文档库 最新最全的文档下载
当前位置:文档库 › 数学物理方程总结

数学物理方程总结

数学物理方程总结
数学物理方程总结

理工大学数学系

第一章:偏微分方程的基本概念

偏微分方程的一般形式:221

1

(,,,

,,,)0n u

u u F x u x x x ???=??? 其中12(,,...,)n x x x x =是自变量,12()(,,...,)n u x u x x x =是未知函数

偏微分方程的分类:线性PDE 和非线性PDE ,其中非线性PDE 又分为半线性PDE ,拟线性PDE 和完全非线性PDE 。

二阶线性PDE 的分类(两个自变量情形):

2221112222220u u u u u a a a a b cu x x y y x y

?????+++++=?????? (一般形式 记为 PDE (1))

目的:可以通过自变量的非奇异变换来化简方程的主部,从而据此分类

(,)

(,)x y x y ξξηη=??

=?

非奇异 0x y

x y

ξξηη≠

根据复合求导公式最终可得到:

22211122222

20u u u u u A A A A B Cu ξξηηξη

?????+++++=??????其中: 22111112221211

122222221112

22()2()()()2()A a a a x x y y A a a a x x x y x y y y A a a a x x y y ξξξξξηξηηξξη

ηηηη

?????=++???????????????=+++??????????

?????=++??????

考虑22111222(

)2()0z z z z a a a x x y y

????++=????如果能找到两个相互独立的解 (,)z x y φ= (,)z x y ψ=

那么就做变换(,)

(,)x y x y ξφηψ=??

=?

从而有11220A A ==

在这里要用到下面两个引理: 引理1:假设(,)z x y φ=是方程22111222(

)2()0z z z z

a a a x x y y

????++=???? (1)的特解,则关主部

系式(,)x y C φ=是常微分方程:22

111222()2()0a dy a dxdy a dx -+= (2)的一般积分。

引理2:假设(,)x y C φ=是常微分方程(2)的一般积分,则函数(,)z x y φ=是(1)的特解。

由此可知,要求方程(1)的解,只须求出常微分方程(2)的一般积分。常微分方程(2)为PDE (1)的特征方程,(1)的积分曲线为PDE (1)的特征曲线。

2211

1222()2()0a dy a dxdy a dx -+=

11

dy

dx

= 记2

121122(,)x y a a a ?=- 则:

22222222222(,)0PDE (,)=0PDE (,)0PDE u u u

x y x y x y u

x y x

u u

x y x y

?

????>=Φ-=Φ

?????????

?=Φ

????

???<+=Φ

?????

(双曲型) 或(抛物型) (椭圆形)

一维的波动方程:22

222(,)(0,0)u u a f x t x L t t x ??=+<<>??

一维的热传导方程222(,)(0,0)u u a f x t x L t t x

??=+<<>??

高维的情况只需要把22u

x

??改为laplace 的形式即可。

数学物理方程(泛定方程)加上相应的定解条件就构成了定界问题。根据定解条件的不同,又可以把定解问题分为三类: 初值问题(Dirichlet ):定解条件仅有初值条件 边值问题(Neumann ):定解条件仅有边值条件 混合问题(Rbin BC ):定解条件有初值条件也有边值条件

数学物理方程的解:如果一个函数在某一自变量的取值区域有所需要的各界连续的导函数,并且带入数学物理方程使方程成为等式,称此函数为在该取值区域方程的解。 定界问题的适定性:

如果一个定解为题的解存在,唯一且稳定,就称这个定界问题是适定的;反之,若有一个性质不满足,则称这个定界问题是不适定的。

所谓界存在,是指定解问题至少有一个解。如果一个定界问题的解不存在,这个问题就完全失去了意义,但定界问题反应的是客观物理实际,在实际问题中解释存在的。若定解问题的解不存在,说明所建立的定界问题是错误的,可能是在推导过程中有非次要因素被忽略掉了,导致泛定方程错误,还有可能定解条件给错了等。这就需要重新考虑定解问题的提法。

解的唯一性从物理意义上讲是显然的,如果解存在但不唯一,将无法确定所求解是否是所需要的,当然也无法求近似解。这表明问题的提法还不够确切,需要进一步分析。 所谓解的稳定性,是指当定解问题有微小变动时,解是否相应地有微小的变动,如果是这样,该解就是稳定的解;否则所得的解就没有实用价值,因为定解条件通常是利用实验方法所获得的,因而所得到的结果有一定的误差,如果因此导致解的变动很大,那么这种解显然不符合客观实际的要求。

而我们多学的定解问题都是经典问题,他们的适定性都是经过证明了的。

第二章:分离变量法

分离变量法的主要思想:1、将方程中含有各个变量的项分离开来,从而原方程拆分成多个更简单的只含1个自变量的常微分方程;2、运用线性叠加原理,将非齐次方程拆分成多个齐次的或易于求解的方程;3、利用高数知识、级数求解知识、以及其他巧妙方法,求出各个方程的通解;4、最后将这些通解“组装”起来。 分离变量法是求解偏微分方程最基本最常用的方法。主要根据的理论依据是线性方程的叠加原理和Sturm-Liouville 理论。最核心的思想是将偏微分方程的求解化为对常微分方程的求解。

下面就有界弦的自由振动的定解问题讨论

22222

0000,00,0,

0(),(),0x x l t t u u a x l t x u u t u u x x x l t φψ====???-=<

==>??

??==<

观察注意其特点是: 方程齐次, 边界齐次.

端点会引起波的反射,弦有限长,波在两端点之间往返反射。两列反向行进的同频率的波形成驻波。驻波的特点: (1) 没有波形的传播,即各点振动相位与位置无关,按同一方式随时间振动,可统一表示为()T t (2) 各点振幅随点而异,而与时间无关,用 X(x) 表示,所以驻波可用 ()()X x T t 表示

设(,)()()u x t X x T t =且(,)u x t 不恒为零,带入方程和边界条件中得到

''2''0XT a X T -=??????(1)

由于(,)u x t 不恒为零,有:''''2()()

()()

X x T t X x a T t λ==-

''()()0

X x X x λ+=(2)

2''()()0................T t a T t λ+=(3)

利用边界条件:

(0)()0

()()0

X T t X l T t =????????

=?(4) (4)(0)0,()0X X l ?==成立

''0

(0)0,()0X X X X l λ?+=???????

==?

(5) 参数λ成为特征值。函数()X x 成为特征函数下面分三种情况讨论特征值问题 (i )0λ<

方程的通解为12()X x C C e

=+

由边值条件得12120

C C C C e +=???+=??

C1 =C 2=0 从而 ()0,0X x λ≡<无意义

(ii )=0λ方程的通解12()X x C x C =+同样的到()0X x ≡,=0λ无意义

(iii )0λ>

时,通解12()X x C C =+

由边值条件得120

C C =???=?? 得

到20,

C ≠

从而0l =

n π= 即22

2,12,3,n n l

πλ==??,

而由于2()sin

,1,2,n π

X x C x n l

=

=

再求T :22

"2

2()()0n

n n T t a T t l

π+= 其解为:()cos sin n at n at

n n n l l T t A B ππ=+

所以(,)(cos

sin )sin 1,2,3,n at

n at n x

n n n l l l u x t A B n πππ=+=?

根据叠加原理可

以得到:1

(,)(cos sin )sin n at n at n x

n n l l l n u x t A B πππ∞

==

+∑ 定解问题的解是Fourier 正弦级数,这是在 x =0 和 x=l 处的第一类齐次边界条件决定的。

2020()sin ()sin l n n

n l l l

n l n n na na l A d B d πξπξππφφξξ

ψψξξ?==???==?

?? 解的物理意义(,)

(cos sin )sin na t na t n x

n n n l l l u x t A B πππ=+

sin()sin n x

n n n l N t S πω=+

1(,)(,)n n u x t u x t ∞

==∑

u(x,t )是由无穷多个振幅、频率、初位相各不相同的驻波叠加而成。 n =1的驻波称为基波,n>1的驻波叫做n 次谐波.

注意:分离变量法适用围:偏微分方程是线性齐次的,并且边界条件也是齐次的。 其求解的关键步骤:确定特征函数和运用叠加原理。对于不同类型的定解条件做了如下总结

齐次化原理:(Duhamel )

设3

{(,,):0,0}x t R x t τπτ∈<<>>上的函数(,,)U x t τ关于自变量x ,t 二次可微

(,,)U x t τ连同关于x 和t 的一阶和二阶偏导数都对(,,)x t τ在3{(,,)x t R τ∈:0,0}x t πτ<<>>上连续,且(,,)U x t τ满足:

22

222

0(,,)(,,)0,0,(,,)0,(,,)0,0,(,,)00(,,)

(,),0x x t U x t U x t a x t t x U x t U x t x t U x x U x t f x x t πτττπτττπτττπττπ

===???-=<<>????==<<>???

=<

???

则函数0

(,)(,,)t

u x t U x t d ττ=

?是下面方程的解:

22

222

00

(,)(,)(,),0,(,,)0,(,)0,0,(,0)00(,)

0,0x x t u x t u x t a f x t x t t x u x t u x t x t u x x u x t x t ππτπτππ

===???-=<<>????

==<<>???

=<

???

1、圆域上的laplace 方程

定界问题20 (0, 02)u r a φπ?=<<<< 边界条件(,)() (02)u a f φφφπ=≤≤

想法是把空间柱面坐标退化为二维的极坐标。挖掘边界条件: r 的边界是0和a, j 的边界是0和2π.自然边界条件(0,)u φ=有限值,周期边界条件:(,0)(,2)u r u r π=,分离变量

令()()u R r φ=Φ,带入极坐标Laplace 方程:222110u u

r r r r r φ

?????+= ??????得到:

2

r d rdR m R dr dr ''Φ??=-?=- ?Φ?? 于是可以化为下面两个常微分方程:20, (0)(2) (1)m π''Φ+Φ=Φ=Φ

220

(2)r R rR m R '''+-=、求解式(1)的本征函数得到:

()cos()sin() (0,1,2,

)m m A m B m m φφφΦ=+=

在求解(2)式,形式上是欧拉方程,因此可以通过ln t r =来进行代换,得:

1dR dR dt dR

R dr dt dr r dt

'=

=?= 22211t d dR d dR dt d R dR R e dr r dt dt dt dr r dt dt -??????''==?=-

? ? ???????

因此式(2)化简为:2

()()0R t m R t ''-=它的通解是: m=0时,000()ln R t C D r =+

m ≠0时,()m m

m m m R t C r D r -=+

由自然边界条件“u(0,j)=有限值“ 可知0D =0和m D =0.所以,原Laplace 方程的通解为:

01

(,)(cos sin )m m m m u r A A m B m r φφφ∞

==++∑再代入边界条件:

(,)() (02)u a f φφφπ=≤≤

01()(cos sin )m m m m f A A m B m a φφφ∞

==++∑上式实际上就是f(j)的傅立叶级数展开式,所

以待定系数可以确定: 200

1()2A f d π

ξξπ

=

?

数学物理方程小结85856

数学物理方程小结 第七章 数学物理定解问题 数学物理定解问题包含两个部分:数学物理方程(即泛定方程)和定解条件。 §7.1数学物理方程的导出 一般方法: 第一确定所要研究的物理量u ,第二 分析体系中的任意一个小的部分与邻近部分的相互作用,根据物理规律, 抓住主要矛盾, 忽略次要矛盾。(在数学上为忽略高级小量.)第三 然后再把物理量u 随时间,空间的变为通过数学算式表示出来, 此表示式即为数学物理方程。 (一) 三类典型的数学物理方程 (1)波动方程: 0 :),(:),(:22222222==??-??=?-??→f 当无外力时t x f x u a t u 一维t r f u a t u 三维 此方程 适用于各类波动问题。(特别是微小振动情况.) (2)输运方程: 0 :).(:),(:2222==??-??=?-??→f 无外源时t x f x u a t u 一维t r f u a t u 三维 此方程 适用于热传导问题、扩散问题。

(3)Laplace 方程: . 0(:0 :).程时泊松方程退化拉氏方f f u 泊松方程u 拉氏方程t r ==?=?→ 稳定的温度和浓度分布适用的数学物理方程为Laplace 方程, 静电势u 在电荷密度为零处也满足Laplace 方程 。 §7.2定解条件 定解条件包含初始条件与边界条件。 (1) 初始条件的个数等于方程中对时间最高次导数 的次数。例如波动方程应有二个初始条件, 一般 选初始位移u (x,o )和初始速度u t (x,0)。而输 运方程只有一个初始条件选为初始分布u (x,o ), 而Laplace 方程没有初始条件。 (2) 三类边界条件 第一类边界条件: u( r ,t)|Σ = f (1) 第二类边界条件: u n |Σ = f (2) 第三类边界条件: ( u+Hu n )|Σ= f (3) 其中H 为常数. 7.3 二阶线性偏微分方程分类 判别式 , ,0,,0,,0221121222112122211212抛物型a a a 椭圆型a a a 双曲型a a a =-=?<-=?>-=? 波动方程是双曲型的,输运方程为抛物型的,而拉普拉斯方程为椭圆型的.

初中物理所有公式总结

1. 电功(W):电流所做的功叫电功, 2. 电功的单位:国际单位:焦耳。常用单位有:度(千瓦时),1度=1千瓦时= 3.6×106焦耳。 3. 测量电功的工具:电能表(电度表) 4. 电功计算公式:W=UIt(式中单位W→焦(J);U→伏(V);I→安 (A);t→秒)。 5. 利用W=UIt计算电功时注意:①式中的W.U.I和t是在同一段电路;②计算时单位要统一;③已知任意的三个量都可以求出第四个量。 6. 计算电功还可用以下公式:W=I2Rt ;W=Pt;W=UQ(Q是电量); 7. 电功率(P):电流在单位时间内做的功。单位有:瓦特(国际);常用单位有:千瓦 8. 计算电功率公式: (式中单位P→瓦(w);W→焦;t→秒;U→伏(V); I→安(A) 9. 利用计算时单位要统一,①如果W用焦、t用秒,则P的单位是瓦;②如果W用千瓦时、t用小时,则P的单位是千瓦。 10.计算电功率还可用右公式:P=I2R和P=U2/R 11.额定电压(U0):用电器正常工作的电压。 12.额定功率(P0):用电器在额定电压下的功率。 13.实际电压(U):实际加在用电器两端的电压。 14.实际功率(P):用电器在实际电压下的功率。 当U > U0时,则P > P0 ;灯很亮,易烧坏。当U < U0时,则P < P0 ;灯很暗,当U = U0时,则P = P0 ;正常发光。 (同一个电阻或灯炮,接在不同的电压下使用,则有 ;如:当实际电压是额定电压的一半时,则实际功率就是额定功率的1/4。例220V100W是表示额定电压是220伏,额定功率是100瓦的灯泡如果接在110伏的电路中,则实际功率是25瓦。) 15.焦耳定律:电流通过导体产生的热量跟电流的二次方成正比,跟导体的电阻成正比,跟通电时间成正比。 16.焦耳定律公式:Q=I2Rt ,(式中单位Q→焦; I→安(A);R→欧

数学物理方程的感想

数学物理方程的感想 通过对数学物理方程一学期的学习,我深深的感受到数学的伟大与博大精深。 当应用数学发展到一定高度时,就会变得越来越难懂,越来越抽象,没有多少实际的例子来说明;物理正好也要利用数学来进行解释和公式推导,所以就出现了数学物理方法。刚开始到结束这门课程都成了我的一大问题。很难理解它的真正意义(含义),做题不致从何入手,学起来越来越费劲。让我很是绞尽脑汁。 后来由于老师耐心的指导与帮助下我开始有了点理解。用数学物理方法来解释一些物理现象,列出微分方程,当然这些微分方程是以物理的理论列出来的,如果不借助于物理方法,数学也没有什么好办法来用于教学和实践,而物理的理论也借助于数学方法来列出方程,解出未知的参数。这就是数学物理方法的根本实质所在。真正要学好数学物理方程不仅要数学好物理也不能够太差。 接下来我想先对数学物理方程做一个简单的介绍与解释说明。 数学物理方程——描述许多自然现象的数学形式都可以是偏微分方程式 特别是很多重要的物理力学及工程过程的基本规律的数学描述都是偏微分方程,例如流体力学、电磁学的基本定律都是如此。这些反映物理及工程过程的规律的偏微分方程 人们对偏微分方程的研究,从微分学产生后不久就开始了。例如,18世纪初期及对弦线的横向振动研究,其后,对热传导理论的研究,以及和对流体力学、对位函数的研究,都获得相应的数学物理方程信其有效的解法。到19世纪中叶,进一步从个别方程的深入研究逐渐形成了偏微分的一般理论,如方程的分类、特征理论等,这便是经典的偏微分方程理论的范畴。 然而到了20世纪随着科学技术的不断发展,在科学实践中提出了数学物理方程的新问题,电子计算机的出现为数学物理方程的研究成果提供了强有力的实现手段。又因为数学的其他分支(如泛函分析、拓扑学、群论、微分几何等等)也有了迅速发展,为深入研究偏微分方程提供了有力的工具。因而,20世纪关于数学物理方程的研究有了前所未有的发展,这些发展呈如下特点和趋势: 一、在许多自然科学及工程技术中提出的问题的数学描述大多是非线性偏微分方程,即使一些线性偏微分方程作近似处理的问题,由于研究的深入,也必须重新考虑非线性效应。对非线性偏

数学物理方程有感

书本个人总结: 由于物理学,力学和工程技术等方面的许多问题都可以归结为偏微分方程的定解问题,而在数学物理方程这门课上,我们的主要任务便是求解这些定解问题,也就是说在已经列出的方程与定解条件之后,怎样去求既满足方程又满足定解条件的解。 而我们的常用的解决偏微分方程的方法的统一思路是将一个偏微分方程的求解设法转化成一个常微分方程问题的求解。 而我们在学习过程中接触到的常用方法有:分离变量法,行波法,积分变换法和拉普拉斯方程的格林函数法 第二章: 本章主要介绍了分离变量法,介绍了有界弦的自由振动,有限长杆上的热传导,圆域内的二维拉普拉斯方程的定解问题等泛定方程和边界条件都是齐次的偏微分方程的求解,还介绍了非齐次方程的解法,非齐次边界条件的处理等等。 A . 其中泛定方程和边界条件都是齐次的偏微分方程的求解步骤,取有界弦的自由振动的方程求解作为例子,定解问题为: 第一步:分离变量 目标:分离变量形式的非零解)()(),(t T x X t x u = 结果:函数)(x X 满足的常微分方程和边界条件以及)(t T 满足的常微分方程 条件:偏微分方程和边界条件都是齐次的 第二步:求解本征值问题 利用0)()(''=+x X x X λ和边界条件0)0(=X 和0)(=l X 求出本征值和本函数: 本征值: 本征函数: 第三步:求特解,并叠加出一般解 ? ??????====<<>??=??) ()0,(),()0,(,0),(),0(0 ,0 ,22222x x u x x u t L u t u L x t x u a t u t ψ?0 )(2 )(''=+t T a t T λ ,3,2,1 2)(==n l n n πλx l n πsin (x)X n =x l n at l n D at l n C t x u n n n πππsin )cos sin (),(1∑∞ =+=

数学物理方法学习心得

竭诚为您提供优质文档/双击可除数学物理方法学习心得 篇一:数学物理方程的感想 数学物理方程的感想 通过对数学物理方程一学期的学习,我深深的感受到数学的伟大与博大精深。 当应用数学发展到一定高度时,就会变得越来越难懂,越来越抽象,没有多少实际的例子来说明;物理正好也要利用数学来进行解释和公式推导,所以就出现了数学物理方法。刚开始到结束这门课程都成了我的一大问题。很难理解它的真正意义(含义),做题不致从何入手,学起来越来越费劲。让我很是绞尽脑汁。 后来由于老师耐心的指导与帮助下我开始有了点理解。用数学物理方法来解释一些物理现象,列出微分方程,当然这些微分方程是以物理的理论列出来的,如果不借助于物理方法,数学也没有什么好办法来用于教学和实践,而物理的理论也借助于数学方法来列出方程,解出未知的参数。这就是数学物理方法的根本实质所在。真正要学好数学物理方程

不仅要数学好物理也不能够太差。 接下来我想先对数学物理方程做一个简单的介绍与解 释说明。数学物理方程——描述许多自然现象的数学形式都可以是偏微分方程式 特别是很多重要的物理力学及工程过程的基本规律的 数学描述都是偏微分方程,例如流体力学、电磁学的基本定律都是如此。这些反映物理及工程过程的规律的偏微分方程人们对偏微分方程的研究,从微分学产生后不久就开始了。例如,18世纪初期及对弦线的横向振动研究,其后,对热传导理论的研究,以及和对流体力学、对位函数的研究,都获得相应的数学物理方程信其有效的解法。到19世纪中叶,进一步从个别方程的深入研究逐渐形成了偏微分的一般理论,如方程的分类、特征理论等,这便是经典的偏微分方程理论的范畴。 然而到了20世纪随着科学技术的不断发展,在科学实践中提出了数学物理方程的新问题,电子计算机的出现为数学物理方程的研究成果提供了强有力的实现手段。又因为数学的其他分支(如泛函分析、拓扑学、群论、微分几何等等)也有了迅速发 展,为深入研究偏微分方程提供了有力的工具。因而,20世纪关于数学物理方程的研究有了前所未有的发展,这些发展呈如下特点和趋势:

初中物理公式总结大全(最新归纳)

初中物理公式汇总 速度公式: t s v = 公式变形:求路程——vt s = 求时间——t=s/v 重力与质量的关系: G = mg 密度公式: V m = ρ 浮力公式: F 浮= G 物 – F 示 F 浮= G 排=m 排g F 浮=ρ液gV 排 F 浮= G 物 压强公式:P=F/S (固体) 液体压强公式: p =ρgh 物理量 单位 p ——压强 Pa 或 N/m 2 ρ——液体密度 kg/m 3 h ——深度 m g=9.8N/kg ,粗略计算时取g=10N/kg 面积单位换算: 1 cm 2 =10--4m 2 1 mm 2 =10--6m 2 注意:S 是受力面积,指有受到压力作用的那部分面积 注意:深度是指液体内部某一点到自由液面的竖直距离; 单位换算:1kg=103 g 1g/cm 3=1×103kg/m 3 1m 3=106cm 3 1L=1dm 3=10-3m 3 物理量 单位 p ——压强 Pa 或 N/m 2 F ——压力 N S ——受力面积 m 2 物理量 单位 F 浮——浮力 N G 物——物体的重力 N 提示:[当物体处于漂浮或悬浮时] 物理量 单位 v ——速度 m/s km/h s ——路程 m km t ——时间 s h 单位换算: 1 m=10dm=102cm=103mm 1h=60min=3600 s ; 1min=60s 物理量 单位 G ——重力 N m ——质量 kg g ——重力与质量的比值 g=9.8N/kg ;粗略计算时取 物理量 单位 ρ——密度 kg/m 3 g/cm 3 m ——质量 kg g V ——体积 m 3 cm 3 物理量 单位 F 浮——浮力 N ρ ——密度 kg/m 3 V 排——物体排开的液体的体积 m 3 g=9.8N/kg ,粗略计算时取g=10N/kg G 排——物体排开的液体 受到的重力 N m 排——物体排开的液体 的质量 kg

数学物理方程总结

数学物理方程总结 Revised by Jack on December 14,2020

浙江理工大学数学系 第一章:偏微分方程的基本概念 偏微分方程的一般形式:221 1 (,,, ,,,)0n u u u F x u x x x ???=??? 其中12(,,...,)n x x x x =是自变量,12()(,,...,)n u x u x x x =是未知函数 偏微分方程的分类:线性PDE 和非线性PDE ,其中非线性PDE 又分为半线性PDE ,拟线性PDE 和完全非线性PDE 。 二阶线性PDE 的分类(两个自变量情形): 2221112222220u u u u u a a a a b cu x x y y x y ?????+++++=?????? (一般形式 记为 PDE (1)) 目的:可以通过自变量的非奇异变换来化简方程的主部,从而据此分类 (,) (,)x y x y ξξηη=?? =? 非奇异 0x y x y ξξηη≠ 根据复合求导公式最终可得到: 22211122222 20u u u u u A A A A B Cu ξξηηξη ?????+++++=??????其中: 考虑22111222( )2()0z z z z a a a x x y y ????++=????如果能找到两个相互独立的解 那么就做变换(,) (,)x y x y ξφηψ=??=? 从而有11220A A == 在这里要用到下面两个引理: 引理1:假设(,)z x y φ=是方程22111222( )2()0z z z z a a a x x y y ????++=???? (1)的特解,则关系式(,)x y C φ=是常微分方程:22111222()2()0a dy a dxdy a dx -+= (2)的一般积分。 主

数学物理方程小结

数学物理方程小结 第七章 数学物理定解问题 数学物理定解问题包含两个部分:数学物理方程(即泛定方程)和定解条件。 §7.1数学物理方程的导出 一般方法: 第一确定所要研究的物理量u ,第二 分析体系中的任意一个小的部分与邻近部分的相互作用,根据物理规律, 抓住主要矛盾, 忽略次要矛盾。(在数学上为忽略高级小量.)第三 然后再把物理量u 随时间,空间的变为通过数学算式表示出来, 此表示式即为数学物理方程。 (一) 三类典型的数学物理方程 (1)波动方程: 0 :) ,(:) ,(:22 2222 22==??-??=?-??→f 当无外力时t x f x u a t u 一维t r f u a t u 三维 此方程 适用于各类波动问题。(特别是微小振动情况.) (2)输运方程: 0 :).(:) ,(:2 2 2 2 ==??-??=?-??→f 无外源时t x f x u a t u 一维t r f u a t u 三维 此方程 适用于热传导问题、扩散问题。

(3)Laplace 方程: . 0(:0 :) .程时泊松方程退化拉氏方f f u 泊松方程u 拉氏方程t r ==?=?→ 稳定的温度和浓度分布适用的数学物理方程为Laplace 方程, 静电势u 在电荷密度为零处也满足Laplace 方程 。 §7.2定解条件 定解条件包含初始条件与边界条件。 (1) 初始条件的个数等于方程中对时间最高次导数的次数。 例如波动方程应有二个初始条件, 一般选初始位移u (x,o )和初始速度u t (x,0)。而输运方程只有一个初始条件选为初始分布u (x,o ),而Laplace 方程没有初始条件。 (2) 三类边界条件 第一类边界条件: u( r ,t)|Σ = f (1) 第二类边界条件: u n |Σ = f (2) 第三类边界条件: ( u+Hu n )|Σ= f (3) 其中H 为常数. 7.3 二阶线性偏微分方程分类 判别式 , ,0,,0, ,022112 1222112 12 22112 12抛物型a a a 椭圆型a a a 双曲型a a a =-=?<-=?>-=? 波动方程是双曲型的,输运方程为抛物型的,而拉普拉斯方程为椭圆型的.

初中物理知识点总结(大全)

初中物理知识点总结(大全) 第一章声现象知识归纳 1 . 声音的发生:由物体的振动而产生。振动停止,发声也停止。 2.声音的传播:声音靠介质传播。真空不能传声。通常我们听到的声音是靠空气传来的。 3.声速:在空气中传播速度是:340米/秒。声音在固体传播比液体快,而在液体传播又比空气体快。 4.利用回声可测距离:S=1/2vt 5.乐音的三个特征:音调、响度、音色。(1)音调:是指声音的高低,它与发声体的频率有关系。(2)响度:是指声音的大小,跟发声体的振幅、声源与听者的距离有关系。 6.减弱噪声的途径:(1)在声源处减弱;(2)在传播过程中减弱;(3)在人耳处减弱。 7.可听声:频率在20Hz~20000Hz之间的声波:超声波:频率高于20000Hz的声波;次声波:频率低于20Hz 的声波。 8.超声波特点:方向性好、穿透能力强、声能较集中。具体应用有:声呐、B超、超声波速度测定器、超声波清洗器、超声波焊接器等。 9.次声波的特点:可以传播很远,很容易绕过障碍物,而且无孔不入。一定强度的次声波对人体会造成危害,甚至毁坏机械建筑等。它主要产生于自然界中的火山爆发、海啸地震等,另外人类制造的火箭发射、飞机飞行、火车汽车的奔驰、核爆炸等也能产生次声波。 第二章物态变化知识归纳 1. 温度:是指物体的冷热程度。测量的工具是温度计, 温度计是根据液体的热胀冷缩的原理制成的。 2. 摄氏温度(℃):单位是摄氏度。1摄氏度的规定:把冰水混合物温度规定为0度,把一标准大气压下沸水的温度规定为100度,在0度和100度之间分成100等分,每一等分为1℃。

3.常见的温度计有(1)实验室用温度计;(2)体温计; (3)寒暑表。 体温计:测量范围是35℃至42℃,每一小格是0.1℃。 4. 温度计使用:(1)使用前应观察它的量程和最小刻度值;(2)使用时温度计玻璃泡要全部浸入被测液体中,不要碰到容器底或容器壁;(3)待温度计示数稳定后再读数;(4)读数时玻璃泡要继续留在被测液体中,视线与温度计中液柱的上表面相平。 5. 固体、液体、气体是物质存在的三种状态。 6. 熔化:物质从固态变成液态的过程叫熔化。要吸热。 7. 凝固:物质从液态变成固态的过程叫凝固。要放热. 8. 熔点和凝固点:晶体熔化时保持不变的温度叫熔点;。晶体凝固时保持不变的温度叫凝固点。晶体的熔点和凝固点相同。 9. 晶体和非晶体的重要区别:晶体都有一定的熔化温度(即熔点),而非晶体没有熔点。 10. 熔化和凝固曲线图:

数学物理方程有感绝对牛人写的

数学物理方程有感绝对牛 人写的 The document was prepared on January 2, 2021

书本个人总结: 由于物理学,力学和工程技术等方面的许多问题都可以归结为偏微分方程的定解问题,而在数学物理方程这门课上,我们的主要任务便是求解这些定解问题,也就是说在已经列出的方程与定解条件之后,怎样去求既满足方程又满足定解条件的解。 而我们的常用的解决偏微分方程的方法的统一思路是将一个偏微分方程的求解设法转化成一个常微分方程问题的求解。 而我们在学习过程中接触到的常用方法有:分离变量法,行波法,积分变换法和拉普拉斯方程的格林函数法 第二章: 本章主要介绍了分离变量法,介绍了有界弦的自由振动,有限长杆上的热传导,圆域内的二维拉普拉斯方程的定解问题等泛定方程和边界条件都是齐次的偏微分方程的求解,还介绍了非齐次方程的解法,非齐次边界条件的处理等等。 A . 其中泛定方程和边界条件都是齐次的偏微分方程的求解步骤,取有界弦的自由振动的方程求解作为例子,定解问题为: 第一步:分离变量 目标:分离变量形式的非零解)()(),(t T x X t x u = 结果:函数)(x X 满足的常微分方程和边界条件以及)(t T 满足的常微分方 程 条件:偏微分方程和边界条件都是齐次的 第二步:求解本征值问题 利用0)()(''=+x X x X λ和边界条件0)0(=X 和0)(=l X 求出本征值和本函数: 本征值: 本征函数: 第三步:求特解,并叠加出一般解 这样的特解都满足齐次偏微分方程和齐次边界条件 第四步:利用本征函数正交性定叠加系数 总结:通过以上例子我们可以得出分离变量的一般方法,总的来说可以分成四步: 一. 首先将偏微分方程的定解问题通过分离变量转化为常微分方程的定解问题。 二. 确定特征值和特征函数。由于特征值是要经过叠加的,所以用来确定特征函数的方程与条件,当函数经过叠加之后仍旧要满足。当边界条件是齐次时,求特征函数就是求一个常分方程满足零边界条件的非零解。 三. 定出特征值和特征函数后,再解其他的常微分方程,把得到的解与特征函数乘起来成为Un(x,t). 四. 最后为了使解满足其余的定解条件,需要把U 叠加起来成为级数形式,叠加出一般解,再利用本征函数的正交性定叠加系数。 0)(2)(''=+t T a t T λ ,3,2,1 2)(==n l n n πλ

人教版_初中物理_公式大全—公式变形—精华

物理中考复习---物理公式 速度公式: t s v = 公式变形:求路程——vt s =求时间——v s t = G = mg 公式变形:求质量——G m g = 合力公式: F = F 1 + F 2[同一直线同方向二力的合力计算] F = F 1 - F 2[同一直线反方向二力的合力计算] 公式变形:求质量——m =ρ 求体积 ——m v = ρ 浮力公式: F 浮=G – F F 浮= G 排=m 排g F 浮=ρ液gV 排 公式变形: 求密度——V F g 排 浮液 =ρ 求排开液体体积——g ρ 液 浮 排F V = V 物理量单位 v ——速度 m/s km/h s ——路程 m km t ——时间 s h V m =ρ

F 浮=G 压强公式: p =S F 公式变形:求压力——S F ρ= 求受力面积—— ρ F S = 液体压强公式: P =ρ gh 公式变形:求液体密度—— gh p = ρ 求物体所处深度——g P h ρ= *帕斯卡原理:∵p 1=p 2 ∴ 2211S F S F =或21 21S S F F = 杠杆的平衡条件: F 1L 1=F 2L 2 公式变形:求动力—— L L F F 2 2 21= 求动力臂—— F L F L 2 2 22= 求阻力—— L L F F 2 1 1 2 = 求阻力臂—— F L F L 2 1 1 2 = 或写成:1 2 21L L F F = 物理量单位 F 1——动力 N L 1——动力臂 m F 2——阻力 N L ——阻力臂 m

数学物理方程公式总结-14页文档资料

无限长弦的一般强迫振动定解问题 200(,)(,0)() () tt xx t t t u a u f x t x R t u x u x ?ψ==?=+∈>? =?? =? 解()()().() .0()1 11(,)(,)222x at t x a t x at x a t u x t x at x at d f d d a a ττ??ψξξατατ++----??=++-+ +??????? ???? 三维空间的自由振动的波动方程定解问题 ()22 22222220001,,,,0(,,) (,,)t t u u u a x y z t t x y z u x y z u x y z t ??==???????=++-∞<<+∞>? ????????? =????=??? 在球坐标变换 sin cos sin sin (0,02,0)cos x r y r r z r θ?θ??πθπθ=?? =≤<+∞≤≤≤≤??=? L 21()1 () (,)44M M at r S S M M u M t dS dS a t r a r ?ψππ??''?=+??????????? 乙 (r=at) 221()1() (,)44M M at at S S M M u M t dS dS a t t a t ?ψππ??''?=+??????? ???? 乙无界三维空间自由振动的泊松公式 ()sin cos ()sin sin (02,0)()cos x x at y y at z z at θ?θ??πθπθ'=+?? '=+≤≤≤≤??'=+? L 2()sin dS at d d θθ?= 二维空间的自由振动的波动方程定解问题 ()22 2222200,,,0(,)(,)t t u u u a x y t t x y u u x y x y t ?ψ==??????=+-∞<<+∞>? ???????? ?? ==??? 22000011(,,)22at at u x y t a t a ππθθππ?????= +????????? ???? 傅立叶变换

数学物理方程总结材料

理工大学数学系 第一章:偏微分方程的基本概念 偏微分方程的一般形式:2211 (,,,,,,)0n u u u F x u x x x ???=???L L 其中12(,,...,)n x x x x =是自变量,12()(,,...,)n u x u x x x =是未知函数 偏微分方程的分类:线性PDE 和非线性PDE ,其中非线性PDE 又分为半线性PDE ,拟线 性PDE 和完全非线性PDE 。 二阶线性PDE 的分类(两个自变量情形): 2221112222220u u u u u a a a a b cu x x y y x y ?????+++++=?????? (一般形式 记为 PDE (1)) 目的:可以通过自变量的非奇异变换来化简方程的主部,从而据此分类 (,) (,)x y x y ξξηη=?? =? 非奇异 0x y x y ξξηη≠ 根据复合求导公式最终可得到: 22211122222 20u u u u u A A A A B Cu ξξηηξη ?????+++++=??????其中: 22111112221211 122222221112 22()2()()()2()A a a a x x y y A a a a x x x y x y y y A a a a x x y y ξξξξξηξηηξξη ηηηη ?????=++???????????????=+++?????????? ?????=++?????? 考虑22111222( )2()0z z z z a a a x x y y ????++=????如果能找到两个相互独立的解 (,)z x y φ= (,)z x y ψ= 那么就做变换(,) (,)x y x y ξφηψ=?? =? 从而有11220A A == 在这里要用到下面两个引理: 引理1:假设(,)z x y φ=是方程22111222( )2()0z z z z a a a x x y y ????++=???? (1)的特解,则关主部

数学物理方程学习总结

数学物理方程学习总结 四年前匡老师作为我的高数老师走进我的大学生活,如今作为一名研究生,很荣幸又能跟着匡老师学习数学。我本科主修土木工程专业,现在学的是岩石力学专业,主要是跟着导师从事一些关于应力波的研究,所以数学物理方程这门课成了我的必修课。 数学物理方程研究的主要对象是从物理学中提出来的一些偏微分方程。这些方程中的自变量和函数有着鲜明的物理意义,有些问题的解可以通过实验给出,这给偏微分方程的研究指明了方向,同时由于物理学上的需求,就诞生了专门研究有物理意义的偏微分方程的解法。 本学期数学物理方程起初学习了拉普拉斯和傅立叶变换概念、性质以及卷积定理,了解其在微分方程求解中的应用,并着重介绍了Γ函数和β函数的性质以及其两者的关系。然后介绍了三大经典方程的建立和定解条件(泊松方程与拉普拉斯方程都是描述恒稳场状态,与初始状态无关,所以不提初始条件)的提出和表示。第四章和第五章分别详细的讲了分离变量法、行波法和积分变换法在求解经典方程中的应用,主要针对求解热传导方程和波动方程。三种方法有时候可以通用但有时候还是有区别,分离变量法主要用来求解有限区域内定解问题;行波法是一种针对无界域的一维波动方程的求解方法;积分变换法主要是求解一个无界域上不受方程类型限制的方法。第六章主要讲述用格林函数法求解拉普拉斯方程,伊始提出两种拉普拉斯方程的边值问题(狄氏内问题、狄氏外问题、牛曼内问题、牛曼外问题),然后介绍几种格林函数的取得,最后简介求解狄氏问题。最后三章分别介绍几个特殊类型的常微分方程(贝塞尔方程和勒让德方程)的引入和他们性质和求解。数学物理方程概括起来就是使用四种方法求解三种经典方程,介绍求解过程中产生的两种特殊函数的一门学科。 作为数理方程的学习者,本人觉得它确实是一门比较难的课程,真正的难点却并不是只有数理方程课程本身,而是对以前高等数学学过的知识的理解与记忆的加深。所以,我觉得想学好这门课程,不仅要把时间放在对相关内容的巩固、复习上,还得多做课本上的例题、习题。

数学物理方法总结归纳改

数学物理方法总结 第一章 复变函数 复数的代数式:z=x+iy 复数的三角式和指数式:(cos sin )z ρ??=+和i z e ? ρ= 欧拉公式:{1sin ()21cos () 2 iz iz iz iz z e e i z e e --= -=+ 柯西-黎曼方程(或称为柯西-黎曼条件):{u u x y v v x y ??=????=-?? (其中f(z)=u+iv) 函数f(z)=u+iv 在点0z 及其领域上处处可导,则称f(z)在0z 点解析.在区域B 上每一点都解析,则称f(z)是在区域B 上的解析函数. 解析函数的性质:1.若函数f(z)=u+iv 在区域B 上解析,则12(,),(,)u x y C v x y C == (12,C C 为常数)是B 上的两组正交曲线族. 2.若函数在区域B 上解析,则u,v 均为B 上的调和函数,即 22220u v x y ??+=?? 例题: 已知某解析函数f(z)的实部2 2 (,)u x y x y =-,求虚部和这个解析函数. 解答: 由于22u x ??=2;22v y ??=-2;则22220u v x y ??+=?? 曲线积分法 u x ??=2x;u y ??=-2y.根据C-R 条件有:v x ??=2y;v y ??=2x. 于是 22dv ydx xdy =+;

(,0) (,) (0,0) (,0) (,)(,) (,0) (22)(22)(22)22x x y x x y x y x v ydx xdy C ydx xdy ydx xdy C xdy C xy C =++=++++=+=+??? ? 凑全微分显式法 由上式可知 22dv ydx xdy =+ 则易得 (2)dv d xy = 则显然 2v xy C =+ 不定积分法 上面已有 v x ??=2y;v y ??=2x 则第一式对y 积分,x 视为参数,有 2()2()v xy x xy x ??=+=+? . 上式对x 求导有 2'()v y x x ??=+?,而由C-R 条件可知 '()0x ?=, 从而 ()x C ?=.故 v=2xy+C. 2 2 2 ()(2)f z x y i xy C z iC =-++=+ 第二章 复变函数的积分 单连通区域柯西定理 如果函数f(z)在闭单连通区域B 上解析,则沿B 上任意一分段 光滑闭合闭合曲线l(也可以是B 的边界),有 ()0l f z dz =??. 复连通区域柯西定理 如果f(z)是闭复连通区域上的单值解析函数,则 1 ()()0i n l l i f z dz f z dz =+=∑?? 蜒.式中l 为区域外边界线,诸i l 为 区域内边界线,积分均沿边界线的正方向进行.即 1 ()()i n l l i f z dz f z dz ==∑??i i . 柯西公式 1() ()2l f z f dz i z απα = -?? n 次求导后的柯西公式 () 1!() ()2()n n l n f f z d i z ζζπζ+= -?? 第三章 幂级数展开

数学物理方程有感

1 书本个人总结: 由于物理学,力学和工程技术等方面的许多问题都可以归结为偏微分方程的定解问题,而在数学物理方程这门课上,我们的主要任务便是求解这些定解问题,也就是说在已经列出的方程与定解条件之后,怎样去求既满足方程又满足定解条件的解。 而我们的常用的解决偏微分方程的方法的统一思路是将一个偏微分方程的求解设法转化成一个常微分方程问题的求解。 而我们在学习过程中接触到的常用方法有:分离变量法,行波法,积分变换法和拉普拉斯方程的格林函数法 第二章: 本章主要介绍了分离变量法,介绍了有界弦的自由振动,有限长杆上的热传导,圆域内的二维拉普拉斯方程的定解问题等泛定方程和边界条件都是齐次的偏微分方程的求解,还介绍了非齐次方程的解法,非齐次边界条件的处理等等。 A . 其中泛定方程和边界条件都是齐次的偏微分方程的求解步骤,取有界弦的自由振动的方程求解作为例子,定解问题为: 第一步:分离变量 目标:分离变量形式的非零解)()(),(t T x X t x u = 结果:函数)(x X 满足的常微分方程和边界条件以及)(t T 满足的常微分方程 条件:偏微分方程和边界条件都是齐次的 第二步:求解本征值问题 利用0)()(''=+x X x X λ和边界条件0)0(=X 和0)(=l X 求出本征值和本函数: 本征值: 本征函数: 第三步:求特解,并叠加出一般解 ? ??????====<<>??=??) ()0,(),()0,(,0),(),0(0 ,0 ,22222x x u x x u t L u t u L x t x u a t u t ψ?0)(2 )(''=+t T a t T λΛ,3,2,1 2)( ==n l n n πλx l n πsin (x)X n =x l n at l n D at l n C t x u n n n πππsin )cos sin (),(1∑∞=+=

九年级上物理知识点+公式总结

九年级物理上 第十一章简单机械和功知识归纳 1.杠杆:一根在力的作用下能绕着固定点转动的硬棒就叫杠杆。 2.什么是支点、动力、阻力、动力臂、阻力臂? (1)支点:杠杆绕着转动的点(O) (2)动力:使杠杆转动的力(F1) (3)阻力:阻碍杠杆转动的力(F2) (4)动力臂:从支点到动力的作用线的距离(L1)。 (5)阻力臂:从支点到阻力作用线的距离(L2) 3.杠杆平衡的条件:动力×动力臂=阻力×阻力臂.或写作:F1L1=F2L2或写成F1//F2=L2/L1。这个平衡条件也就是阿基米德发现的杠杆原理。 4.三种杠杆: (1)省力杠杆:L1>L2,平衡时F1F2。特点是费力,但省距离。(如钓鱼杠,理发剪刀等) (3)等臂杠杆:L1=L2,平衡时F1=F2。特点是既不省力,也不费力。(如:天平) 5.定滑轮特点:不省力,但能改变动力的方向。(实质是个等臂杠杆) 6.动滑轮特点:省一半力,但不能改变动力方向,要费距离.(实质是动力臂为阻力臂二倍的杠杆) 7.滑轮组:使用滑轮组时,滑轮组用几段绳子吊着物体,提起物体所用的力就是物重的几分之一。 1.功的两个必要因素:一是作用在物体上的力;二是物体在力的方向上通过的距离。 2.功的计算:功(W)等于力(F)跟物体在力的方向上通过的距离(s)的乘积。(功=力×距离) 3. 功的公式:W=Fs;单位:W:焦(耳)J;F:N;s:m。(1J=1N·m). 4.功的原理:使用机械时,人们所做的功,都等于不用机械而直接用手所做的功,也就是说使用任何机械都不省功。 5.斜面:FL=Gh,斜面长是斜面高的几倍,推力就是物重的几分之一。(螺丝、盘山公路也是斜面)6.机械效率:有用功跟总功的比值叫机械效率。 计算公式:η=W有/W总 7.功率(P):单位时间(t)里完成的功(W),叫功率。 计算公式:P=W/t。单位:P:瓦(特)W;W→J;t→s。(1W=1J/s。1kW=1000W) 第十二章机械能和内能知识归纳 1.一个物体能够做功,这个物体就具有能(能量)。 2.动能:物体由于运动而具有的能叫动能。 3.运动物体的速度越大,质量越大,动能就越大。 4.势能分为重力势能和弹性势能。 5.重力势能:物体由于被举高而具有的能。 6.物体质量越大,被举得越高,重力势能就越大。 7.弹性势能:物体由于发生弹性形变而具的能。 8.物体的弹性形变越大,它的弹性势能就越大。 9.机械能:动能和势能的统称。(机械能=动能+势能)单位是:J 10. 动能和势能之间可以互相转化的。 方式有:动能重力势能;动能弹性势能。 11.自然界中可供人类大量利用的机械能有风能和水能。 1.内能:物体内部所有分子做无规则运动的动能和分子势能的总和叫内能。(内能也称热能) 2.物体的内能与温度有关:物体的温度越高,分子运动速度越快,内能就越大。 3.热运动:物体内部大量分子的无规则运动。 4.改变物体的内能两种方法:做功和热传递,这两种方法对改变物体的内能是等效的。

数学物理方法知识点归纳

第一章 复述和复变函数 1.5连续 若函数)(x f 在0z 的领域(包括0z 本身)已经单值确定,并且 )()(0 lim 0 z f z f z z =→,则 称f(z)在0z 点连续。 1.6导数 若函数在一点的导数存在,则称函数在该点可导。 f(z)=u(x,y)+iv(x,y)的导数存在的条件 (i) x u ??、y u ??、x v ??、y v ??在点不仅存在而且连续。 (ii)C-R 条件在该点成立。C-R 条件为 ???? ?? ???-=????=??y y x u x y x v y y x v x y x u ),(),(),(),( 1.7解析 若函数不仅在一点是可导的,而且在该点的领域点点是可导的,则称该点是解析的。 解析的必要条件:函数f(z)=u+iv 在点z 的领域(i) x u ??、y u ??、x v ??、y v ??存在。 (ii)C-R 条件在该点成立。 解析的充分条件:函数f(z)=u+iv 在领域(i) x u ??、y u ??、x v ??、y v ??不仅存在而且连续。 (ii)C-R 条件在该点成立。 1.8解析函数和调和函数的关系 拉普拉斯方程的解都是调和函数: 22x u ??+2 2y u ??=0 ①由此可见解析函数的实部和虚部都是调和函数。但是任意的两个调和函数作为虚实两部形成的函数不一定是解析函数,因为它们不一定满足C —R 条件。 ②当知道f(z)=u(x,y)+iv(x,y)中的u(x,y)时,如何求v(x,y)? 通过C —R 条件列微分方程 第二章 复变函数的积分 2.2解析函数的积分 柯西定理:若函数f(z)在单连区域D 是解析的,则对于所有在这个区域而且在两个公共 端点A 与B 的那些曲线来讲,积分 ?B A dz z f )(的值均相等。 柯西定理推论:若函数f(z)在单连区域D 解析,则它沿D 任一围线的积分都等于零。 ?=C dz z f 0)( 二连区域的柯西定理:若f(z)在二连区域D 解析,边界连续,则f(z)沿外境界线(逆时针方向)的积分等于f(z)沿境界线(逆时针方向)的积分。 n+1连区域柯西定理: ???? ΓΓΓΓ+++=n i i i e dz z f dz z f dz z f dz z f )(....)()()(2 1 推论:在f(z)的解析区域中,围线连续变形时,积分值不变。 2.3柯西公式 若f(z)在单连有界区域D 解析,在闭区域D 的边界连续,则对于区域D 的任何一个点a ,有?Γ -= dz a z z f i a f ) (21)(π其中Γ是境界线。 2.5柯西导数公式 ξξξπd z f i n z f C n n ?+-= 1)() () (2!)( 第三章 级数 3.2复变函数项级数 外尔斯特拉斯定理:如果级数 ∑∞ =0 )(k k z u 在境 界Γ上一致收敛,那么 (i)这个级数在区域部也收敛,其值为F(z) (ii)由它们的m 阶导数组成的级数 ∑∞ =0 )()(k m k z u 在区域也收敛,而且它们的和等

数学物理方程报告

平流方程.这个方程是: (,)(,)(,)u u x t x t x t t t γκ??=-+?? (1) 其中γ是一个正常数,κ是(,)x t 的函数.这个方程可以用来模拟艾滋病的传播、流体动力学,以及其他有关空气或水中的物质流动问题.作为具体的应用,考察风的运动,假设风沿着某个方向运动,比如x 轴的正方向,其速度为每秒γ米.设在原点处有一工厂,风从工厂处携带一些污染物.令(,)u x t 表示t 时刻x 处的污染物的(线)密度(每米的颗粒个数).再设污染颗粒以正比于(,)u x t 的速度掉下来,比例常数是0r >,则u 满足方程(1),(,)(,)x t ru x t γ=-. (a)试证方程 (,)(,)(,)u u x t x t ru x t t t γ??=--?? 的所有解都具有形式(,)()rt u x t e f x t γ-=-. (b)令M 是初始时刻空气中的总颗粒数.试证:在时刻0t >空气中的总颗粒数是rt e M -. -------------------------------------------------------------------------- 对于[,]x x x + 段t 到t t + 时间段内的颗粒物数有以下关系 (,)(,)(,)(,)(,)x x x t t x x t t t x t u x t t u x t dx ku x t ku x x t dt ru x t dtdx +++++-?=-+-???

(,)(,)()(,)x x t t t t x x x x t t x t t x x t u x t u x t dtdx k dx dt ru x t dtdx t x ++++++??∴=--???????? 由于,,x t u 任意性知 (,)(,)[(,)]0x x t t x t u x t u x t k ru x t dtdx t x ++??++=???? (,)(,)(,)u x t u x t k ru x t t x ??∴=--?? ---------------------------------------------------------------------------- 推导过程 k 为风速/m s ,(,)u x t 为t 时刻x 处的污染的(线)物密度(每米的颗粒个数),则(,)ku x t 为单位时间内x 处的颗粒数 ---------------------------------------------------------------------------------------------- 研究t 到t t + 段通过[,]t t t + 短的颗粒物。(,)u x t 为t 时刻x 处的颗粒物(线)密度 (,)x x x u x t dx +? 为t 时刻x 到x x + 段内的颗粒物 ---------------------------------------------------------------------------------------- +(,)x x x u x t t dx ?+??为t t +?的间段x 到x x +?段内的颗粒物 从而[(,)(,)]x x x u x t t u x t dx +?+?-?表示(),t t t +?时间段内 (),x x x +?段颗粒物的变化量 则 (,)t t t ku x t dt +??为(),t t t +?时间段内吹过x 处的颗粒物 则(,)t t t ku x x t dt +?+??为(),t t t +?时间段内吹过x x +?处的颗粒物 污染颗粒以正比于(,)u x t 的速度下落比例常数为0r > 则下落速度为(,)(,)r x t ru x t =- 从而在x x +?段内t 到t t +?的间段下落的颗粒物总数 为x x t t x t rudxdt +?+??? 由于总颗粒物的变化量=吹入(),x x x +?的颗粒物-吹出 的颗粒物-下落的颗粒物

相关文档