文档库 最新最全的文档下载
当前位置:文档库 › 万分之一电子天平不确定度评定报告[1]

万分之一电子天平不确定度评定报告[1]

万分之一电子天平不确定度评定报告[1]
万分之一电子天平不确定度评定报告[1]

电子天平测量不确定度报告

1 测量方法

依据JJF 1036-2008《电子天平计量检定规程》,天平的校准项目主要包括偏载、重复性和示值误差等

1.1偏载的测量:用标称值至少等于最大载荷1/3的砝码分别放置在天平秤盘的不同位置,记录天平相应的示值。

1.2重复性的测量:实验载荷应为单个砝码,其标称值尽量接近于天平的最大称量。在测量之前,显示器置零,测量次数至少6次。每次取下砝码后都要检测零点,必要时可将显示器重新置零。

1.3示值误差的测量:至少选择6个可以覆盖整个称量范围的载荷点(标准砝码),其中必须包括天平的最小和最大称量载荷,所有载荷都放置在秤盘的中心,计算出被测天平的示值误差。 2 测量模型

2.1偏载误差:示值误差的测量时,所有载荷都放置在秤盘的中心,故偏载误差对示值误差测量结果的影响可忽略。

2.2重复性:采用贝塞尔公式计算重复性,假设在整个称量范围其结果恒定,故在计算示值误差不确定度时,各个载荷点的重复性均为此值。 2.3示值误差

对于每一个试验载荷,示值误差的计算公式为:m

I E ref

j

j -=

I

j

:天平示值

m

ref

:标准砝码的实际值

()()()ref m j I j c m u C I u C E u 2

2222+=

1=??=

j j I I E C

1-=??=

ref

j

m m E C

相关性:各输入量之间未发现任何值得考虑的相关性 3 不确定度分量

3.1标准砝码引入的标准不确定度分量

依据JJG99-2006《砝码》规程,编号为0216的标准砝码200g 的扩展不确定度U =0.10mg ,k =2

()??

? ??=2U m u ref

=0.00005g 因此:标准砝码引起的不确定度分量为:()m u ref

=0.00005g

3.2天平显示值的标准不确定度分量

对于天平显示变动的修正,可通过下式计算

I I

I ecc rep

δδ+=

故天平显示的不确定度按正态分布计算如下:

()()()I u I u u ecc rep I δδ2

22

+=

3.2.1 天平重复性引起的不确定度分量()

rep I u δ

()()I s I

u rep

=δ=

()

()

11

2

--∑=n n I

I

n

i i

=0.00001g

3.2.2分度值引起的不确定度分量d u

假设其为均匀分布,得到d u =0.00006g

因为d u >()

rep I u δ,所以合成不确定度选取d u 作为其中一个分量。 3.2.3 偏载引起的不确定度分量()ecc I u

δ

此项误差为试验载荷的重心偏离了秤盘的中心位置引起的误差,在测量时,单个载荷可放在秤盘的中心,多个载荷可通过叠放的形式放于秤盘的中心,故偏载误差对示值误差测量结果的影响可忽略不计。

天平200g 显示值的合成标准不确定度为

()()I u u I u ecc

d

δ2

2

+==0.00006g

4 不确定度概算 不确定度分量汇总表

4.1合成标准不确定度

()u

u E u j

c

2

2

2

1

+=4.2扩展不确定度U

取包含因子k =2,则扩展不确定度为

U (E )=k ×u c (E j )=2×0.00008=0.00016g (k =2) 5结果报告

200g 被校电子天平的示值误差为 E j =0.0001g 扩展不确定度为

U (E j )=0.00016g (k =2)

测量不确定度评定报告

测量不确定度评定报告1、评定目的识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 、评定依据2CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 、测量不确定度评定流程3 测量不确定度评定总流程见图一。

概述 建立数学模型,确定被测量Y与输入量 测量不确定度来源 标准不确定度分量评 B类评定评类A 计算合成标准不确定 评定扩展不确定 编制不确定度报告 图一测量不确定度评定总流程 测量不确定度评定方法、4建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影响量(输入量)X,X,…,X间的函数关系f来确定,即:N21 Y=f(X,X,…,X)N12建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x=c称为灵敏系数。有时灵敏系数c可由实验测定,iii即通过变化第i个输入量x,而保持其余输入量不变,从而测定Y的变化i量。

不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); 、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性f 等)的局限性; 、赋予计量标准的值或标准物质的值不准确;g 、引入的数据和其它参量的不确定度;h 、与测量方法和测量程序有关的近似性和假定性;i 、在表面上完全相同的条件下被测量在重复观测中的变化。j 标准不确定度分量评定 对观测列进行统计分析所作的评估--4.3.1 A 类评定 , x进行n次独立的等精度测量,得到的测量结果为:a对输入量XI 1为xx,…x。算术平均值n2 n1 ∑xx = in n i=1 由贝塞尔公式计算:s(x单次测量的实验标准差)i 1 n ∑ i—i 2 ( xx )S(x)= n-1 i=1

落锤式冲击试验机测量不确定度评定

落锤式冲击试验机校准结果得测量不确定度评定 一、概述 1、检定依据 JJG1445-2014《落锤式冲击试验机校准规范》。 2、检定环境 温度(10~35)℃, 3、测量标准 a)电子天平,TC30KH,最大允许误差不超过±1g, b)钢卷尺,5m,最大允许误差不超过±1mm, c)速度测量装置,(1~10)m/s,最大允许误差不超过±0、5%。 4、被检对象 非金属落锤式冲击试验机。 5、校准方法 5、1在规定条件下,用电子天平直接测量落锤质量,重复测量3次,取3次测量得算术平均值作为落锤质量m ; 5、2在规定条件下,用钢卷尺直接测量跌落高度,重复测量3次,取3次测量得算术平均值作为跌落高度h ; 5、3在规定条件下,用速度测量装置测量落锤接近冲击点时得冲击速度,重复测量3次,取3次测量得算术平均值作为落锤冲击速度v 。6.评定结果得使用 符合上述条件得测量结果,一般可参照使用本不确定度得评定方法。 二、数学模型 依据上面得测量方法,得到如下数学模型: 1.落锤质量 n m m n i i ∑== 1 2.跌落高度 n h h n i i ∑==1 3.落锤冲击速度 n v v n i i ∑==1 4.能量损失

h g v 212 -=η 三、标准不确定度分量得计算 1、落锤质量m 得标准不确定度分量)(m u 评定 )(m u 得标准不确定度主要来源于两个方面,其一就是电子天平不准确引入得不确定度分量u δm ,其二就是落锤质量测量重复性引入得不确定度分量u Rm 。1、1由电子天平不准确引入得不确定度分量u δm ; 采用B 类方法评定,已知电子天平得最大允许误差为±1、0g,故半宽为1、0g,服从均匀分布,包含因子3=k ;因此:u δm =3 0.1g =0、58g 1、2落锤质量测量重复性引入得不确定度分量u Rm ; 采用A 类方法进行评定,用电子天平在重复性条件下,对一3kg 落锤连续进行3次测量,得到实测值得测量列:测得值为3000g,3001g,3002g,极差 R =(3002-3000)g=2g,估计服从正态分布,则单次测量结果得实验标准差s :s ==C R 2/1、69=1、2g 实际测量中测量3次,因此u Rm ===3 s 0、69g 1、3合成标准不确定度)(m u c 得评定 )(m u c =22Rm m u u +δ=0、9g 2、跌落高度h 得标准不确定度分量)(h u 评定 )(h u 得标准不确定度主要来源于两个方面,其一就是钢卷尺不准确引入得不确定度分量u δh ,其二就是跌落高度测量重复性引入得不确定度分量u Rh 。2、1由钢卷尺不准确引入得不确定度分量u δh ; 采用B 类方法评定,已知钢卷尺得最大允许误差为±1、0mm,故半宽为1、0mm,服从均匀分布,包含因子3=k ;因此:u δh =3 0.1mm =0、58mm 1、2钢卷尺测量重复性引入得不确定度分量u Rh ;

测量不确定度评定报告

测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。 图一测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影

响量(输入量)X 1,X 2 ,…,X N 间的函数关系f来确定,即: Y=f(X 1,X 2 ,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由实验测定,即通 过变化第i个输入量x i ,而保持其余输入量不变,从而测定Y的变化量。 4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); f、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性等)的 局限性; g、赋予计量标准的值或标准物质的值不准确; h、引入的数据和其它参量的不确定度; i、与测量方法和测量程序有关的近似性和假定性; j、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a对输入量X I 进行n次独立的等精度测量,得到的测量结果为: x 1,x 2 , (x) n 。 算术平均值x为 1 n x n= ∑x i n i=1 单次测量的实验标准差s(x i )由贝塞尔公式计算: 1 n S(x i )= ∑ ( x i — x )2 n-1 i=1

不确定度评估

测量不确定度评估报告

测量不确定度的评估 1. 概述 测量依据 计量标准 表1 计量标准器和配套设备 被测对象 测量方法 见检定规程。 2. 分辨力带宽测量结果不确定度的评估 2.1. 数学模型 1234D D D D D =+++ 式中: D ——频谱分析仪分辨力带宽误差; 1D ——信号发生器频率稳定性引入的误差; 2D ——信号发生器频率分辨力引入的误差; 3D ——3dB 衰减器不准引入的误差; 4D ——重复性引入的误差。

2.2. 不确定度传播率 4 4 222c 1 1 ()()i i i i u D u D u ====∑∑ 式中:灵敏系数/1i i c D D =??=。 2.3. 标准不确定度评定 2.3.1. 信号发生器频率稳定性引入的相对标准不确定度 信号发生器稳定度为11110-?,服从均匀分布,包含因子3=k ,用 B 类不确定度评定方法,其标准不确定度611 1a u k -== 2.3.2. 信号发生器频率分辨力引入的相对标准不确定度 分辨力服从均匀分布,包含因子k =用B 类不确定度评定方法,

其相对标准不确定度 2a u k ==读数分辨力

2.3.3. 3dB 不准引入的相对标准不确定度 衰减器RSP3dB 衰减值上级量传不确定度为0.025dB U = 1.96k =,可认为衰减器衰减值修正后的最大允许误差为±0.025dB 。该 误差引起的频率读数误差服从均匀分布,包含因子k =用B 类不 确定度评定方法,其相对标准不确定度3a u k ==读数误差 2.3.4. 重复性引入的相对标准不确定度

不确定度评定

不确定度评定 重量法测定水中溶解性总固体结果不确定度评定 1 概述测量不确定度在实验室数据比对、结果临界值的判断、方法确定以及实验室质控方面具有重要意义。ISO/IEC17025中要求检测实验室应具有评价测量不确定度的程序。本文对水中溶解性总固体测量结果不确定度进行评定。 2 测量过程及主要设备 2.1 检测过程:依据GB/T 5750.4-2006,8.1~水样经过滤后~在105?烘干~所得的固体残渣即为溶解性总固体。 平行测量8份水样~计算得平均值为258.1mg/L~100ml溶解性总固体为 0.02581g~标准差为0.0011g。 2.2 仪器设备:BS124S电子天平 3 数学模型 mm,21TDS,,,10001000 V 式中:m1——蒸发皿的质量~g m2——蒸发皿与溶解性总固体的质量~g V——水样体积~ml 4 不确定度的来源分析 4.1 ,m-m,引起的相对标准不确定度分量 u 21,m, 4.2 取样量V引起的相对标准不确定度分量u(V) 5 不确定度的评定 5.1 ,m-m,引起的不确定度分量 u 21,m, 5.1.1 称量产生的不确定度u ,m1,

(1) 天平校准产生的不确定度u 1 型号为BS124S电子分析天平~校准产生的不确定度由计量证书 给出~扩展不确定度为0.3mg~包含因子k=2。 u=0.0003/2=0.00015g 1 ,2, 天平的分辨率产生的不确定度u 2 天平的分辨率为0.1mg~我们可以取其为均匀分布的不确定度,真值读数可能在0.01mg或0.09mg之间~即0.05mg~其不确定度 u=0.00005/=0.000029g 33 ,3, 恒重产生的不确定度u 3 GB/T 5750.4-2006规定两次称重相差不得大于0.4mg~按均匀分布计算得 u=0.0004/=0.00023g 34 222以上三项合成 uuuug,,,=0.00028123m1,, 5.1.2 样品重复测量产生的不确定度u ,m2, 100ml水样重复测量得溶解性总固体为0.0258g~标准差为 0.00110.0011g。标准不确定度ug,, 0.00039m2,,8 5.2 ,m-m,引起的合成不确定度分量 u 21,m, 22uuug,, =0.00048m(2)(m1)m,, 6.1 吸取水样产生的不确定度u ,v, 用无刻度吸管吸取100ml水样测定~最佳测量能力为0.071ml~k=2~不确定度u=0.071/2=0.036ml。 ,v, 100ml溶解性总固体为0.0258g~那么u=0.0000093g ,v, 7 合成标准不确定度评定 由于各分项的不确定度来源彼此独立不相关~故该方法的标准不 22uuug,,确定度为:=0.00048 v()c(m)

CNAS-CL07 测量不确定度评估和报告通用要求

CNAS—CL07 测量不确定度评估和报告通用要求General Requirements for Evaluating and Reporting Measurement Uncertainty 中国合格评定国家认可委员会

测量不确定度评估和报告通用要求 1.前言 1.1中国合格评定国家认可委员会(英文缩写:CNAS)充分考虑目前国际上与合格评定相关的各方对测量不确定度的关注,以及测量不确定度对测量、试验结果的可信性、可比性和可接受性的影响,特别是这种影响和关注可能会造成消费者、工业界、政府和市场对合格评定活动提出更高的要求。因此,CNAS在认可体系的运行中给予测量不确定度评估以足够的重视,以满足客户、消费者和其他各有关方的期望和需求。 1.2CNAS在测量不确定度评估和应用要求方面将始终遵循国际规范的相关要求,与国际相关组织的要求保持一致,并在国际规范和有关行业制定的相关导则框架内制订具体的测量不确定度要求。 2.适用范围 本文件适用于CNAS对校准和检测实验室的认可活动。同时也适用于其它涉及校准和检测活动的申请人和获准认可机构。 3.引用文件 下列文件中的条款通过引用而成为本文件的条款。以下引用的文件,注明日期的,仅引用的版本适用;未注明日期的,引用文件的最新版本(包括任何修订)适用。 3.1Guide to the expression of uncertainty in measurement(GUM).BIPM,IEC, IFCC,ISO,IUPAC,IUPAP,OIML,lst edition,1995.《测量不确定度表示指南》3.2International Vocabulary of Basic and General Terms in Metrology(VIM). BIPM,IEC,IFCC,ISO,IUPAC,IUPAP,OIML,2nd edition,1993.《国际通用计量学基本术语》 3.3JJF1001-1998《通用计量术语和定义》 3.4JJF1059-1999《测量不确定度评定和表示》

电子天平检定或校准结果的测量不确定度评定

1、测量依据:JJG 1036-2008《电子天平》检定规程。 1.1环境条件:温度(18~26)℃,温度波动不大于0.5℃∕h ,相对温度不大于(30%~70%)RH 1.2测量标准:F 1等级标准砝码,JJG 99-2006 《砝码》检定规程中给出其200g 砝码扩展不确定度不大于0.3㎎,包含因子k=2 1.3被测对象: 200g/ 1㎎电子天平。量程(0.020~50)g ,最大允许误差为±5㎎;量程(50~200)g ,最大允许误差为±10㎎.一般情况下,校准天平的空载、最小称量点、最大允许误差转换点对应载荷、最大称量点以及大致均匀分布点。 1.4测量方法:采用标准砝码直接来测量天平的示值,可得标准砝码与电子天平实际值之差,即为电子天平的示值误差。 1.5评定结果的使用:在符号上述条件下的测量结果,一般可直接使用本不确定度的评定结果。 2、数学模型:s m m m -=? 式中: △m —电子天平示值误差 m —电子天平示值 m s —标准砝码折算质量值 3、输入量的标准不确定度评定

第2页 共4页 ZY/CSZX JD BD 09-2015电子天平检定结果的测量不确定度分析作业指导书 作业指导书 评定方法以200g 天平最大称量点为例,其它称量点的示值误差测量结果的不确定度可参照本方法进行评定。 3.1 输入量m s 的标准不确定度u (ms )的评定 标准砝码输入量m s 的标准不确定度u (ms )采用A 类和B 类方法进行评定。 根据JJG 99-2006 《砝码》检定规程中所给出,F 1等级标准砝码200g 的扩展不确定度为0.3㎎,包含因子k=2 标准不确定度 ()mg mg u ms 15.023.0== ' 3.2 标准砝码质量的不稳定性引起的不确定度,采用A 类评定 对一稳定的电子天平在半年内六次测得值为(单位为g ) 200.002g 200.003g 200.002g 200.003g 200.003g 200.003g ()mg g n x x u n i i ms nst i 52.000052.0)1()(1 2 ==--= ∑= 因此()mg u u u ms nst i ms ms 54.0)(2 2 )(=+'= 3.3 输入量m 的标准不确定度u(m)的评定 输入量m 的标准不确定度来源于天平的测量重复性,可以用同一砝码,通过连续测量得到测量列,采用A 类方法进行评定。以200g 为天平最大称量点,在重复性条件下连续测量10次,得到的测量列为:199.999g 199.998g 199.999g 199.998g 199.999g 200.000g 199.999g 200.000g 199.999g 199.998g

温度示值误差不确定度评定报告

1. 测试方法 按照JJF1101-2019 环境试验设备温度、湿度参数校准规范要求,被测温设备设置温度20℃,开启运行,被测设备达到设定值并稳定后开始记录设备温度及各布点温度,记录时间间隔为2min ,30min 内共记录16组数据。计算各温度测试点30min 内测量的最高温度与设定温度的差值,即为温度上偏差,各测点30min 内测量的最低温度与设定温度的差值,即为温度下偏差。 2. 测量模型 2.1. 温度上偏差公式 s t t t -=?max max 式中, max t ?—— 温度上偏差,℃; max t —— 各测点规定时间内测量的最高温度,℃; s t —— 设备设定温度,℃。 由于上偏差与下偏差不确定度来源和数值相同,本文仅以温度上偏差为例进行不确定度评定。 3. 标准不确定度分量 不确定度来源:被校对象测量重复性引入的标准不确定度,标准器分辨力引入的标准不确定度分量,标准器修正值引入的标准不确定度分量,标准器的稳定性引入的标准不确定度分量。 3.1. 测量重复性引入的标准不确定度分量1u 使用温度巡检仪对被测对象20℃温度点重复测定10次,测量结果如下: 3.2. 标准器分辨力引入的标准不确定度分量2u 标准器的温度分辨力为0.01℃,区间半宽度为0.005℃,服从均匀分布,取包含因子

3=k ,则℃003.03005 .02==u 3.3. 标准器修正值引入的标准不确定度分量3u 标准器温度修正值的标准不确定度204.0==k U ℃,,则℃02.03== k U u 3.4. 标准器稳定性引入的标准不确定度4u 本标准器相邻两次校准温度修正值最大变化±0.10℃,按均匀分布,取包含因子3=k ,则℃06.0310 .04==u 4. 标准不确定度汇总表 标准不确定度分量汇总表 5. 合成标准不确定度 由于12u u <,则分辨力引入的不确定度包含于测量重复性引入的标准不确定度,不计入合成标准不确定度分量中,1u 、3u 、4u 相互独立,则 ℃08.0242321=++=u u u u c 6. 扩展不确定度 取包含因子3=k ,则 温度上偏差校准不确定度:℃16.0==c ku U ; 7. 不确定度报告 校准温度℃20=t 时,温度上偏差校准不确定度:)℃(216.0==k U

盲样测量不确定度评定报告

盲样测量不确定度评定报告 1、概述 1.1 测量依据 JJG119-2005《实验室(酸度)计检定规程》 1.2 环境条件: 温度(23±3)℃;相对湿度≤85%RH 1.3 测量标准: pH 标准缓冲溶液,中国计量测试技术研究院提供;酸度计:型号:pHS-3E ; 编号:600709040019;制造厂:上海精密科学仪器有限公司;量程:(0.00~14.00)pH;分辨率:0.01pH;电极编号:05598709J 1.4 被测对象:盲样(新疆维吾尔自治区计量测试研究院提供) 1.5 测量过程: 选用JJG119-2005《实验室(酸度)计检定规程》附录A 表1中规定的一种(或多种)标准溶液,在规定温度的重复性条件下,对pHS-3E 型酸度计进行校准后,测量盲样溶液,重复校准和测量操作6次,6次测量结果的平均值即为盲样的pH 值。 2、数学模型 y=x 3、输入量引入的标准不确定度 3.1测量重复性引入的标准不确定度分量u 1 按照贝塞尔公式计算单次测量的实验标准差: () 1 1 2 --= ∑=n pH pH s n i i (n=6) 平均值的实验标准差: u 1= 6

盲样检测 3.2酸度计引入的不确定度分量u2 用性能已知的pH(酸度)计,对未知pH值的盲样(酸度计溶液标准物质)进行测量。 选用JJG119-2005《实验室(酸度)计检定规程》参照酸度计使用说明书中校准点对传递的酸度计进行校准,用校准过的酸度计对盲样(酸度计溶液标准物质)进行测定6次,得出测量重复性引入的标准不确定度分量u 1 。结合酸度 计引入的不确定度分量u 2和盲样引入的标准不确定度分量u 3 得到合成标准不确 定度,扩展不确定度。

综合不确定度分析

电子天平测量结果不确定度评定报告 1 概述 1.1 测量依据:JJG 1036-2008《电子天平检定规程》(电子天平部分); 1.2 测量标准:E2级标准砝码装置,出厂编号968,根据JJG 99-2006《砝码检定规程》中给出100g砝码的扩展不确定度不大于0.053mg,包含因子k=2; 1.3 环境条件:温度23℃,相对湿度31 %; 1.4 测量对象:电子天平100g/0.1mg,型号AB104-S,出厂编号1128422995; 1.5 测量过程:检定方法属直接测量法,标准砝码与电子天平示值之差为电子天平示值误差。 2 不确定度来源分析 2.1 输入量m的标准不确定度u(m),包括: 2.1.1 被检天平测量重复性的标准不确定度u1(m); 2.1.2 电子天平的分辨力引入的标准不确定度u2(m); 2.1.3 由温度不稳定及振动等引入的标准不确定度u3(m); 2.2 由标准砝码本身的误差引入的标准不确定度u(m B)。 3 数学模型 Δm = m —m B 式中: Δm——电子天平示值误差; m——电子天平示值; m B——标准砝码值。 但实际上考虑电子天平的示值与上述不确定度来源中的被检天平的测量重复性、电子天平的分辨力及环境温度的不稳定和振动等影响因素有关,故在测量不确定度评定中必须考虑这三个附加因素的影响,考虑到上述不确定度来源,于是数学模型成为: Δm = m ×f重复性×f分辨力×f温度、振动—m B

4 输入量的标准不确定度评定 4.1 输入量m的标准不确定度分量u(m)的评定 4.1.1 重复性测量 被检天平测量重复性的标准不确定度u1(m),可以通过连续测量得到测量列,采用A类方法评定: 以100g为天平最大称量点,进行n=10次重复测量,测得结果如表1所示。 表1 测量数列 次数12345 实测值(g)100.0004100.0004100.0003100.0004100.0003次数678910 实测值(g)100.0004100.0002100.0003100.0004100.0004 其平均值为:100.0004 g 可用贝塞尔公式计算得:u1(m) = s(x i)= 0. 071mg 自由度:υ(m1) =(n-1)= 9 4.1.2 分辨力 电子天平的分辨力引入的不确定度u2(m) ,我们采用标准不确定度的B类评定方法,我们所采用的天平的分辨力为0.1mg,根据经验,数字式测量仪器的分辨力导致的不确定度一般可以近似地估计为矩形分布(均匀分布),矩形分布k取3, 所以有u2(m)=a/k= 0.05÷3= 0.03 mg 自由度为υ(m 2) = ∞ 4.1.3温度不稳定及振动等引起示值不确定度u3 (m),由于实验室在采用砝码校准的过程中完全采用计量标准规定的方法要求,环境温度的控制、周围振动等影响在此予以忽略。 电子天平示值合成标准不确定度u c(m) 由于没有任何输入量具有值得考虑的相关性,因此 u2 (m) = u12(m)+u22(m) +u32(m) u (m)= √u12 (m)+u22 (m) +u32 (m) = 0.078 mg 4.2 标准砝码误差引入的不确定度量分量u(m B)的评定 该不确定度分量主要由检定装置的误差引起,采用B类评定方法: 由JJG 99-2006《砝码检定规程》可知100g砝码的扩展不确定度不大于 0.053mg,包含因子k = 2 则:标准不确定度u(m B) = 0.053mg ÷2 = 0.027mg/3=0.016mg 5 合成标准不确定度的评定 5.1数学模型Δm = m×f重复性×f分辨力×f温度、振动—m B 灵敏系数为:

钢卷尺测量不确定度评定报告

钢卷尺测量不确定度评定报告 1测量方法及数学模型 1.1测量依据:依据JJG4-1999《钢卷尺检定规程》 钢卷尺的示值误差:△L=L a-L s+L a*αa*Δt-L s*αs*Δt 式中:L a——被检钢卷尺的长度; L s——标准钢卷尺的长度; αa——被检钢卷尺的膨胀系数; αs——标准钢卷尺的膨胀系数; Δt——被检钢卷尺和标准钢卷尺对参考温度20℃的偏离值。 由于L a-L s很小,则数学模型: △L= L a-L s +L s*△α*Δt 式中:△α——被检钢卷尺和标准钢卷尺的膨胀系数差 1.2方差及传播系数的确定 对以上数学模型各分量求偏导: 得出:c(L a)=1;c(L s)= -1+△α*Δt≈-1;c(△α)= L s*Δt;c(Δt)= L s*△α≈0 则:u c2 =u2(△L)=u2(L s)+ u2(L a) + (L s*Δt )2u2(△α) 2计算分量标准不确定度 2.1标准钢卷尺给出的不确定度u (L s) (1)由标准钢卷尺的测量不确定度给出的分量u (L s1) 根据规程JJG741—2005《标准钢卷尺》,标准钢卷尺的测量不确定度为: U=0.02mm其为正态分布,覆盖因子k=3,自由度v=∞,故其标准不确定度: u (L s1)= 0.02∕3 =0.007 (2)由年稳定度给出的不确定度分量u (L s2) 根据几年的观测,本钢卷尺年变动量不超过0.05mm,认为是均匀分布,则:L a≤5m:u (L s2)=0.05∕31/2 =0.029mm 估计u (L s2)的不可靠性为10%,则自由度v=1/2×(0.1)-2=50 (3)由拉力偏差给出的不确定度分量u (L s3) 由拉力引起的偏差为:△=L×103×△p/(9.8×E×F)

低温测量不确定度评估报告

低温测量不确定度评定报告 报告编号:201403 1. 测量方法 1.1)按图1所示的线路连接样品; 试验供电电源:220V ±5%~, 50Hz ±1%,电路导线横截面积:1.0mm2。 1.2) 样品放置在试验箱外,将样品感温探头放入试验箱中,进入试验箱的毛细管长度应大于150mm ; 1.3)接通电路,开启试验箱,从常温开始降温,观察指示灯状态,至指示灯熄灭,记录试验起始和结束时间、试验起始温度和指示灯熄灭瞬间样品的动作温度。 2. 数学模型 n x t t = 式中,x t 为样品在低温箱中的实际温度,n t 为低温箱温度显示仪表的相应读数。 3. 不确定度来源 3.1 通过分析识别出影响结果的因素有测量重复性,人员的读数,温度试验箱的偏差,温度试验箱 内的时间波动度与空间均匀性,降温速率,环境温度湿度的影响,电源电压的波动,读数的时延等等。 3.2 不确定度分量的分析评估 温度试验箱的特性对本次测量结果有较大的影响,如箱体的精度,偏差,波动度,均匀性等。 温度箱内的温度在持续变化,可能造成温度箱内的温度与实际动作温度不完全一致,因此需考虑降温速率所引入的不确定度。 图1

由于在温度箱内进行试验,因此,环境温湿度对结果的影响也较小,基本忽略。 电源电压的波动通过稳压源控制电压参数的可变性,从而使得影响程度最小化。 读数的时延,我们通过选择熟练的操作人员的操作而减小其影响。人员的读数影响较小,可忽略。 综上所述,不确定度分量如下: A 类评定:1. 重复性条件下重复测量引入的标准不确定度分量1u . B 类评定:2. 低温箱的校准(温度偏差)引入的标准不确定度分量2u 3. 低温箱的最大偏差引入的标准不确定度分量 3u 4. 温度变化速率(温度波动度)引入的标准不确定度分量4u 5. 温度均匀度引入的标准不确定度分量 5u 4. 不确定度分量评定 4.1 1u 的计算 (测量重复性) 将样品在重复性条件下重复测量4次指示灯熄灭时的瞬间温度,测的数据列表如下: () () C 4349.01u 10 1 2 1?=--= ∑=n t t i i 4.2 2u 的计算 (温湿度箱的校准) 由校准证书给出扩展不确定度为0.3 °C ,K=2,则标准不确定度为: 15.023 .02== u 4.3 3u 的计算 (温湿度箱的最大偏差) 校准证书显示温度箱在-30°C ~70°C 的最大偏差为0.45°C ,服从均匀分布,3=k ,则 2598 .03 45.03== u 4.4 4u 的计算 (温度变化速率,即温度波动度) 温度箱的降温速率为1K/min ,在到达温控器响应的温度时,温度箱内的温度在持续变化,可能造成温度箱内的温度与实际动作温度不完全一致。由校准证书给出温度箱的波动度为±0.23°C , ° C °C

电子天平不确定度(例)(完成)

吉林省国绘仪器测试有限公司 文件编号:GHT/ZYB-0036 作业指导书 页 码: 第 1页 共 7页 第1版 第1次 修订 标 题 电子天平示值误差 测量结果CMC 不确定度评定 批 准 人 实施日期 2016年 11月06日 电子天平示值误差测量结果CMC 不确定度评定 1.概述 1.1测量依据:JJG1036-2008电子天平检定规程。 1.2环境条件:环境温度(15~25)℃,1 h 内温差不超过1℃,相对湿度35%~80% 电源等其它因素对电子天平的影响可以忽略不计。 1.3测量标准:相应准确度等级的标准砝码 1.4测量对象:电子天平。 1.5测量过程:在规定的环境条件下,按JJG1036-2008电子天平检定规程,将采用相应准确度等级质量的标准砝码,放在电子天平上,通过电子天平的显示值与砝码的实际值之间的差值,可得到在相应秤量点上的示值误差。 2.数学模型 根据示值误差定义,电子天平的示值误差m ?为 s m m m -=? 式中:m ?——电子天平示值误差; m ——电子天平显示值; s m ——标准砝码的标称值。 3.灵敏系数 ()()()s c m u C m u C m u 22 2 2212?+?=? 灵敏系数 : 1C 1=???= m m ; 1C 2-=???=s m m ; 4.各输入量的标准不确定评定 以下分析过程以最大秤量200 g ○Ⅰ级电子天平(e =1mg)为例测量点选择10 mg 、10 g 、20 g 、

50 g 、200 g 这五点展开。 4.1输入量m 的标准不确定度a u 来源主要是电子天平测量的重复性,用10次重复测量得到的一组数据,用贝塞尔公式采用A 类评定方法评定。 1)测量点10 mg : 单次实验标准差: 00.01 2 1=-??? ? ?-=∑=- n m m s n k i i mg 2)测量点10 g : 单次实验标准差: 00.01 2 1=-??? ? ?-=∑=- n m m s n k i i mg 3)测量点20 g : 单次实验标准差: 03.01 2 1=-? ?? ? ?-=∑=- n m m s n k i i mg 4)测量点50 g : 单次实验标准差:

测量不确定度评定报告(完整资料).doc

此文档下载后即可编辑 测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。

图一 测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y (输出量)与影响量(输入量)X 1,X 2,…,X N 间的函数关系f 来确定,即: Y=f (X 1,X 2,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由 实验测定,即通过变化第i 个输入量x i ,而保持其余输入量不变,从而测定Y 的变化量。

4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a 、对被测量的定义不完整; b 、复现被测量定义的方法不理想; c 、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d 、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e 、对模拟式仪器的读数存在人为偏差(偏移); f 、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区 及稳定性等)的局限性; g 、赋予计量标准的值或标准物质的值不准确; h 、引入的数据和其它参量的不确定度; i 、与测量方法和测量程序有关的近似性和假定性; j 、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a 对输入量XI 进行n 次独立的等精度测量,得到的测量结果为: x 1,x 2,…x n 。算术平均值x 为 1 n x n = ∑x i

电子天平最大允许误差测量结果不确定度评定

电子天平最大允许误差测量结果的不确定度评定 一、概述 用M1等级标准砝码检定电子汽车衡,以确定被检电子汽车衡的扩展不确定度。 1 测量依据:JJG539-1997《数字指示秤检定规程》。 2 测量标准:M1等级标准砝码。 3 被测对象:210g/0.1mg电子天平。出厂编号:1203300339 4 测量过程:采用标准砝码直接来测量电子汽车衡的示值,可得标准砝码与电子汽车衡实际值之差,即为电子汽车衡的示值误差。 二、数学模型 E=P-m 式中:△m —电子天平示值误差; m —电子天平示值; m s—标准砝码值。 三、测量误差来源: 1、测量重复性引起的不确定度u(m)(A类) 2、衡量仪器的引起的不确定度u ba(B类) 3、标准砝码引起的不确定度u(m cr)(B类) 四、标准不确定度分量的评定: 1、测量重复性引起的不确定度分量u(m)(A类) 用 E2等级克组标准砝码在电子天平200g点处,在重复性条件下连

续测量10次得一组数据:199.9995 g ,199.9996 g ,199.9996 g ,199.9996 g ,199.9995 g ,199.9995 g ,199.9996 g ,199.9997 g ,199.9996 g ,199.9997g 。 ∑== n i i m n m 1 1 =199.99959(g ) 单次实验标准差() mg n m m s n i i 074.01 2 1 =--= ∑= 则s(m)= 0.067mg ,输入量m 的标准不确定度为 u (m )=s(m)=0.074mg 2、衡量仪器的引起的不确定度分量u ba :(B 类) 2.1偏载引起的不确定度: U E =mg 0096.03 21 .03 1 =? ? 2.2鉴别力引起的不确定度: U d = mg 029.03 2 /1.0= 2.3灵敏度引起的不确定度:假设天平在不同载荷下的重复性相同。此灵敏度引起的不确定度分量可忽略不计。 合成以上三个不确定度分量为示值有关的不确定度分量为: mg mg u u u d E ba 031.0029 .00096 .02 2 2 2 =++= 3、标准砝码的不确定度u (m cr )分量:。 3.1根据JJG99-2006《砝码检定规程》中所给出,E 2等级标准砝码200g 的扩展不确定度不大于0.1mg ,包含因子κ=2。标准砝码的标准不确定度为: u(m s )= mg mg 050.03 1.0= 3.2标准砝码稳定性的不确定度u inst (m cr )(B 类) 由于标准砝码的检定没有超过五个周期,于是,我们采用极差法按均匀分布处理这一分量,上级检定部门的两次数据为:200.00018g 、200.00003g u inst (m cr )= mg m m cr cr 043.03 200003 .20000018.2003 2min max =? -= ? - 合成以上两项的不确定度分量为标准砝码引起的不确定度为:

6测量不确定度评定方法.doc

测量不确定度的评定方法 1适用范围 本方法适用于对产品或参数进行检测时,所得检测结果的测量不 确定度的评 定与表示。 2编制依据 JJF 1059 —1999测量不确定度评定与表示 3评定步骤 3.1概述:对受检测的产品或参数、检测原理及方法、检测用仪器 设备、检测时的环境条件、本测量不确定度评定报告的使用作一简要的描述; 3.2建立用于评定的数学模型; 3.3根据所建立的数学模型,确定各不确定度分量(即数学模型中 的各输入量)的来源; 3.4分析、计算各输入量的标准不确定度及其自由度; 3.5计算合成不确定度及其有效自由度; 3.6计算扩展不确定度; 3.7给出测量不确定度评定报告。 4评定方法 4.1数学模型的建立 数学模型是指被测量(被检测参数)Y 与各输入量 X i之间的函数

关系,若被测量 Y 的测量结果为 y,输入量的估计值为x i,则数学模型为 y f x1 , x2 ,......, x n。 数学模型中应包括对测量结果及其不确定度由影响的所有输入 量,输入量一般有以下二种: ⑴ 当前直接测定的值。它们的值可得自单一观测、重复观测、 依据经验信息的估计,并包含测量仪器读数修正值,以及对周围温度、大气压、湿度等影响的修正值。 ⑵ 外部来源引入的量。如已校准的测量标准、有证标准物质、 由手册所得的参考数据。 4.2测量不确定度来源的确定 根据数学模型,列出对被测量有明显影响的测量不确定度来源,并要做到不遗漏、不重复。如果所给出的测量结果是经过修正后的结果,注意应考虑由修正值所引入的标准不确定度分量。如果某一标准不确定度分量对合成不确定度的贡献较小,则其分量可以忽略不计。 测量中可能导致不确定度的来源一般有: ⑴被测量的定义不完整; ⑵复现被测量的测量方法不理想; ⑶取样的代表性不够,即被测样本不能代表所定义的被测量; ⑷对测量过程受环境影响的认识不恰如其分或对环境的测量 与控制不完善; ⑸对模拟式仪器的读数存在人为偏移;

菌落总数测定结果不确定度评估报告

废水菌落总数测定结果不确定度评估 1. 实验前准备 1.1 设备:恒温培养箱、无菌吸管10ml(具0.1ml刻度)、微量移液器、无菌锥形瓶、无菌培养皿 1.2 培养基及试剂:平板计数琼脂、无菌生理盐水 1.3 因浓缩苹果清汁中一般菌落不容易生长,故用废水作为样品检测。 2. 检测依据及步骤 2.1依据:GB4789.2—2010《食品卫生微生物学检验菌落总数测定》 2.2步骤:定量吸取废水,制备成15份均匀的检测样品,每份样品做两个平行样。 ↓ ↓ ↓ ↓ ↓ 3. 不确定度来源分析 检测步骤主要包括样品的吸取、稀释(移液器)、培养、计数、及结果修约等,由于结果发散性较大的特点,在本次实验中,我们只对样品吸取、重复测定结果的不确定度进行量化分析。

3.1 样品吸取过程中使用刻度吸管体积的相对标准不确定度u rel (V ) 3.1.1 吸管体积校准引入的标准不确定度u (V ) 在吸取样品的过程中均使用经检定合格的10ml 刻度吸管,其允许误差为±0.05ml ,故10ml 吸管体积校准引起的不确定度按矩形分布(k=3)为: u 1(V )= 3 05.0=0.029ml 则样品吸取过程中使用刻度吸管体积的相对标准不确定度: u rel (V )= () V V u = 10 029.0=0.0029ml 3.2 重复测定结果的标准不确定度 菌落总数测定结果不确定度评定 3.2.1 对测定结果X 1、X 2分别取对数,得到lg X 1和lg X 2 3.2.2 每一个样品的残差(在重复性条件下得出n 个观测结果X k 与n 次独立观测结果的算术 平均值X 的差)平方和:() 2 2 1 lg lg ∑=-i i X X 式中:i X lg —每一个样品测定结果的对数值;

电子天平不确定度

天平测量不确定度的评估 1. 测量过程 采用Sartorius BT224S 直接测量样品质量,使用天平时,先对天平进行归零,再进行测量。 2. 测量公式 因为电子天平对待测物进行直接测量,所以: M =m 3. 不确定度来源 天平准确度MPE 测量重复性 数字天平的量化误差 回零点的不确定度 由于是在空调房及人员经过培训,所以人员及环境差异等引起的不确定度可忽略 4. 计算分量不确定度 天平准确度u1 200g 量程处 由BP221S 天平适用的仪器内部检定规程ECW1,分辨率为0.0001g 的天平的 最大允许误差MPE 为0.0010g 由于按内部检定规程,可靠性不太高,按均匀分布,u 1=0.0010/3=0.0006g 估计其不确定度可靠性为80%,由计算自由度公式 υ= )] ([) (21 22 x u x u σ= 2 %) 801(1 21-=13 1g 量程处 同样1g 砝码的最大允许误差MPE 为0.0010g ,同上按均匀分布,u1=0.0010/3=0.0006g 自由度同样为13 测量重复性u2 200g 量程处 对可能引起绝对不确定度最大的满量程200g 处,采用200g 的标准砝码,重复测量 11次,所得结果如下 u 2的计算由贝塞尔公式 u 2=s(m i )=∑=--11 1 2 ) (1 111 i i m m =0.000075g,自由度υ2=10 1g 量程处

对可能使用的称重量1g 处,采用1g 的标准砝码,重复测量11次,所得结果如下 u 2的计算由贝塞尔公式 u 2=s(m i )= ∑=--11 1 2 ) (1 111 i i m m =0.00006g,自由度υ2=10 数字天平的量化误差u3 BP221S 数字天平的最小读数为0.0001g,半宽为0.00005g,按平均分布,u4=3/0.00005=0.000029g, 自由度υ4=∞。 回零点的不确定度u4 按内部检定规程,最大允许回零点误差为0.0001g ,按均匀分布,u 1=0.0001/3= 0.00006g 。 估计其不确定度可靠性为80%,由计算自由度公式υ=)] ([) (21 22 x u x u σ= 2 %) 801(1 21-= 13 5. 合成标准不确定度 5.1. 200g 量程处 称量样品质量的合成不确定度 =00032 .000012 .0000029 .0000075 .000029 .02 2 2 2 =+++g 有效自由度为:νeff =0.000324/(0.000294/13+0.0000754/10+0.0000294/∞+ 0.000124/13)=19 5.2. 1g 量程处 称量样品质量的合成不确定度

相关文档
相关文档 最新文档