文档库 最新最全的文档下载
当前位置:文档库 › 含磷阻垢剂对重油加氢催化剂失活的影响

含磷阻垢剂对重油加氢催化剂失活的影响

含磷阻垢剂对重油加氢催化剂失活的影响
含磷阻垢剂对重油加氢催化剂失活的影响

收稿日期:1999-01-29. 第一作者:王海涛,女,1966年生,硕士,工程师.

联系人:苏继新.T el:(0531)8564513;Fax:(0531)8565167;E -mail:tcxiao@https://www.wendangku.net/doc/916978823.html,.*山东省优秀中青年科学家科研奖励基金资助项目,批准号96245015.

含磷阻垢剂对重油加氢催化剂失活的影响*

王海涛

肖天存

苏继新

鹿玉理

(山东大学环境工程系,济南250100)

张孔远

郑绍宽

(齐鲁石化公司研究院,淄博255400)

提 要 收集了炼油厂添加含磷阻垢剂的固定床反应器中失活的三种加氢催化剂和粉尘,用X 射线荧光、比表面孔容测定、扫描电子显微镜-X 射线能量色散谱、X 射线衍射和红外光谱等手段对样品的组成及结构进行了表征.结果表明,含磷阻垢剂的加氢催化剂失活是由于磷、铁和硫等元素在催化剂外表面大量沉积所引起.对沉积物元素的分布分析表明,磷、铁和硫等元素主要沉积在催化剂的外层,磷沉积层较厚,且可进入催化剂孔道,在加氢脱金属催化剂、加氢支承催化剂、加氢脱硫催化剂中的沉积量依次降低.含磷阻垢剂使反应床层中含有大量灰白色粉尘,其结构疏松,为无定形物,主要组成为磷、铁、硫的化合物,磷以磷酸盐形式存在;反应温度条件下该粉尘易沉积在催化剂上,是导致催化剂失活的直接原因.

关键词 加氢处理催化剂,失活,含磷阻垢剂,沉积,分布分类号 O643/T Q53

加氢精制是石油炼制中一个重要的工艺过程.通过加氢可脱除重油中的金属、硫、氮及氧等杂质,但催化剂在使用过程中,经常存在失活问题.有关这类催化剂的失活机理和再生已有不少研究报导[1~3].一般认为,催化剂的失活是由于积炭、重金属沉积或烧结等原因所引起,使用条件或工艺不同,催化剂失活机理差异也较大.目前,我国重油加氢精制多采用固定床反应器,由于原油中含有金属和多种盐分,生产过程中容易在换热器外层结垢.为了阻垢,往往需要向原料油中加入一定量的阻垢剂;按其组成可以分为含磷和不含磷两类阻垢剂.关于不同阻垢剂对加氢催化剂性能影响的研究基本还是个空白.本工作中,我们与胜利炼油厂一起评价了添加含磷阻垢剂的重油加氢精制固定床反应器中催化剂的活性变化情况,收集了不同反应床层催化剂及粉尘样品,用XRF(X 射线荧光)分析,SEM -EDS(扫描电子显微镜-X 射线能量色散谱)分析,XRD 和IR 等技术对样品进行了表征,得到了一些有益的结果.1 实验部分

失活催化剂样品均取自胜利炼油厂同一固定床反应器.催化剂分别标记为加氢脱金属催化剂A(椭球形),加氢脱硫(脱氮)催化剂B(三叶草形)和加氢脱硫(脱氮)催化剂C(条形).三种催化剂的载体均为C -Al 2O 3,其中催化剂A 担载少量Ni,催化剂B 和C 活性组分为Ni 和M o,少量P 为助剂.与以往情况不同,在添加含磷阻垢剂的反应体系中积垢较少,但却存在大量灰白色粉尘,失活催化剂也呈灰白色而不是通常的黑色,因此采集了粉尘样品用于分析.采用XRF 分析方法对样品进行组成分析.催化剂的比表面积和孔容采用低温N 2吸附法测量,所用仪器为ASAP 2010型比表面积测定系统(Micromeritics,美国).SEM -EDS 分析采用日立S -520型扫描电子显微镜和菲利浦EDAX -9100型能谱仪(日本),分别对催化剂表面和断面进行形貌观测和成分分析;形貌观测用样品经离子溅射仪喷金处理,断面样品经打磨

第20卷第6期 Vol.20N o.6

催 化 学 报

Chinese Journal of Catalysis

1999年11月

Nov ember 1999

平整处理,粉尘经乙醇分散后观察形貌,成分分析用样品采用原样.XRD 分析采用D/max -A 型X 射线衍射仪(日本),IR 分析采用Nicolet 5DX 型傅立叶变换红外分析仪(日本).2 结果与讨论

图1 反应床层温升与催化剂使用时间的关系

F ig 1 R elationship between the temperatur e r ise of HDS reaction bed and the used time of t he catalyst 2.1 催化剂活性评价 重油加氢处理过程是放热过程,催化剂加氢活性越高,床层的温度升高越大,因此工业上常用反应床层的温升来表示催化剂的活性变化情况.注入含磷阻垢剂后加氢反应床层温升情况如图1所示.该反应床层温升在开工时为26e ,随即下降至22e ,前20d 平均下降013e /d;经一段时间的平稳之后再度下降,35~70d 内平均下降0126e /

d,温升已减至8e ,此处再次平稳一段时间;105~135d 即卸出前的最后区段,反应床层温升仅为5~6e ,而正常情况下,整个生产周期

该床层温升仅下降3~5e .以上情况表明,在使用含磷阻垢剂的加氢反应体系中,催化剂活性存在迅速下降并完全失活现象.

2.2 样品元素组成及比表面分析 用XRF 分析法对反应前后的催化剂样品及粉尘样品进行元素分析,结果列于表1.可以看出,各失活催化剂中碳含量均不超过5%,表明失活催化剂的积炭量较低,即积炭不是催化剂失活的主要原因.

表1 催化剂样品的元素组成及比表面积和孔容

T able 1 Elementar y composition,specific surface ar ea and pore volume of the samples

Sample Ele m e ntary com posi t i on (x /%)C NaO Al 2O 3SiO 2P 2O 5SO 3Cr 2O 3MnO F e 2O 3NiO ZnO As 2O 3M oO 3BaO S BET m 2/g V cm 3/g Dust 4.190.370.11 1.6335.5515.07 1.580.2338.870.150.940.11)0.17125.30.29Fresh A 1.820.0395.260.120.020.10))0.03 2.31))))162.20.40Spent A 4.550.1075.01 2.1110.78

1.67

0.150.03 3.51 1.830.090.04))121.30.32Fresh B 1.800.0479.430.25 5.26)))0.02 3.43))14.27)153.50.45Spent B 4.620.0857.790.50 6.8517.48))0.46 2.67)0.029.25)25.00.10Fre sh C 1.840.0470.080.20 6.28)))0.23 4.26))16.87)143.70.63Spent C

4.550.0457.83

0.46

6.551

7.65

)

)

0.17 2.79

)

0.02

9.67

)

)

)

Catalyst A:hy dro demetalli zation catalyst;Catalyst B,Cat al yst C:hy drodesulfuri zation catalyst

在失活催化剂A 中,除Fe 含量提高外,P 含量也显著提高(P 2O 5占10%);与以往正常情况相比,3151%的沉积Fe 2O 3不足以导致催化剂A 失活,故可认为催化剂A 失活与含P 物种大量沉积有关.失活催化剂B 和失活催化剂C 中,除S 物种增加外,P 含量也有所增加,但其沉积量明显低于失活催化剂A.由于原料油中基本不含P 元素,故催化剂中P 含量的提高与使用含磷阻垢剂有关.元素分析结果表明,含P 物种在各加氢催化剂中均有所沉积,且在催化剂A 中的沉积最明显.

卸样过程中发现,使用含磷阻垢剂体系的失活催化剂呈现灰白色而不是象往常为黑色,并且催化剂中含有大量灰白色粉尘.粉尘的元素组成中,含P 物种和含Fe 物种各占1/3以上,含S 物种也较多,而Al 2O 3含量非常低(0111%),催化剂活性组分NiO 含量也非常低(0115%),并未检测出Mo 元素.这表明体系中的粉尘并非由催化剂粉化或破碎所引起,故催化剂失活不是由于催化剂粉化及催化剂活性组分流失所造成.P 和Fe 为粉尘中的主要元素

640催 化 学 报第20卷

说明粉尘是因使用含磷阻垢剂引起的.表1中数据表明,催化剂A 反应后较反应前比表面积和孔容损失均在20%以上,这说明该催化剂物性已遭到严重破坏;催化剂B 和C 反应后比表面积和孔容损失也在80%以上

.图2 不同催化剂的SEM 照片(@3000)

F ig 2 SEM images of differ ent catalysts

(a)F resh A ,(b)F resh B,(c)Fresh C,(d)Spent A ,(e)Spent B,(f)Spent C

表2 失活催化剂上元素组成的EDS 结果

T able 2 EDS data of the elementary composition at

different positio ns of the spent catalysts

Catalyst Elementary composi tion (x /%)Al P Fe Ni Spent A (S ) 5.5131.6662.83)S pent A (CS)93.92 2.37) 3.71Spent B (S)35.4942.7916.74 4.99Spent B (CS )87.65 5.61) 6.74Fresh B 87.36 5.33)7.31Spent C (S)44.5940.479.38 5.57Spent C (CS)84.248.28)7.44Fresh C

84.16

7.98

)

7.86

Note:1)The catalysts had been sulfided,S exists togeth -er w ith M o,so S and M o,w hich have primary peak ap -pearing at the same energy,w ere not calculated.2)The trace elements w ere not calculated.S )surface,CS )cross section

2.3 SEM -EDS 分析

2.3.1 催化剂的形貌 新鲜催化剂和失活催化剂样品的形貌见图2.可以看到,两者的表面微区形貌存在很大差异.新鲜催化剂表面致密均匀,表明活性组分在催化剂中分布均匀,表面无沉积物;失活催化剂表面均明显有覆盖物,失活催化剂A 上覆盖物为致密的层状物,失活催化剂B 上覆盖物为密集的大片絮状物,失活催化剂C 上覆盖物为细小疏松的絮状物.由于XRF 分析结果表明失活催化剂含炭量不多,因此结炭不是催化剂表面覆盖物的主要组分.为确定这些覆盖物的元素组成,进行了微区成分分析.结果表明,各失活催化剂上覆盖物的组成基本一致,主要由P,Fe,S 和Al 及少量Ni,M o(催化剂A 除外)和Si 物种组成,其中P 和Fe 元素含量明显高于其他元素;另外,某些区域还有少量Cr,K,Zn,Ca 和Ti 等元素存在.

利用SEM -EDS 对单个失活催化剂颗粒的不同部位进行元素组成分析,并与相应的新鲜催化剂作对比,结果见表2.可以见到,失活催化剂颗粒的表层与内部化学组成差别较大,含P 和Fe 等物种主要存在于催化剂的外表面,其

641

第6期王海涛等:含磷阻垢剂对重油加氢催化剂失活的影响

中在催化剂A 上沉积明显较多.失活催化剂B 和C 的内部组成与新鲜催化剂基本一致,由于失活催化剂内层大部分区域组成变化不大,因此表1中P 和Fe 等元素的平均含量在催化剂使用前后变化并不明显.

2.3.2 磷和铁在不同失活催化剂中的分布 表2中数据表明,失活催化剂的表层和内部化学组成不同.为进一步研究P 和Fe 等在不同催化剂颗粒中的沉积分布情况,对催化剂横断面的不同点进行了微区成分定量分析.由于各催化剂使用前后的Al 含量基本不变,因此n (P)/n (A l),n (Fe)/n (A l)和n (S)/n (Al)比值可反映P,Fe 和S 在催化剂中的沉积情况.失活催化剂A 颗粒中各元素沉积情况见图3,P 在各失活催化剂颗粒中沉积情况见图4.各催化剂颗粒横断面的直径分别为:A 5mm,B 4mm ,C 2

mm.

图3 失活催化剂A 颗粒上P,Fe 和S 的径向分布Fig 3 Radial concentration profiles of P,Fe and

S along the spent catalyst A particle

Using the surface of catalyst A particle as orig in

point 图4 不同失活催化剂颗粒上P 的径向分布

F ig 4 Radial concentration profile of P alo ng

the spent catalyst particle

U sing the center of the catalysts particle as origin point

由图3可见,失活催化剂A 颗粒最外层120L m 左右厚层中P,Fe 和S 元素组成远远超过Al,可以认为该厚度层完全由沉积的含P,Fe 和S 物种构成.沉积物中以P 沉积层最厚,达500L m 左右,其次为Fe,达220L m 左右,S 沉积层最薄,在120L m 以内.这说明P 进入催化剂孔道较深.由图4可见,P 元素主要分布在各催化剂外表面,基本呈U 形分布,与沉积钒在圆柱形催化剂中的分布情况[3]

相似.但P 在不同催化剂上的沉积程度及沉积厚度明显不同.在催化剂A 外表的沉积量超过在催化剂B 和C 外表的沉积量10倍以上.催化剂A 为椭球形,n (P)/n (Al)值在外表层上最高,达17125,由催化剂外表层向内n (P)/n (Al)值迅速单调下降,120L m 内n (P)/n (Al)>1,P 在催化剂中的分布基本对称.催化剂B 为三叶草形,P 随催化剂表面形状不同而有不同的分布,凸起处P 沉积较多,n (P)/n (A l)=114,仅外表层n (P)/n (A l)>1,凹陷处n (P )/n (Al)值最高为0175,中心处左右最低.经与新鲜催化剂比较可见,P 基本上沉积在200~500L m 间,凸起处沉积层较厚.催化剂C 为条形,P 在催化剂中的分布基本对称,外表层n (P)/n (A l)值最大(0181~0192),表明P 也是在外表层沉积量最多,由外层到内层磷沉积量迅速减少.对比新鲜催化剂,P 基本上沉积在70~90L m 间的外表层.另外,催化剂B 上铁的断面微区分析表明:Fe 仅存在于最外层,凸起处由外至内12L m 范围内检测到有Fe,n (F e)/n (Al)最大值为0168;凹陷处由外至内5L m 范围内检出有Fe,n (Fe)/n (Al)最大值为0106.这说明Fe 也是在凸起处沉积较多,但并未进入到催化剂内部.催化剂C 上铁的断面微区分析表明:Fe 仅存在于最外层,由外至内50L m 范围内检测到有Fe,n (Fe)/n (A l)最大值为0143.微区EDS 分析还表明,其他微量元素如K,Ca 和Cr 也只在催化剂B 和C 的外表层存在.经与催化剂A 对比可知,P 和Fe 等元素在催化剂B 和C 上的沉积量及厚度远小于催化剂A.

642催 化 学 报第20卷

P 和Fe 等在三种催化剂上的不同分布情况,说明沉积物依反应器床层催化剂(即A,B,C)顺序沉积,沉积程度与催化剂比表面积及孔容损失程度相符,与原料油通过催化剂的顺序也一致.可以认为,含磷阻垢剂添加到反应体系后,在反应条件下分解,形成大量含P 和含Fe 化合物,当原料油通过催化剂时沉积在催化剂上,其中P 可进入催化剂微孔中,引起比表面积和孔容大幅度下降.

综合以上分析结果,可以认为:失活催化剂表层含有大量P,Fe 和S 及微量Ca,K,Cr 和T i 等的化合物,这层沉积物覆盖了催化剂表面的钼镍活性中心,使得大分子的重油反应物不能与催化剂的活性中心接触,导致吸附的大分子沥青质等不能发生加氢反应;沉积物堵塞了催化剂表面及内部的微孔,引起催化剂失活.以往的研究认为,重油加氢催化剂的失活主要为重金属如钒和镍及炭的沉积所引起[3].图5 粉尘的SEM 照片(@5000)

Fig 5 SEM image of the dust

2.3.3 粉尘的电子显微分析 对粉尘样品的SEM 观测表明,此粉尘主要为疏松的无定形物质(图5),与失活催化剂表面絮状覆盖物的形貌一致.EDS 微区分析表明,这些絮状物由P 和Fe 的化合物组成.另外,粉尘中还含有个别块状物,定性分析表明是由Al,S 或Si 元素组成的.含磷阻垢剂的使用,导致反应床层中生成大量含P,Fe 和S 等元素的灰白色粉尘;反应过程中,粉尘可在催化剂表面沉积,形成以P,Fe 和S 为主的沉积物覆盖层,堵塞催化剂表面及内部的微孔,致使催化剂的比表面积和孔容严重下降,最终导致催化剂失活

.

图6 失活催化剂B 的XRD 谱

F ig 6 X RD patterns o f spent catalyst B

(1)Spent catalyst B

(2)T reated (1)by H 2at 400e for 4h (3)Gray surface layer of spent catalyst

o N iSO

4,p C -A l 2O 3

图7 粉尘及催化剂B 的红外光谱

F ig 7 IR spectra of dust and catalyst B

(1)Dust

(2)G ray sur face layer of spent B (3)I nner layer of spent B (4)Fresh catalyst B

2.4 XRD 及IR 分析 以催化剂B 为研究对

象,对其进行了XRD 分析,结果见图6.XRD 谱中有NiSO 4#6H 2O 的衍射峰,经还原后该衍射蜂更加明显.由于此类催化剂需经硫化处理后才具有加氢脱硫催化活性,故反应器中催化剂上的硫以SO 2-4形式存在;催化剂卸出是在N 2保护下降温后进行的,Ni 和Mo 活性组分一般以硫化物的形式存在[5].本文结果表明,部分硫以SO 2-4

形式存在,说明部分S 2-被氧化为643

第6期王海涛等:含磷阻垢剂对重油加氢催化剂失活的影响

644催化学报第20卷

SO2-4;另外发现有C-Al2O3的宽衍射峰,除此之外,无其他物种的衍射峰,说明催化剂上活性物质无聚集、烧结现象.催化剂表层的XRD谱非常弥散,尽管存在大量含P物种,但未检测到磷酸盐的衍射峰,表明磷以非晶相态形式分散在催化剂中;同时,也没有Al2O3的衍射峰,说明催化剂表层主要由沉积物组成.

粉尘及催化剂B的IR谱见图7.催化剂外表灰白色层的吸收峰与反应器中粉尘的基本一致.由于粉尘中有大量含磷物种且催化剂表层中未发现有硫酸根存在,故1108cm-1处的强宽吸收及971cm-1处的弱吸收可归结为磷酸根的伸缩振动,580和530cm-1两吸收峰可归结为磷酸根的弯曲振动.催化剂外表层与之对应,但各峰略向低波数位移.

参考文献

1Furimsky E,M assoth F E.Catal T oda y,1993,17(4):537

2Bog danor J M,R ase H F.I nd Eng Chem,Prod Res Dev,1986,25(2):220

3Babcock K W,Hiltzik L,Ernst W R et al.A p pl Catal,1989,51(2):295

4Abs-i Halabi M,Stanislaus A,T rimm D L.A p p l Catal,1991,72(2):193

5Furimsky E.A p pl Catal,1988,44(1/2):189

EFFEC T OF P-C ONTAINING SLUDGE INHIBITOR ON DEACTIVATION OF RESIDUUM HYDROTREATING C ATALYSTS

Wang Haitao,Xiao T iancun,Su Jix in,Lu Yuli

(D epar tment of Env ir onmental Engineer ing,Shandong University,Jinan250100)

Zhang Kongyuan,Zheng Shaokuan

(Research I nstitute of Q ilu Petr ochemical Corp or ation,Zibo255400)

Abstract Deactivated hydrotreating catalysts for removing heteroatoms from vacuum residuum w ere collected.XRF analysis,BET,SEM-EDS,XRD and IR techniques w ere employed to characterize the composition and structure of the catalysts.T he re-sults revealed that the deactivation of the catalysts resulted from deposition of phos-phorus,iron,sulfur as w ell as potassium and calcium species.Elementary analysis of the deposits showed that the phosphorus,sulfur and iron mainly distributed in the outer layer of the catalyst particles,and the penetrated layer of phosphorus w as thick-er and could penetrate into the inner layer of the catalyst particles.The content of P, S and Fe in the HDM(hydrodemetallization)catalyst and the HDS(hydrodesulfur-ization)catalysts decreased gradually.Utilization of P-containing sludge inhibitor re-sulted in a lot of gray and w hite dust,w hich has loose and non-crystalline structure. T he composit ion of the dust is mainly P and Fe,and P is in the form of phosphate. T he dust could deposit on the catalysts easily at the reaction temperature,and this is the direct factor accounting for t he deactivation of catalysts.

Key words hydrotreating catalysts,deactivation,P-containing sludge inhibitor,de-posit,distribution

(Ed WGZh)

重油催化裂化

对重油催化裂化分馏塔结盐原因分析及对策 王春海 内容摘要 分析了重油催化裂化装置发生分馏塔结盐现象的原因,并提出了相应的对策。分馏塔结盐是由于催化原料中的有机、无机氯化物和氮化物在提升管反应器中发生反应生成HCl和NH3 ,二者溶于水形成NH4Cl溶液所致。可采取尽可能降低催化原料中的含盐量、对分馏塔进行在线水洗、利用塔顶循环油脱水技术等措施,预防和应对分馏塔结盐现象的发生。 关键词: 重油催化裂化分馏塔结盐氯化铵水洗循环油脱水

目前,催化裂化装置( FCCU)普遍通过掺炼渣油及焦化蜡油进行挖潜增效,但由于渣油中的氯含量和焦化蜡油中的氮含量均较高,势必导致FCCU 分馏塔发生严重的结盐现象。另外,近年来国内市场柴油消费量迅速增长,尽管其生产量增长也很快,但仍不能满足市场的需求。因此许多FCCU 采用降低分馏塔塔顶温度(以下简称顶温)的操作来增产柴油,但顶温低致使分馏塔顶部水蒸气凝结成水,水与氨(NH3)和盐酸(HCl)一起形成氯化铵(NH4Cl)溶液,从而加速分馏塔结盐。随着分馏塔内盐层的加厚,沉积在塔盘上的盐层会影响传质传热效果,致使顶温失控而造成冲塔;沉积在降液管底部的盐层致使降液管底部高度缩短,塔内阻力增加,最终导致淹塔.。可见,如何避免和应对分馏塔结盐现象的发生,是FCCU 急需解决的生产难题。 一、分馏塔结盐原因及现象分析 (一)原因 随着FCCU所用原料的重质化,其中的氯和氮含量增高。在高温临氢催化裂化的反应条件下,有机、无机氯化物和氮化物在提升管反应器中发生反应生成HCl和NH3 ,其反应机理可用下式表示: : 催化裂化反应生成的气体产物将HCl和NH3从提升管反应器中带入分馏塔,在分馏塔内NH3 和HCl与混有少量蒸汽的油气在上升过程中温度逐渐降低,当温度达到此环境下水蒸气的露点时,就会有冷凝水产生,这时NH3和HCl溶于水形成NH4Cl溶液。NH4Cl溶液沸点远高于水的沸点,其随塔内回流液体在下流过程中逐渐提浓,当盐的浓度超过其在此温度下的饱和浓度时,就会结盐析出,沉积在塔盘及降液管底部。 (二)现象 1.由于塔顶部冷凝水的存在,形成塔内水相内回流 ,致使塔顶温度难以控制 ,顶部循环泵易抽空,顶部循环回流携带水。 2.由于沉积在塔盘上的盐层影响传热效果,在中段回流量、顶部循环回流量发生变化时,塔内中部、顶部温度变化缓慢且严重偏离正常值。 3.由于沉积在塔盘上的盐层影响传质效果,导致汽油、轻柴油馏程发生重叠,轻柴油凝

无磷缓蚀阻垢剂现状评述

经过多年的发展, 我国水处理设备正逐渐走向成熟。我国在水处理设备领域中的技术规范、标准、设计已逐步达到程序化与规范化。目前我国的水处理设备与国外的差距大于水工艺与国外的差距。要提高我国水处理的水平, 关键是要提高水处理的装备水平, 特别是要提高水处理专用机械设备的水平, 这是我国水处理设备发展应努力的方向。 目前国内无磷缓蚀阻垢剂现状评述 工业循环冷却水系统在运行过程中,由于原水水质、水温升高、浓缩倍数的提高等,造成系统的结垢、积污等问题,影响了系统的正常运行。水垢的控制技术有很多,如采用低硬度的补充水和加大排污量以及添加阻垢剂和物理阻垢。使用阻垢分散剂是其中最方便最常用的方法。添加阻垢剂可以把循环冷却水中至垢离子浓度维持在较高的浓度,但抑制水垢的生成,从而提高浓缩倍数,降低补水量和排污量,减少对水资源消耗和污染,有很好的经济和环保效益。绝大多数阻垢剂都有阻垢和缓蚀的双重作用。无磷阻垢剂的发展经历了无机聚磷酸盐、聚合电解质、天然高分子、有机磷酸、聚羧酸共聚物、二元及三元含磷共聚物、二元及三元不含磷共聚物几个阶段。20世纪80年代,随着环境对工业排污的限制和人类环保意识的提高,阻垢剂也正在向无毒无害的无磷、低磷新型高效的环境友好型绿色阻垢剂的方向发展。 水处理剂的阻垢机理 要认识阻垢机理,需要从两个方面入手,一方面是垢的形成机理,即所谓的成垢机理;另一方面是阻垢剂如何影响垢的形成,即所谓的阻垢机理。水垢是循环水中危害最为严重、最常见的结垢之一,水垢又称硬垢或无机垢,是由水中的微溶性盐类沉积在换热面上而形成的垢层。碳酸钙垢是冷却水系统中最常见的水垢之一。无阻垢剂的冷却水会出现严重的碳酸钙垢,水垢的形成过程可以分为结晶、聚合和沉积。阻垢剂的阻垢机理比较复杂,随着沉淀过程动力学、成垢预测模型和各种阻垢技术的大量研究,使成垢机理的研究和对结垢的控制有了很大的进展。一般认为成垢物质和溶液之间存在着动态平衡,阻垢剂能够吸附到成垢物质上,并影响垢的生长和溶解的动态平衡。阻垢剂的阻垢机理的假设有很多,但它们还不能完全解释阻垢剂的一些性质和现象,目前流行的机理主要有以下几

加氢脱硫催化剂载体的研究现状

加氢脱硫催化剂载体的研究现状 王万福 (湖南理工学院化学化工学院09应用化学班,学号14091801290)摘要:介绍了目前加氢脱硫催化剂载体的种类和研究现状,包括氧化物载体、介孔分子筛载体、活性炭载体、酸碱载体等。分析了不同载体所具有的的优缺点,并展望了未来载体的研究方向。 关键词:加氢脱硫;催化剂;载体 Latest researches in the supports of HDS catalyst Wang Wanfu (09 Applied Chemistry of The Department of Chemical Engineering , Hunan Institute of Techology, Student No.14091801290) Abstract:Introduced species and the present status of the hydrodesulfurization catalyst support, including the oxide carrier, the carrier of mesoporous molecular sieves, activated carbon carrier, and acid-base carrier. Different carriers have advantages and disadvantages, and future research directions of the future carrier. Keywords:Hydrodesulfurization;Catalyst;Carrier 随着人们对环护意识的不断增强,环保法对尾气排放及其相应成品油中有害杂质的含量要求更加苛刻。另外,随着石油重质化,S、N 等杂原子化合物的含量也逐渐升高,易引起产品加工过程毒化,并且脱除困难。催化剂制造技术作为加氢脱硫技术的核心部分,近年来,人们通过研究各种类型的脱硫催化剂载体来改善催化剂的性能。本文针对不同时期深度加氢脱硫催化剂载体的研究进行了综述。 1 载体 载体在催化剂中起担载活性组分、提高活性组分和助剂分散度的作用,在一定程度上也参与了某些反应。加氢脱硫催化剂的载体主要是γ-A12O3,随着研究的深入,人们发现TiO2、ZrO2、活性炭、复合氧化物、介孔分子筛等更适合做加氢脱硫催化剂的载体,并进行了大量的研究。在加氢脱硫催化剂载体研究方面,主要从以下三个方面进行: (1)对γ-A12O3进行进一步研究,提高其表面积、孔结构等。 (2)使用TiO2、ZrO2、活性炭、介孔分子筛等载体代替γ-A12O3。 (3)在γ-A12O3中添加TiO2、SiO2等构成复合载体,以提高催化剂活性组分的分散度或

重油催化裂化基础知识

重油催化裂化基础知识 广州石化总厂炼油厂重油催化裂化车间编 一九八八年十二月

第一章概述 第一节催化裂化在炼油工业生产中的作用 催化裂化是炼油工业中使重质原料变成有价值产品的重要加工方法之一。它不仅能将廉价的重质原料变成高价、优质、市场需要的产品,而且现代化的催化裂化装置具有结构简单,原料广泛(从瓦斯油到常压重油),运转周期长、操作灵活(可按多产汽油、多产柴油,多产气体等多种生产方法操作),催化剂多种多样,(可按原料性质和产品需要选择合适的催化剂),操作简便和操作费用低等优点,因此,它在炼油工业中得到广泛的应用。 第二节催化裂化生产发展概况 早在1936年美国纽约美孚真空油公司(、)正式建立了工业规模的固定床催化裂化装置。由于所产汽油的产率与辛烷值均比热裂化高得多,因而一开始就受到人们的重视,并促进了汽车工业发展。如图所示,片状催化剂放在反应器内不动,反应和再生过程交替地在同一设备中进行、属于间歇式操作,为了使整个装置能连续生产,就需要用几个反应器轮流地进行反应和再生,而且再生时放出大量热量还要有复杂的取热设施。由于固定床催化裂化的设备结构复杂,钢材用量多、生产连续性差、产品收率与性质不稳定,后为移动床和流化床催化裂化所代替。 第一套移动床催化裂化装置和第一套流化床催化裂化(简称装置都是1942年在美国投产的。

固定床反应器 移动床催化裂化的优点是使反应连续化。它们的反应和再生过程分别在不同的两个设备中进行,催化裂化在反应器和再生器之间循环流动,实现了生产连续化。它使用直径约为3毫米的小球型催化剂。起初是用机械提升的方法在两器间运送催化剂,后来改为空气提升, 生产能力较固定床大为提高、 空气

纳米TiO2光催化剂在污水处理中的应用

纳米TiO2光催化剂在污水处理中的应用 2012年10月16日 [摘要]纳米二氧化钛作为一种重要的光催化材料,由于具有化学性质稳定、便宜、无毒并具有较高活性等优点而得到了广泛的研究与应用。论文在综合分析相关文献的基础上,概述了二氧化钛光催化剂在污水处理中的应用,介绍了纳米二氧化钛在光催化处理污水方面的成果和研究进展,探讨了纳米二氧化钛工业应用的研究方向。 [关键词]纳米二氧化钛;光催化;污水处理;研究进展 1972年,日本学者Fujishima和Honda在《Nature》上报道了在n型半导体TiO2单晶电极上光致分解H2O产生H2和O2的现象,这一报道使得半导体光催化氧化还原技术,在污水处理、抗菌杀毒等方面的潜在应用受到广泛关注,并得到了迅速发展。大量研究证实,染料、表面活性剂、有机卤化物、农药、油类、氰化物等有机污染物都能有效通过光催化氧化反应在TiO2表面降解、脱色、去毒,并最终完全矿化为CO2、H2O及其它无机小分子物质,从而消除对环境的污染。 1 TiO2光催化剂在污水处理中的应用 1.1 无机废水的处理 工业废水中的无机污染物主要有重金属离子,如Hg、Cr、Pb等的离子。大量的研究表明,许多无机物在TiO2表面具有光催化活性。周林波等[1]在Cr6+浓度为80 mg/L、体积为100 mL的废水中,投加0.7g SiO2-TiO2系玻璃作为光催化剂,光照反应体系3 h,Cr6+的去除率达99.9 %。Serpone 等[2]研究了以TiO2为光催化剂在模拟太阳光光照下处理HgCl2 和甲基氯化汞的过程,取得了较好的实验效果。 除重金属离子外,工业废水中的无机污染物还包括部分对环境危害较重的无机阴离子,如CN-、NO2-、Au(CN)-4等离子,一般方法难以去除,采用光催化氧化技术则能够达到这一目的。Frank 等[3]研究了以TiO2为光催化剂将CN-氧化为OCN-,并最终反应生成CO2、N2、和NO3-的过程。Hidaka等[4]研究了氰化钾溶液及含氰工业废水在TiO2悬浮液中通过中间产物OCN-生成CO2和N2的的光催化氧化过程,讨论了光催化氧化法处理大规模含氰废水的可能性。 1.2 有机废水的处理 高浓度有机废水主要是印染、制药、炼油等工业生产过程中产生的废水,作为一种深度氧化技术,光催化法尤其适合于降解难以用其它方法降解的有毒有机物质。美国环保局公布了9大类114种有机物被证实可以通过半导体光催化氧化方法处理。 1.2.1光催化处理印染废水 印染废水具有浓度高、色度高、pH 高、难降解等特点,且大多含有苯环、胺基、偶氮基团等致癌物质,对环境危害很大。光催化氧化在彻底降解印染废水方面具有无二次污染、氧化能力强等突出优点。浙江大学研究小组研究了TiO2 悬浮体系对不同染料的光催化降解,结果表明,TiO2 对

石油化工重油催化裂化工艺技术

石油化工重油催化裂化工艺技术 石油化工行业的稳定发展,对于各类化工产品的稳定出产,以及社会经济的稳定发展产生了较大的影响。因此在实际发展中关于石油化工行业发展中的各类工艺技术发展现状,也引起了研究人员的重视。其中石油化工重油催化裂化工艺技术,则为主要的关注点之一。文章针对当前石油化工重油催化裂化工艺技术,进行简要的分析研究。 标签:重油催化裂化;催化剂;生产装置;工艺技术 重油催化裂化在石油化工行业的发展中,占据了较大的比重。良好的重油催化裂化对于液化石油气,汽油,柴油的生产质量提升,发挥了重要的作用。因此在实际发展中如何有效的提升重油的催化裂化质量,并且提升各类生产产品的生产稳定性,成为当前石油化工行业发展中主要面临的问题。笔者针对当前石油化工重油催化裂化工艺技术,进行简要的剖析研究,以盼能为我国石油化工行业发展中重油催化裂化技术的发展提供参考。 1 重油催化裂化工艺技术 重油催化裂化为石油化工行业发展中,重要的工艺技术之一。其工艺技术在实际应用中,通过催化裂化重油生产了高辛烷值汽油馏分,轻质柴油等其他化工行业发展中的气体需求材料。具体在工艺技术应用的过程中,其在工艺操作中对重油加入一定量的催化剂,使得其在高温高压的状态下产生裂化反应,最终生产了相应的产物。该类反应在持续中反应深度较高,但生焦率及原料损失较大,并且后期的产物需进行深冷分离。因此关于重油催化裂化工艺技术的创新和提升,也为行业研究人员长期研究的课题。 2 当前重油催化裂化工艺技术的发展现状 分析当前我国石油化工行业在发展中,关于重油催化裂化工艺技术,宏观分析整体的发展态势较为稳定。但从具体实施的过程分析,我国重油催化裂化工艺技术的发展现状,还存在较大的提升空间。分析当前重油催化裂化工艺技术的发展现状,实际发展中主要存在的问题为:工艺催化剂生产质量低、工艺运行装置综合效率低、工艺自动化水平低。 2.1 工艺催化剂生产质量低 当前我国重油催化裂化工艺技术在发展中,工艺应用催化剂的生产质量低,为主要存在的问题之一。工艺应用催化剂的生产质量较低,造成工艺技术的发展存在先天不足。分析当前在关于催化剂的生产发展现状,主要存在的问题为:催化剂生产成本高、催化剂保存技术不完善,催化剂精细程度较低等现象。 2.2 工艺运行装置综合效率低

重油催化裂化装置安全基本常识

重油催化裂化装置安全基本常识 1.应急电话:火警:119;急救:120。 2.集团公司安全生产方针:安全第一、预防为主、全员动手、 综合治理。 3.三级安全教育:厂级安全教育、车间级安全教育、班组安 全教育。 4.三违:违章作业、违章指挥、违反劳动纪律。 5.三不伤害:不伤害自己、不伤害他人、不被他人伤害。 6.三不用火:没有经批准的用火作业许可证不用火、用火监 护人不在现场不用火、防火措施不落实不用火。 7.四不放过:事故原因分析不清不放过、事故责任者不受处 理不放过、事故责任者和群众没有受到教育不放过、防范措施不落实不放过。 8.三同时:一切新建、改建、扩建的工程项目,必须做到主 体工程与安全、环保、卫生技术措施和设施同时设计、同时施工、同时投用。

9.消防三懂、三会:懂火灾危险性、懂预防措施、懂扑救方 法;会报警、会使用灭火器材、会扑救初起火灾。 10.四全监督管理原则:全员、全过程、全方位、全天侯。 11.安全气分析: 1)可燃气体浓度:当爆炸下限大于4.0%时,指标为小于 0.5%;当爆炸下限小于4.0%时,指标为小于0.2%。 2)氧含量:19.5%~23.5%。 3)有毒有害物质不超过国家规定的“空气中有毒物质最 高容许浓度”的指标。 注:进入设备作业应保证以上三项同时合格,取样要有代表性、全面性。 12.生产装置、罐区的防火间距: 1)液态烃储罐、可燃气体储罐,防火间距为22.5米。(设 备边缘起)。 2)其它各类可燃气体储罐,防火间距为15米。 3)含可燃液体的敞口设备,如水池、隔油池等,防火间 距为22.5米。

13.石化集团公司HSE目标是:追求最大限度地不发生事故、 不损害人身健康、不破坏环境,创国际一流的HSE业绩。 14.济南分公司HSE方针:安全第一,预防为主;全员动手, 综合治理。 济南分公司HSE目标:层层落实HSE责任制,加大隐患治理力度,狠抓“三基”工作,严格事故责任追究,杜绝重大事故,减少人员伤亡和一般事故,争创HSE新业绩。15.每个职工应具备的HSE素质和能力: 1)对本职工作认真、负责,遵章守纪,有高度的责任感 和事业心; 2)在异常情况下,处置果断,有较强的生产处理和事故 应变能力; 3)业务精通、操作熟练,能正确分析解决生产操作和工 艺设备问题; 4)有较强的安全、环境与健康意识,能自觉做好HSE工 作; 5)能正确使用消防气防、救护器材,有较强的自救互救

循环水中各种缓蚀阻垢剂的用量及配方

1)聚磷酸盐(六偏磷酸钠、三聚磷酸钠)阻垢剂。使用时加入水中浓度为0.5~10ppm,适合于低压锅炉。 . z- M g; T% d: ^ ①六偏磷酸钠(NaPO3)6,由磷酸二氢钠脱水经高温(600~650℃)处理后,急剧冷却而制得。- H5 c4 z4 R4 j: ]: p, I; F6 D ②三聚磷酸钠,即三磷酸钠(Na5P3O10),由磷酸二氢钠和磷酸氢二钠充分混合,加热脱水,再高温熔融而成。' a+ f& h- X6 Q) \0 ~ (2)膦酸盐阻垢剂! B- @: D8 }4 w5 E- ^7 {' S 常用的药剂有以下几种:( h% Z/ W8 T/ w; F$ H C* _ ①羟基乙叉二膦酸,结构式为: " y8 U; N1 }6 g% |( @$ R) t3 Q 别名为HEDP,含量为50%,为**透明粘稠液体,显强酸性(pH=2~3),具腐性。羟基乙叉二膦酸多由三氯化磷与醋酸等原料制成,其合成反应如下:' r# `) X8 W7 A' ]$ X 【用途】HEDP为阴极型缓蚀剂。在水溶液中,HEDP可解离成5个正、负离子,可与金属离子形成六员环螯合物,尤其是与钙离子可以形成胶囊状大分子螯合物,阻垢效果较佳。 / L6 @) _0 s) K* l( _( D HEDP与其它缓蚀剂、阻垢剂配合使用,具有协同效应,可提高药效。例如与铬酸盐、钼酸盐、硅酸盐、亚硝酸盐、聚丙烯酸盐、锌盐等配合使用,多用于锅炉水处理、冷却水的处理,使用量一般低于1~3ppm,适用于低、中压锅炉用水的处理。. m& @9 g9 f% Z* `9 a: K0 W$ h ②乙二胺四甲叉四膦酸,其结构式为: ; i" ^" L3 E3 ]7 p- U 别名为EDTMP,其钠盐为棕**透明粘稠液体,含量为28%~30%,pH=9~10。EDTMP多由甲醛、乙二胺、三氯化磷为原料制成。其合成反应如下:6 U, ~) ^' A# B M 【用途】EDTMP为有机多元膦酸阴极缓蚀剂。在水中,EDTMP能解离成8个正、负离子,可以和两个或多个金属离子螯合,形成两个或多个立体结构大分子粘状络合物,松散地分散于水中,使钙垢的正常结晶破坏,减少垢的形成。EDIMP多用于锅炉水的阻垢。加入水中浓度为1ppm,适用于中、低压锅炉。 / ?# e# ^/ r: A) k ③氨基三甲叉膦酸,其结构式为:+ ]+ x( F5 M4 L: z1 t, m 别名为ATMP,含量为50%,为淡**液体。本品多由三氯化磷、铵盐、甲醛等原料反应制得,其反应原理为: 2 Z& a$ `# H+ t X; M( Y 3 y N PCl3+3H2O→H3PO3+3HCl ) {" r$ L* Z I. A3 | 3H3PO3+NH4Cl+HCHO→ATMP+CO2+3H2O 7 ~' Y2 a. x! X6 [ 【用途】ATMP为阴型缓蚀剂。在水溶液中ATMP经解离成六个正离子和六个负离子,能与水中Caサ,Mgサ形成多元螯合物。这个大分子螯合物以松散的方式分散于水中,使钙、镁等垢的正常结构遭到破坏,所以ATMP有阻垢效果。多用于锅炉用水,印染用水、油田注水的防垢,一般用量为3~10ppm。 8 U, v9 V* Q& b, d0 @$ R) g(3)氨基化合物阻垢剂6 G3 n6 y4 U) g 常用的药剂有: ' j0 o- E5 V) t: e v# y5 y& b3 x- B" d9 [* l ①二乙撑三胺,其结构式: 7 F- c- c8 ], D, ?3 `4 b% `% d H2N(CH2)2NH(CH2)2NH2 8 f, Z8 `( t2 P ②三乙撑四胺,其结构式:: r9 g4 T1 t1 ]& b* J; T1 {, M 2 j& E# s6 \4 |( x. _ H2N(CH2)2NH(CH2)2NH(CH2)NH20 y* e- @1 q! c, A8 ^: w+ X ③四乙撑五胺,其结构式: % e0 o/ J/ [" q3 k0 F% R: O0 }6

无磷缓蚀剂

环保高效盐水缓蚀剂氯化钙缓蚀剂冷冻盐水钻井液缓蚀剂 CAS:不适用外观:浅褐色有效物质含量:不适用(型号:SMT-BA PH值使用范围:0~13 化学成份:盐水缓蚀剂品牌:思曼泰参考用量:0.5% 执行质量标准:企业标准含量:不适用(%) 1、SMT-BA高效环保盐水缓蚀剂由思曼泰(Scimantech)研发、生产、 并提供技术支持; 2、适用于氯化钙溶液,氯化钠溶液及其他氯化物盐溶液; 3、新鲜盐水与发生腐蚀并变红褐色盐水均可用; 4、对系统原有铬盐缓蚀剂具有兼容性; 5、投加量低,一般为0.5%,消耗慢,作用时间长; 6、不含有磷、铬、锌元素,安全环保,无毒害; 7、添加便捷,提高抗腐蚀能力,不改变原溶液性质; 8、有权威腐蚀报告,缓蚀率达到95%以上; 9、非常适用于卤盐水型钻井液、完井液的抗腐蚀。 无磷缓蚀剂AZ-201

目前,国内循环冷却水处理常用的阻垢缓蚀剂有聚磷酸盐、磷酸酯、有机磷酸和丙烯酸类共聚物等。其中,有机磷酸类药剂以其高效兼有缓蚀与阻垢双重功能而被应用的最为普遍,但由于其含磷量高,也成为主要的环境污染源之一。随着人类环保意识的日益提高,“绿色阻垢缓蚀剂”的概念被提出,并成为21世纪水处理剂的发展方向。我们在广泛市场调研的基础上,成功开发了无膦水处理缓蚀阻垢剂。 采用无磷处理剂可以避免磷酸钙的沉积、集中解决常见的碳酸钙水垢,使阻垢处理简单且效果明显;又可以减少杀菌灭藻剂、粘泥剥离剂的用量,使处理费用及日常维护工作量显著降低,经济效益明显。 一、性能 AZ-201是从淀粉中提取的低分子量有机物,无磷非氮,经过改性处理,应用在水处理方面具有好的缓蚀性,并可与其它水处理剂配伍,耐氧化,可与多种氧化性杀菌剂配合使用。 二、用途 该产品主要为今后无磷配方配研发,循环冷却水系统而研发的,在

有机磷系列阻垢缓蚀剂

氨基三亚甲基膦酸(ATMP) Amino Trimethylene Phosphonic Acid (ATMP) 【CAS】 6419-19-8 别名:氨基三亚甲基膦酸Dequest:2000 分子式N(CH2PO3H2)3C 相对分子质量:299.05 一、性能与用途: ATMP具有良好的螯合、低限抑制及晶格畸变作用。可阻止水中成垢盐类形成水垢,特别是碳酸钙垢的形成。ATMP 在水中化学性质稳定,不易水解。在水中浓度较高时,有良好的缓蚀效果ATMP用于火力发电厂、炼油厂的循环冷却水、油田回注水系统。可以起到减少金属设备或管路腐蚀和结垢的作用。ATMP在纺织印染等行业用作金属离子螯合剂,也可用于金属表面处理剂等。ATMP固体为结晶性粉末,易溶于水,易吸潮,易于运输和使用,尤其适用于冬季严寒地区。由于纯度较高,可用作纺织印染行业的金属螯合剂及金属表面处理剂。 二、质量指标 三、应用范围使用方法ATMP常与其它有机磷酸、聚羧酸或盐等复配成有机碱性水处理剂,用于各种不同水质条件下的循环冷却水系统。用量以1~20mg/L为佳;作缓蚀剂使用时,用量为20~60mg/L。 四、包装与贮存 ATMP液体用塑料桶包装,每桶30kg或250kg;ATMP固体用内衬聚乙烯袋的塑料编织袋包装,每袋净重25kg,也可根据用户需要确定。贮于室内阴凉通风处,防潮、严防曝晒,贮存期十个月。 羟基亚乙基二膦酸(HEDP) 1-Hydroxy Ethylidene-1,1-Diphosphonic Acid (HEDP) 【CAS】 2809-21-4 别名:羟基亚乙基二膦酸Dequest:2010

催化剂的失活与再生

催化剂的失活与再生 [摘要]:本文重点论述了近年来国外对催化剂失活的研究成果,并阐述了经使用失活及再生后的催化剂在物化性质、孔结构、活性及选择性方面均有不同程度的改变。 [关键词]:催化剂;失活;再生;加氢 催化剂在使用过程中催化剂活性会逐渐降低即催化剂失活,失活的速度与原料的性质、操作条件、产品的要求以及催化剂本身的特性均有密切的关系。 关于催化剂的失活,归纳起来失活的原因一般分为结焦失活(造成催化剂孔堵塞)、中毒失活(造成催化剂酸性中心中毒)和烧结失活(造成催化剂晶相的改变)等。工业加氢催化剂失活的主要原因是焦炭生成和金属堵塞,造成催化剂孔结构堵塞和覆盖活性中心。同时伴随着活性中心吸附原料中的毒物,活性金属组分迁移或聚集、相组成的变化、活性中心数减少、载体烧结、沸石结构塌陷与崩溃等。 不同用途的催化剂失活的主要原因有所不同,重油加氢处理催化剂失活,是因结焦、金属聚集、活性中心数减少;渣油加氢催化剂失活是因重金属硫化物沉积和结焦。而分子筛型加氢裂化催化剂失活,主要是因结焦,焦炭覆盖活性中心和堵塞孔道, S/N杂质和重金属有机物化学吸附,使酸性中心中毒或沸石结构破坏,金属迁移和聚集等[1]。

1 催化剂失活的原因 影响催化剂失活的原因很多。Camaxob等把它们基本归纳为两类: 一是化学变化引起的失活; 二是结构改变引起的失活。Hegedus等归纳为三类: 即化学失活、热失活和机械失活。Hughes则归纳为中毒、堵塞、烧结和热失活[2]。本文将它们划分为中毒、烧结和热失活、结焦和堵塞三大类来进行讨论。 1.1中毒引起的失活 1.1.1毒物分析 催化剂的活性由于某些有害杂质的影响而下降称为催化剂中毒, 这些物质称为毒物。在大部分情况下, 毒物来自进料中的杂质, 如润滑油中含有的杂质[3], 也有因反应产物(如平行反应或连串反应的毒产物)强烈吸附于活性位而导致的催化剂中毒[4,5]。 通常所说的毒物都是相对于特定的催化剂和特定的催化反应而言的, 表1列出了一些催化剂上进行反应的毒物[6]。 1.1.2中毒类型 既然中毒是由于毒物和催化剂活性组份之间发生了某种相互作用, 则可以根据这种相互作用的性质和强弱程度将毒物分成两类: (1)暂时中毒(可逆中毒) 毒物在活性中心上吸附或化合时, 生成的键强度相对较弱可以

石油化工催化裂化装置工艺流程图.docx

炼油生产安全技术一催化裂化的装置简介类型及工艺流程 催化裂化技术的发展密切依赖于催化剂的发展。有了微球催化剂,才出现了流化床催化裂化装置;分子筛催化剂的出现,才发展了提升管催化裂化。选用适宜的催化剂对于催化裂化过程的产品产率、产品质量以及经济效益具有重大影响。 催化裂化装置通常由三大部分组成,即反应?再生系统、分馏系统和吸收稳定系统。其中反应--再生系统是全装置的核心,现以高低并列式提升管催化裂化为例,对几大系统分述如下: ㈠反应--再生系统 新鲜原料(减压馏分油)经过一系列换热后与回炼油混合,进入加热炉预热到370 C左右,由原料油喷嘴以雾化状态喷入提升管反应器下部,油浆不经加热直接进入提升管,与来自再生器的高温(约650 C ~700C )催化剂接触并立即汽化,油气与雾化蒸汽及预提升蒸汽一起携带着催化剂以7米/秒~8米/秒的高线速通过提升管,经快速分离器分离后,大部分催化 剂被分出落入沉降器下部,油气携带少量催化剂经两级旋风分离器分出夹带的催化剂后进入分馏系统。 积有焦炭的待生催化剂由沉降器进入其下面的汽提段,用过热蒸气进行汽提以脱除吸附在催 化剂表面上的少量油气。待生催化剂经待生斜管、待生单动滑阀进入再生器,与来自再生器底部的空气(由主风机提供)接触形成流化床层,进行再生反应,同时放出大量燃烧热,以维持再生器足够高的床层温度(密相段温度约650 C ~68 0 C )。再生器维持0.15MPa~0?25MPa (表)的顶部压力,床层线速约0.7米/秒~1.0米/秒。再生后的催化剂经 淹流管,再生斜管及再生单动滑阀返回提升管反应器循环使用。 烧焦产生的再生烟气,经再生器稀相段进入旋风分离器,经两级旋风分离器分出携带的大部 分催化剂,烟气经集气室和双动滑阀排入烟囱。再生烟气温度很高而且含有约5%~10%CO 为了利用其热量,不少装置设有Co锅炉,利用再生烟气产生水蒸汽。对于操作压力较高的 装置,常设有烟气能量回收系统,利用再生烟气的热能和压力作功,驱动主风机以节约电 能。 ㈡分馏系统 分馏系统的作用是将反应?再生系统的产物进行分离,得到部分产品和半成品。 由反应?再生系统来的高温油气进入催化分馏塔下部,经装有挡板的脱过热段脱热后进入分 馏段,经分馏后得到富气、粗汽油、轻柴油、重柴油、回炼油和油浆。富气和粗汽油去吸收稳定系统;轻、重柴油经汽提、换热或冷却后出装置,回炼油返回反应--再生系统进 行回炼。油浆的一部分送反应再生系统回炼,另一部分经换热后循环回分馏塔。为了取走 分馏塔的过剩热量以使塔内气、液相负荷分布均匀,在塔的不同位置分别设有4个循环回流:顶循环回流,一中段回流、二中段回流和油浆循环回流。 催化裂化分馏塔底部的脱过热段装有约十块人字形挡板。由于进料是460 C以上的带有催化 剂粉末的过热油气,因此必须先把油气冷却到饱和状态并洗下夹带的粉尘以便进行分馏和避免堵塞塔盘。因此由塔底抽出的油浆经冷却后返回人字形挡板的上方与由塔底上来的油 气逆流接触,一方面使油气冷却至饱和状态,另一方面也洗下油气夹带的粉尘。 ㈢吸收--稳定系统: 从分馏塔顶油气分离器出来的富气中带有汽油组分,而粗汽油中则溶解有C3 C4甚至C2 组分。吸收--稳定系统的作用就是利用吸收和精馏的方法将富气和粗汽油分离成干气 (≤ C2)、液化气(C3、C4)和蒸汽压合格的稳定汽油。 一、装置简介 (一)装置发展及其类型

催化剂的失活原因

催化剂的失活原因 催化剂的失活原因一般分为中毒、烧结和热失活、结焦和堵塞三大类。 1、中毒引起的失活 (1)暂时中毒(可逆中毒) 毒物在活性中心上吸附或化合时,生成的键强度相对较弱可以采取适当的方法除去毒物,使催化剂活性恢复而不会影响催化剂的性质,这种中毒叫做可逆中毒或暂时中毒。 (2)永久中毒(不可逆中毒) 毒物与催化剂活性组份相互作用,形成很强的的化学键,难以用一般的方法将毒物除去以使催化剂活性恢复,这种中毒叫做不可逆中毒或永久中毒。 (3)选择性中毒 催化剂中毒之后可能失去对某一反应的催化能力,但对别的反应仍有催化活性,这种现象称为选择中毒。在连串反应中,如果毒物仅使导致后继反应的活性位中毒,则可使反应停留在中间阶段,获得高产率的中间产物。 2、结焦和堵塞引起的失活 催化剂表面上的含碳沉积物称为结焦。以有机物为原料以固体为催化剂的多相催化反应过程几乎都可能发生结焦[7]。由于含碳物质和/或其它物质在催化剂孔中沉积,造成孔径减小(或孔口缩小),使反应物分子不能扩散进入孔中,这种现象称为堵塞。所以常把堵塞归并为结焦中,总的活性衰退称为结焦失活,它是催化剂失活中最普遍和常见的失活形式。通常含碳沉积物可与水蒸气或氢气作用经气化除去,所以结焦失活是个可逆过程。与催化剂中毒相比,引起催化剂结焦和堵塞的物质要比催化剂毒物多得多。 在实际的结焦研究中,人们发现催化剂结焦存在一个很快的初期失活,然后是在活性方面的一个准平稳态,有报道称结焦沉积主要发生在最初阶段(在0.15s内),也有人发现大约有50%形成的碳在前20s内沉积。结焦失活又是可逆的,通过控

制反应前期的结焦,可以极大改善催化剂的活性,这也正是结焦失活研究日益活跃的重要因素。 3、烧结和热失活(固态转变) 催化剂的烧结和热失活是指由高温引起的催化剂结构和性能的变化。高温除了引起催化剂的烧结外,还会引起其它变化,主要包括: 化学组成和相组成的变化,半熔,晶粒长大,活性组分被载体包埋,活性组分由于生成挥发性物质或可升华的物质而流失等。事实上,在高温下所有的催化剂都将逐渐发生不可逆的结构变化,只是这种变化的快慢程度随着催化剂不同而异。 烧结和热失活与多种因素有关,如与催化剂的预处理、还原和再生过程以及所加的促进剂和载体等有关。 当然催化剂失活的原因是错综复杂的,每一种催化剂失活并不仅仅按上述分类的某一种进行,而往往是由两种或两种以上的原因引起的。

重油催化裂化装置长周期安全运行几点考虑

编号:SY-AQ-03170 ( 安全管理) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 重油催化裂化装置长周期安全 运行几点考虑 Considerations on long term safe operation of RFCC unit

重油催化裂化装置长周期安全运行 几点考虑 导语:进行安全管理的目的是预防、消灭事故,防止或消除事故伤害,保护劳动者的安全与健康。在安全管理的四项主要内容中,虽然都是为了达到安全管理的目的,但是对生产因素状态的控制,与安全管理目的关系更直接,显得更为突出。 2002年10月,为了提高原油深度加工能力,提高轻油收率,第二催化裂化装置历时56天进行了由蜡油催化改为重油催化的技术改造,改造后的装置掺炼重油加氢渣油比例由原来20%提高到了50%以上。现在装置原料以减压馏份油、VRDS常压渣油、VRDS 减压渣油、焦化蜡油为主。装置改造后,装置操作相应发生比较大的变化,装置设备增多,设备管理难度加大,如何保证重油催化裂化装置长周期安全运行,成为生产管理中的难点和重点。 一、要确保关键转动设备的运行平稳度 催化裂化装置大机组较多,技术含量高,有主风机、烟机、气压机、增压机等,只有保证了大机组的连续高效运行,催化裂化装置才能长周期运行,所以我们首先要在检修中提高大机组的检修深

度和检修质量,确保大机组的机械部分、仪表部分、电气部分、自控部分和附属系统设备的可靠好用。在日常生产维护中加强对大机组的检查力度,组织安装投用了s8000大型旋转机械在线状态监测与分析系统,为机组的安全运行提供了有力保障。 二、要确保关键静设备——反再系统的运行平稳度 要保证公用系统的可靠性,尽量避免公用系统故障造成装置大面积操作波动,严格按照工艺指标平稳操作,不超温不超压,操作的平稳对催化裂化设备安全运行尤为关键。另外组织技术人员加强对反再系统壁温的检测和检查,及时发现避免衬里损坏超温、低温露点腐蚀等设备隐患。 三、要确保能量回收系统的运行平稳度 催化裂化装置最大的节能点在于能量回收系统,对于关键设备烟机、锅炉给水泵、外取热器、油浆蒸汽发生器等必须要管理好。从设备选型、设备制造、现场安装、日常运行等各个环节把握好,否则烟机振动问题、锅炉给水泵频繁串轴问题、余热锅炉炉管泄漏问题、油浆蒸汽发生器管束泄漏等问题将不可避免。能量回收系统

催化裂化装置工艺条件一览表

催化裂化装置工艺条件一览表 一、催化裂化装置主要工艺指标 1、反应再生单元 序号工艺指标名称单位仪表位号控制范围 1 重油提升管出 口温度℃TRCA22101 A 500~530 2 芳烃提升管出 口温度 芳烃提升管出 口温度 ℃ ℃ TRCA22101 B TRCA22101 B 440~480 (低硫) 480~530 (高硫) 3 反应压力MPa PR22102 0.13~0.19 4 再生压力MPa PRCA22101 0.16~0.22 5 两器压差MPa PdRCA2210 4A 0.03~0.05 6 再生器温度℃TRCA22102 660~710 7 再生器稀相温 度 ℃TIA22123 ≤730 8 沉降器藏量t WRCA22101 35~48 9 再生器藏量t WR22105 90~130 10 原料油预热温 度 ℃TRCA22103 180~225 11 主风流量Nm3/h FRCA22604 140000~

160000 12 待生套管流化 Nm3/h FRCA22110 3000~6000 风量 Nm3/h FRCA22109 3500~8000 13 外取热流化风 量 14 烟气氧含量v%AR22101 ≤3 15 过热蒸气温度℃TIC22461 380~410 MPa PRA22421 3.5~4.1 16 外取热汽包压 力 ℃TI22468 >122 17 省煤器上水温 度 18 外取热汽包液 %LRC22421 50±20 位 2、分馏单元 序号工艺指标名称单位仪表位号控制范围 1 重油分馏塔塔顶℃TRCA2220120~150 2 芳烃分馏塔塔顶℃TRCA2222125~150 3 重油分馏塔16层℃TI22209 220~240 4 芳烃分馏塔16层℃TI22238 210~230 5 重油分馏塔塔底℃TRC22217 ≤350 6 芳烃分馏塔塔底℃TRC2223 7 ≤340 7 油浆外甩温度℃TR22250 ≤95 8 油浆固体含量g/l ≤6 9 V22201液位%LIK22209 50±20 10 T22201A液位%LC22201 50±20

无磷缓蚀阻垢剂的生产技术

本技术公开了一种无磷缓蚀阻垢剂,包括下列重量百分比的成分组成:铜缓蚀剂 0.1%1.0%,有机醇0.1%1.0%,水解聚马来酸酐1%20%,锌盐1%10%,无机酸 0.1%2%,醇胺3%20%,聚天冬氨酸5%25%,聚丙烯酸1%5%,剩余量为水,上述各组分用量之和为100%;本技术与现有技术相比,本产品为高浓缩倍数的混合型无磷缓蚀阻垢剂,不含磷酸盐及有机磷,使用过程中,减少了微生物及藻类的滋生,降低了杀菌剂的使用,降低了运行成本,使得既环保又经济;本产品在循环水系统中具有良好的缓蚀阻垢性能,且能够对多种金属材料共存的材质起到良好的防腐性能。 权利要求书 1.一种无磷缓蚀阻垢剂,其特征在于,包括下列重量百分比的成分组成: 上述各组分用量之和为100%。 2.根据权利要求1所述的一种无磷缓蚀阻垢剂,其特征在于:包括下列重量百分比的成分组成: 上述各组分用量之和为100%。 3.根据权利要求1或2所述的一种无磷缓蚀阻垢剂,其特征在于:所述铜缓蚀剂为苯并三氮唑或其衍生物。 4.根据权利要求1或2所述的一种无磷缓蚀阻垢剂,其特征在于:所述有机醇为甲醇或乙醇。 5.根据权利要求1或2所述的一种无磷缓蚀阻垢剂,其特征在于:所述锌盐为氯化锌、硫酸锌或硝酸锌。

6.根据权利要求1或2所述的一种无磷缓蚀阻垢剂,其特征在于:所述无机酸为盐酸、硫酸或硝酸。 技术说明书 一种无磷缓蚀阻垢剂 技术领域 本技术涉及化学阻垢试剂领域,具体涉及一种无磷缓蚀阻垢剂。 背景技术 在开放式、半开放式循环水系统中,循环水通过冷却塔冷却换热过程中会有大量的水份被蒸发,这样循环水就会不断地被浓缩。随着浓缩倍数的增大,水中的悬浮物及钙、镁离子、硫酸盐、硅酸盐等会以水垢的形式沉积于管壁,影响换热效率、增大能耗,并且对管道有腐蚀作用,导致设备腐蚀、穿孔。同时,由于冷却水的热交换,水中大量的微生物会在设备或管道壁上进行繁殖,使得水质进一步恶化,这样就大幅度的增加了水流阻力,引起管道的堵塞,从而降低了交换器的热交换效率,严重影响设备的正常工作。 因此缓蚀阻垢剂的出现,维护了设备的正常运行。近年来市面上主要是含磷的缓蚀阻垢剂,但随着环保对水质排放要求的提高,缓蚀阻垢剂也正朝着无毒无害的无磷新型高效的环境友好型绿色阻垢剂方向发展,无磷缓蚀阻垢剂的出现,减少了微生物及藻类的滋生,减少了杀菌剂及剥离的使用量,从而降低了运行成本。 但是现有的无磷缓蚀阻垢剂的阻垢性能和防腐性能较低,特别是防腐性能,现有的设备不再

工业催化剂的失活与再生大作业

工业催化剂的失活 题目:工业催化剂的失活 学院:求是学部 专业: 2010级化学工程与工艺 姓名:刘妍君 学号: 3010207414

工业催化剂的失活 刘妍君 (天津大学求是学部,3010207414) 摘要:工业催化剂在其使用过程中,其活性和选择性皆会逐渐下降,甚至会失去继续使用的价值,这就是催化剂的失活过程。通常将失活过程划分为以下三种类型:催化剂积炭等堵塞失活、催化剂中毒失活、催化剂的热失活和烧结失活。这里将对各类催化剂失活的含义、特征、类型、主要失活机理和影响因素逐一进行阐述。 关键词:催化剂失活 1 积碳失活 催化剂在使用过程中,因表面逐渐形成炭的沉积物从而使催化剂活性下降的过程称为积炭失活。 积炭一定程度上可延缓催化剂的中毒作用,但催化剂的中毒却会加剧积炭的发生。与单纯的因物理沉积物堵塞而导致的催化剂失活相比,积炭失活还涉及反应物分子在气相和催化剂表面上一系列的化学反应问题。 积炭的同时往往伴随着金属硫化物及金属杂质的沉积。单纯的金属硫化物或金属杂质在催化剂表面的沉积也与单纯的积炭一样同样会因覆盖催化剂表面活性位,或限制反应物的扩散等而使催化剂失活。故通常将积尘、积硫及金属沉积物引起的失活,都归属积炭失活一类。 1.1催化剂积炭形成机理 在大多数涉及烃类的反应中,反应物分子、产物分子和反应中间物都有可能成为生炭的母体,它们或者相互结合,或者相互缩合成一类高分子量的碳化物沉积在催化剂上。积炭既可以通过平行反应、连串反应产生,也可以通过复杂反应的顺序产生。 催化剂上的积炭按形成方式可分为非催化积炭和催化积炭两大类。 1.1.1非催化积炭 非催化积炭指的是气相结炭或非催化表面上生成炭质物的焦油和固体炭质物的过程。气相结炭一般认为是烃类按自由基聚合反应或缩合反应机理进行的,在气相中生成的炭通常统称为烟炱。 非催化表面上的焦油,是烃类在热裂化中凝聚缩合的高分子芳烃化合物,主要是一些高沸点的多环芳烃,有的还含有杂原子;芳烃中既有液体物质,又有固体物质。非催化形成的表面炭,是气相生成的烟炱和焦油产物的延伸,它是在无催化活性表面上形成的焦炭,无论是随原料加入或由气相反应所生成的高分子中间物,都会在反应器内的任何表面凝聚;非催化表面起着收集凝固焦油和烟炱的作用,并促进这些物质的浓缩,从而进一步发生非催化反应。由于高温下高分子量的中间物在任何表面上都会缩合,因此通过控制气相焦油和烟炱的生成可使非催化积炭减小。 此外非催化结炭还包括烃类原料中的残炭,它们通常是沥青质、多环芳烃,会直接沉积

重油催化裂化装置主要工艺流程说明

重油催化裂化装置主要工艺流程说明 一. 反再系统 1.反应部分 混合蜡油和常(减)压渣油分别由罐区原料罐送入装置内的静态混合器(D-214)混合均匀后,进入原料缓冲罐(D-203/1),然后用原料泵(P-201/1.2)抽出,经流量控制阀(8FIC-230)后与一中回流换热(E-212/1.2),再与油浆(E-201/1.2)换热至170~220℃,与回炼油一起进入静态混合器(D-213)混合均匀。在注入钝化剂后分三路(三路设有流量控制)与雾化蒸汽一起经六个进料喷嘴进入提升管,与从二再来的高温再生催化剂接触并立即汽化,裂化成轻质产品(液化气、汽油、柴油)并生成油浆、干气及焦炭。 新增焦化蜡油流程:焦化蜡油进装后先进焦化蜡油缓冲罐(D-203/2),然后经焦化蜡油泵(P-201/3.4)提压至1.3MPa 后分为两路:一路经焦化蜡油进提升管控制阀(8FIC242)进入提升管反应器的回炼油喷嘴或油浆喷嘴,剩余的焦化蜡油经另一路通过D-203/2的液位控制阀(8LIC216)与进装蜡油混合后进入原料油缓冲罐(D-203/1)。 新增常压热渣油流程:为实现装置间的热联合,降低装置能耗,由南常减压装置分出一路热常渣(约350℃),经8FIQC530直接进入D-213(原料油与回炼油混合器)前,与原料混合均匀后进入提升管原料喷嘴。

反应油气、水蒸汽、催化剂经提升管出口快分器分离出大部分催化剂,反应油气经过沉降器稀相沉降,再经沉降器(C-101)内四组单级旋风分离器分离出绝大部分催化剂,反应油气、蒸汽、连同微量的催化剂细粉经大油气管线至分馏塔人档下部。分馏塔底油浆固体含量控制<6g/L。 旋分器分出的催化剂通过料腿返回到汽提段,料腿装有翼阀并浸没在汽提段床层中,保证具有正压密封,防止气体短路,汽提蒸汽经环形分布器进入汽提段的上中下三个部位使催化剂不仅处于流化状态,并汽提掉催化剂夹带的烃油气,汽提后的催化剂通过待生滑阀进入一再催化剂分布器。 2.再生部分 第一再生器在比较缓和的条件下进行部分燃烧,操作压力为0.15~0.25MPa(表),温度660~690℃,在床层中烧掉焦炭中绝大部分氢和部分碳。由于有水蒸汽存在,一再温度要控制低一些,以减轻催化剂的水热失活。烧焦用风分别由一再主风及过剩氧较高的二再烟气提供。 从一再出来的半再生催化剂通过半再生滑阀进入二再下部,并均匀分布。二再压力在0.27MPa(表),720~760℃温度下操作,催化剂上剩余碳用过量的氧全部生成CO2。由于一再烧掉绝大部分氢,从而有效降低了二再水蒸汽分压,使二再可在较高的温度下操作。二再烟气由顶部进入一再,热再生催化剂从二再流出,通过再生滑阀进入提升管底部,实

相关文档