为公差的等差数列,选A.

2.已知{a n }是等差数列,S n 为其前n 项和,若S 21=S 4 000,O 为坐标原点,点P (1,a n ),Q (2 011,a 2 011),则OP →·OQ →

等于( )

A .2 011

B .-2 011

C .0

D .1

解析:选A 方法一:由已知S 21=S 4 000,则a 22+a 23+…+a 4 000=0,设数列{a n }的公差为d ,则3 979(a 22+a 4 000)2

=0,又a 22+a 4 000=2a 2 011,所以a 2 011=0,

∴OP →·OQ →=2 011+a n ·a 2011=2 011

方法二:设等差数列{a n }的公差为d ,因为S 21=S 4 000,且等差数列前n 项和公式可看成二次函数,所以由对称性可得S 1=S 4 020,则有a 1=4 020a 1+4 020×4 0192

d ,整理得a 2 011=0,所

以OP →·OQ →=2 011+a n ·a 2 011=2 011.

3.(2014·孝感高中调研)已知函数f (x )是R 上的单调递增函数且为奇函数,数列{a n }是等差数列,a 3>0,则f (a 1)+f (a 3)+f (a 5)的值( )

A .恒为正数

B .恒为负数

C .恒为0

D .可以为正数也可以为负数

解析:选A 因为函数f (x )是R 上的奇函数,所以f (-0)=-f (0)得f (0)=0,又f (x )是R 上的单调递增函数,所以当x >0时有f (x )>f (0)=0,当x <0时有f (x )<f (0)=0,因为a 3>0,所以有f (a 3)>0.因为数列{a n }是等差数列,所以a 1+a 52=a 3>0从而a 1+a 5>0,所以a 1>-a 5,

所以f (a 1)>f (-a 5).又f (-a 5)=-f (a 5),所以f (a 1)+f (a 5)>0,从而有f (a 1)+f (a 3)+f (a 5)=[f (a 1)+f (a 5)]+f (a 3)>0.故选A.

4.(2014·西北工大附中月考)若有穷数列a 1,a 2,…,a n (n 是正整数)满足a 1=a n ,a 2=a n

-1

,…,a n =a 1,即a i =a n -i +1(i 是正整数,且1≤i ≤n ),就称该数列为“对称数列”.已知数

列{b n }是项数为7的“对称数列”,且b 1,b 2,b 3,b 4成等差数列,b 1=2,b 4=11,则数列{b n }的项为________.

解析:2,5,8,11,8,5,2 设数列b 1,b 2,b 3,b 4的公差为d ,则b 4=b 1+3d =2+3d =11,解得d =3,所以数列{b n }的项为2,5,8,11,8,5,2.

5.(2014·湛江检测)已知各项为正数的数列{a n }的前n 项和为S n ,且对任意正整数n 有a 2a n

=S 2+S n .

(1)求a 1的值;

(2)求数列{a n }的通项公式;

(3)若数列?

??

?

??log 88a 1a n

的前n 项和为T n ,求T n 的最大值.

解:(1)取n =1,a 2a 1=S 2+S 1=2a 1+a 2,① 取n =2,a 22=2a 1+2a 2,②

②-①得,a 2(a 2-a 1)=a 2,a 2>0,∴a 2-a 1=1,③ 由①③组成方程组解得,a 1=1+2或a 1=1- 2. ∵a n >0,∴a 1=1-2不合题意,舍去.∴a 1=1+ 2. (2)由(1)可得a 2=2+2,

当n ≥2时,(2+2)a n =S 2+S n ,(2+2)a n -1=S 2+S n -1,

两式相减,得(2+2)a n -(2+2)a n -1=a n , ∴(1+2)a n =(2+2)a n -1,∴a n =2a n -1(n ≥2).

∴数列{a n }是以a 1=1+2为首项,公比q =2的等比数列.

∴a n =(1+2)(2)n -

1.

(3)设b n =log 8

8a 1a n

=1-log 8(2)n -

1=1-(n -1)log 8 2 =1-1

6

(n -1).

∴数列{b n }为单调递减的等差数列,公差为-1

6.

由b n =1-1

6(n -1)≥0,解得n ≤7,

∴b 1>b 2>…>b 6>b 7=0,0>b 8>b 9>…,

∴当n =6或n =7时,T n 有最大值.且最大值为T 6=T 7=7(b 1+b 7)2=7

2

.

《等差数列及其前n项和》(解析版)

§6.2 等差数列及其前n 项和 题组一 思考辨析 1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( × ) (2)等差数列{a n }的单调性是由公差d 决定的.( √ ) (3)等差数列的前n 项和公式是常数项为0的二次函数.( × ) (4)已知等差数列{a n }的通项公式a n =3-2n ,则它的公差为-2.( √ ) (5)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( √ ) (6)已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列.( √ ) 题组二 教材改编 2.[P46A 组T2]设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( ) A .31 B .32 C .33 D .34 答案 B 解析 由已知可得??? ?? a 1+5d =2,5a 1+10d =30, 解得??? a 1 =26 3, d =-4 3, ∴S 8=8a 1+8×7 2 d =32. 3.[P39T5]在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8=________. 答案 180

解析 由等差数列的性质,得a 3+a 4+a 5+a 6+a 7=5a 5=450,∴a 5=90,∴a 2+a 8=2a 5=180. 题组三 易错自纠 4.一个等差数列的首项为1 25,从第10项起开始比1大,则这个等差数列的公差d 的取值范 围是( ) A .d >875 B .d <325 C.8751,a 9≤1, 即??? 1 25+9d >1, 1 25+8d ≤1, 所以8750,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 答案 8 解析 因为数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,所以a 8>0.又a 7+a 10=a 8+a 9<0,所以a 9<0.故当n =8时,其前n 项和最大. 6.一物体从1 960 m 的高空降落,如果第1秒降落4.90 m ,以后每秒比前一秒多降落9.80 m ,那么经过________秒落到地面. 答案 20 解析 设物体经过t 秒降落到地面. 物体在降落过程中,每一秒降落的距离构成首项为4.90,公差为9.80的等差数列. 所以4.90t +1 2t (t -1)×9.80=1 960, 即4.90t 2=1 960,解得t =20.

《等差数列前n项和公式》教学设计53171

《等差数列的前n项和》教学设计 一、设计理念 让学生在具体的问题情境中经历知识的形成和发展,让学生利用自己的原有认知结构中相关的知识与经验,自主地在教师的引导下促进对新知识的建构,因为建构主义学习理论认为,学习是学生积极主动地建构知识的过程.在教学过程中,根据教学内容,从介绍高斯的算法开始,探究这种方法如何推广到一般等差数列的前n项和的求法.通过设计一些从简单到复杂,从特殊到一般的问题,层层铺垫,组织和启发学生获得公式的推导思路,并且充分引导学生展开自主、合作、探究学习,通过生生互动和师生互动等形式,让学生在问题解决中学会思考、学会学习.同时根据我校的特点,为了促进成绩优秀学生的发展,还设计了选做题和探索题,进一步培养优秀生用函数观点分析、解决问题的能力,达到了分层教学的目的. 二、背景分析 本节课教学内容是高中课程标准实验教科书必修5(北师大)中第二章的第三节内容.本节课主要研究如何应用倒序相加法求等差数列的前n项和以及该求和公式的应用.等差数列在现实生活中比较常见,因此等差数列求和就成为我们在实际生活中经常遇到的一类问题.同时,求数列前n项和也是数列研究的基本问题,通过对公式推导,可以让学生进一步掌握从特殊到一般的研究问题方法. 三、学情分析 1、学生已掌握的理论知识角度:学生已经学习了等差数列的定义及通项公式,掌握了等差数列的基本性质,有了一定的知识准备。 2、学生了解数列求和历史角度:大部分学生对高斯算法有比较清晰的认识,并且知道此算法原理,但在高斯算法中数列1,2,3,……,100只是一个特殊的等差数列,对于一般的等差数列的求和方法和公式学生还是一无所知。 3、学生的认知规律角度:本节课采取了循序渐进、层层深入的教学方式,以问题解答的形式,通过探索、讨论、分析、归纳而获得知识,为学生积极思考、自主探究搭建了理想的平台,让学生去感悟倒序相加法的和谐对称以及使用范围。 四、教学目标 1、类比高斯算法,探求等差数列前n项和公式,理解公式的推导方法; 2、能较熟练地应用等差数列前n项和公式解决相关问题; 3、经历公式的推导过程,体会层层深入的探索方式,体验从特殊到一般、具体到抽象的研究方法,学会观察、归纳、反思与逻辑推理的能力; 4、通过生动具体的现实问题,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感,体验在学习中获得成功;五、教学重点与难点

等差数列基础习题精选附详细答案

等差数列基础习题精选 一.选择题(共26小题) 1.已知等差数列{a n}中,a3=9,a9=3,则公差d的值为() A.B.1C.D.﹣1 2.已知数列{a n}的通项公式是a n=2n+5,则此数列是() A.以7为首项,公差为2的等差数列B.以7为首项,公差为5的等差数列 C.以5为首项,公差为2的等差数列D.不是等差数列 3.在等差数列{a n}中,a1=13,a3=12,若a n=2,则n等于() A.23 B.24 C.25 D.26 4.等差数列{a n}的前n项和为S n,已知S3=6,a4=8,则公差d=() A.一1 B.2C.3D.一2 5.两个数1与5的等差中项是() A.1B.3C.2D. 6.一个首项为23,公差为整数的等差数列,如果前六项均为正数,第七项起为负数,则它的公差是()A.﹣2 B.﹣3 C.﹣4 D.﹣5 7.(2012?福建)等差数列{a n}中,a1+a5=10,a4=7,则数列{a n}的公差为() A.1B.2C.3D.4 8.数列的首项为3,为等差数列且,若,,则=() A.0B.8C.3D.11 9.已知两个等差数列5,8,11,…和3,7,11,…都有100项,则它们的公共项的个数为()A.25 B.24 C.20 D.19 10.设S n为等差数列{a n}的前n项和,若满足a n=a n﹣1+2(n≥2),且S3=9,则a1=() A.5B.3C.﹣1 D.1 11.(2005?黑龙江)如果数列{a n}是等差数列,则() A.a1+a8>a4+a5B.a1+a8=a4+a5C.a1+a8<a4+a5D.a1a8=a4a5 12.(2004?福建)设S n是等差数列{a n}的前n项和,若=() A.1B.﹣1 C.2D.

第2讲等差数列及其前n项和

第2讲 等差数列及其前n 项和 一、选择题 1.(2016·武汉调研)已知数列{a n }是等差数列,a 1+a 7=-8,a 2=2,则数列{a n }的公差d 等于( ) A.-1 B.-2 C.-3 D.-4 解析 法一 由题意可得?????a 1+(a 1+6d )=-8,a 1+d =2, 解得a 1=5,d =-3. 法二 a 1+a 7=2a 4=-8,∴a 4=-4, ∴a 4-a 2=-4-2=2d ,∴d =-3. 答案 C 2.已知等差数列{a n }的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之和为25,则这个数列的项数为( ) A.10 B.20 C.30 D.40 解析 设项数为2n ,则由S 偶-S 奇=nd 得,25-15=2n ,解得n =5,故这个数列的项数为10. 答案 A 3.已知等差数列{a n }满足a 1+a 2+a 3+…+a 101=0,则有( ) A.a 1+a 101>0 B.a 2+a 100<0 C.a 3+a 99=0 D.a 51=51 解析 由题意,得a 1+a 2+a 3+…+a 101=a 1+a 1012×101=0.所以a 1+a 101=a 2 +a 100=a 3+a 99=0. 答案 C 4.设数列{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37等于( ) A.0 B.37 C.100 D.-37

解析 设{a n },{b n }的公差分别为d 1,d 2,则(a n +1+b n +1)-(a n +b n )=(a n +1-a n )+(b n +1-b n )=d 1+d 2, ∴{a n +b n }为等差数列,又a 1+b 1=a 2+b 2=100, ∴{a n +b n }为常数列,∴a 37+b 37=100. 答案 C 5.(2017·泰安模拟)设等差数列{a n }的前n 项和为S n ,若a 2=-11,a 5+a 9=-2,则当S n 取最小值时,n =( ) A.9 B.8 C.7 D.6 解析 设等差数列{a n }的首项为a 1,公差为d ,由?????a 2=-11,a 5+a 9=-2, 得?????a 1+d =-11,2a 1+12d =-2,解得?????a 1=-13,d =2. ∴a n =-15+2n . 由a n =-15+2n ≤0,解得n ≤152.又n 为正整数, ∴当S n 取最小值时,n =7.故选C. 答案 C 二、填空题 6.(2016·江苏卷)已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________. 解析 设数列{a n }的公差为d ,由题设得 ???a 1+(a 1+d )2=-3,5a 1+5×42d =10, 解得?????a 1=-4,d =3, 因此a 9=a 1+8d =20. 答案 20 7.正项数列{a n }满足a 1=1,a 2=2,2a 2n =a 2n +1+a 2n -1(n ∈N *,n ≥2),则a 7= ________.

等差数列的前n项和学案

【学习目标】1.熟练掌握等差数列前n 项和的性质,并能灵活运用. 2.掌握等差数列前n 项和的最值问题. 3.理解a n 与S n 的关系,能根据S n 求a n . 【学法指导】1.任何一个数列{a n }与它的前n 项和S n 之间都有一个等量关系式,此公式为: a n =????? S 1 n =1,S n -S n -1 n≥2,题中已知一个数列的前n 项和,则可利用此公式求得此数列的通项公式,同时要注意此公式是一个分段的函数,所以在使用此公式求解 时,要分类讨论. 2.数列中的最值问题可以根据二次函数的最值加以求解,这也是利用函数解决数列问 题的一个重要应用. 3.等差数列的前n 项和与二次函数联系十分紧密,要辨析它们之间的关系,从更高境 界处理等差数列的前n 项和问题. 一.知识导学 1.前n 项和S n 与a n 之间的关系 对任意数列{a n },S n 是前n 项和,S n 与a n 的关系可以表示为a n =????? n =1, n≥2. 2.等差数列前n 项和公式:S n = = . 3.若等差数列{a n }的前n 项和公式为S n =An 2+Bn +C ,则A =_ __,B = ,C = . 4.已知数列{a n }的通项公式是a n =2n -48,则S n 取得最小值时,n 为________. 二.探究与发现 [问题情境] 1.如果已知数列{a n }的前n 项和S n 的公式,那么这个数列确定了吗如果确定了,那么如何求它的通项公式应注意一些什么问题 2.如果一个数列的前n 项和的公式是S n =an 2+bn +c(a ,b ,c 为常数),那么这个数列一定是等差数列吗 3.如果{a n }是一个等差数列,那么{|a n |}还是等差数列吗如果不再是等差数列,如何求{|a n |}的前n 项和

等差数列和前n项和习题与答案

第六章 第二节 1.{a n }为等差数列,a 10=33,a 2=1,S n 为数列{a n }的前n 项和,则S 20-2S 10等于( ) A .40 B .200 C .400 D .20 解析:选C S 20-2S 10=20a 1+a 202-2×10a 1+a 102 =10(a 20-a 10)=100d .又a 10=a 2+8d ,∴33=1+8d . ∴d =4.∴S 20-2S 10=400.故选C. 2.已知等差数列{a n }的前n 项和为S n ,且满足S 33-S 2 2 =1,则数列{a n }的公差是( ) A.1 2 B .1 C .2 D .3 解析:选C 因为S n = n a 1+a n 2 ,所以 S n n =a 1+a n 2.由S 33-S 22=1,得a 32-a 2 2 =1,即a 3-a 2=2,所以数列{a n }的公差为2.故选C. 3.(2014·临川一中质检)已知数列{a n },{b n }都是公差为1的等差数列,其首项分别为 a 1, b 1,且a 1+b 1=5,a 1,b 1∈N *.设 c n =a b n (n ∈N *),则数列{c n }的前10项和等于( ) A .55 B .70 C .85 D .100 解析:选C 由题知a 1+b 1=5,a 1,b 1∈N *.设c n =a b n (n ∈N *),则数列{c n }的前10项和等于a b 1+a b 2+…+a b 10=a b 1+a b 1+1+…+a b 1+9,a b 1=a 1+(b 1-1)=4,∴a b 1+a b 1+1+…+a b 1+9=4+5+6+…+13=85,选C. 4.(2014·中原名校联盟摸底考试)若数列{a n }通项为a n =an ,则“数列{a n }为递增数列”的一个充分不必要条件是( ) A .a ≥0 B .a >1 C .a >0 D .a <0 解析:选B 数列{a n }为递增数列,则a >0,反之a >0,则数列{a n }为递增数列,a >0

等差数列及其前n项和

第五章 第二节 等差数列及其前n 项和 课下练兵场 一、选择题 1.等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d 等于 ( ) A.1 B.5 3 C.2 D.3 解析:∵S 3= 13() 2 a a +=6,而a 3=4,∴a 1=0, ∴d = 31() 2 a a +=2. 答案:C 2.已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项的和S 10= ( ) A.138 B.135 C.95 D.23 解析:∵(a 3+a 5)-(a 2+a 4)=2d =6,∴d =3,a 1=-4, ∴S 10=10a 1+10(101)2 d ?-=95. 答案:C 3.设命题甲为“a ,b ,c 成等差数列”,命题乙为“a b +c b =2”,那么 ( ) A.甲是乙的充分不必要条件 B.甲是乙的必要不充分条件 C.甲是乙的充要条件 D.甲是乙的既不充分也不必要条件 解析:由a b +c b =2,可得a + c =2b ,但a 、b 、c 均为零时,a 、b 、c 成等差数列, 但a b +c b ≠2. 答案:B

4.数列{a n }中,a 2=2,a 6=0且数列{ 1 1 n a +}是等差数列,则a 4= ( ) A.12 B.13 C.14 D.16 解析:设数列{ 11n a +}的公差为d ,由4d =611a +-211a +得d =16,∴411 a +=1 2+1+ 2×16,解得a 4=1 2. 答案:A 5.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是 ( ) A.24 B.48 C.60 D.84 解析:由a 1>0,a 10·a 11<0可知d <0,a 10>0,a 11<0, ∴T 18=a 1+…+a 10-a 11-…-a 18=S 10-(S 18-S 10)=60. 答案:C 6.在等差数列{a n }中,其前n 项和是S n ,若S 15>0,S 16<0,则在 11S a ,2 2S a ,…,1515S a 中最 大的是 ( ) A . 1 1S a B .88S a C .99 S a D .1515S a 解析:由于S 15= 11515() 2 a a +=15a 8>0, S 16= 11615() 2 a a +=8(a 8+a 9)<0, 所以可得a 8>0,a 9<0. 这样 11S a >0,2 2S a >0,…,88S a >0,99S a <0,1010S a <0,…,1515S a <0, 而S 1<S 2<…<S 8,a 1>a 2>…>a 8, 所以在 11S a ,2 2S a ,…,1515S a 中最大的是88S a . 答案:B 二、填空题 7.在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1 a n +2 (n ∈N *),则该数列的通项a n = . 解析:由2a n +1=1a n +1a n +2,1a n +2-1a n +1=1a n +1-1 a n ,

等差数列前n项求和

2.3 等差数列的前n 项和 一、教学目标 1、理解等差数列的概念;探索并掌握等差数列的通项公式、前n 项和。 2、体会等差数列与二次函数的关系。 二、基础知识 1、数列前n 项和公式: 一般地,称n a a a a ++++...321为数列}{n a 的前n 项的和,用n S 表示,即n n a a a a S ++++= (321) 2、数列通项n a 与前n 项和n S 的关系 当2≥n 时,有n n a a a a S ++++=...321;13211...--++++=n n a a a a S ,所以n a =____________;当n=1时,11s a =。总上可得n a =____________ 3、等差数列}{n a 的前n 项和的公式=n S ________________=__________________ 4、若数列{}n a 的前n 项和公式为Bn An S n +=2(B A ,为常数),则数列{}n a 为 。 5、在等差数列}{n a 中,n S ;n S 2-n S ;n S 3-n S 2;。。。 仍成等差数列,公差为___________ 6、在等差数列}{n a 中:若项数为偶数2n 则=n S ________________;奇偶-s s =________________;=偶奇 s s ________________。 若项数为奇数2n-1则=-1n S ________________;偶奇-s s =________________;=偶奇 s s ________________。 7、若数列}{n a 与}{n b 均为等差数列,且前n 项和分别是n S 和n T ,则 =m m b a _____________。 三、典例分析 例1、已知数列{}n a 的前n 项和22+=n S n ,求此数列的通项公式。 解析:32111=+==s a ① )2(12]2)1[(2221≥-=+--+=-=-n n n n s s a n n n ② 在②中,当n=1时,1112=-?与①中的1a 不相等

高中数学必修五第二章数列学案 等差数列的前n项和(2)

§2.3 等差数列的前n 项和(2) 主备人: 王 浩 审核人: 马 琦 学习目标 1. 进一步熟练掌握等差数列的通项公式和前n 项和公式; 2. 了解等差数列的一些性质,并会用它们解决一些相关问题; 3. 会利用等差数列通项公式与前 n 项和的公式研究n S 的最大(小)值. 学习过程 一、复习回顾 1:等差数列{n a }中, 4a =-15, 公差d =3,求5S . 2:等差数列{n a }中,已知31a =,511a =,求和8S . 二、新课导学 ※ 探究一:如果一个数列{}n a 的前n 项和为2n S pn qn r =++,其中p 、q 、r 为常数,且0p ≠,那么这个数列一定是等差数列吗?如果是,它的首项与公差分别是多少? ※探究二:记等差数列{}n a 的偶数项和为S 偶,奇数项和为S 奇.当项数为2n 时,则有 S S nd -=奇偶 ;当项数为21n -时,则有n S S a -=奇偶 。 ※探究三:当等差数列{}n a 的项数为21n -时,有12-n S = 。 ※ 典型例题 例1、已知数列{}n a 的前n 项为212 n S n n =+,求这个数列的通项公式. 这个数列是等差数列

吗?如果是,它的首项与公差分别是什么? 变式:已知数列{}n a 的前n 项为212 343n S n n =++,求这个数列的通项公式. 小结:数列通项n a 和前n 项和n S 关系为 n a =11(1) (2)n n S n S S n -=??-≥?,由此可由n S 求n a . 例2、等差数列{}m a 共有2n 项,其中奇数项的和为90,偶数项的和为72,且 2133n a a -=-,求该数列的公差d 。 变式:已知两个等差数列{}n a 和{}n b 的前n 项和分别为n A 和n B ,且745 3 n n A n B n +=+,求n n a b 。 例2、已知等差数列24 54377,,,....的前n 项和为n S ,求使得n S 最大的序号n 的值. 变式:等差数列{n a }中, 4a =-15, 公差d =3, 求数列{n a }的前n 项和n S 的最小值.

等差数列的前n项和练习 含答案

等差数列的前n项和练习-含答案. 项和等差数列的前n课时作业8分满分:100时间:45分钟

课堂训练) (2,S=0,则n等于a1.已知{}为等差数列,a=35,d=-nn1B.34 A.3336 . DC.35 D 【答案】 +naS=n【解析】本题考查等差数列的前项和公式.由1n?1n-n?n -1??n36. ,可以求出n=0d=35n+×(-2)=22,则数列前24=+3(aa)+2(a+a+a).等差数列2{a}中,133710n5) 13项的和是( 26 .A.13 B156 .D52 C.

B 【答案】++)2()+a+a+a=24?6a6a=24?aa3(【解析】a +41013375410?+a13?a?13?a+a413×10131426. ====?a=4S1310222________. 50.=则SS=S.3等差数列的前n项和为,S20,=30n201090 【答案】 等差数列的片断数列和依次成等差数列.【解析】 S∴,S也成等差数列.-,-SSS2020101030S∴2(90. ()S-=SS+)S-S,解得=301020301020. . S=460,求S,4.等差数列{a}的前n项和为S,若S=8428n20n12a 应用基本量法列出关于a和的方程组,解出d【分析】(1)11;d,进而求得S和28的一元二次函数且常n因为数列不是常数列,因此S 是关于(2)n

2,、b数项为零.设S=anS+bn,代入条件S=84,=460,可得a20n12 S;则可求28SdSddd??nn2是一个等差),故(a-S(3)由=n++n(a-得??1n1nn2222??SSS282012. =+2812+,∴2×,可求得列,又2×20=28281220 a}的公差为d,方法一:设【解析】{n?n?n -1S则. d=na+1n21112×?,84+d=a1212?由已知条件得: 19 ×20?,=460+20ad12??,=-d11=14,15a2a+11解得整理得????4.=d+19d=46,a21?-1?nn所以S-17n,2n15n +×4=2=-n2所以S-17×28=1 092.

等差数列及其前n项和(普通高中)

课时跟踪检测(二十九) 等差数列及其前n 项和 (一)普通高中适用作业 A 级——基础小题练熟练快 1.(2018·兰州诊断考试)已知等差数列{a n }的前n 项和为S n ,若a 1=2,a 8+a 10=28,则S 9=( ) A .36 B .72 C .144 D .288 解析:选B 法一:∵a 8+a 10=2a 1+16d =28,a 1=2, ∴d =32,∴S 9=9×2+9×82×32 =72. 法二:∵a 8+a 10=2a 9=28,∴a 9=14, ∴S 9=9(a 1+a 9)2 =72. 2.(2018·安徽两校阶段性测试)若等差数列{a n }的前n 项和为S n ,且满足a 2+S 3=4,a 3+S 5=12,则a 4+S 7的值是( ) A .20 B .36 C .24 D .72 解析:选C 由a 2+S 3=4及a 3+S 5=12, 得????? 4a 1+4d =4,6a 1+12d =12,解得????? a 1=0, d =1, ∴a 4+S 7=8a 1+24d =24. 3.(2018·西安质检)已知数列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k +1<0,则正整数k =( ) A .21 B .22 C .23 D .24 解析:选C 由3a n +1=3a n -2?a n +1-a n =-23?{a n }是等差数列,则a n =473-23 n .∵a k ·a k +1<0, ∴????473-23k ????453-23k <0,∴452

等差数列的前n项和练习题及答案解析

1.若一个等差数列首项为0,公差为2,则这个等差数列的前20项之和为( ) A .360 B .370 C .380 D .390 答案:C 2.已知a 1=1,a 8=6,则S 8等于( ) A .25 B .26 C .27 D .28 答案:D 3.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则{a n }的通项a n =________. 解析:由已知????? a 1+5d =123a 1+3d =12?????? a 1=2,d =2.故a n =2n . 答案:2n 4.在等差数列{a n }中,已知a 5=14,a 7=20,求S 5. 解:d =a 7-a 57-5 =20-142=3, a 1=a 5-4d =14-12=2, 所以S 5=5?a 1+a 5?2=5?2+14?2 =40. 一、选择题 1.(2011年杭州质检)等差数列{a n }的前n 项和为S n ,若a 2=1,a 3=3,则S 4=( ) A .12 B .10 C .8 D .6 解析:选C.d =a 3-a 2=2,a 1=-1, S 4=4a 1+4×32 ×2=8. 2.在等差数列{a n }中,a 2+a 5=19,S 5=40,则a 10=( ) A .24 B .27 C .29 D .48 解析:选C.由已知????? 2a 1+5d =19,5a 1+10d =40. 解得????? a 1=2,d =3.∴a 10=2+9×3=29. 3.在等差数列{a n }中,S 10=120,则a 2+a 9=( ) A .12 B .24 C .36 D .48

等差数列及其前n项和练习题

第1讲 等差数列及其前n 项和 一、填空题 1.在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=________. 2.设等差数列{a n }的前n 项和为S n ,若S 412-S 3 9=1,则公差为________. 3.在等差数列{a n }中,a 1>0,S 4=S 9,则S n 取最大值时,n =________. 4.在等差数列{a n }中,若a 1+a 4+a 7=39,a 3+a 6+a 9=27,则S 9=________. 5.设等差数列{a n }的公差为正数,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12 +a 13=________. 6.已知数列{a n }的前n 项和为S n =2n 2+pn ,a 7=11.若a k +a k +1>12,则正整数k 的最小值为________. 7.已知数列{a n }满足递推关系式a n +1=2a n +2n -1(n ∈N * ),且? ?????????a n +λ2n 为等差数列, 则λ的值是________. 8.已知数列{a n }为等差数列,S n 为其前n 项和,a 7-a 5=4,a 11=21,S k =9,则k =________. 10.已知f (x )是定义在R 上不恒为零的函数,对于任意的x ,y ∈R ,都有f (x ·y )=xf (y )+yf (x )成立.数列{a n }满足a n =f (2n )(n ∈N *),且a 1=2.则数列的通项公式a n =________. 二、解答题 11.已知等差数列{a n }的前三项为a -1,4,2a ,记前n 项和为S n . (1)设S k =2 550,求a 和k 的值; (2)设b n =S n n ,求b 3+b 7+b 11+…+b 4n -1的值.

等差数列前n项和公式及性质

2.2 等差数列的前n项和 第一课时等差数列前n项和公式及性质 【选题明细表】 基础达标 1.在等差数列{a n}中,已知a1=2,a2+a3=13,则a4+a5+a6等于( B ) (A)40 (B)42 (C)43 (D)45 解析:∵a1=2,a2+a3=13, ∴3d=13-4=9,∴d=3, a4+a5+a6=S6-S3=6×2+×6×5×3-(3×2+×3×2×3)=42.故选B. 2.等差数列{a n}共有2n+1项,其中奇数项之和为319,偶数项之和为290,则其中间项为( B ) (A)28 (B)29 (C)30 (D)31

解析:∵S奇=a1+a3+…+a2n+1=(n+1)a n+1, S偶=a2+a4+…+a2n=na n+1, ∴S奇-S偶=a n+1=29.故选B. 3.(2013南阳高二阶段性考试)已知等差数列{a n}的前n项和为S n,若2a8=6+a11,则S9等于( D ) (A)27 (B)36 (C)45 (D)54 解析:∵2a8=a5+a11=6+a11,∴a5=6, ∴S9===9a5=54.故选D. 4.(2012郑州四十七中月考)设等差数列{a n}的前n项和为S n,若 S3=9,S6=36,则a7+a8+a9等于( B ) (A)63 (B)45 (C)36 (D)27 解析:由S3,S6-S3,S9-S6成等差数列, ∴2(S6-S3)=S3+(S9-S6),∴a7+a8+a9=S9-S6=2(S6-S3)-S3=2×(36-9)-9=45.故选B. 5.(2013广州市铁一中第一学期期中测试)在各项均不为零的等差数列中,若a n+1-+a n-1=0(n≥2),则S2n-1-4n等于( A ) (A)-2 (B)0 (C)1 (D)2 解析:由已知得2a n-=0, 又a n≠0,∴a n=2, ∴S2n-1===2(2n-1), ∴S2n-1-4n=-2.故选A.

等差数列前n项和公式》教学设计

《等差数列的前n项和公式》教学设计 职业技术学校刘老师 大纲分析: 高中数列研究的主要对象是等差、等比两个基本数列。本节课的教学内容是等差数列前n项和公式的推导及其简单应用。 教材分析: 数列在生产实际中的应用范围很广,而且是培养学生发现、认识、分析、综合等能力的重要题材,同时也是学生进一步学习高等数学的必备的基础知识。 学生分析: 数列在整个高中阶段对于学生来说是难点,因为学生对于这部分仅有初中学的简单函数作为基础,所以新课的引入非常重要。 教学目标: 知识与技能目标: 掌握等差数列前n项和公式,能较熟练应用等差数列前n项和公式求和。 过程与方法目标: 培养学生观察、归纳能力,应用数学公式的能力及渗透函数、方程的思想。 情感、态度与价值观目标: 体验从特殊到一般,又到特殊的认识事物的规律,培养学生勇于创新的科学精神。 教学重点与难点: 等差数列前n项和公式是重点。 获得等差数列前n项和公式推导的思路是难点。 教学用具:ppt 整节课分为三个阶段: 问题呈现阶段 探究发现阶段 公式应用阶段 问题呈现1: 首先讲述世界七大奇迹之一泰姬陵的传说(泰姬陵坐落于印度古都阿格,是十七世纪莫卧儿帝国皇帝沙杰罕为纪念其爱妃所建,她宏伟壮观,纯白大理石砌建而成的主体建筑叫人心醉神迷,陵寝以宝石镶饰,图案之细致令人叫绝,成为世界七大奇迹之一。)传说陵寝中有一个三角形图案,以相同大小的圆宝石镶饰而成,共有100层,你知道 这个图案一共花了多少宝石吗?也就是计算1+2+3+ (100) 紧接着讲述高斯算法:高斯,德国著名数学家,被誉为“数学王子”。 200多年前,高斯的算术教师提出了下面的问题:1+2+3+…+100=? 据说,当其他同学忙于把100个数逐项相加时, 10岁的高斯却用下面的方法迅速算出了正确答案: (1+100)+(2+99)+……+(50+51)=101×50=5050 【设计说明】了解历史,激发兴趣,提出问题,紧扣核心。 问题呈现2: 图案中,第1层到第21层一共有多少颗宝石?

等差数列前n项和练习题

等差数列前n 项和练习题 一、 填空题 1. 等差数列{a n }中,若a 6=a 3 +a 8 ,则S 9= 。 2. 等差数列{}n a 的前n 项和n n S n 32+=.则此数列的公差=d 。 3. 等差数列{}n a 的前n 项和为n S ,且53655,S S -=则4a = 。 4. 设等差数列{}n a 的前n 项和为n S ,若972S =,则249a a a ++= 。 5. 已知{}n a 为等差数列,2812a a +=,则5a = 。 6. 已知{a n }为等差数列,a 3 + a 8 = 22,a 6 = 7,则a 5 = ____________。 7. 等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d = 。 8. 等差数列{a n }的前n 项和为S n ,且S 3=6,a 3=4,则公差d = 。 9. 等比数列{}n a 的前n 项和为n S ,若246,30,S S ==则6S = 。 10. 等差数列{}n a 的前n 项和为n S ,已知57684,2a a a a +=+=-,则当n S 取最大值时n 的值是 。 11. 设{}n a 是公差为正数的等差数列,若12315a a a ++=,12380a a a =,则 111213a a a ++= 。 12. 在等差数列{}n a 中,已知1234520a a a a a ++++=,那么3a 的值为 。 13. 已知数列{a n }的前n 项和S n =3n 2-2n ,求=n a 。 14. 设等差数列的前项和为,若则 。 15. 设等差数列的前项和为,若,则= 。 二、 计算题 1. 已知等差数列{a n }中, a 1 =1,d=1,求该数列前10项和S 10 。 2. 已知等差数列{a n }的公差为正数,且a 3·a 7= -12,a 4+a 6=-4,求S 20 。 3. 等差数列{a n }中,S 10 = 100,求a 1+ a 10 的值。 4. 已知等差数列{a n }中,a 3··+a 6+a 8··+a 11= 60 ,求S 13 。 {}n a n n S 535a a =9 5 S S ={}n a n n S 972S =249a a a ++

等差数列的前n项和公式推导及例题解析

等差数列的前n 项和·例题解析 一、等差数列前n 项和公式推导: (1) Sn=a1+a2+......an-1+an 也可写成 Sn=an+an-1+......a2+a1 两式相加得2Sn=(a1+an)+(a2+an-1)+......(an+a1) =n(a1+an) 所以Sn=[n (a1+an )]/2 (公式一) (2)如果已知等差数列的首项为a1,公差为d ,项数为n ,则 an=a1+(n-1)d 代入公式公式一得 Sn=na1+ [n(n+1)d]/2(公式二) 二、对于等差数列前n 项和公式的应用 【例1】 等差数列前10项的和为140,其中,项数为 奇数的各项的和为125,求其第6项. 解 依题意,得 10a d =140a a a a a =5a 20d =125 1135791++++++101012()-????? 解得a 1=113,d=-22. ∴ 其通项公式为 a n =113+(n -1)·(-22)=-22n +135 ∴a 6=-22×6+135=3 说明 本题上边给出的解法是先求出基本元素a 1、d ,

再求其他的.这种先求出基本元素,再用它们去构成其他元素的方法,是经常用到的一种方法.在本课中如果注意到a6=a1+5d,也可以不必求出a n而 直接去求,所列方程组化简后可得 + + 相减即得+, a 2a9d=28 a4d=25 a5d=3 6 1 1 1 ? ? ? 即a6=3.可见,在做题的时候,要注意运算的合理性.当然要做到这一点,必须以对知识的熟练掌握为前提.【例2】在两个等差数列2,5,8,…,197与2,7,12,…,197中,求它们相同项的和. 解由已知,第一个数列的通项为a n=3n-1;第二个数列的通项为b N=5N-3 若a m=b N,则有3n-1=5N-3 即=+ n N 21 3 () N- 若满足n为正整数,必须有N=3k+1(k为非负整数).又2≤5N-3≤197,即1≤N≤40,所以 N=1,4,7,…,40 n=1,6,11,…,66 ∴两数列相同项的和为 2+17+32+…+197=1393 【例3】选择题:实数a,b,5a,7,3b,…,c组成等差数列,且a+b+5a+7+3b+…+c=2500,则a,b,c的值分别为

等差数列前n项和性质

精心整理 2.3.2等差数列的前n 项和的性质【学习目标】 1.熟练掌握等差数列前n 项和公式,等差数列前n 项和的性质以及其与二次函数的关系; 2. 在学习等差数列前n 项和性质的同时感受数形结合的基本思想,会由等差数列前n 项和公式求其通项公式. 【自学园地】 1. 等差数列的前n 项和的性质: 已知数列{a n }是等差数列,S n 是其前n 项和. (1)若m ,n ,p ,q ,k 是正整数,且m +n =p +q =2k ,则a m +a n =a p +a q =2a k . (2)a m (3)(4(5(6){pa n +qb n }都是等差数列(p ,q 都是常数),且公差分别为pd 1,d 1,pd 1+qd 2. 2.{}n a 为等差数列?其前n 项和2n S An Bn =+. 3.若数列{}n a 为等差数列{ }n S n ?成等差. 4.等差数列的单调性的应用: (1)当10,0a d ><时,n S 有最大值,n 是不等式100 n n a a +≥??

(2)当10,0a d <>时,n S 有最大值,n 是不等式1 00n n a a +≤??>?的正整数解时取得. (II )当数列中有某项值为0时,n 应有两解.110m m m S S a ++=?=. 5.知三求二问题:等差数列数列前n 项和公式中各含有4个元素:1,,,n n S n a a 与1,,,n S n a d ,已知其中3个量,即可求出另外1个;综合通项公式及前n 项和公式,已知其中3个量即可求出另外2个量. 【典例精析】 1.(1(2(3(4,则项数n (5d . (62.3.4(1(2)问12,,S 中哪个值最大?5中,a 1=-60,6.7.已知正项数列{}n a 的前n 项和为n S ,且(1)n a n n = +,求n S 8.已知正项数列{}n a 的前n 项和为n S ,且1(2) n a n n = +,求n S 【巩固练习】 1.一个有11项的的等差数列,奇数项之和是30,则它的中间项是() A.8 B.7 C.6 D.5 2.设n S 是等差数列{}n a 的前n 项和,若3613S S =,则612 S S =()

等差数列及其前n项和(讲义及答案)

n n m n k k +m k +2m 等差数列及其前 n 项和(讲义) 知识点睛 一、数列的概念与简单表示方法 1. 数列的概念 按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项. 数列的一般形式可以写成a 1 ,a 2 ,a 3 ,…,a n ,…,简记为{a n }. 2. 数列的表示方法 (1) 列表法 (2) 图象法 (3) 公式法 ①通项公式 ②递推公式 3. 数列的性质 (1) 递增数列 (2) 递减数列 (3) 常数列 (4) 摆动数列 二、 等差数列 1. 等差数列的概念 如果一个数列从第 2 项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母 d 表示. (1) 等差中项 (2) 等差数列的通项公式: a n = a 1 + (n -1)d . 2. 等差数列的性质 (1) 通项公式的推广: a = a + (n - m )d (m ,n ∈ N * ) . (2) 若{a }是等差数列,且k + l = m + n (k ,l ,m ,n ∈ N *) , 则a k +a l = a m + a n . (3) 若{a }是等差数列,则a , a , a ,… (k ,m ∈ N *) 组成公差为 md 的等差数列. (4) 若{a n }是等差数列,则{λ a n + c }也是等差数列. 1

n n n (5) 若{a },{b }是等差数列,则{ p a + qb } (n ∈ N * ) 也是等 n n n n 差数列. 三、 等差数列的前 n 项和 1 . 我们称a 1 + a 2 + a 3 +… + a n 为数列{a n }的前 n 项和,用 S n 表示, 即 S n = a 1 + a 2 + a 3 +… + a n . 等差数列{a n }的前 n 项和公式 (1) 已知a , a ,n 时, S = n (a 1 + a n ) . 1 n n 2 (2) 已知a 1 , n ,d 时, S n 推导过程:倒序相加法 2 . 等差数列各项和的性质 = na 1 + n (n -1) d . 2 (1) S m , S 2m , S 3m 分别是{a n } 的前 m 项,前 2m 项,前 3m 项的和,则S m , S 2m - S m , S 3m - S 2m 成等差数列. (2) 两个等差数列{a n },{b n }的前 n 项和 S n , T n 之间的关系 为 a n b n = S 2n -1 . T 2n -1 (3) 数列{a }的前 n 项和S = An 2 + Bn ( A ,B ∈ R ) 是{a }为等差数列的等价条件. (4) 等差数列{a n }前 n 项和的最值: 当d > 0 时,{a n }为递增数列,且当a 1 < 0 时,前 n 项和S n 有最小值; 当d < 0 时,{a n }为递减数列,且当a 1 > 0 时,前 n 项和S n 有最 大值. 2

相关文档
相关文档 最新文档