文档库 最新最全的文档下载
当前位置:文档库 › 直流道岔检测传感器中的温度补偿算法

直流道岔检测传感器中的温度补偿算法

直流道岔检测传感器中的温度补偿算法
直流道岔检测传感器中的温度补偿算法

传感器温度补偿

传感器温度补偿算法分析 从数学上来看,压力传感器的输出u(正比于传感器的数字量/AD码)可当作相关的环境温度T和被测压力P的二元函数 轴 Y X 轴 Y被测压力X 压力传感器采集的数字量/ad码 前言: 首先我们对传感器线性化之后,进行温度补偿,如图我们在T0温度下对传感器进行了线性化。再进行一个温度点,两个压力点的标定,当标定压力为P1,此时处于A状态点,然后升温至T1,达到状态点B(X B,Y B,T1),由X B 和T0温度下线性化关系求得标定前的压力值为Y C,得到虚拟点C(X C,Y C,T0),至此完成一个压力点的标定。然后更改标定压力为P2,到达状态点D(X D,Y D,T1),可求虚拟点E(X E,Y E,T0)。至此标定工作完成。 T0时刻为传感器标定曲线,是一条基准曲线,其他温度时的曲线存在但是不知道形式,但是其上的标定点是已知的,当处于BCED区域内任意点F(X F,Y F,T)状态点时,T为温度传感器AD码,X F为压力传感器AD码,Y F为此 时的被测压力,如果不补偿此时显示压力为Y H(也就是一个基准值),我们需要求得Y F和Y H之间的增量,因为Y G到Y H温度变化了T0-T1,作比值即得每温度变化了多少压力(变化率),而H到F变化T-T0,所以Y F和Y H之间 的增量为(Y G-Y H)/(T1–T0)*(T-T0)。但是G点未知,我们需要通过已知点D点B去得到G的逼近点M,同理得H的逼近点N,

正文: 设y=f(x,T)函数图像如图 轴 Y X 轴 分析一个温度点,两个压力点的标定。Y为被测压力X为压力传感器AD码。 处于T0温度时,对传感器进行线性化(找到被测压力和传感器AD码的曲线)选择标定值PI,也就是在图中A点,然后升温至T1,根据此时传感器值X B和T0时刻的线性化关系求出Y C(也就是温度补偿前压力值),得到B(X B,Y B,T1) C(X C,Y C,T0)。 更换择标定值P2温度仍为T1则处于D状态点,根据此时传感器值X D和T0温度下的线性化关系求出Y E(也就是温度补偿前压力值),得到D(X D,Y D,T1) E(X E,Y E,T0),标定过程完成。 补偿后,当温度改变压力改变,至F状态点,我们想根据该点的传感器的AD 码求出此时的被测压力, 先保持T不变,沿DB,EC对x进行插值,分别求得H的逼近点N,G的逼近点M, Y M=Y D+(Y B-Y D)/(X B-X D)*(X M-X D) Y N=Y E+(Y C-Y E)/(X C-X E)*(X N-X E) 保持X不变沿NM对T进行插值 Y F=Y N+(Y M-Y N)/(T1–T0)*(T-T0) …………………………………………………….. (※)解释对T插值的实际意义:如果未补偿则为YH,(YM-YN)/(T1–T0)为此传感器值

温度常用测量方法及原理

温度常用测量方法及原理 (1)压力式测温系统是最早应用于生产过程温度测量方法之一,是就地显示、控制温度应用十分广泛的测量方法。带电接点的压力式测温系统常作为电路接点开关用于温度就地位式控制。 压力式测温系统适用于对铜或铜合金不起腐蚀作用场合,优点是结构简单,机械强度高,不怕振动;不需外部电源;价格低。缺点是测温范围有限制(-80~400℃);热损失大,响应时间较慢;仪表密封系统(温包,毛细管,弹簧管)损坏难以修理,必须更换;测量精度受环境温度及温包安置位置影响较大;毛细管传送距离有限制。 (2)热电阻热电阻测量精度高,可用作标准仪器,广泛用于生产过程各种介质的温度测量。优点是测量精度高;再现性好;与热电偶测量相比它不需要冷点温度补偿及补偿导线。缺点是需外接电源;热惯性大;不能使用在有机械振动场合。 铠装热电阻将温度检测元件、绝缘材料、导线三者封焊在一根金属管内,它的外径可以做得很小,具有良好的力学性能,不怕振动。同时,它具有响应快,时间常数小的优点。铠装热电阻可制成缆状形式,具有可挠性,任意弯曲,适应各种复杂结构场合中的温度测量。 (3)双金属温度计双金属温度计也是用途十分广泛的就地温度计。优点是结构简单,价格低;维护方便;比玻璃温度计坚固、耐振、耐冲击;示值连续。缺点是测量精度较低。 (4)热电偶热电偶在工业测温中占了很大比重。生产过程远距离测温大多使用热电偶。优点是体积小,安装方便;信号远传可作显示、控制用;与压力式温度计相比,响应速度快;测温范围宽;测量精度较高;再现性好;校验容易;价

低。缺点是热电势与温度之间是非线性关系;精度比电阻低;在同样条件下,热电偶接点易老化。 (5)光学高温计光学高温计结构简单、轻巧、使用方便,常用于金属冶炼、玻璃熔融、热处理等工艺过程中,实施非接触式温度测量。缺点是测量靠人眼比较,容易引入主观误差;价格较高。 (6)辐射高温计辐射高温计主要用于热电偶无法测量的超高温场合。优点是高温测量;响应速度快;非接触式测量;价格适中。缺点是非线性刻度;被测对象的辐射率、辐射通道中间介质的吸收率会对测量造成影响;结构复杂。(7)红外测温仪(便携式)特点是非接触测温;测温范围宽(600~1800℃ /900~2500℃);精度高示值的1%+1℃;性能稳定;响应时间快(0.7s);工作距离大于0.5m。

基于距离与环境温度补偿算法的红外测温精度优化策略

基于距离与环境温度补偿算法的红外测温精度优化策略 摘要:为了提高红外热像仪在电力设备巡检时的温度测量精度,本文针对目标 距离和环境温度对测量精度的影响,研究了一种基于距离与环境温度补偿算法的 红外温度传感器的温度精度优化算法策略,使得测温精度能够显著提高,满足电 力巡检的需求。 关键词:红外测温;精度优化策略;补偿算法 1 引言 红外热成像技术用于诊断电力设备的热故障时,具有效率高、安全可靠、不 接触测温、探测距离远和检测速度快等特点。当电力设备发生故障时,在早期会 产生热异常现象。通过红外热成像技术,可快速的对电力设备故障进行反应,以 防更大的事故发生,但是,由于红外测温自身原理以及周围一些环境因素,比如,环境温度、距离等一些因素的限制,从而造成测温精度误差较大的问题[1]-[3]。 2 红外辐射基本理论 红外热像仪是通过被测物体表面发出的辐射来确定物体温度的,在实际测量中,被测物体接收到的辐射包括自身辐射以及周围环境的辐射,因此被测物体表 面的单色辐射照度为[4]: 由于在红外热像仪工作过程中,被测物体的辐射亮度受到环境的影响会发生 衰减,同时大气辐射也会作用于热像仪,故作用于热像仪的辐射照度为[4]:(2) (2)式中: 图1 最小二乘法拟合曲线温度补偿流程图 4.实验方案设计 我们的实验是在一个可以调节室内温度的实验室内进行,以保证可以测得环 境温度对红外探测器测量精度的影响。实验过程所采用的主要设备有: 1)Yado-EIP-D1型号的红外热像仪,通过USB接口与移动终端屏幕相连。红 外工作波段为8-14um,具有方便快捷,像素高的优点。 2)RX24-50N5ΩJ型号的热电偶作为黑体和油浸式的温度传感器测量环境温度。 3)在热电偶两端连接可控电压的电压源,通过改变电压的大小来控制热电偶的温度。 5相关实验过程与数据如下: 1)环境温度固定为18℃时、不同测温距离引起的误差校正 首先用红外热像仪采集了5组热电偶的实际温度及其在1~8m的测量距离下 的数据如表1所示 表1 不同测量距离测温值 环境温度=__18__℃ 由表1可知,在保证环境温度不变的情况下,随着距离的增加,测温结果与热电偶的实 际温度的误差越来越大,且当热电偶的温度较小时,在较远的距离无法红外热像仪测量到热 电偶的温度。以热电偶温度为60℃时为例,利用本文提出的补偿算法进行温度校正,拟合曲 线方程为: 下图2为校正结果与原始测量值对比图。

压力传感器温度补偿的硬件实现方案

压力传感器温度补偿的硬件实现方案 【摘要】压力传感器广泛应用于各种电子产品中,压力采集的过程都需要将压力信号转换为易传输与处理的电信号,但大多数传感器的敏感元件均采用金属或半导体材料,其特性与环境温度有着密切的关系。而且实际应用中由于压力传感器的工作环境温度变化又较大,这就给测量结果带来误差,所以对压力传感器进行温度补偿是每位工程师必须要采取的措施。温度补偿的方法也根据每款压力传感器的特性及应用场合而不同,本文将根据压力传感器的实际应用介绍一种巧妙的硬件温度补偿方案。并引用实例加以具体说明。 【关键词】压力传感器;硬件温度补偿 1.压力传感器及其温度补偿简介 压力传感器是工程中常用的测量器件,而我们通常使用的压力传感器主要是利用压电效应制造而成,这样的传感器也称为压电传感器。我们了解,晶体是各向异性的,非晶体是各向同性的。某些晶体介质,当沿着一定方向受到机械力作用发生变形时,就产生了极化效应;当机械力撤掉之后,又会重新回到不带电的状态,也就是受到压力的时候,某些晶体可能产生出电的效应,这就是所谓的极化效应。科学家就是根据这个效应研制出了压力传感器。 压力传感器是把压力的变化转换成电阻值的变化来进行测量的,通常压力传感器输出的微小信号需通过后续的放大器进行放大,再传输给处理电路才能进行压力的检测。其阻值随压力的变化而变化。 大多数传感器的静特性与环境温度有着密切的联系。实际工作中由于传感器的工作环境温度变化较大.又由于温度变化引起的热输出也较大,这将会带来较大的测量误差;继而影响到传感器的静特性,所以设计中必须采取措施以减少或消除温度变化带来的影响。 在传感器的应用中,为使传感器的技术指标及性能不受温度变化影响而采取一系列具体技术措施。称为温度补偿技术。一般传感器都在标准温度(20±5)℃下标定,但其工作环境温度也可能由零下几十摄氏度升到零上几十摄氏度。传感器由多个环节组成。尤其是金属材料和半导体材料制成的敏感元件,其静特性与温度有着密切的关系。信号调理电路的电阻、电容等元件特性基本不随温度变化。所以必须采取有效措施以抵消或减弱温度变化对传感器特性造成的影响。即必须进行压力传感器的温度补偿。 本文将根据压力传感器的实际应用介绍一种巧妙的硬件温度补偿方案。 2.压力传感器的应用电路简介 本压力传感器采用恒流驱动方式,具体电路参见图1 图1 传感器的输出: V o=Kp*I*[1-KT*(T-25℃)]*P+V off 其中:P:外界压强mmHg或Kpa Kp:传感器的灵敏系数 I:激励电流mA KT:传感器的温度系数,一般按满跨度描述 此传感器的应用温度范围5~40℃,压强300mmHg。 因此,KT=(V(300mmHg,40℃)-V(300mmHg,5℃))/(300*35)

基于PID法温度控制

基于P I D法温度控制Revised on November 25, 2020

制器会发出信号停止加热。但这时发热棒或发热圈的内部温度会高于400℃,发热棒、发热圈还将会对被加热的器件进行加热,即使温度控制器发出信号停止加热,被加热器件的温度还往往继续上升几度,然后才开始下降。当下降到设定温度的下限时,温度控制器又开始发出加热的信号,开始加热,但发热丝要把温度传递到被加热器件需要一定的时候,这就要视乎发热丝与被加热器件之间的介质情况而定。通常开始重新加热时,温度继续下降几度。所以,传统的定点开关控制温度会有正负误差几度的现象,但这不是温度控制器本身的问题,而是整个热系统的结构性问题,使温度控制器控温产生一种惯性温度误差。 2、PID控制解决 要解决温度控制器这个问题,采用PID控制技术,是明智的选择。PID控制,是针对以上的情况而制定的、新的温度控制方案,用先进的数码技术通过Pvar、Ivar、Dvar三方面的结合调整,形成一个模糊控制,来解决惯性温度误差问题。然而,在很多情况下,由于传统的温度控制器温控方式存在较大的惯性温度误差,往往在要求精确的温控时,很多人会放弃自动控制而采用调压器来代替温度控制器。但是用调压器来代替温度控制器时,必须在很大程度上靠人力调节,随着工作环境的变化而用人手调好所需温度的度数,然后靠相对稳定的电压来通电加热,勉强运作,但这决不是自动控温。当需要控温的关键很多时,就会手忙脚乱。这样,调压器就派不上用场,因为靠人手不能同时调节那么多需要温控的关键,只有

采用PID 模糊控制技术,才能解决这个问题,使操作得心应手,运行畅顺。 二、该温控系统的结构和原理: 1、系统的结构: 系统功能主要实现断水保护和高水位指示、自动保温、自动报警及高温保护功能。用双排数码管分别显示设计与测量温度,保温时间,加热周期及PID 的各参数,当测量温度达保温温度时,数码管显示设定温度。当达设定温度时,数码管应该切换到设定的保温时间,并倒计时。 控制结构图: 2、系统原理: 1)、温度采样及转化 温度传感器t P 100铂热电阻在0~850°C 间,其电阻t R 和温度T 的关系为: 0R :0o C 时的电阻值,为100Ω A=×1310--C o B=×2710--C o 由于电阻Rt 和温度T 之间的关系是非线性的,因此在设计变送器时必须进行线性校正,本系统采用三线制铂热电阻测温电桥电路。输出电压U 。与电阻Rt 之间成近似线性关系。在控制精度范围内有效解决非线性问题。

压力传感器温漂的处理方法

漂移产生的根本原因在于所有的压力传感器均基于一种材料的弹性形变,不论其材质弹性如何良好,每次弹性回复后,总会产生一定弹性疲劳。在传感器使用过程中,由于弹性材料引起的漂移根据材质不同各不相同,但是只要是合格的产品,都在很小的范围。 另外,除了材料引起的漂移外,还存在一种更显著的漂移,即温度漂移。温度漂移是因为温度的变化而引起的压力传感器输出的变化,这种漂移也是因为材料的多重特性决定的。因为一种材料对压力敏感的同时对温度也敏感。通常压力传感器都要进行温度补偿,利用另一种温度特性相反的材料抵消温度引起的变化,或者使用数字补偿技术,采用数字补偿。 压力传感器发展的初期,扩散硅芯片和金属基座之间用玻璃粉封接,缺点是压力芯片的周围存在着较大的应力,即使经过退火处理,应力也不能完全消除。当温度发生变化时,由于金属、玻璃和扩散硅芯片热澎胀系数的不同,会产生热应力,使传感器的零点发生漂移。这就是为什么传感器的零点热漂移要比芯片的零点热漂移大得多的原因。采用银浆和接线柱焊接,处理不好,容易造成接点电阻不稳定。特别是在温度发生变化时,接触电阻更易变化,这些因素是造成传感器零点时漂、温漂大的原因。 要消除压力传感器的漂移问题我们可以金硅共熔焊接方法,将扩散硅和基座之间采用金硅共熔封接,因为金比较软应力小,引压管是玻璃管将之烧结到硅环上,玻璃管和底座用高温胶粘接,为测表压,在玻璃管外粘接一金属管,通到大气中。扩散硅电阻条组成惠斯登电桥,用高掺杂的方法形成导电书,将电桥和分布在周边的铝电极可靠地连接起来,而不采用通常蒸铝,反刻形成铝带的方法,这样做有助于减小传感器的滞后,铝电极和接线柱之间用金丝压焊和超声焊,使接点处的电阻比较稳定。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.wendangku.net/doc/907241895.html,/

加速度传感器的温度补偿

热电耦加速度传感器的温度补偿 简 介 MEMSIC 热电耦加速度传感器体积极小,内部集成了混合信号处理电路。传感器基于热对流原理工作,由于没有移动部件,它的工作性能可靠。 同所有其他的热电耦加速度传感器一样,MEMSIC 器件的灵敏度和零点漂移将随着器件工作环境的温度的变化而发生变化。但是,这个变化是有规律的。 器件的灵敏度随着温度的升高而减小,零点漂移随着温度的变化升高或者减小。因为这些变化都是有固定规律可寻的,所以用户可以通过很多的方法来对这些由温度引起的偏差进行补偿。在这个资料中,很多补偿方法都会介绍。比如,用热敏电阻的模拟电路补偿法、用内置温度传感器和微控制器的数字补偿法。在最后,对各种补偿方法进行了比较。 温度对灵敏度的影响 每一个系列的热电耦加速度传感器的灵敏度具有相同的温度变化特性。温度传导的物理规律决定了灵敏度的特性,制造上的差异对它没有影响。不同的两个器件之间灵敏度随温度变化的特性都是相同的。灵敏度变化的规律可以由以下方程来描述(比如MXA2500AL ,参考图1): 67 .267 .2f f i i T S T S ?=? 图 1 热电耦加速度传感器的灵敏度/温度曲线 其中 S i 是在任何初始温度Ti (如25°C 时)时的灵敏度而 S f 是在任何最终温度 T f 时的灵敏度。温度单位为绝对温度°K 。通过方程可知,在-40o C 时器件的灵敏 度是25 o C 时的两倍,而85 o C 时又是25 o C 时的一半。 不同系列器件方程里面T 的指数会有些差异,比如极低噪声系列器件的指数是2.90而不是2.67。 对于那些可以接收灵敏度有百分之几变化的应用领域,上述的公式可以用一个线性函数来近似。用这种近似的方法(通过一个有–0.9%/°C 增益的外部电路)可以将灵敏度的变化限制在5% 以内(以室温时的灵敏度为基准;温度从0°C 变化到+50°C )。对于性能要求比较高的应用,可以用一个低价位的MCU 来完成以上公式的计算。需要参考方案(采用Microchip 16F873/04-SO MCU)的客户可以与MEMSIC联系。 采用这一参考方案, 在满量程温度范围内,灵敏度的变化将被限制在1%以内。 请浏览MEMSIC网站https://www.wendangku.net/doc/907241895.html, , 您可以获得与之相关的详细资料。 温度对零点漂移的影响 同所有其他的加速度测量技术一样,每个MEMSIC 器件都有一个特定的零点温漂特性。每个应用方案可接受的零点温漂值各不相同。标准的MEMSIC 器件的温漂系数是±2mg/o C ,新型的低噪声器件温漂系数小于±1mg/o C 。器件的零漂大小和极性符合统计规律,可以用如下方程进行描述: Z=a+b .T+c .T 2 其中,Z 是在任何温度T 下的零点漂移,a 、b 、c 是每个加速度传感器的特性参数。 图2 典型零点漂移/温度变化曲线 在很多应用方案中需要器件有一个可以接受性能,一种线性近似的方法可以帮你达到这个要求(也就是仅仅使

鸡舍内对于温度和湿度的协调控制方法

鸡舍内对于温度和湿度协调控制方法 一、鸡舍内对于温度和通风的协调控制方法 鸡舍是一个封闭的空间,养殖户要保证养鸡的产值和收益,每个鸡舍的养殖密度都相对较大,在这样大密度的养殖空间中,养殖户必须得把控好温度和通风的状态,只有适宜的通风状态和温度才能确保鸡的安全成长。 随着鸡龄的增加,鸡舍的温度也应随之改变。0周龄~6周龄的雏鸡,应将鸡舍内的温度控制在18℃~25℃。其中在育雏的第一天应将鸡舍内的温度控制在33℃~35℃,接下来每周下降2℃~3℃,到18℃~25℃即可。鸡开始产蛋的时候,鸡舍内的温度适宜在15℃~24℃,产蛋期间鸡舍的温度不能低于5℃,不要超过30℃。 鸡舍养殖期间忌讳出现忽冷忽热情况,忽冷忽热极易造成冷热应激现象,进而导致免疫或用药失败。由此可见,鸡舍内温度的控制也是另一个养鸡的关键因素,常用的鸡舍温度控制方式有自然调控和鸡舍温湿度监控系统调控。自然调控鸡舍温度是利用白天的太阳光来使鸡舍内的温度升高,夜间利用墙体与垫料的储热功能来保持稳定的温度变化。建大仁科鸡舍温湿度监控系统调控鸡舍温度是利用温湿度传感器系统来监测和控制温度,通常通过控制湿帘、空调、加热器等来调节温度,使温度处于恒定变化。 夏季的天气较为炎热,尤其是当空气温度在30℃以上时,会使鸡群感到不适,这样可能导致其生长发育不良与产蛋能力下降等。因此,适量的通入凉风能够在降低环境温度的同时舒缓鸡群的心情,使其正常生长。 鸡舍内的空气质量取决于养殖户对于鸡舍通风的控制,空气质量直接影响鸡的健康。我们都知道,流感等疾病多数是通过空气进行传播,所以,在进行换气处理的时候对于进入鸡舍的空气要做一些相应的净化与灭菌消毒处理,对于进入的气体要除去尘埃。 特别说明的是,在鸡舍的设计中就应该做到通风口的设计,在建设中就将通风设备进行安装和调试,并且做好对风扇的频率控制,在计算鸡舍面积和鸡的总数之后确定安装的风扇个数和风

压力传感器原理详解

压力传感器原理 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 一.压力传感器原理 一些常用传感器原理及其应用: 1、应变片压力传感器原理与应用 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 在了解压阻式力传感器时,我们首先认识一下电阻应变片这种元件。电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。

金属电阻应变片的内部结构 1、应变片压力传感器原理 如图1所示,是电阻应变片的结构示意图,它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。 电阻应变片的工作原理 金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示: 式中:ρ——金属导体的电阻率(Ω?cm2/m) S——导体的截面积(cm2) L——导体的长度(m) 我们以金属丝应变电阻为例,当金属丝受外力作用时,其长度和截面积都会发生变化,从上式中可很容易看出,其电阻值即会发生改变,假如金属丝受外力作用而伸长时,其长

常用温度传感器的对比分析及选择

常用温度传感器的对比分析及选择 大致的要点: 1.温度传感器概述:应用领域,重要性; 2.四种主要的温度传感器类型的横向比较 3.热电偶传感器 4.热电阻传感器 5.热敏电阻传感器 6.集成电路温度传感器以及典型产品举例 7.温度传感器的正确选择及应用 在各种各样的测量技术中,温度的测量可能是最为常见的一种,因为任何的应用领域,掌握温度的确切数值,了解温度与实际状态之间的差异等,都具有极为重要的意义。就以测量为例,在力的测量,压力,流量,位置及电平高低等测量的过程中,为了提高测量精度,通常都会要求对温度进行监视,如压力或力的测量,往往是使用惠斯登电阻电桥,但组成电桥的电阻随温度变化引起的误差,往往会大大超过待测力引起的电阻值变化,如不对温度进行监控并据此校正测量结果,则测量完全不可能进行或者毫无效果。其他参数测量也有类似问题,可以说,各种的物理量都是温度的函数,要得到精确的测定结果,必须针对温度的变化,作出精确的校正。本文就是帮助读者针对特定的用途,选择最为合适的温度传感器,并进行精确的温度测量。 工业上常用的温度传感器有四类:即热电偶、热电阻RTD、热敏电阻及集成电路温度传感器;每一类温度传感器有自己独特的温度测量范围,有自己适用的温度环境;没有一种温度传感器可以通用于所有的用途:热电偶的可测温度范围最宽,而热电阻的测量线性度最优,热敏电阻的测量精度最高。表1是四类传感器的各自独特的性能特性及相互比较。表2是四类传感器的典型应用领域。

热电偶--通用而经济 热电偶由二根不同的金属线材,将它们一端焊接在一起构成,如图1所示;参考端温度(也称冷补偿端)用来消除铁-铜相联及康铜-铜联接端所贡献的误差;而两种不同金属的焊接端放置于需要测量温度的目标上。 两种材料这样联接后会在未焊接的一端产生一个电压,电压数值是所有联接端温度的函数,热电偶无需电压或电流激励。实际应用时,如果试图提供电压或电流激励反而会将误差引进系统。 鉴于热电偶的电压产生于两种不同线材的开路端,其与外界的接口似乎可通过直接测量两导线之间的电压实现;如果热电偶的的两端头不是联接至另外金属,通常是铜,那末事情真会简单至此。 但热电偶需与另外一种金属联接这一事实,实际上又建立了新的一对热电偶,在系统中引入了极大的误差,消除此误差的唯一办法是检测参考端的温度(参见图1),以硬件或硬件-软件相结合的方式将这一联接所贡献的误差减掉,纯硬件消除技术由于线性化校正的因素,比软件-硬件相结合技术受限制更大。一般情况下,参考端温度的精确检测用热电阻RTD,热敏电阻或是集成电路温度传感器进行。原则上说,热电偶可由任意的两种不同金属构建而成,但在实践中,构成热电偶的两种金属组合已经标准化,因为标准组合的线性度及所产生的电压与温度的关系更趋理想。 表3与图2是常用的热电偶E,J,T,K,N,S,B R的特性。

温度补偿SOC算法

A novel temperature-compensated model for power Li-ion batteries with dual-particle-?lter state of charge estimation Xingtao Liu,Zonghai Chen ?,Chenbin Zhang,Ji Wu Department of Automation,University of Science and Technology of China,Hefei 230027,PR China h i g h l i g h t s g r a p h i c a l a b s t r a c t Battery BMS Battery test system a r t i c l e i n f o Article history: Received 9November 2013 Received in revised form 16February 2014Accepted 18February 2014 Available online 22March 2014Keywords: Power Li-ion battery State-of-charge Temperature-compensated model Dual-particle-?lter estimator Drift current a b s t r a c t The accurate state-of-charge (SOC)estimation of power Li-ion batteries is one of the most important issues for battery management system (BMS)in electric vehicles (EVs).Temperature has brought great impact to the accuracy of the SOC estimation,which greatly depends on appropriate battery models and estimation algorithms.The fact that the model parameters,such as the internal resistance and the open-circuit voltage,are dependent on battery temperature and current detection precision is greatly related to the drift noise in current measurements will lead to errors in SOC estimation.Aiming at this problem,we present a temperature-compensated model with a dual-particle-?lter estimator for SOC estimation of power Li-ion batteries in EVs.To overcome the effect of model parameter perturbations caused by temperature,a practical temperature-compensated battery model,in which the temperature and current are taken as model inputs,is presented to study and describe the relationship between the internal resistance,voltage and the temperature comprehensively.Additionally,the drift current is considered as an undetermined static parameter in the battery model to eliminate the effect of the drift current.Then,we build a dual-particle-?lter estimator to obtain simultaneous SOC and drift current esti-mation based on the temperature-compensated model.The experimental and simulation results indicate that the proposed method based on the temperature-compensated model and the dual-particle-?lter estimator can realize an accurate and robust SOC estimation. ó2014Elsevier Ltd.All rights reserved. https://www.wendangku.net/doc/907241895.html,/10.1016/j.apenergy.2014.02.0720306-2619/ó2014Elsevier Ltd.All rights reserved. ?Corresponding author.Tel.:+86055163606104;fax:+86055163603244. E-mail address:chenzh@https://www.wendangku.net/doc/907241895.html, (Z.Chen).

电导率测量仪温度补偿的检定方法及问题

电导率测量仪温度补偿的检定方法及问题 电导率测量仪温度补偿的检定方法及问题。使用电导率仪的用户都知道这一点,溶液的电导率与温度密切相关,因为温度发生变化时,电解质的电离度、溶解度、离子迁移速度、溶液黏度等都会发生变化,电导率也会变化。温度升高,电导率增大。而此刻电导率仪的温度补偿功能就是为了克服温度的影响。 一、什么是电导率测量仪的温度补偿功能: 将溶液在实际温度下的电导率值转换为参考温度(一般为25℃)下的电导率值,使得溶液在不同温度下的电导率具有可比性,现在市场上所使用的电导率仪都有温度补偿功能,以满足各行各业比对或控制指标的需要。本文以使用电导率仪时,检定过程中需要的温补功能说明,简要的分析讨论。 在检定过程中增加这一检定项目也很有必要。实现电导率仪温度补偿的检定有两种方法,一种是温补前的KMR为定值,一种是温补后的KMV为定值,两种方法依据的原理相同,具体的检定步骤根据仪器设计的不同也可分为两种方法。检定过程中,我们还发现温度设置会影响电导池常数,分析表明电导率仪的温度补偿本质上和电导池常数补偿是相同的,当仪器的温度补偿缺失或存在故障时,可以利用电导池常数的补偿来实现电导率的温度补偿。 二、温度补偿的检定方法及问题 对于电导率大于1×10-4S·cm-1 的强电解质,电导率值与温度存在线性关系: KT=K0〔1+α(T-T0)〕(1);在检定过程中,只要测得不同温度下的电导率值,通过JJG376-2007中的式(5)可求出仪器的温度系数α,从而实现对电导率仪温度补偿系数的检定。 将电导率仪常数Kcell设为1.00cm-1,输入某一信号的电导率值(如50μS·cm-1),调节温度传感器模拟电阻,使温度示值为25℃和15℃(35℃),再分别读取对应电导率仪测量值KMR和KMV。根据式(1)有: (2)(3) 问题: 1). 国产电导率仪都是手动温度补偿,温度系数无法设置,其默认值为2.00%/℃。对于这类仪器,当温度设置为25℃时,为不补偿状态,测得的电导率为KMR,而其他温度下测得的电导率值为补偿后的电导率值KMV,可实现温度补偿的检定。 2)对于不同的电导率仪,其温度补偿的检定步骤也不尽相同,安徽赛科环保生产的DDS-307为例:后期生产(新型)的DDS-307电导率仪,调整温度示值时,电导率发生显著变化,定义为I型(DDS-308、国外产的电导率仪如con5等也归于此类)。早期生产的DDS-307电导率仪,调整温度示值时,电导率没有任何变化,为了便于区别我们将其定义为II型(大部分数显式DDS-11A/12A也归于此类)。 对于I型仪器,其温度系数的误差可以按JJG376-2007描述方法来测量,先设置好电导池常数,再调整温度示值。对于II型仪器,温度示值对电导率值没有影响,并不说明温度传感器模拟电阻器发生了故障,因为如果将仪器调到“检查”状态,发现调整温度示值时,电导池常数也发生了变化,当温度示值调整为15℃和35℃时,电导池常数分别变化到1.200cm-1 和0.800cm-1左右。 对于这类仪器温度补偿的检定,应该先将温度调整为目标温度(15℃或35℃),再调节电导池常数为1.00cm-1,然后分别读取对应的电导率值,根据式(3)就能求出仪器的温度系数。但是这一类仪器得到的数据,根据式(3)计算

压力传感器的温度补偿

毕业论文课题名称压力传感器的温度补偿分析 分院/专业机械工程学院/机电一体化技术 班级机电1051 学号1001043522 学生姓名刘兵 指导教师:杨新春 2013年5月20日

┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊ 摘要 压力传感器是工业实践中最为常用的一种传感器,而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压电传感器。 我们知道,晶体是各向异性的,非晶体是各向同性的。某些晶体介质,当沿着一定方向受到机械力作用发生变形时,就产生了极化效应;当机械力撤掉之后,又会重新回到不带电的状态,也就是受到压力的时候,某些晶体可能产生出电的效应,这就是所谓的极化效应。科学家就是根据这个效应研制出了压力传感器。 但是随着工作环境温度的不断变化,会导致体管参数发生变化,将会引起不稳定的静态工作点,电路的动态参数不稳定和温度漂移(包括零点漂移和灵敏度漂移)。最简单的方法就是保持工作环境温度的恒定,当然,这种要求是永远达不到的。所以本文就针对温度漂移问题展开分析。对于不同的压力传感器采用不同的温度补偿方法,使其达到预期的效果。 关键词:压力传感器、温度、补偿

┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊ Abstract The pressure sensor is the most commonly used one kind of sensor in industrial practice, and we usually use the pressure sensor is mainly made of the use of piezoelectric effect, the sensor also known as piezoelectric sensor. As we know, the crystal is anisotropic, non crystal is isotropic. Some crystal medium along a certain direction, when subjected to mechanical stress deformation occurs, produces the polarization effect; when the mechanical force is removed, will return to the uncharged state, when it is under pressure, can produce electricity effect of some crystals, which is called polarization effect. The scientist is developed according to the effect of pressure sensor. But with the continuous change of the environmental temperature, will cause the body tube parameter changes, will cause the static working point is not stable, dynamic parameters of the circuit unstable and temperature drift (including zero drift and sensitivity drift). The simplest method is to maintain a constant temperature working environment, of course, this requirement is never reach. So this article aims at the problem of temperature drift analysis. The temperature compensation method is different with different pressure sensors, to achieve the desired effect. Keywords:pressure sensor, temperature, compensation

温度控制结构的制作方法

本技术新型公开了一种温度控制结构,包括一个具有安装腔的导热壳体、固定设置在安装腔内的支架、温控元件以及热敏电阻元件,所述支架上设置有热敏电阻安装槽和温控器安装槽,所述温控元件包括温控器和温控器导线,所述热敏电阻元件包括热敏电阻和电阻导线,所述热敏电阻和温控器对应安装在热敏电阻安装槽和温控器安装槽中,所述支架上设置有一个的引脚,引脚通过插接端子与一根接地线连接。与现有技术相比,该温度控制结构在不影响产品性能的情况下,结构更简单、可靠,工作人员可以快速完成接地线与支架的连接,简 化装配工序,提高生产效率。

权利要求书 1.一种温度控制结构,其特征在于,包括一个具有安装腔的导热壳体、固定设置在安装腔内的支架、温控元件以及热敏电阻元件,所述支架上设置有热敏电阻安装槽和温控器安装槽,所述温控元件包括温控器和温控器导线,所述热敏电阻元件包括热敏电阻和电阻导线,所述热敏电阻和温控器对应安装在热敏电阻安装槽和温控器安装槽中,所述支架上设置有一个的引脚,引脚通过插接端子与一根接地线连接。 2.根据权利要求1所述的温度控制结构,其特征在于,所述支架包括具有缺口的圆盘部和设置在该缺口上的折弯部,所述圆盘部的边缘设有向上翻折的翻边,所述圆盘部的底面上开设有与温控器相适配的温控器安装槽,所述折弯部折弯形成所述热敏电阻安装槽。 3.根据权利要求2所述的温度控制结构,其特征在于,所述引脚为一块竖直朝下设置在圆盘部底部的导电插片;所述接地线与插接端子连接的一端设置有导电插条,所述插接端子的一端与导电插片连接,另一端与导电插条连接。 4.根据权利要求3所述的温度控制结构,其特征在于,所述插接端子包括相互连接的第一安装部和第二安装部,第一安装部包括底片和两片设置在底片的左右两侧且向内翻折的弧边,所述弧边用于将导电插片抵压在底片上,所述第二安装部为插座,所述插座上设有用于插接导电插条的插槽。 5.根据权利要求1所述的温度控制结构,其特征在于,所述热敏电阻两端的引脚设置折弯形成U字型,所述电阻导线的一端与热敏电阻的引脚连接,另一端通过第一连接端子与微电 脑控制面板连接。 6.根据权利要求5所述的温度控制结构,其特征在于,所述热敏电阻的外部套设有绝缘套管。 7.根据权利要求1所述的温度控制结构,其特征在于,所述温控器的底部设置有两个插脚,两个插脚分别通过第二接线端子与一根温控器导线连接。

几种常用温度传感器的原理及发展

1 引言 科学技术离不开测量。测量的目的就是要获得被测对象的有关物理或化学性质的信息,以便根据这些信息对被测对象进行评价或控制,完成这一功能的器件就我们称之为传感器。传感器是信息技术的前沿尖端产品,被广泛用于工农业生产、科学研究和生等领域,尤其是温度传感器,使用范围广,数量多,居各种传感器之首。温度传感器的发展大致经历了以下3个阶段; (1) 传统的分立式温度传感器(含敏感元件);主要是能够进行非电量和电量之间转换。 (2) 模拟集成温度传感器/控制器; (3) 智能温度传感器。目前,国际上新型温度传感器正从模拟式向数字式、由集成化向智能化、网络化的方向发展。 2 传感器的分类 传感器分类方法很多,常用的有2种:一种是按被测的参数分,另一种是按变换原理来分。通常按被测的参数来分类,可分为热工参数:温度、比热、压力、流量、液位等;机械量参数:位移、力、加速度、重量等;物性参数:比重、浓度、算监度等;状态量参数:颜色、裂纹、磨损等。温度传感器属于热工参数。 温度传感器按传感器于被测介质的接触方式可分为2大类:一类是接触式温度传感器,一类是非接触式温度传感器,接触式温度传感器的测温元件与被测对象要有良好的热接触,通过热传导及对流原理达到热平衡,这时的示值即为被测对象的温度。这种测温方法精度比较高,并在一定程度上还可测量物体内部的温度分布,但对于运动的、热容量比较小的、或对感温元件有腐蚀作用的对象,这种方法将会产生很大的误差。非接触测温的测温元件与被测对象互不接触。目前最常用的是辐射热交换原理。此种测温方法的主要特点是可测量运动状态的小目标及热容量小或变化迅速的对象,也可测温度场的温度分布,但受环境的影响比较大。 3 传感器的原理及发展 3.1 传统的分立式温度传感器—热电偶传感器 热电偶传感器是工业测量中应用最广泛的一种温度传感器,它与被测对象直接接触,不受中间介质的影响,具有较高的精确度;测量范围广,可从-50℃-1600℃进行连续测量,特殊的热电偶如金铁-镍铬,最低可测到-269℃,钨-铼最高可达2800℃。 热电偶传感器主要按照热电效应来工作。将两种不同的导体A和B 连接起来,组成一个闭合回路,即构成感温元件,如图1所示。当导体A和B的两个接点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一定大小的电流,这种现象即称为热电效应,也叫温差电效应。热电偶就是利用这一效应进行工作的。热电偶的一端是将A、B两种导体焊接在一起,称为工作端,置于温度为t的被测介质中。另一端称为参比端或自由端,放于温度为t0的恒定温度下。当工作端的被测介质温度发生变化时,热电势随之发生变化,将热电势送入计算机进行处理,即可得到温度值。 热电偶两端的热电势差可以用下式表示: Et=E(t)-E(t0) 式中:Et—热电偶的热电势 E(t)—温度为t时的热电势

相关文档