文档库 最新最全的文档下载
当前位置:文档库 › 4.3 对数

4.3 对数

4.3 对数
4.3 对数

成都市技师学院理论课教案首页

成都市技师学院理论课教案副页

教师备课专用教务处印制

利用Matlab提取图片中曲线数据(线性修正,支持对数坐标)

利用Matlab提取图片中曲线数据 前一段时间看到一篇文章“利用Matlab提取图图片中的数据”,觉得思路挺好,遂下载下来研究了一番,发现作者所编写的程序没有考虑原始图片非水平放置的情况,而实际扫描图片时,将图片完全放置水平难度较大... 同时作者也没有考虑对数坐标的情况,且程序GUI界面不太人性化,操作有点不习惯。因此借着作者良好意愿,对其程序进行了改进~ 2011-6-9 shanyunh@https://www.wendangku.net/doc/957404409.html, 考虑一张非水平无变形的曲线图,现将其曲线数据取出来,步骤如下: (x (x1 1.在坐标轴上取三点以定位坐标系。如图中红色点所示。 2.在曲线上选取若干个点,如图中蓝色点所示。 3.设定坐标轴选取点x和y的实际值。 4.选取坐标系类型。 5.变换。 6.保存数据。 7.数据后处理。 在变换过程中程序首先计算(xi,yi)到(x1,y1)和(x2,y2)所组成的y轴的距离Δx,同样的方法计算Δy,当然Δx和Δy是图片的像素值。接下来计算每个像素点所对应实际坐标值。对于线性x轴,比例系数为(Xmax-Xmin)/(sqrt((x1-x0)^2)+(y1-y0)^2),同样对于线性y轴,比例系数(Ymax-Ymin)/(sqrt((x0-x2)^2)+(y0-y2)^2)。这样即可求出每个点的实际坐标值 Xi=Δx *(Xmax-Xmin)/(sqrt((x1-x0)^2)+(y1-y0)^2)+Xmin Yi=Δy *(Ymax-Ymin)/(sqrt((x0-x2)^2)+(y0-y2)^2)+Ymin 对数坐标的变换关系类似 Xi=10^(log10(Xmin)+Δx *(log10(Xmax)-log10(Xmin))/(sqrt((x1-x0)^2)+(y1-y0)^2)) Yi= 10^(log10(Ymin)+Δy *(log10(Ymax)-log10(Ymin))/(sqrt((x0-x2)^2)+(y0-y2)^2))

指数对数概念及运算公式

指数函数及对数函数重难点 根式的概念: ①定义:若一个数的n 次方等于),1(* ∈>N n n a 且,则这个数称a 的n 次方根.即,若 a x n =,则x 称a 的n 次方根)1*∈>N n n 且, 1)当n 为奇数时,n a 的次方根记作n a ; 2)当n 为偶数时,负数a 没有n 次方根,而正数a 有两个n 次方根且互为相反数,记作 )0(>±a a n . ②性质:1)a a n n =)(; 2)当n 为奇数时,a a n n =; 3)当n 为偶数时,???<-≥==) 0() 0(||a a a a a a n 幂的有关概念: ①规定:1)∈???=n a a a a n ( N * , 2))0(10 ≠=a a , n 个 3)∈=-p a a p p (1 Q ,4)m a a a n m n m ,0(>=、∈n N * 且)1>n ②性质:1)r a a a a s r s r ,0(>=?+、∈s Q ), 2)r a a a s r s r ,0()(>=?、∈s Q ), 3)∈>>?=?r b a b a b a r r r ,0,0()( Q ) (注)上述性质对r 、∈s R 均适用. 例 求值 (1) 3 28 (2)2 125 - (3)()5 21- (4)() 43 8116- 例.用分数指数幂表示下列分式(其中各式字母均为正数) (1)43a a ? (2)a a a (3)32 )(b a - (4)43 )(b a + (5)32 2b a ab + (6)42 33 )(b a + 例.化简求值

(1)0 121 32322510002.08 27)()()()(-+--+---- (2)2 11 5 3125.05 25 .231 1.0)32(256) 027.0(?? ????+-+-????? ?-- (3)=?÷ ?--3133 73 32 9a a a a (4)21 1511336622263a b a b a b ??????-÷- ??? ??????? = (5)6323 1.512??= 指数函数的定义: ①定义:函数)1,0(≠>=a a a y x 且称指数函数, 1)函数的定义域为R , 2)函数的值域为),0(+∞, 3)当10<a 时函数为增函数. 提问:在下列的关系式中,哪些不是指数函数,为什么? (1)2 2 x y += (2)(2)x y =- (3)2x y =- (4)x y π= (5)2y x = (6)2 4y x = (7)x y x = (8)(1)x y a =- (a >1,且2a ≠) 例:比较下列各题中的个值的大小 (1)1.72.5 与 1.7 3 ( 2 )0.1 0.8 -与0.2 0.8 - ( 3 ) 1.70.3 与 0.93.1 例:已知指数函数()x f x a =(a >0且a ≠1)的图象过点(3,π),求 (0),(1),(3)f f f -的值. 思考:已知0.7 0.9 0.8 0.8,0.8, 1.2,a b c ===按大小顺序排列,,a b c . 例 如图为指数函数x x x x d y c y b y a y ====)4(,)3(,)2(,)1(,则 d c b a ,,,与1的大小关系为 O x y a d c b

知识讲解对数函数及其性质提高

对数函数及其性质 【学习目标】 1.理解对数函数的概念,体会对数函数是一类很重要的函数模型; 2.探索对数函数的单调性与特殊点,掌握对数函数的性质,会进行同底对数和不同底对数大小的比较; 3.了解反函数的概念,知道指数函数x y a =与对数函数log a y x =互为反函数()0,1a a >≠. 【要点梳理】 要点一、对数函数的概念 1.函数y=log a x(a>0,a≠1)叫做对数函数.其中x 是自变量,函数的定义域是()0,+∞,值域为R . 2.判断一个函数是对数函数是形如log (0,1)a y x a a =>≠且的形式,即必须满足以下条件: (1)系数为1; (2)底数为大于0且不等于1的常数; (3)对数的真数仅有自变量x . 要点诠释: (1)只有形如y=log a x(a>0,a≠1)的函数才叫做对数函数,像log (1),2log ,log 3a a a y x y x y x =+==+等函数,它们是由对数函数变化得到的,都不是对数函数. (2)求对数函数的定义域时应注意:①对数函数的真数要求大于零,底数大于零且不等于1;②对含有字母的式子要注意分类讨论. 要点二、对数函数的图象与性质 a >1 0<a <1 图象

性 质 定义域:(0,+∞) 值域:R 过定点(1,0),即x=1时,y=0 在(0,+∞)上增函 数 在(0,+∞)上是减函数 当0<x<1时,y<0, 当x≥1时,y≥0 当0<x<1时,y>0, 当x≥1时,y≤0 要点诠释: 关于对数式log a N的符号问题,既受a的制约又受N的制约,两种因素交织在一起,应用时经常出错.下面介绍一种简单记忆方法,供同学们学习时参考. 以1为分界点,当a,N同侧时,log a N>0;当a,N异侧时,log a N<0. 要点三、底数对对数函数图象的影响 1.底数制约着图象的升降. 如图 要点诠释: 由于底数的取值范围制约着对数函数图象的升降(即函数的单调性),因此在解与对数函数单调性有关的问题时,必须考虑底数是大于1还是小于1,不要忽略. 2.底数变化与图象变化的规律

半对数计算精编版

半对数计算 一、 何谓股价三分线 ▲我们常计算回档(反弹)1/3、0.382、1/2、0.618,其实1/3与0.382属同层级, 意谓强势整理(弱势反弹),乃最有机会创高(破底)之表征。1/2中线则是最普遍 运用的支撑或压力之观测点,因为这里是回档或反弹的成本均衡处,稳定的涨 势或跌是常藉1/2中线之转折继续维系其多空步伐。至于0.618乃回檔的『最 后防线』及反弹的『乾坤挪移』所在,前者跌破,防回档转回跌,后者突破可 促反弹转回升,这一关的重要性关乎原始趋势之转变与否。 ◆问题来了!没人规定股价的高低点要落在三分线位置,若视之为『随机』落在 任何位置皆可能,重要的是据美国分析界学者之长期统计,落在三分线附近之 机率远大于其它位置,足见其存在的惯性意义。 二、 为什么要用半对数计算 ▲很多人早就会自行计算所谓的回档(反弹)1/3、1/2及黄金切割率,久而久之却 懒得算了;原因是算不出『准头』!何以艾略特主张要用『半对数』? 例:10→ 100的中心点在哪 ? 小学生也知道(10 + 100 ) / 2 = 55,但是,股价的运算~ √10 X 100 = 31.6。半对数乃一门运用数学,并适用于股市这门投资学。 ◆原理:拿一百万元买一档10元的股票,涨到31.6元增值为316万;又,拿一 百万元买足一档31.6元的股票,涨到100元同样增值为316万。可见31.6才 是10←→100的涨跌『成本中心』位置;若说线图为人性之轨迹,那么『惯性』 透过半对数计算才得知最敏感的表征处。 进而推演出公式:10→ 100回檔1/3~ 100.333 X 1000.666= 46.2;100 → 10反弹 1/3~ 1000.333 X 100.666= 21.5。所以说,一定要用工程用计算器才算得出来。 三、如何『取样』来加强计算的可信度 ? ▲半对数计算必须先有『背景取样』,因为我们是藉由前一上涨波来测量回档支 撑,由前一下跌波来测量反弹压力;但所谓的『前一波』可长可短,且走势不 见得如想象中单纯,是故,取样的准则应力求: 一、较佳的线性轨道(走势太曲折则不佳); 二、较符合波浪循环之原则。 有时会遇到较复杂或模棱两可的股价背景时,则不排除采用不同版本之 交叉计算,甚至舍弃某一模糊阶段寻求其它途径来判断。 也就是说,越符合前两项取样原则,计算半对数的参考价值将愈高。 譬如 10元(低点)涨到 100元(高点)之回檔0.382为100.382X 1000.618 = 41.5;回檔0.618为100.618 X

数据中异常值的处理方法_总

数据中异常值的检测与处理方法 一、数据中的异常值 各种类型的异常值: 数据输入错误:数据收集,记录或输入过程中出现的人为错误可能导致数据异常。例如:一个客户的年收入是$ 100,000。数据输入运算符偶然会在图中增加一个零。现在收入是100万美元,是现在的10倍。显然,与其他人口相比,这将是异常值。 测量误差:这是最常见的异常值来源。这是在使用的测量仪器出现故障时引起的。例如:有10台称重机。其中9个是正确的,1个是错误的。 有问题的机器上的人测量的重量将比组中其他人的更高/更低。在错误的机器上测量的重量可能导致异常值。 实验错误:异常值的另一个原因是实验错误。举例来说:在七名跑步者的100米短跑中,一名跑步者错过了专注于“出发”的信号,导致他迟到。 因此,这导致跑步者的跑步时间比其他跑步者多。他的总运行时间可能是一个离群值。 故意的异常值:这在涉及敏感数据的自我报告的度量中通常被发现。例如:青少年通常会假报他们消耗的酒精量。只有一小部分会报告实际价值。 这里的实际值可能看起来像异常值,因为其余的青少年正在假报消费量。 数据处理错误:当我们进行数据挖掘时,我们从多个来源提取数据。某些操作或提取错误可能会导致数据集中的异常值。 抽样错误:例如,我们必须测量运动员的身高。错误地,我们在样本中包括一些篮球运动员。这个包含可能会导致数据集中的异常值。 自然异常值:当异常值不是人为的(由于错误),这是一个自然的异常值。例如:保险公司的前50名理财顾问的表现远远高于其他人。令人惊讶的是,这不是由于任何错误。因此,进行任何数据挖掘时,我们会分别处理这个细分的数据。

在以上的异常值类型中,对于房地产数据,可能出现的异常值类型主 要有:(1)数据输入错误,例如房产经纪人在发布房源信息时由于输入错误,而导致房价、面积等相关信息的异常;在数据的提取过程中也可能会出现异常值,比如在提取出售二手房单价时,遇到“1室7800元/m 2”,提取其中的数字结果为“17800”,这样就造成了该条案例的单价远远异常于同一小区的其他房源价格,如果没有去掉这个异常值,将会导致整个小区的房屋单价均值偏高,与实际不符。(2)故意的异常值,可能会存在一些人,为了吸引别人来电询问房源,故意把价格压低,比如房屋单价为1元等等;(3)自然异常值。房价中也会有一些实际就是比普通住宅价格高很多的真实价格,这个就需要根据实际请况进行判断,或在有需求时单独分析。 二、数据中异常值的检测 各种类型的异常值检测: 1、四分位数展布法 方法[1]:大于下四分位数加倍四分位距或小于上四分位数减倍。 把数据按照从小到大排序,其中25%为下四分位用FL 表示,75%处为上四分位用FU 表示。 计算展布为:L U F F F d -=,展布(间距)为上四分位数减去下四分位数。 最小估计值(下截断点):F L d F 5.1- 最大估计值(上截断点):F U d F 5.1+ 数据集中任意数用X 表示,F U F L d F X d F 5.15.1+<<-, 上面的参数不是绝对的,而是根据经验,但是效果很好。计算的是中度异常,参数等于3时,计算的是极度异常。我们把异常值定义为小于下截断点,或者大于上截断点的数据称为异常值。

指数对数基本运算

2016-2017学年度???学校9月月考卷 1.计算:________. 2.已知666log log log 6a b c ++=,其中*,,a b c N ∈,若,,a b c 是递增的等比数列,又b a -为一完全平方数,则a b c ++=___________. 3.已知3log 21x =,则42x x -=________. 4.lg83lg5+的值是 . 5.lg0.01+log 216=_____________. 6= . 7.已知,53m b a ==且,则m 的值为 . 8.已知y x y x y x lg lg 2lg )2lg()lg(++=++-,则 9,0a b c <<<,0)()()(;③c d <;④c d >.其中可能成立的是 (填序号) 10. 11 12.如果22log log 4,那么m n m n +=+的最小值是 . 13.若log 21a <,则a 的取值范围是 14的定义域为 . 15.32-,三个数中最大数的是 . 16.若log 4(3a +4b)=log a +b 的最小值是 .

参考答案 1.1 【解析】=lg10=1. 2.111 【解析】 试题分析:66666log log log log 6,6a b c abc abc ++===, 2b ac =,所以366,36b b ==.46ac =,因为b a -为一完全平方数,所以27,48,111a c a b c ==++=. 考点:1.对数运算;2.数列. 【思路点晴】本题涉及很多知识点,一个是对数加法运算,用的是公式 log log log a a a b c bc +=.然后,,a b c 是递增的等比数列,可得2b ac =,接下来因为b a -为一完全平方数,比36小的完全平方数只有25,16,9,故可以猜想27a =,通过计算可得27,48,111a c a b c ==++=.有关几个知识点结合起来的题目,只需要对每个知识点逐个击破即可. 3.6 【解析】 试题分析:由条件可知2log 3x =,故222log 3log 34222936x x -=-=-=. 考点:对数运算的基本性质. 4.3 【解析】 试题分析:3lg83lg5lg8lg5lg10003+=+==。 考点:对数运算法则的应用。 5.2 【解析】lg0.01+log 216=-2+4=2 考点:本题考查对数的概念、对数运算的基础知识,考查基本运算能力. 6【解析】 考点:指数和对数的运算法则。 7【解析】略 8.2 【解析】略

对数与对数函数

对数与对数函数 【考纲要求】 1. 理解对数的概念及其运算性质,知道用换底公式将一般对数转化成自然对数或常用对数,了解对数在简化运算中的作用 2.理解对数函数的概念;理解对数函数的单调性,掌握函数图像通过的特殊点.会画底数为2,10, 1 2 的对数函数的图象 3.体会对数函数是一类重要的函数模型; 4.了解指数函数x y a =与对数函数log a y x =互为反函数(0,1a a >≠). 【基础再现】 1.对数的定义 如果______________,那么数b 叫做以a 为底N 的对数,记作__________,其中____叫做对数的底数,____叫做真数. 2.对数的性质与运算法则 (1)对数的性质(a >0且a ≠1) ①a log a N =____; ②log a 1=____; ③log a a N =____; ④log a a =____. (2)对数的重要公式 ①换底公式:log a N =________________(a ,c 均大于零且不等于1); ②log a b =1 log b a ,推广log a b ·log b c ·log c d =________. (3)对数的运算法则 如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=__________________; ②log a M N =____________; 3对数函数的定义:函数)1,0(log ≠>=a a x y a 且称对数函数 4对数函数的图像及性质

5 指、对函数的关系 ③log a M n=__________(n ∈R); ④log am M n= n m log a M. 【例题选讲】 例1 ⑴27 log 9 ,⑵81 log 43 ,⑶()()3 2 log 3 2 - + ,⑷625 log 34 5 例2 ⑴ = ⑵2 5 log()a -= ⑶ 3 log1= = ⑷2 (lg5)lg2lg50 +?=. ⑸()2 151515 log5log45log3 ?+ 例4 ⑴已知 3 log2a =,35 b=用a b ,表示log

指数、对数函数基本知识点

基本初等函数知识点 (1)(2)(3) 知识点一:指数及指数幂的运算 知识点二:指数函数及其性质 1. 根式的概念 1. 指数函数概念 的次方根的定义:一般地,如果,那么叫做的次方根,其 一般地,函数叫做指数函数,其中是自变量,函数中 的定义域为. 当为奇数时,正数的次方根为正数,负数的次方根是负数,表示为 2. 指数函数函数性质: ;当为偶数时,正数的次方根有两个,这两个数互为相反数可以表示 函数名称 指数函数 为. 定义函数且叫做指数函数负数没有偶次方根, 0的任何次方根都是 0. 式子叫做根式,叫做根指数,叫做被开方数 . 2.n 次方根的性质: 图象 (1) 当为奇数时,;当为偶数时, (2) 3. 分数指数幂的意义: 定义域 ;值域 注意: 0 的正分数指数幂等与0,负分数指数幂没有意义 . 过定点图象过定点,即当时,. 4.有理数指数幂的运算性质:

奇偶性非奇非偶 4. 对数的运算性质 单调性在上是增函数在上是减函数 如果,那么①加法: 函数值的 变化情况②减法:③数乘: 变化对图在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向 象的影响看图象,逐渐减小 . 知识点三:对数与对数运算 ④⑤ 1.对数的定义 (1) 若,则叫做以为底的对数,记作⑥换底公式: 知识点四:对数函数及其性质 ,其中叫做底数,叫做真数. 1. 对数函数定义 (2) 负数和零没有对数. 一般地,函数叫做对数函数,其中是自变量,函 (3) 对数式与指数式的互化:. 数的定义域. 2.几个重要的对数恒等式 ,,. 2. 对数函数性质: 函数名称对数函数 3. 常用对数与自然对数 常用对数:,即;自然对数:,即 定义函数且叫做对数函数( 其中 图象 ?).

指数对数幂函数知识点总结

指数对数幂函数知识点总 结

篇一:指数、对数、幂函数知识点 指数、对数、幂函数知识归纳 知识要点梳理 知识点一:指数及指数幂的运算1.根式的概念 的次方根的定义:一般地,如果 ; 当为奇数时,正数的次方根为正数,负数的次方根是负数,表示为当为偶数时,正数的次方根有两个,这两个数互为相反数可以表示为. 负数没有偶次方根,0的任何次方根都是0.式子 叫做根式,叫做根指数,叫做被开方数. ; ,那么叫做的次方根,其中 2.n次方根的性质:(1)当为奇数时, ; (2)当为偶数时, 3.分数指数幂的意义: ; 注意:0的正分数指数幂等与0,负分数指数幂没有意义. 4.有理数指数幂的运算性质:(1)(2)(3) 知点二:指数函数及其性质1.指数函数概念:一般地,函数变量,函数的定义域为 . 叫做指数函数,其中是自 1.(2013·北京高考理科·T5)函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex关于y轴对称,则f(x)= ( ) A.ex+1 B.ex-1 C.e-x+1 D.e-x-1 2.(2013·上海高考文科·T8)方程 3.(2013·湖南高考理科·T16)设函数 f(x)?ax?bx?cx,其中c?a?0,c?b?0. 9x

的实数解为. ?1?3x 3?1 且a=b?,(1)记集合M??(a,b,c)a,b,c不能构成一个三角形的三条边长, 则(a,b,c)?M所对应的f(x)的零点的取值集合为____. (2)若a,b,c是?ABC的三条边长,则下列结论正确的是. (写出所有正确结论的序号) ①?x????,1?,f?x??0; ②?x?R,使得ax,bx,cx不能构成一个三角形的三边长;③若?ABC为钝角三角形,则?x??1,2?,使f?x??0. 知识点三:对数与对数运算1.对数的定义(1)若叫做底数, 叫做真数. ,则叫做以为底 的对数,记作 , (2)负数和零没有对数. (3)对数式与指数式的互化:2.几个重要的对数恒等式: , , . . 3.常用对数与自然对数: 常用对数: ,即 ;自然对数: ,即 (其中 …). 4.对数的运算性质如果 ①加法:

指数、对数函数基本知识点

基本初等函数知识点 知识点一:指数及指数幂的运算 1.根式的概念 的次方根的定义:一般地,如果 ,那么叫做的次方根,其 中 当为奇数时,正数的次方根为正数,负数的 次方根是负数,表示为 ;当为偶数时,正数的 次方根有两个,这两个数互为相反数可以表示 为 . 负数没有偶次方根,0的任何次方根都是0. 式子 叫做根式,叫做根指数,叫做被开方数. 2.n 次方根的性质: (1)当为奇数时,;当为偶数时, (2) 3.分数指数幂的意义: ; 注意:0的正分数指数幂等与0,负分数指数幂没有意义. 4.有理数指数幂的运算性质: (1) (2) (3) 知识点二:指数函数及其性质 1.指数函数概念 一般地,函数叫做指数函数,其中是自变量,函数 的定义域为 . 且 图象过定点 ,即当时,

变化对图在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向 看图象, 知识点三:对数与对数运算 1.对数的定义 (1)若,则叫做以为底的对数,记作 ,其中叫做底数,叫做真数. (2)负数和零没有对数. (3)对数式与指数式的互化:. 2.几个重要的对数恒等式 ,,. 3.常用对数与自然对数 常用对数:,即;自然对数:,即(其中 …). ,那么①加法: ②减法:③数乘: ⑤ ⑥换底公式: 知识点四:对数函数及其性质 1.对数函数定义 一般地,函数叫做对数函数,其中是自变量,函 数的定义域. 且

图象过定点,即当 时, 上是增函数上是减函数 变化对图在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向 看图象, 1.幂函数概念形如的函数,叫做幂函数,其中 为常数. 2.幂函数的性质 (1) 限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象 关于轴对称);是奇函数时,图象分布在第一、三象限(图象 关于原点对称);是非奇非偶函数时,图象只分布在第一象限. (2)过定点:所有的幂函数在都有定义,并且图象都通过点. (3)单调性:如果,则幂函数的图象过原点,并且在上为增函数. 如果,则幂函数的图象在上为减函数,在第一象限内,图象无 限接近轴与轴. 奇偶性:当为奇数时,幂函数为奇函数,当为偶数时,幂函数为偶函 当(其中 互质,和),若为奇数为奇数时,则是奇函数,若为 奇数为偶数时,则 是偶函数,若为偶数为奇数时,则是非奇非偶函数. ,当时,若,其图象 在直线下方,若,其图象在直线上方,当时,若 ,其图象在直线上方,若,其图象在直线下方.

数据处理的基本方法

第六节数据处理的基本方法 前面我们已经讨论了测量与误差的基本概念,测量结果的最佳值、误差和不确定度的计算。然而,我们进行实验的最终目的是为了通过数据的获得和处理,从中揭示出有关物理量的关系,或找出事物的内在规律性,或验证某种理论的正确性,或为以后的实验准备依据。因而,需要对所获得的数据进行正确的处理,数据处理贯穿于从获得原始数据到得出结论的整个实验过程。包括数据记录、整理、计算、作图、分析等方面涉及数据运算的处理方法。常用的数据处理方法有:列表法、图示法、图解法、逐差法和最小二乘线性拟合法等,下面分别予以简单讨论。 一、列表法 列表法是将实验所获得的数据用表格的形式进行排列的数据处理方法。列表法的作用有两种:一是记录实验数据,二是能显示出物理量间的对应关系。其优点是,能对大量的杂乱无章的数据进行归纳整理,使之既有条不紊,又简明醒目;既有助于表现物理量之间的关系,又便于及时地检查和发现实验数据是否合理,减少或避免测量错误;同时,也为作图法等处理数据奠定了基础。 用列表的方法记录和处理数据是一种良好的科学工作习惯,要设计出一个栏目清楚、行列分明的表格,也需要在实验中不断训练,逐步掌握、熟练,并形成习惯。

一般来讲,在用列表法处理数据时,应遵从如下原则: (1)栏目条理清楚,简单明了,便于显示有关物理量的关系。 (2)在栏目中,应给出有关物理量的符号,并标明单位(一般不重复写在每个数据的后面)。 (3)填入表中的数字应是有效数字。 (4)必要时需要加以注释说明。 例如,用螺旋测微计测量钢球直径的实验数据列表处理如下。 用螺旋测微计测量钢球直径的数据记录表 = ?mm ± .0 004

对数函数知识点

对数函数知识点 1.对数函数的概念 形如 y log a x( a 0且 a 1) 的函数叫做对数函数 . 说明:( 1)一个函数为对数函数的条件是: ①系数为 1; ②底数为大于 0 且不等于 1 的正常数; ③自变量为真数 . 对数型函数的定义域: 特别应注意的是:真数大于零、底数大于零且不等于 1。 2 、 由 对 数 的 定 义 容 易 知 道 对 数 函 数 y log a x (a 0, a 1) 是指数函数 y a x (a 0, a 1) 的反函数。 反函数及其性质 ①互为反函数的两个函数的图象关于直线 y x 对称。 ②若函数 y f ( x) 上有一点 (a, b ) ,则 (b, a) 必在其反函数图象上, 反之若 (b, a) 在反函 数图象上,则 ( a, b) 必在原函数图象上。 ③利用反函数的性质,由指数函数 y a x (a 0, a 1) 的定义域 x R ,值域 y 0 , 容易得到对数函数 y log a x(a 0, a 1) 的定义域为 x 0 ,值域为 R ,利用上节学过的 对数概念,也可得出这一点。 3、.对数函数的图象和性质 定义 y log a x (a 0且 a 1) 底数 a 1 0 a 1 图象 定义域 (0, ) 值域 R 单调性 增函数 减函数 共点性 图象过点 (1,0) ,即 log a 1 函数值x (0,1) y ( ,0); x [1, ) x (0,1) y (0, ); x [1, ) 特征 y [0, ) y ( ,0] 对称性 函数 y log a x 与 y log 1 x 的图象关于 x 轴对称 a 4.对数函数与指数函数的比较 名称 指数函数 对数函数 一般形式 y a x (a 0, a 1) y log a x (a 0, a 1)

数据处理的基本方法

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。 第六节数据处理的基本方法 前面我们已经讨论了测量与误差的基本概念,测量结果的最佳值、误差和不确定度的计算。然而,我们进行实验的最终目的是为了通过数据的获得和处理,从中揭示出有关物理量的关系,或找出事物的内在规律性,或验证某种理论的正确性,或为以后的实验准备依据。因而,需要对所获得的数据进行正确的处理,数据处理贯穿于从获得原始数据到得出结论的整个实验过程。包括数据记录、整理、计算、作图、分析等方面涉及数据运算的处理方法。常用的数据处理方法有:列表法、图示法、图解法、逐差法和最小二乘线性拟合法等,下面分别予以简单讨论。 一、列表法 列表法是将实验所获得的数据用表格的形式进行排列的数据处理方法。列表法的作用有两种:一是记录实验数据,二是能显示出物理量间的对应关系。其优点是,能对大量的杂乱无章的数据进行归纳整理,使之既有条不紊,又简明醒目;既有助于表现物理量之间的关系,又便于及时地检查和发现实验数据是否合理,减少或避免测量错

误;同时,也为作图法等处理数据奠定了基础。 用列表的方法记录和处理数据是一种良好的科学工作习惯,要设计出一个栏目清楚、行列分明的表格,也需要在实验中不断训练,逐步掌握、熟练,并形成习惯。 一般来讲,在用列表法处理数据时,应遵从如下原则: (1)栏目条理清楚,简单明了,便于显示有关物理量的关系。 (2)在栏目中,应给出有关物理量的符号,并标明单位(一般不重复写在每个数据的后面)。 (3)填入表中的数字应是有效数字。 (4)必要时需要加以注释说明。 例如,用螺旋测微计测量钢球直径的实验数据列表处理如下。 用螺旋测微计测量钢球直径的数据记录表 ?mm = 004 .0±

高中数学指数对数的运算

高中数学指数、对数的运算一.选择题(共28小题) 1.(2014?济南二模)log2+log2cos的值为() A.﹣2B.﹣1C.2D.1 2.(2014?成都一模)计算log5+所得的结果为() A.1B.C.D.4 3.若a>2,b>2,且log2(a+b)+log2=log2+log2,则log2(a﹣2)+log2(b﹣2)=()A.0B.C.1D.2 4.(2014?泸州二模)式子log2(log216)+8×()﹣5=() A.4B.6C.8D.10 5.(2014?泸州一模)的值为() A.1B.2C.3D.4 6.(2015?成都模拟)计算21og63+log64的结果是() A.l og 2B.2C.l og63D.3 6 7.(2014?浙江模拟)log212﹣log23=() A.2B.0C.D.﹣2 8.(2014?浙江模拟)下列算式正确的是() A.l g8+lg2=lg10B.l g8+lg2=lg6C.l g8+lg2=lg16D.l g8+lg2=lg4 9.(2014?和平区二模)已知3x=5y=a,且+=2,则a的值为() A.B.15C.±D.225 10.(2013?枣庄二模)已知函数,则的值是()A.9B.﹣9C.D.

11.(2013?婺城区模拟)已知函数f(x)=log2,若f(a)=,则f(﹣a)=() A.2B.﹣2C.D. ﹣ 12.(2013?泸州一模)log2100+的值是() A.0B.1C.2D.3 13.(2013?东莞一模)已知函数f(x)=,则f(2+log32)的值为()A. B.C.D.﹣54 ﹣ 14.(2013?东城区二模)f(x)=,则f(f(﹣1))等于()A.﹣2B.2C.﹣4D.4 15.(2012?安徽)(log29)?(log34)=() A.B.C.2D.4 16.(2012?北京模拟)函数y=是() B.区间(﹣∞,0)上的减函数 A.区间(﹣∞,0) 上的增函数 D.区间(0,+∞)上的减函数 C.区间(0,+∞) 上的增函数 17.(2012?杭州一模)已知函数则=()A.B.e C.D.﹣e 18.(2012?北京模拟)log225?log34?log59的值为() A.6B.8C.15D.30 19.(2012?北京模拟)实数﹣?+lg4+2lg5的值为()A.2B.5C.10D.20

高中对数函数公式

指数函数和对数函数 1、指数函数: 定义:函数() y a a a x =>≠01且叫指数函数。 定义域为R ,底数是常数,指数是自变量。 为什么要求函数y a x =中的a 必须a a >≠01且。 因为若a <0时,()y x =-4,当x = 1 4 时,函数值不存在。 a =0,y x =0,当x ≤0,函数值不存在。 a =1时,y x =1对一切x 虽有意义,函数值恒为1,但y x =1的反函数不存在, 因为要求函数y a x =中的a a >≠01且。 1、对三个指数函数y y y x x x ==?? ? ? ?=21210,,的图象的认识。 对图象的进一步认识,(通过三个函数相互关系的比较): ①所有指数函数的图象交叉相交于点(0,1),如y x =2和y x =10相交于()01,, 当x >0时,y x =10的图象在y x =2的图象的上方,当x <0,刚好相反,故有102 2 2 >及1022 2--<。 ②y x =2与y x =?? ?? ?12的图象关于y 轴对称。 ③通过y x =2,y x =10,y x =?? ?? ?12三个函数图象,可以画出任意一个函数y a x =(a a >≠01且)的示意图,如y x =3的图象,一定位于y x =2和y x =10两个图象的中

间,且过点()01,,从而y x =?? ???13也由关于y 轴的对称性,可得y x =?? ? ? ?13的示意图,即 通过有限个函数的图象进一步认识无限个函数的图象。 2、对数: 定义:如果a N a a b =>≠()01且,那么数b 就叫做以a 为底的对数,记作b N a =log (a 是底数,N 是真数,log a N 是对数式。) 由于N a b =>0故log a N 中N 必须大于0。 当N 为零的负数时对数不存在。 (1)对数式与指数式的互化。 由于对数是新学的,常常把不熟悉的对数式转化为指数式解决问题,如: 求log .032524?? ? ? ? 分析:对于初学者来说,对上述问题一般是束手无策,若将它写成log .032524?? ? ? ?=x 再改写为指数式就比较好办。解:设log .032524?? ? ? ?=x 则即∴即032524 8258251 2 5241 212 032.log .x x x = ?? ???=?? ???=- ?? ?? ?=- - 评述:由对数式化为指数式可以解决问题,反之由指数式化为对数式也能解决问题,因此必须因题而异。如求35x =中的x ,化为对数式x =log 35即成。 (2)对数恒等式: 由a N b N b a ==()log ()12 将(2)代入(1)得a N a N log = 运用对数恒等式时要注意此式的特点,不能乱用,特别是注意转化时必须幂的底数和 对数的底数相同。 计算: () 313 2 -log 解:原式==?? ?? ?-=3 131 2 222 13 1 3 log log 。 (3)对数的性质:

对数的发明

类型:研究性学习课题(数学)课题负责人: 成员: 指导老师: 班级: 完成时间:

1、对数发明的背景 16世纪前半叶,欧洲人热衷于地理探险和海洋贸易,需要更为准确的天文知识,而天文学的研究中,需要大量烦琐的计算,特别是三角函数的连乘,天文学家们苦不堪言。 德国数学家约翰·维尔纳首先推出了三角函数的积化和差公式,即 sinα·sinβ=[cos(α-β)-cos(α+β)]/2 , cosα·cosβ=[cos(α-β)+cos(α+β)]/2 . 大大简化了三角函数连乘的计算。比如,计算sin67°34'×sin9°3',可以从三角函数表查出sin67°34'=0.92432418,sin9°3'=0.15729632。但随后的乘法的计算十分烦琐,且容易出错。(请你不用计算器,手算一下0.92432418×0.15729632=?,记住还要验算一遍,以保证计算正确哦!)用维尔纳的三角函数积化和差公式,计算就大大简便了: sin67°34'×sin9°3' =cos(67°34'-9°3')-cos(67°34'+9°3') =[cos(58°31')-cos(76°37')]/2 =[0.52225052-0.23146492]/2 =0.14539280 这个公式还可以用于把任何二个数的乘法计算转为加减法计算,方法如下:若求小于1的二个数a与b的乘积可以先由反三角函数表查得使a=sinα=a ,sin β=b的α与β,然后计算(α-β)和(α+β),再由三角函数表查得cos(α-β)与cos(α+β) ,最后应用上面的公式求出它们的一半,就得所要求的数。由于大于1的数可用小于1的数乘上10n表示,因此上面的两个公式实际上对于任意两个数都是适宜的。 但这样做同样太繁杂了,况且还不能直接应用于除法、乘方和开方,因此,寻找更好的计算迫在眉睫。 2、对数产生的前奏 请你观察下面两个数列,并找出规律: 1, 2, 4, 8,16,32,64,128,256,512,1024,2048, 4096,8192,16384?? 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14?? 德国数学家Stifel (1487~1567)在观察上述两个数列时,称上排的数为

指数与对数 (初中)

指 数 运 算 1.整数指数幂概念(初中指数概念) *)(N n a a a a a a n n ∈??= 个 )0(10 ≠=a a *),0(1 N n a a a n n ∈≠= - 2.运算性质:a m .a n = a m+n (m ,n ∈Z) (a m )n = a mn (m ,n ∈Z) (ab)n =a n .b n (n ∈Z) a m ÷a n 可以看做a m .a -n =a m-n ∴a m ÷a n =a m .a -n =a m-n n b a )(可看作n n b a -? ∴n b a )(=n n b a -?=n n b a 3、进入高中后,将指数的概念由整数推广到有理数,又推广到全体实数,从而得到: (1)正分数指数幂的意义: n m n m a a = (a >0,m,n ∈N*,且n >1) (2)负分数指数幂: a n m - = a n m 1 (a >0,m,n ∈N*,且n >1) (3)0的正分数指数幂等于0. 0的负分数指数幂无意义. (4)运算性质:a m .a n = a m+n (m ,n ∈R) (a m )n = a mn (m ,n ∈R) (ab)n =a n .b n (n ∈R)

a m ÷a n =a m .a -n =a m-n n b a )(=n n b a -?=n n b a 4、由于分数指数的引入,使得根式与分数指数幂可以互化。分数指数幂实际上就是根式的另一种表示形式,根式的意义也得到扩充: (1)定义:若*),1(N n n a x n ∈>= 则x 叫做a 的n 次方根。 记做n a ,即 x=n a 。正数的正的方根,叫做算术根。零的算术根规定为零。负数 没有算术根。这里的n a 叫做根式,n 叫做根指数,a 叫做被开方数。 **理解:“算术根”中的“算术”,理解为“非负数”(因为小学里的“算术”课不研究负数,因此而得名)。 (2)性质: ①当n 为奇数时:正数的n 次方根为正数,负数的n 次方根为负数 记作:n a x = ②当n 为偶数时, 正数的n 次方根有两个(互为相反数)。记作: n a x ±=。 负数的n 次方根在实数范围内不存在。即负数没有偶次方根。 注:0的任何次方根为0 (3)根据n 次方根的定义,得到三组常用公式: ①当n 为任意正整数时,(n a )n =a.例如,(327)3=27,(532-)5 =-32. ②当n 为奇数时,n n a =a ; 当n 为偶数时, n n a =|a|=?? ?<-≥)0() 0(a a a a . 例如,3 3)2(-=-2,552=2;443=3,2)3(-=|-3|= -(-3)=3 ○ 3根式的基本性质:n m np mp a a =,(a ≥0).即 a np mp = a n m

【高考数学】对数平均不等式

对数平均不等式 1.定义:设,0,,a b a b >≠则2ln ln a b a b ab a b +->>-其中ln ln a b a b --被称为对数平均数 2.几何解释: 反比例函数 ()()1 0f x x x = >的图象,如图所示,AP BC TU KV ||||||, MN CD x ||||轴, (),0,A a 1,,P a a ?? ???()1,0,,B b Q b b ?? ???,1,,T ab ab ? ? ? ?? 作()f x 在点2,2a b K a b +?? ?+?? 处的切线分别与,AP BQ 交于,E F ,根据左图可知, 因为 ABNM ABQP ABFE S S S >=矩形曲边梯形梯形,所以 ()12 ln ln ,b a dx b a b a x a b =->-+ò ① 又1 ln ln ab AUTP a S dx ab a x = =-ò 曲边梯形, ()11ln ln 22ABQP b a S =-=曲边梯形, ( ) 11 111 222 AUTP ABCD b a S ab a S a ab ab 骣-÷ ?=+-= ?÷?÷ ?桫梯形梯形, 根据右图可知, AUTP AUTP S S <曲边梯形梯形 ,所以ln ln b a b a ab --< , ②

另外,ABQX ABYP ABQP ABQP S S S S <<<矩形矩形曲边梯形梯形,可得: ()()()11111 ln ln ,2b a b a b a b a b a b a 骣÷?-<-<+-<-÷?÷?桫 ③ 综上,结合重要不等式可知: ()()()()211111 ln ln 2b a b a b a b a b a b a b a b a b a ab 骣--÷?-<<-<<+-<-÷?÷?桫+,即 ()2011 2ln ln a b b a b ab a b a b a a b +-> >>> >>>-+. ④ 等价变形: )0.() (2ln ln >≥+-≥ -b a b a b a b a )0.(ln ln >≥-≤ -b a a b b a b a 3.典例剖析 对数平均数的不等式链,提供了多种巧妙放缩的途径,可以用来证明含自然对数的不等式问题.对数平均数的不等式链包含多个不等式,我们可以根据证题需要合理选取其中一个达到不等式证明的目的. (一) ()0ln ln b a b a a b a -> >>-的应用 例1 (2014年陕西)设函数)1ln()(x x f +=,()()g x xf x '=其中()f x '是)(x f 的导函数. (1)(2)(略) (3)设+∈N n ,比较()()()12g g g n ++ +与()n f n -的大小,并加以证明. 解析 (3)因为()1x g x x = +, 所以()()()121111223 123 1n g g g n n n n ?? +++= +++ =-+++ ?++?? , 而()()ln 1n f n n n -=-+,因此,比较()()()12g g g n ++ +与()n f n -的大小,即只 需比较 1 13121++++n 与()ln 1n +的大小即可. 根据0b a >>时, ln ln b a b b a -> -,即()1ln ln , b a b a b -<-

相关文档