文档库 最新最全的文档下载
当前位置:文档库 › 前三届全国大学生高等数学竞赛真题及答案大纲非数学类

前三届全国大学生高等数学竞赛真题及答案大纲非数学类

前三届全国大学生高等数学竞赛真题及答案大纲非数学类
前三届全国大学生高等数学竞赛真题及答案大纲非数学类

前三届全国大学生高等数学竞赛真题及答案大纲非

数学类

This manuscript was revised on November 28, 2020

中国大学生数学竞赛竞赛大纲

为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。

一、竞赛的性质和参赛对象

“中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。

“中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。

二、竞赛的内容

“中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。

中国大学生数学竞赛(非数学专业类)竞赛内容为大学本科理工科专业高等数学课程的教学内容,具体内容如下:

一、函数、极限、连续

1.函数的概念及表示法、简单应用问题的函数关系的建立.

2.函数的性质:有界性、单调性、周期性和奇偶性.

3.复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数.

4.数列极限与函数极限的定义及其性质、函数的左极限与右极限.

5.无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较.

6.极限的四则运算、极限存在的单调有界准则和夹逼准则、两个重要极限.

7.函数的连续性(含左连续与右连续)、函数间断点的类型.

8.连续函数的性质和初等函数的连续性.

9.闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理).

二、一元函数微分学

1. 导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线.

2. 基本初等函数的导数、导数和微分的四则运算、一阶微分形式的不变性.

3. 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法.

4. 高阶导数的概念、分段函数的二阶导数、某些简单函数的n阶导数.

5. 微分中值定理,包括罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理.

6. 洛必达(L’Hospital)法则与求未定式极限.

7. 函数的极值、函数单调性、函数图形的凹凸性、拐点及渐近线(水平、铅直和斜渐近线)、函数图形的描绘.

8. 函数最大值和最小值及其简单应用.

9. 弧微分、曲率、曲率半径.

三、一元函数积分学

1.原函数和不定积分的概念.

2.不定积分的基本性质、基本积分公式.

3. 定积分的概念和基本性质、定积分中值定理、变上限定积分确定的函数及其导数、牛顿-莱布尼茨(Newton-Leibniz)公式.

4. 不定积分和定积分的换元积分法与分部积分法.

5. 有理函数、三角函数的有理式和简单无理函数的积分.

6. 广义积分.

7. 定积分的应用:平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力及函数的平均值. 四.常微分方程

1. 常微分方程的基本概念:微分方程及其解、阶、通解、初始条件和特解等.

2. 变量可分离的微分方程、齐次微分方程、一阶线性微分方程、伯努利(Bernoulli)方程、全微分方程.

3. 可用简单的变量代换求解的某些微分方程、可降阶的高阶微分方程:),()n (x f y =

),,(y x f y '='' ),(y y f y '=''.

4. 线性微分方程解的性质及解的结构定理.

5. 二阶常系数齐次线性微分方程、高于二阶的某些常系数齐次线性微分方程.

6. 简单的二阶常系数非齐次线性微分方程:自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积

7. 欧拉(Euler)方程.

8. 微分方程的简单应用

五、向量代数和空间解析几何

1. 向量的概念、向量的线性运算、向量的数量积和向量积、向量的混合积.

2. 两向量垂直、平行的条件、两向量的夹角.

3. 向量的坐标表达式及其运算、单位向量、方向数与方向余弦.

4. 曲面方程和空间曲线方程的概念、平面方程、直线方程.

5. 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件、点到平面和点到直线的距离.

6. 球面、母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程、常用的二次曲面方程及其图形.

7. 空间曲线的参数方程和一般方程、空间曲线在坐标面上的投影曲线方程. 六、多元函数微分学

1. 多元函数的概念、二元函数的几何意义.

2. 二元函数的极限和连续的概念、有界闭区域上多元连续函数的性质.

3. 多元函数偏导数和全微分、全微分存在的必要条件和充分条件.

4. 多元复合函数、隐函数的求导法.

5. 二阶偏导数、方向导数和梯度.

6. 空间曲线的切线和法平面、曲面的切平面和法线.

7. 二元函数的二阶泰勒公式.

8. 多元函数极值和条件极值、拉格朗日乘数法、多元函数的最大值、最小值及其简单应用.

七、多元函数积分学

1. 二重积分和三重积分的概念及性质、二重积分的计算(直角坐标、极坐标)、三重积分的计算(直角坐标、柱面坐标、球面坐标).

2. 两类曲线积分的概念、性质及计算、两类曲线积分的关系.

3. 格林(Green)公式、平面曲线积分与路径无关的条件、已知二元函数全微分求原函数.

4. 两类曲面积分的概念、性质及计算、两类曲面积分的关系.

5. 高斯(Gauss)公式、斯托克斯(Stokes)公式、散度和旋度的概念及计算.

6. 重积分、曲线积分和曲面积分的应用(平面图形的面积、立体图形的体积、曲面面积、弧长、质量、质心、转动惯量、引力、功及流量等) 八、无穷级数

1. 常数项级数的收敛与发散、收敛级数的和、级数的基本性质与收敛的必要条件.

2. 几何级数与p 级数及其收敛性、正项级数收敛性的判别法、交错级数与莱布尼茨(Leibniz)判别法.

3. 任意项级数的绝对收敛与条件收敛.

4. 函数项级数的收敛域与和函数的概念.

5. 幂级数及其收敛半径、收敛区间(指开区间)、收敛域与和函数.

6. 幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分)、简单幂级数的和函数的求法.

7. 初等函数的幂级数展开式.

8. 函数的傅里叶(Fourier)系数与傅里叶级数、狄利克雷(Dirichlei)定理、函数在[-l ,l]上的傅里叶级数、函数在[0,l]上的正弦级数和余弦级数

前三届高数竞赛预赛试题(非数学类)

(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅

导书及相关题目,主要是一些各大高校的试题。)

2009年 第一届全国大学生数学竞赛预赛试卷

一、填空题(每小题5分,共20分)

1.计算=--++??y x y

x x y

y x D

d d 1)

1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.

解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =???

?

??-=,

?

-=10

2

d 1u u

u (*) 令u t -=1,则21t u -=

dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,

2.设)(x f 是连续函数,且满足?--=2

2

2d )(3)(x x f x x f , 则=)(x f ____________.

解: 令?=2

d )(x x f A ,则23)(2--=A x x f ,

A A x A x A 24)2(28d )23(20

2-=+-=--=

?

,

解得34=

A 。因此3

103)(2-=x x f 。 3.曲面22

22

-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面22

22

-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====, 即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在

)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面

22

22-+=y x z 平行平面

022=-+z y x 的切平面方程是0122=--+z y x 。

4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则

=2

2d d x y

________________. 解: 方程29ln )(y y f e xe =的两边对x 求导,得 因)(29ln y f y xe e =,故

y y y f x

'=''+)(1

,即))(1(1y f x y '-=

',因此 二、(5分)求极限x

e

nx x x x n

e e e )(

lim 20+++→ ,其中n 是给定的正整数. 解 :因 故 因此

三、(15分)设函数)(x f 连续,?=1

0d )()(t xt f x g ,且A x

x f x =→)

(lim

,A 为常数,求)(x g '并讨论)(x g '在0=x 处的连续性.

解 : 由A x x f x =→)(lim

和函数)(x f 连续知,0)

(lim lim )(lim )0(000===→→→x

x f x x f f x x x

因?=1

d )()(t xt f x g ,故0)0(d )0()0(10

===?f t f g ,

因此,当0≠x 时,?=x

u u f x x g 0

d )(1)(,故 当0≠x 时,

x

x f u u f x x g x )

(d )(1)(0

2

+

-

='?

, 这表明)(x g '在0=x 处连续.

四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:

(1)??-=---L

x y L

x y x ye y xe x ye y xe d d d d sin sin sin sin ;

(2)2sin sin 25

d d π?≥--L

y y x ye y xe .

证 :因被积函数的偏导数连续在D 上连续,故由格林公式知

(1)y x ye y xe x x ye y xe D x y L x y d d )()(d d sin sin sin sin ?????????-??

-??=---

而D 关于x 和y 是对称的,即知 因此 (2)因 故 由 知

即 2sin sin 25

d d π?≥--L

y y x ye y xe

五、(10分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.

解 设x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是二阶常系数线性非齐次微分方程

的三个解,则x x e e y y 212-=--和x e y y -=-13都是二阶常系数线性齐次微分方程 的解,因此0=+'+''cy y b y 的特征多项式是0)1)(2(=+-λλ,而0=+'+''cy y b y 的特征多项式是

因此二阶常系数线性齐次微分方程为02=-'-''y y y ,由)(2111

x f y y y =-'-''和 x x x e xe e y 21

2++=',x x x e xe e y 2142++='' 知,111

2)(y y y x f -'-''=)(2)2(42222x x x x x x x x e xe e e xe e e xe +-++-++= 二阶常系数线性非齐次微分方程为

六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物

线与x 轴及直线1=x 所围图形的面积为3

1

.试确定c b a ,,,使此图形绕x 轴旋转一周而成

的旋转体的体积最小.

解 因抛物线c bx ax y ln 22++=过原点,故1=c ,于是 即

而此图形绕x 轴旋转一周而成的旋转体的体积 即 令

0)1(27

8)21(3152)(=---+=

'a a a a V πππ, 得 即 因此

45-=a ,2

3

=b ,1=c .

七、(15分)已知)(x u n 满足),2,1()()(1 =+='-n e x x u x u x n n n

, 且n

e

u n =)1(, 求函数项级数∑∞

=1

)(n n x u 之和.

x n n n

e x x u x u 1)()(-+=', 即

由一阶线性非齐次微分方程公式知 即 因此 由

)1

()1(n

C e u n e n +==知,0=C , 于是

下面求级数的和:

令 则 即

由一阶线性非齐次微分方程公式知

令0=x ,得C S ==)0(0,因此级数∑∞

=1)(n n x u 的和

八、(10分)求-

→1x 时, 与∑∞

=0

2

n n x 等价的无穷大量.

解 令2)(t x t f =,则因当10<

()2ln 0t f t tx x '=<,故

x

t t e

x t f 1

ln

22

)(-==在(0,)+∞上严格单调减。因此

()d ()1()d n f t t f n f t t ∞

+∞+∞=≤≤+∑?

?

2

()n n n f n x ∞

===∑

∑,

21ln

1d 1ln

1d d d )(0

1ln

2

22

π

x

t e x

t e

t x t t f t x

t t =

=

==???

?

∞+-∞

+-∞+∞+,

所以,当-

→1x 时, 与∑∞

=0

2

n n x 等价的无穷大量是

x

-121π

2010年 第二届全国大学生数学竞赛预赛试卷

(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅

导书及相关题目,主要是一些各大高校的试题。) 一、(25分,每小题5分) (1)设22(1)(1)

(1),n

n x a a a =+++其中||1,a <求lim .n n x →∞

(2)求2

1lim 1x x x e x -→∞

??

+ ???

(3)设0s >,求0(1,2,)sx n I e x dx n ∞

-==?。

(4)设函数()f t

有二阶连续导数,1(,)r g x y f r ??

== ???

,求2222g g x y ??+??。

(5)求直线10:0x y l z -=??=?与直线2213

:421x y z l ---==

--的距离。 解:(1)22(1)(1)(1)n

n x a a a =+++=22(1)(1)(1)

(1)/(1)n

n x a a a a a =-+++-

=222(1)(1)

(1)/(1)n

a a a a -++-=

=1

2(1)/(1)n a a +--

(2) 2

2

211

ln (1)ln(1)1lim 1lim lim x x x e x x x x x

x x x e e e x -++--→∞→∞→∞??+== ???

令x=1/t,则

原式=2

1(ln(1))

1/(1)1

12(1)

22

lim lim lim t t t t t

t

t t t e

e

e

e +-+--

-

+→→→===

(3)0000112021

011()()[|](1)!!

sx

n

n sx n sx sx n

n sx n n n n n I e x dx x de x e e dx s s

n n n n n n e x dx I I I s s s s s

∞∞---∞-∞----+==-=--=

-=====????

二、(15分)设函数()f x 在(,)-∞+∞上具有二阶导数,并且

()0,lim ()0,lim ()0,x x f x f x f x αβ→+∞

→-∞

''''>=>=<且存在一点0x ,使得0()0f x <。

证明:方程()0f x =在(,)-∞+∞恰有两个实根。

解: 二阶导数为正,则一阶导数单增,f(x)先减后增,因为f(x)有小于0的值,所以只需在两边找两大于0的值。 将f(x)二阶泰勒展开: 因为二阶倒数大于0,所以

lim ()x f x →+∞

=+∞,lim ()x f x →-∞

=-∞

证明完成。

三、(15分)设函数()y f x =由参数方程2

2(1)()x t t t y t ψ?=+>-?

=?所确定,其中()t ψ具有二阶导数,曲线()y t ψ=与2

2

13

2t u y e du e

-=+

?在1t =出相切,求函数()t ψ。 解:(这儿少了一个条件22d y

dx

=

)由()y t ψ=与2

2

1

3

2t u y e du e

-=+

?在1t =出相切得 3(1)2e ψ=

,'2(1)e

ψ= 22

d y dx ='3''()(2(/)(/)//(22)2)2()

d dy dx d dy dx dt dx dx d t t t t t ψψ==++-=。。。 上式可以得到一个微分方程,求解即可。 四、(15分)设10,,n

n n k k a S a =>=∑证明:

(1)当1α>时,级数1n

n n

a S α+∞

=∑

收敛; (2)当1α≤且()n s n →∞→∞时,级数1n

n n

a S α+∞

=∑发散。 解:

(1)n a >0, n s 单调递增

当1n n a ∞

=∑收敛时,

1n n n a a s s αα<

,而1n a s α收敛,所以n

n a s α

收敛; 当1

n n a ∞

=∑发散时,lim n n s →∞

=∞

所以,1111

121

1n n n s s n s s n n n a a a dx dx s s x s x ααααα-∞

∞==<+=+∑∑?? 而1

11111

1111lim 11

n

s n s n s s a a s dx k x s s αααααααα---→∞-=+=+=--?

,收敛于k 。 所以,1n

n n

a s α∞

=∑

收敛。 (2)lim n n s →∞

=∞

所以1n n a ∞

=∑发散,所以存在1k ,使得1

12

k n n a a =≥∑

于是,1

1

112221

2k k k n n n n n

k a a a s s s α≥≥≥∑∑∑

依此类推,可得存在121...k k <<<

使得1

12i i k n k n a s α+≥∑成立,所以11

2N

k n n

a N s α

≥?∑ 当n →∞时,N →∞,所以1n

n n

a s α∞

=∑

发散 五、(15分)设l 是过原点、方向为(,,)αβγ,(其中2221)αβγ++=的直线,均匀椭球

222

2221x y z a b c

++≤,其中(0,c b a <<<密度为1)绕l 旋转。 (1)求其转动惯量;

(2)求其转动惯量关于方向(,,)αβγ的最大值和最小值。 解:

(1)椭球上一点P(x,y,z)到直线的距离 由轮换对称性, (2)a b c >>

∴当1γ=时,22max 4

()15

I abc a b π=

+ 当1α=时,22min 4

()15

I abc b c π=

+ 六、(15分)设函数()x ?具有连续的导数,在围绕原点的任意光滑的简单闭曲线C 上,曲线积分42

2()c

xydx x dy

x y

?++?

的值为常数。 (1)设L 为正向闭曲线22(2)1,x y -+=证明42

2()0;c

xydx x dy

x y ?+=+?

(2)求函数()x ?;

(3)设C 是围绕原点的光滑简单正向闭曲线,求42

2()c

xydx x dy

x y

?++?

。 解:

(1) L 不绕原点,在L 上取两点A ,B ,将L 分为两段1L ,2L ,再从A ,B 作一曲线

3L ,使之包围原点。

则有 (2) 令4242

2()

,xy x P Q x y x y

?=

=++ 由(1)知

0Q P x y

??-=??,代入可得 上式将两边看做y 的多项式,整理得 由此可得 解得:2()x x ?=-

(3) 取'L 为424x y ξ+=,方向为顺时针

2011年 第三届全国大学生数学竞赛预赛试卷

(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅

导书及相关题目,主要是一些各大高校的试题。)

一. 计算下列各题(本题共3小题,每小题各5分,共15分)

(1).求1

1cos 0sin lim x

x x x -→??

???

解:(用两个重要极限):

(2).求1

11lim ...12n n n n n →∞??+++ ?+++?

?; 解:(用欧拉公式)令111

...12n x n n n n

=+++

+++ 其中,()1o 表示n →∞时的无穷小量,

(3)已知()2ln 1arctan t

t x e y t e ?=+?

?=-??

,求22d y dx 。 解:222222221211,121121t

t t t t t t t t t

t

e dx e dy e dy e e e e dt e dt e dx e e --++==-∴==+++ 二.(本题10分)求方程()()2410x y dx x y dy +-++-=的通解。

解:设24,1P

x y Q x y =+-=+-,则0Pdx Qdy +=

1,P Q y x ??==∴??0Pdx Qdy +=是一个全微分方程,设dz Pdx Qdy =+ ,P Q y x

??=∴??该曲线积分与路径无关 三.(本题15分)设函数f(x)在x=0的某邻域内具有二阶连续导数,且

()()()'"0,0,0f f f 均不为0,证明:存在唯一一组实数123,,k k k ,使得

()()()()

1232

230lim

0h k f h k f h k f h f h

→++-=。

证明:由极限的存在性:()()()()1230lim 2300h k f h k f h k f h f →++-=???

? 即

[]()123100k k k f ++-=,又()00f ≠,1231k k k ∴++=①

由洛比达法则得

由极限的存在性得()()()'

''1230

lim 22330h k f

h k f h k f h →??++=?

?

()()'1232300k k k f ++=,又()'00f ≠,123230k k k ∴++=②

再次使用洛比达法则得

123490k k k ∴++=③

由①②③得123,,k k k 是齐次线性方程组1231231231230490

k k k k k k k k k ++=??

++=??++=?的解

设1231111123,,01490k A x k b k ??????

? ? ?=== ? ? ? ? ? ?

??????,则Ax b =, 增广矩阵*

111110031230010314900011A ??

??

? ?=- ?

?

? ???

??

,则()(),3R A b R A ==

所以,方程Ax b =有唯一解,即存在唯一一组实数123,,k k k 满足题意,

且1

233,3,1k k k ==-=。

四.(本题17分)设222

1222:1x y z a b c

∑++=,其中0a b c >>>,

2222:z x y ∑=+,Γ为1∑与2∑的交线,求椭球面1∑在Γ上各点的切平面到原点距

离的最大值和最小值。

解:设Γ上任一点(),,M x y z ,令()222

222,,1x y z F x y z a b c

=++-,

则'

''222222,,,x y z x y z F F F a b c ===∴椭球面1∑在Γ上点M 处的法向量为:

222,,,x y z t a b c ??

=∴ ???

1∑在点M 处的切平面为∏:

原点到平面∏

的距离为d

=

,令()222

444,,,x y z G x y z a b c =++

d =

现在求()222444,,,x y z G x y z a b c =++在条件2222221x y z a b c

++=,222

z x y =+下

的条件极值,

令()()222222222

12444222,,1x y z x y z H x y z x y z a b c a b c λλ??=+++++-++- ???

则由拉格朗日乘数法得:

'1242'12

42'1242222

22222222202220

222010

0x y z x

x H x a a y y H y b b z

z H z c c x y z a

b c x y z λλλλλλ?=++=??

?=++=???=+-=??

?++-=???+-=??

解得2222

220x b c y z b c =???==?+?

或22

2222

a c x z a c y ?==?+??=?,

对应此时的()()442222,,b c G x y z b c b c +=+或()()44

2222,,a c G x y z a c a c +=+

此时的1d =

2d =又因为0a

b c >>>,则12d d <

所以,椭球面1∑在Γ上各点的切平面到原点距离的最大值和最小值分别为:

2d =

1d =

五.(本题16分)已知S 是空间曲线2231

x y z ?+=?=?绕y 轴旋转形成的椭球面的上半

部分(0z

≥)取上侧,∏是S 在(),,P x y z 点处的切平面,(),,x y z ρ是原点到切

平面∏的距离,,,λμν表示S 的正法向的方向余弦。计算: (1)

(),,S

z

dS x y z ρ??;(2)()3S z x y z dS λμν++?? 解:(1)由题意得:椭球面S 的方程为()2

22310x y z z ++=≥

令22231,F

x y z =++-则'''2,6,2x y z F x F y F z ===,

切平面∏的法向量为(),3,n

x y z =,

∏的方程为()()()30x X x y Y y z Z z -+-+-=,

原点到切平面∏的距离(

)222,,x y z ρ=

=

将一型曲面积分转化为二重积分得:记22:1,0,0xz D x z x z +≤≥≥

(2)方法一:

λ

μν=

==

六.(本题12分)设f(x)是在

(),-∞+∞内的可微函数,且()()f x mf x <、,其

中01m <<,任取实数0a ,定义()1ln ,1,2,...,n n a f a n -==证明:

()11

n

n n a

a ∞

-=-∑绝对收敛。

证明:()()112ln ln n

n n n a a f a f a ----=-

由拉格朗日中值定理得:ξ?介于12,n n a a --之间,使得

()()

()'112n n n n f a a a a f ξξ---∴-=

-,又()()f mf ξξ<、得

()()

'f m f ξξ<

∴级数110

1

n n m a a ∞

-=-∑收敛,∴级数

1

1

n

n n a

a ∞

-=-∑收敛,即

()11

n

n n a

a ∞

-=-∑绝对收

敛。

七.(本题15分)是否存在区间

[]0,2上的连续可微函数f(x),满足

()()021f f ==,

()()2

01,1f

x f x dx ≤≤?、

请说明理由。

解:假设存在,当[]0,1x ∈时,由拉格朗日中值定理得:

1ξ?介于0,x 之间,使得()()()'10,f x f f x ξ=+, 同理,当[]1,2x ∈时,由拉格朗日中值定理得:

2ξ?介于x ,2之间,使得()()()()'222f x f f x ξ=+-

即()()[]()()()[]''

121,0,1;12,1,2f x f x x f x f x x ξξ=+∈=+-∈ ()11f x -≤≤、,

显然,

()()2

00,0f x f x dx ≥≥?

()()()()()1

2

2

1

2

1

1

111133

x dx x dx f x dx x dx x dx ≤-+-≤≤++-=?????()20

1f x dx ∴≥?,又由题意得()()22

1,1f x dx f x dx ≤∴=??

()2

1f x dx =?

,()[][]

1,0,11,1,2x x f x x x ?-∈?∴=?-∈?? ()'1f ∴不存在,又因为f(x)是在区间[]0,2上的连续可微函数,即()'1f 存在,矛

盾,故,原假设不成立,所以,不存在满足题意的函数f(x)。

全国大学生数学竞赛预赛试题

第一届全国大学生数学竞赛预赛试题 一、填空题(每小题5分,共20分) 1.计算__ ,其中区域由直线与两坐标轴所围成三角形区域. 2.设是连续函数,且满足, 则____________. 3.曲面平行平面的切平面方程是__________. 4.设函数由方程确定,其中具有二阶导数,且,则_____. 二、(5分)求极限,其中是给定的正整数. 三、(15分)设函数连续,,且,为常数,求并讨论在处的连续性. 四、(15分)已知平面区域,为的正向边界,试证: (1);(2) . 五、(10分)已知,,是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程. 六、(10分)设抛物线过原点.当时,,又已知该 抛物线与轴及直线所围图形的面积为.试确定,使此图形绕轴旋转一周而成的旋转体的体积最小. 七、(15分)已知满足, 且, 求函 数项级数之和. 八、(10分)求时, 与等价的无穷大量.

第二届全国大学生数学竞赛预赛试题 一、(25分,每小题5分) (1)设其中求(2)求。 (3)设,求。 (4)设函数有二阶连续导数,,求。 (5)求直线与直线的距离。 二、(15分)设函数在上具有二阶导数,并且 且存在一点,使得,证明:方程在恰有两个实根。 三、(15分)设函数由参数方程所确定,其中具 有二阶导数,曲线与在出相切,求函数。 四、(15分)设证明:(1)当时,级数收敛; (2)当且时,级数发散。 五、(15分)设是过原点、方向为,(其中的直线,均 匀椭球,其中(密度为1)绕旋转。(1)求其转动惯量;(2)求其转动惯量关于方向的最大值和最小值。 六、(15分)设函数具有连续的导数,在围绕原点的任意光滑的简单闭曲线上,曲线积分的值为常数。(1)设为正向闭曲线

最新大学生高等数学竞赛试题汇总及答案

前三届高数竞赛预赛试题(非数学类) (参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看 一些辅导书及相关题目,主要是一些各大高校的试题。) 2009-2010年第一届全国大学生数学竞赛预赛试卷 一、填空题(每小题5分) 1.计算=--++??y x y x x y y x D d d 1) 1ln()(16/15,其中区域D 由直线1=+y x 与 两坐标轴所围成三角形区域. 解:令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =??? ? ??-=, ? -=10 2 d 1u u u (*) 令u t -=1,则21t u -= dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-, 2.设)(x f 是连续函数,且满足?--=2 022d )(3)(x x f x x f ,则 =)(x f ____________. 解:令?=2 0d )(x x f A ,则23)(2--=A x x f , A A x A x A 24)2(28d )23(20 2-=+-=--= ? , 解得3 4=A 。因此3 10 3)(2- =x x f 。 3.曲面22 22 -+=y x z 平行平面022=-+z y x 的切平面方程是 __________. 解:因平面022=-+z y x 的法向量为)1,2,2(-,而曲面 2 2 22-+=y x z 在 ) ,(00y x 处的法向量为 )1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平 行,因此,由 x z x =, y z y 2=知

原创!!全面大学生数学竞赛试题

2011年数学竞赛练习题C_3解答 1. 设数列{}n x 满足: 11 sin (2)sin 11 n n x n n n <<+++, 则1 1lim 1n k n k x n →∞==+∑_______。 11 sin (2)sin 111 n n n x n x n n <<+∴→++解 ; Q 1 1 1 1lim lim lim lim 1111n n k k n k k k n n n n k x x n n x n n n n n ==→∞→∞→∞→∞ =∴=?=?=+++∑∑∑ 2.设曲线()y f x =与sin y x =在原点相切, 则极限lim n ________。 (0)0,(0)1n n f f '===已知有: 2. 设(1n n a b =+, 其中,n n a b 为正整数,lim n n n a b →∞=__ 2224 113 (1) 1)3)(13)3) )()3) ) n n n n n n n C C C C C C =+++ =+++++ 224 41133(1(1)() n n n n n C C C C =++-++ (1=+(1=n n n n n n a b a b a b -所以,若则解得:

lim =n n n n n a b →∞∴= 3. 设()f x 有连续导数且0 () lim 0x f x a x →=≠, 又20 ()()()x F x x t f t dt =-?, 当0x →时()F x '与n x 是同阶无穷小, 则n =________。 2020 ()()()()()x x x F x x t f t dt x f t dt tf t dt =-=-? ?? 20 ()2()()()x F x x f t dt x f x xf x '=+-? 0() lim 0x F x x →'=显然 20 2 02()()() lim x x x f t dt x f x xf x x →+-?考虑: 2()() lim lim ()x x x f t dt f x f x x →→-=+? 2()() lim lim ()x x x f t dt f x f x x →→-=+? 2()() lim lim 0x x x f t dt f x x x →→=-+?0a =-≠ 2n ∴= 5. ()f x ∞设在[1,+)上可导,下列结论成立的是:________。 +lim ()0()x f x f x →∞ '=∞A.若,则在[1,+)上有界;

中国大学生数学竞赛竞赛大纲(数学专业类)

中国大学生数学竞赛竞赛大纲(数学专业类) 为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。 一、竞赛的性质和参赛对象 “中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。 “中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。 二、竞赛的内容 “中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。 (一)中国大学生数学竞赛(数学专业类)竞赛内容为大学本科数学专业基础课的教学内容,即,数学分析占50%,高等代数占35%,解析几何占15%,具体内容如下: Ⅰ、数学分析部分 一、集合与函数 1. 实数集 、有理数与无理数的稠密性,实数集的界与确界、确界存在性定理、闭区间套定理、聚点定理、有限覆盖定理. 2. 2 上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、2 上的闭矩形套定理、聚点定理、有限复盖定理、基本点列,以及上述概念和定理在n 上的推广. 3. 函数、映射、变换概念及其几何意义,隐函数概念,反函数与逆变换,反函数存在性定理,初等函数以及与之相关的性质. 二、极限与连续 1. 数列极限、收敛数列的基本性质(极限唯一性、有界性、保号性、不等式性质). 2. 数列收敛的条件(Cauchy 准则、迫敛性、单调有界原理、数列收敛与其子列收敛的关系),极限1lim(1)n n e n →∞+=及其应用. 3.一元函数极限的定义、函数极限的基本性质(唯一性、局部有界性、保号性、不等式 性质、迫敛性),归结原则和Cauchy 收敛准则,两个重要极限sin 10lim 1,lim(1)x x x x x x e →→∞ =+=及其应用,计算一元函数极限的各种方法,无穷小量与无穷大量、阶的比较,记号O 与o 的意义,多元函数重极限与累次极限概念、基本性质,二元函数的二重极限与累次极限的关系. 4. 函数连续与间断、一致连续性、连续函数的局部性质(局部有界性、保号性),有界闭集上连续函数的性质(有界性、最大值最小值定理、介值定理、一致连续性). 三、一元函数微分学 1.导数及其几何意义、可导与连续的关系、导数的各种计算方法,微分及其几何意义、可微与可导的关系、一阶微分形式不变性. 2.微分学基本定理:Fermat 定理,Rolle 定理,Lagrange 定理,Cauchy 定理,Taylor 公式(Peano 余项与Lagrange 余项). 3.一元微分学的应用:函数单调性的判别、极值、最大值和最小值、凸函数及其应用、

全国大学生数学竞赛试题及答案

河北省大学生数学竞赛试题及答案 一、(本题满分10 分) 求极限))1(21(1 lim 222222--++-+-∞→n n n n n n Λ。 【解】 ))1(21(12 22222--++-+-= n n n n n S n Λ 因 21x -在]1,0[上连续,故dx x ?1 02-1存在,且 dx x ? 1 2 -1=∑-=∞→-1 21 .)(1lim n i n n n i , 所以,= ∞ →n n S lim n dx x n 1lim -11 2∞→-? 4 -1102π ==?dx x 。 二、(本题满分10 分) 请问c b a ,,为何值时下式成立.1sin 1 lim 22 0c t dt t ax x x b x =+-?→ 【解】注意到左边得极限中,无论a 为何值总有分母趋于零,因此要想极限存在,分子必 须为无穷小量,于是可知必有0=b ,当0=b 时使用洛必达法则得到 22 022 01)(cos lim 1sin 1lim x a x x t dt t ax x x x x +-=+-→→?, 由上式可知:当0→x 时,若1≠a ,则此极限存在,且其值为0;若1=a ,则 21)1(cos lim 1sin 1lim 22 220-=+-=+-→→?x x x t dt t ax x x x b x , 综上所述,得到如下结论:;0,0,1==≠c b a 或2,0,1-===c b a 。 三、(本题满分10 分) 计算定积分? += 2 2010tan 1π x dx I 。

【解】 作变换t x -= 2 π ,则 =I 22 20π π = ?dt , 所以,4 π= I 。 四、(本题满分10 分) 求数列}{1n n - 中的最小项。 【解】 因为所给数列是函数x x y 1- =当x 分别取ΛΛ,,,3,2,1n 时的数列。 又)1(ln 21-=--x x y x 且令e x y =?='0, 容易看出:当e x <<0时,0<'y ;当e x >时,0>'y 。 所以,x x y 1-=有唯一极小值e e e y 1)(-=。 而3 3 1 2 132> ? <

前三届全国大学生高等数学竞赛真题及答案大纲非数学类

中国大学生数学竞赛竞赛大纲 为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。 一、竞赛的性质和参赛对象 “中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。 “中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。二、竞赛的内容 “中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。 中国大学生数学竞赛(非数学专业类)竞赛内容为大学本科理工科专业高等数学课程的教学内容,具体内容如下: 一、函数、极限、连续 1.函数的概念及表示法、简单应用问题的函数关系的建立. 2.函数的性质:有界性、单调性、周期性和奇偶性. 3.复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数. 4.数列极限与函数极限的定义及其性质、函数的左极限与右极限. 5.无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较. 6.极限的四则运算、极限存在的单调有界准则和夹逼准则、两个重要极限. 7.函数的连续性(含左连续与右连续)、函数间断点的类型. 8.连续函数的性质和初等函数的连续性. 9.闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理). 二、一元函数微分学 1. 导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线. 2. 基本初等函数的导数、导数和微分的四则运算、一阶微分形式的不变性. 3. 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法. 4. 高阶导数的概念、分段函数的二阶导数、某些简单函数的n阶导数. 5. 微分中值定理,包括罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理. 6. 洛必达(L’Hospital)法则与求未定式极限. 7. 函数的极值、函数单调性、函数图形的凹凸性、拐点及渐近线(水平、铅直和斜渐近线)、函数图形的描绘. 8. 函数最大值和最小值及其简单应用.

历届全国大学生数学竞赛预赛试卷

全国大学生数学竞赛预赛试卷(非数学类) 2009年 第一届全国大学生数学竞赛预赛试卷(非数学类) 一、填空题(每小题5分,共20分) 1. 计算()ln(1) d y x y x y ++=??,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域. 2.设)(x f 是连续函数,且满足22 ()3()d 2f x x f x x =--? ,则()f x =. 3.曲面2 222 x z y =+-平行平面022=-+z y x 的切平面方程是. 4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且 1≠'f ,则=22d d x y . 二、(5分)求极限x e nx x x x n e e e )(lim 20+++→Λ,其中n 是给定的正整数. 三、(15分)设函数)(x f 连续,10()() g x f xt dt =?,且A x x f x =→) (lim 0,A 为常数,求()g x '并讨论)(x g '在0=x 处的连续性. 四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证: (1)??-=---L x y L x y x ye y xe x ye y xe d d d d sin sin sin sin ; (2)2sin sin 2 5d d π?≥--L y y x ye y xe . 五、(10分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程. 六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为3 1.试确定 c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积V 最小. 七、(15分)已知)(x u n 满足1()()1,2,n x n n u x u x x e n -'=+=L ,且n e u n =)1(,求 函数项级数∑∞ =1 )(n n x u 之和.

全国大学生数学竞赛简介资料

全国大学生数学竞赛 第一届 2009年,第一届全国大学生数学竞赛由中国数学会主办、国防科学技术大学承办。该比赛将推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才。 第二届 2011年3月,历时十个月的第二届全国大学生数学竞赛在北京航空航天大学落幕。来自北京、上海、天津、重庆等26个省(区、市)数百所大学的274名大学生进入决赛,最终,29人获得非数学专业一等奖,15人获数学专业一等奖。这次赛事预赛报名人数达3万余人,已成为全国影响最大、参加人数最多的学科竞赛之一。 竞赛用书 该比赛指导用书为《大学生数学竞赛指导》,由国防科技大学大学数学竞赛指导组组织编写,已经由清华大学出版社出版。 竞赛大纲 中国大学生数学竞赛竞赛大纲 (2009年首届全国大学生数学竞赛) 为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。 1.竞赛的性质和参赛对象 “中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。 “中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。 1.竞赛的内容 “中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。(一)中国大学生数学竞赛(数学专业类)竞赛内容为大学本科数学专业基础课的教学内容,即,数学分析占50%,高等代数占35%,解析几何占15%,具体内容如下: Ⅰ、数学分析部分 1.集合与函数 2. 1. 实数集、有理数与无理数的稠密性,实数集的界与确界、确界存在性 定理、闭区间套定理、聚点定理、有限覆盖定理. 3. 2. 上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、 上的闭矩形套定理、聚点定理、有限覆盖定理、基本点列,以及上述概念和定理在上的推广.

全国大学生数学竞赛决赛试题(非数学类)

首届全国大学生数学竞赛决赛试卷 (非数学类) 考试形式: 闭卷 考试时间: 150 分钟 满分: 100 分. 一、 计算下列各题(共20分,每小题各5分,要求写出重要步骤). (1) 求极限1 21lim (1)sin n n k k k n n π-→∞=+∑. (2) 计算 2∑其中∑ 为下半球面z =0a >. (3) 现要设计一个容积为V 的一个圆柱体的容器. 已知上下两底的材料费为单位面积a 元,而侧面的材料费为单位面积b 元.试给出最节省的设计方案:即高与上下底的直径之比为何值时所需费用最少? (4) 已知()f x 在11,42?? ???内满足 331()sin cos f x x x '=+,求()f x .

二、(10分)求下列极限 (1) 1lim 1n n n e n →∞????+- ? ? ?????; (2) 111lim 3n n n n n a b c →∞??++ ? ? ???, 其中0,0,0a b c >>>. 三、(10分)设()f x 在1x =点附近有定义,且在1x =点可导, (1)0,(1)2f f '==. 求 220(sin cos )lim tan x f x x x x x →++. 四、(10分) 设()f x 在[0,)+∞上连续,无穷积分0()f x dx ∞?收敛. 求 0 1lim ()y y xf x dx y →+∞?.

五、五、(12分)设函数()f x 在[0,1]上连续,在(0,1)内可微,且 1(0)(1)0,12f f f ??=== ???. 证明:(1) 存在 1,12ξ??∈ ???使得()f ξξ=;(2) 存在(0,)ηξ∈使得()()1f f ηηη'=-+. 六、(14分)设1n >为整数, 20()1...1!2!!n x t t t t F x e dt n -??=++++ ????. 证明: 方程 ()2n F x =在,2n n ?? ???内至少有一个根.

历届全国大学生数学竞赛真题及答案非数学类

高数竞赛预赛试题(非数学类) (参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书 及相关题目,主要是一些各大高校的试题。) 2009年 第一届全国大学生数学竞赛预赛试卷 一、填空题(每小题5分,共20分) 1.计算=--++??y x y x x y y x D d d 1) 1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域. 解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 11 10 det d d =??? ? ? ?-=, v u u v u u u y x y x x y y x D D d d 1ln ln d d 1) 1ln()(????--= --++ ????----=---=10 2 1 00 0d 1)ln (1ln d )d ln 1d 1ln ( u u u u u u u u u u v v u u v u u u u u ? -=1 2 d 1u u u (*) 令u t -=1,则21t u -= dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-, ?+--=0 1 42d )21(2(*)t t t ? +-=10 42d )21(2t t t 1516513 2 21 053= ??????+-=t t t 2.设)(x f 是连续函数,且满足? -- =20 22d )(3)(x x f x x f , 则=)(x f ____________. 解: 令? = 20 d )(x x f A ,则23)(2--=A x x f , A A x A x A 24)2(28d )23(20 2-=+-=--= ? , 解得34= A 。因此3 10 3)(2-=x x f 。 3.曲面22 22 -+=y x z 平行平面022=-+z y x 的切平面方程是__________.

历届全国大学生数学竞赛真题

高数竞赛预赛试题(非数学类) 2009年 第一届全国大学生数学竞赛预赛试卷 一、填空题(每小题5分,共20分) 1.计算=--++??y x y x x y y x D d d 1) 1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域. 2.设)(x f 是连续函数,且满足? -- =20 22d )(3)(x x f x x f , 则=)(x f ____________. 3.曲面22 22 -+=y x z 平行平面022=-+z y x 的切平面方程是__________. 4.设函数)(x y y =由方程29ln ) (y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则 =2 2d d x y ________________. 二、(5分)求极限x e nx x x x n e e e )(lim 20+++→ ,其中n 是给定的正整数. 三、(15分)设函数)(x f 连续,?=10d )()(t xt f x g ,且A x x f x =→) (lim 0,A 为常数,求) (x g '并讨论)(x g '在0=x 处的连续性. 四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证: (1)?? -=---L x y L x y x ye y xe x ye y xe d d d d sin sin sin sin ; (2)2sin sin 2 5 d d π? ≥--L y y x ye y xe . 五、(10分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程. 六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线 与x 轴及直线1=x 所围图形的面积为3 1 .试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积最小. 七、(15分)已知)(x u n 满足),2,1()()(1 =+='-n e x x u x u x n n n , 且n e u n =)1(, 求函数项级数 ∑∞ =1 )(n n x u 之和. 八、(10分)求- →1x 时, 与∑∞ =0 2 n n x 等价的无穷大量.

中国大学生数学竞赛竞赛大纲(非数学专业组)

附件1: 中国大学生数学竞赛竞赛大纲(非数学专业组) 中国大学生数学竞赛(非数学专业类)竞赛内容为大学本科理工科专业高等数学课程的教学内容,具体内容如下: 一、函数、极限、连续 1.函数的概念及表示法、简单应用问题的函数关系的建立. 2.函数的性质:有界性、单调性、周期性和奇偶性. 3.复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数. 4.数列极限与函数极限的定义及其性质、函数的左极限与右极限. 5.无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较. 6.极限的四则运算、极限存在的单调有界准则和夹逼准则、两个重要极限. 7.函数的连续性(含左连续与右连续)、函数间断点的类型. 8.连续函数的性质和初等函数的连续性. 9.闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理). 二、一元函数微分学 1.导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线. 2.基本初等函数的导数、导数和微分的四则运算、一阶微分形式的不变性. 3.复合函数、反函数、隐函数以及参数方程所确定的函数的微分法. 4.高阶导数的概念、分段函数的二阶导数、某些简单函数的n阶导数. 5.微分中值定理,包括罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理. 6.洛必达(L’Hospital)法则与求未定式极限. 7.函数的极值、函数单调性、函数图形的凹凸性、拐点及渐近线(水平、铅直和斜渐近线)、函数图形的描绘. 8.函数最大值和最小值及其简单应用. 9.弧微分、曲率、曲率半径. 三、一元函数积分学 1.原函数和不定积分的概念. 2.不定积分的基本性质、基本积分公式. 3.定积分的概念和基本性质、定积分中值定理、变上限定积分确定的函数及其导数、牛顿-莱布尼茨 (Newton-Leibniz)公式. 4.不定积分和定积分的换元积分法与分部积分法. 5.有理函数、三角函数的有理式和简单无理函数的积分. 6.广义积分. 7.定积分的应用:平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已 知的立体体积、功、引力、压力及函数的平均值. 四.常微分方程 1.常微分方程的基本概念:微分方程及其解、阶、通解、初始条件和特解等.

全国大学生数学竞赛大纲(数学专业组)

中国大学生数学竞赛竞赛大纲(数学专业组) 为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。 一、竞赛的性质和参赛对象 “中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。 “中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。 二、竞赛的内容 “中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。 (一)中国大学生数学竞赛(数学专业类)竞赛内容为大学本科数学专业基础课的教学内容,即,数学分析占50%,高等代数占35%,解析几何占15%,具体内容如下: Ⅰ、数学分析部分 一、集合与函数 1. 实数集 、有理数与无理数的稠密性,实数集的界与确界、确界存在性定理、闭区间套定理、聚点定理、有限覆盖定理. 2. 2 上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、2 上的闭矩形套定理、聚点定理、有限复盖定理、基本点列,以及上述概念和定理在n 上的推广. 3. 函数、映射、变换概念及其几何意义,隐函数概念,反函数与逆变换,反函数存在性定理,初等函数以及与之相关的性质. 二、极限与连续 1. 数列极限、收敛数列的基本性质(极限唯一性、有界性、保号性、不等式性质). 2. 数列收敛的条件(Cauchy 准则、迫敛性、单调有界原理、数列收敛与其子列收敛的关系),极限1lim(1)n n e n →∞+=及其应用. 3.一元函数极限的定义、函数极限的基本性质(唯一性、局部有界性、保号性、不等式 性质、迫敛性),归结原则和Cauchy 收敛准则,两个重要极限sin 10lim 1,lim(1)x x x x x x e →→∞ =+=及其应用,计算一元函数极限的各种方法,无穷小量与无穷大量、阶的比较,记号O 与o 的意义,多元函数重极限与累次极限概念、基本性质,二元函数的二重极限与累次极限的关系. 4. 函数连续与间断、一致连续性、连续函数的局部性质(局部有界性、保号性),有界闭集上连续函数的性质(有界性、最大值最小值定理、介值定理、一致连续性). 三、一元函数微分学 1.导数及其几何意义、可导与连续的关系、导数的各种计算方法,微分及其几何意义、可微与可导的关系、一阶微分形式不变性. 2.微分学基本定理:Fermat 定理,Rolle 定理,Lagrange 定理,Cauchy 定理,Taylor 公式(Peano 余项与Lagrange 余项). 3.一元微分学的应用:函数单调性的判别、极值、最大值和最小值、凸函数及其应用、

09-16大学生数学竞赛真题(非数学类)

2009年 第一届全国大学生数学竞赛预赛试卷 一、填空题(每小题5分,共20分) 1.计算=--++??y x y x x y y x D d d 1) 1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域. 2.设)(x f 是连续函数,且满足? -- =20 22d )(3)(x x f x x f , 则=)(x f ____________. 3.曲面22 22 -+=y x z 平行平面022=-+z y x 的切平面方程是__________. 4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则 =2 2d d x y ________________. 二、(5分)求极限x e nx x x x n e e e )( lim 20+++→ ,其中n 是给定的正整数. 三、(15分)设函数)(x f 连续,? = 10 d )()(t xt f x g ,且A x x f x =→) (lim ,A 为常数,求)(x g '并讨论)(x g '在0=x 处的连续性. 四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证: (1)?? -=---L x y L x y x ye y xe x ye y xe d d d d sin sin sin sin ; (2)2sin sin 2 5 d d π? ≥--L y y x ye y xe . 五、(10分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系 数线性非齐次微分方程的三个解,试求此微分方程.

全国大学生数学竞赛大纲(初稿)

中国大学生数学竞赛竞赛大纲(初稿) 为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励 大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的 目标,特制订本大纲。 For personal use only in study and research; not for commercial use 一、竞赛的性质和参赛对象 “中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校 数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。 “中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。 二、竞赛的内容 “中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。 (一)中国大学生数学竞赛(数学专业类)竞赛内容为大学本科数学专业基础课的教学 内容,即,数学分析占50%,高等代数占35%,解析几何占15%,具体内容如下: Ⅰ、数学分析部分 一、集合与函数 1. 实数集?、有理数与无理数的稠密性,实数集的界与确界、确界存在性定理、闭区 间套定理、聚点定理、有限覆盖定理. 2. 2?上的距离、邻域、聚点、界点、边界、开集、闭集、有界(无界)集、2? 上的闭矩形套定理、聚点定理、有限复盖定理、基本点列,以及上述概念和定理在n ? 上的推广. 3. 函数、映射、变换概念及其几何意义,隐函数概念,反函数与逆变换,反函数存在性 定理,初等函数以及与之相关的性质. 二、极限与连续 1. 数列极限、收敛数列的基本性质(极限唯一性、有界性、保号性、不等式性质). 2. 数列收敛的条件(Cauchy 准则、迫敛性、单调有界原理、数列收敛与其子列收敛的 关系),极限1lim(1)n n e n →∞+=及其应用. 3.一元函数极限的定义、函数极限的基本性质(唯一性、局部有界性、保号性、不等式 性质、迫敛性),归结原则和Cauchy 收敛准则,两个重要极限sin 10lim 1,lim(1)x x x x x x e →→∞=+=及其应用,计算一元函数极限的各种方法,无穷小量与无穷大量、阶的比较,记号O 与o 的 意义,多元函数重极限与累次极限概念、基本性质,二元函数的二重极限与累次极限的关系. 4. 函数连续与间断、一致连续性、连续函数的局部性质(局部有界性、保号性),有界 闭集上连续函数的性质(有界性、最大值最小值定理、介值定理、一致连续性). 三、一元函数微分学

历年全国大学生高等数学竞赛真题及答案

第一届全国大学生数学竞赛预赛试卷(非数学类) 一、填空题(每小题5分,共20分) 1.计算____________,其中区域由直线与两坐标轴所 围成三角形区域. 解 令,则,, (*) 令,则,,,, 2.设 是连续函数,且满足, 则____________. 解 令,则, , 解得。因此。 3.曲面平行平面的切平面方程是__________. 解 因平面的法向量为,而曲面在处的法向量为,故与平行,因此,由 =--++??y x y x x y y x D d d 1) 1ln()(D 1=+y x v x u y x ==+ ,v u y v x -==,v u v u y x d d d d 1110det d d =??? ? ??-=v u u v u u u y x y x x y y x D D d d 1ln ln d d 1) 1ln()(????--= --++????----=---=10 2 1 00 0d 1)ln (1ln d )d ln 1d 1ln ( u u u u u u u u u u v v u u v u u u u u ? -=1 2 d 1u u u u t -=121t u -=dt 2d t u -=42221t t u +-=)1)(1()1(2t t t u u +-=-?+--=01 42d )21(2(*)t t t ? +-=10 4 2 d )21(2t t t 1516513 2 21 053=??????+-=t t t )(x f ?--=2 2 2d )(3)(x x f x x f =)(x f ? = 2 d )(x x f A 23)(2--=A x x f A A x A x A 24)2(28d )23(2 2-=+-=--=?3 4= A 3103)(2 - =x x f 22 22 -+=y x z 022=-+z y x 022=-+z y x )1,2,2(-22 22 -+=y x z ),(00y x )1),,(),,((0000-y x z y x z y x )1),,(),,((0000-y x z y x z y x )1,2,2(-

全国大学生数学竞赛竞赛大纲

中国大学生数学竞赛(非数学专业类)竞赛大纲 一、函数、极限、连续 1.函数的概念及表示法、简单应用问题的函数关系的建立 2.函数的性质:有界性、单调性、周期性和奇偶性. 3.复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数. 4.数列极限与函数极限的定义及其性质、函数的左极限与右极限. 5.无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较. 6,极限的四则运算、极限存在的单调有界准则和夹逼准则、两个重要极限. 7.函数的连续性(含左连续与右连续)、函数间断点的类型. 8.连续函数的性质和初等函数的连续性. 9.闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理). 二、一元函数微分学 1.导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法 2.基本初等函数的导数、导数和微分的四则运算、一阶微分形式的不变性. 3.复合函数、反函数、隐函数以及参数方程所确定的函数的微分法. 4.高阶导数的概念、分段函数的二阶导数、某些简单函数的n阶导数. 5.微分中值定理,包括罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理. 6.洛必达(L'Hospital)法则与求未定式极限. 7.函数的极值、函数单调性、函数图形的凹凸性、拐.点及渐近线(水平、铅直和斜渐近线)、函数图形的描绘. 8.函数最大值和最小值及其简单应用.9.弧微分、曲率、曲率半径. 三、一元函数积分学 1.原函数和不定积分的概念. 2.不定积分的基本性质、基本积分公式. 3.定积分的概念和基本性质、定积分中值定理、变上限定积分确定的函数及其导数、牛顿-莱布尼茨(Newton-Leibniz)公式. 4.不定积分和定积分的换元积分法与分部积分法. 5.有理函数、三角函数的有理式和简单无理函数的积分 6.广义积分. 7.定积分的应用:平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力及函数的平均值. 四、多元函数微分学 1.多元函数的概念、二元函数的几何意义. 2.二元函数的极限和连续的概念、有界闭区域上多元连续函数的性质. 3.多元函数偏导数和全微分、全微分存在的必要条件和充分条件. 4.多元复合函数、隐函数的求导法. 5.二阶偏导数、方向导数和梯度. 6.空间曲线的切线和法平面、曲面的切平面和法线.

大学生数学竞赛(非数)试题及答案

大学生数学竞赛(非数学类)试卷及标准答案 考试形式: 闭卷 考试时间: 120 分钟 满分: 100 分. 20分). )cos 1(cos 1lim 0x x x x --+ →= . (2)设()f x 在2x =连续,且2 ()3 lim 2 x f x x →--存在,则(2)f = . (3)若tx x x t t f 2)1 1(lim )(+=∞→,则=')(t f . (4)已知()f x 的一个原函数为2ln x ,则()xf x dx '?= . (1) 2 1. (2) 3 . (3)t e t 2)12(+ . (4)C x x +-2 ln ln 2. ,其中 解: dxdy x y D ??-2 = dxdy y x x y D )(2 1:2 -??<+ ??≥-2 2:2 )(x y D dxdy x y -------- 2分 =dy y x dx x )(2 21 -??+dy x y dx x )(1 210 2??- -------------4分 = 30 11 -------------5分. 姓名: 身份号: 所在院 校: 级: 业: 线 封 密 注意:1.所有答题都须写在此试卷纸密封线右边,写在其它纸 上一律无效. 2.密封线左边请勿答题,密封线外不得有姓名及相关

三、(10分)设)](sin[2 x f y =,其中f 具有二阶2dx 解: )],(cos[) (222x f x f x dx dy '=---------------3分 )](sin[)]([4)](cos[)(4)](cos[)(22 222222222 2x f x f x x f x f x x f x f dx y d '-''+'=-----7分 =)]}(sin[)]([)](cos[)({4)](cos[)(22 2 2 2 2 2 2 2 x f x f x f x f x x f x f '-''+'---------10分. 四、(15分)已知 3 1 23ln 0 = -?? dx e e a x x ,求a 的值 解: )23(232123ln 0 ln 0 x a x a x x e d e dx e e --- =-??? ---------3分 令t e x =-23,所以 dt t dx e e a a x x ?? -- =-?231ln 0 2 123---------6分 =a t 231 2 33 2 21-?-------------7分 =]1)23([31 3--?-a ,-----------9分 由3123ln 0=-??dx e e a x x ,故]1)23([313--?-a =31 ,-----------12分 即3)23(a -=0-----------13分 亦即023=-a -------------14分 所以2 3 =a -------------15分.

全国大学生数学竞赛练习题(解析)

9月11日练习题(解析) 1 设()f x 在[0,1]上二阶可导,且(0)(1)f f =,求证:(0,1),ξ?∈使得 2()(1)()f f ξξξ'''=- 解 令2()(1)()F x x f x '=-,则()F x 连续,由于(0)(1)f f =,故(0,1)c ?∈,使 ()0f c '= 故(1)()0F F c ==,因此(,1)(0,1)c ξ?∈?,使 ()0F ξ'= 即 2(1)()2(1)()0f f ξξξξ'''---= 故 2()(1)()f f ξξξ'''=- 2 设()f x 在[0,1]上连续, 1 10 0()0,()1f x dx xf x dx ==? ?,考虑积分101 ()()2 x f x dx -?,证明: (1)存在[0,1]ξ∈,使()4f ξ≥ (2)存在[0,1]ξ∈,使()4f ξ= 证明(1)利用广义积分中值定理,[0,1]ξ?∈,使 1 1 00 1()()2I xf x dx f x dx =-?? 1010 1 1121021()()21 ()2 1() 2 11()221 () 4 x f x dx x f x dx f x dx f x dx x dx f ξξξ= -≤- =- ??????=-+-?? ? ???????=??? ?? 因此()4f ξ≥ (2)因为()f x 在[0,1]上连续,故()f x 在[0,1]上连续,由(1). 1[0,1]ξ?∈,使 1()4f ξ≥

根据积分中值定理,2[0,1]ξ?∈,使 1 20 ()()f x dx f ξ=? 故2()0f ξ=.因此根据介值定理,在1ξ与2ξ之间存在ξ,使 ()4[0,1]f ξξ=∈ 3(1)设(,,)u u x y z =,若0x y z xu yu zu '''++=,试证明在球坐标下u 仅为,θ?的函数; (2)设(,)z z x y =,若y x z z x y ''=,试证明z 仅为r 的函数,其中r = 证明 (1)由于 (,,)(cos sin ,sin sin ,cos )u u x y z u r r r θ?θ??== cos sin sin sin cos u u u u r x y z θ?θ??????=++???? 1()0u u u x y z r x y z ???=++=??? (2)由于 (,)(cos ,sin )z z x y z r r θθ== (sin )cos z z z r r x y θθθ???=-+??? 0z z y x x y ??=-+=?? 故z 仅为r 的函数 4 求 4 8 12 4812 15! 9! 13! 13!7!11!15! ππππππ+ + + +++++ 的值 解设分子为p ,分母为q ,则有 5 9 3 7 11 3 sin 05! 9! 3! 7! 11! p q πππππππππ-=+ + +- - - -== 故原式= 2p q π= 5 雨水从屋檐上滴入下面的一圆柱形水桶中,当下雨停止时,桶中雨水以与水深的平方根成正比的概率向桶外渗漏,如果水面高度在1h 内由开始的90cm 减少至88cm ,问需要多少时间桶内的水全部渗漏掉

相关文档
相关文档 最新文档