文档库 最新最全的文档下载
当前位置:文档库 › 高等数学A教案-第7七-12章

高等数学A教案-第7七-12章

高等数学A教案-第7七-12章
高等数学A教案-第7七-12章

教案

高等数学第六版课后全部答案

高等数学第六版课后全 部答案 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

习题 101 1. 设在 xOy 面内有一分布着质量的曲线弧 L, 在点(x, y)处它的线 密度为 μ(x, y), 用对弧长的曲线积分分别表达: (1) 这曲线弧对x轴、对y轴的转动惯量Ix, Iy; (2)这曲线弧的重心坐标 x , y . 解在曲线弧 L 上任取一长度很短的小弧段 ds(它的长度也记做 ds), 设(x, y) 曲线 L 对于 x 轴和 y 轴的转动惯量元素分别为dIx=y2μ(x, y)ds, dIy=x2μ(x, y)ds . 曲线 L 对于 x 轴和 y 轴的转动惯量分别为 I x = ∫ y 2μ ( x, y)ds , I y = ∫ x2μ ( x, y)ds . L L ww w. kh d ∫L ∫L 和L2, 则 2. 利用对弧长的曲线积分的定义证明: 如果曲线弧L分为两段光滑曲线L1 ∫L f (x, y)ds =∫L n 课

x= M y ∫L xμ ( x, y)ds M ∫ yμ (x, y)ds = , y= x = L . M M μ ( x, y)ds μ(x, y)ds 后 曲线 L 的重心坐标为 1 f ( x, y)ds + ∫ f ( x, y)ds . L2 证明划分L, 使得L1和L2的连接点永远作为一个分点, 则 ∑ f (ξi,ηi )Δsi = ∑ f (ξi,ηi )Δsi + i =1 i =1 n n1 n1 答 dMx=yμ(x, y)ds, dMy=xμ(x, y)ds . 令λ=max{Δsi}→0, 上式两边同时取极限 λ →0 λ →0

高等数学第七章微分方程习题

第七章 微分方程与差分方程 习题7-1(A ) 1. 说出下列微分方程的阶数: ;02)()1(2=+'-'x y y y x ;0)2(2=+'+'''y y x y x .0)32()67()3(=++-dy y x dx y x 2. 下列函数是否为该微分方程的解: x e x y y y y 2; 02)1(==+'-'' )(2; 0)()2(2为任意常数C x x C y xdy dx y x -==++ ),(cos sin ; 0) 3(212122 2为任意常数C C ax C ax C y y a dx y d +==+ )(ln ; 02)()4(2xy y y y y y x y x xy =='-'+'+''+ 3. 在下列各题中,确定函数关系式中所含的参数,写出符合初始条件的函数: ;5, )1(0 22==-=x y C y x ;1,0,)()2(0 221=' =+===x x x y y e x C C y . 0,1, )(sin )3(21='=-===ππx x y y C x C y 4. 写出下列条件确定的曲线所满足的微分方程: 点横坐标的平方。 处的切线的斜率等于该曲线在点),()1(y x 轴平分。被,且线段轴的交点为处的法线与曲线上点y PQ Q x y x P ),()2( 习题7-1(B ) 1.在下列各题中,对各已知曲线族(其中 C 1, C 2, C 3 都是任意常数)求出相应的微分方程: ; 1)()1(22=+-y C x . )2(21x x e C e C xy -+= 2.用微分方程表示下列物理问题: 平方成反比。温度的成正比,与的变化率与气压对于温度某种气体的气压P T P )1( 。 速度成反比(比例系数同时阻力与, 成正比(比例系数与时间用在它上面的一个力的质点作直线运动,作一质量为)))2(11k k t m 习题7-2(A ) 1.求下列微分方程的通解: ;0ln )1(=-'y y y x ;0553)2(2='-+y x x ; )()3(2y y a y x y '+='-'

高等数学第七章测试题(第7版)

第七章测试题 一、填空(20分) 1、5322x y x y x y x =+'+'''是 阶微分方程; 2、与积分方程?=x x dx y x f y 0),(等价的微分方程初值问题 是 ; 3、已知微分方程02=+'-''y y y ,则函数x e x y 2= (填“是”或“不是”)该微分方程的解; 4、设1y 和2y 是二阶齐次线性方程0)()(=+'+''y x q y x p y 的两个特解, 21,C C 为任意常数,则2211y C y C y +=一定是该方程的 (填“通解”或“解”); 5、已知1=y 、x y =、2x y =是某二阶非齐次线性微分方程的三个解,则该 方程的通解为: ; 6、方程054=+'-''y y y 的通解为 . 7、微分方程x y y cos 4=+''的特解可设为 ; 8、以221==x x 为特征值的阶数最低的常系数线性齐次微分方程是: ; 9、微分方程1+=-''x e y y 的特解*y 形式为: ; 10、微分方程044=-'+''-'''y y y y 的通解: 。 二、(10分)求x x y y =+'的通解. 三、(10分)求解初值问题2)0(,0==+'y xy y . 四、(15分)曲线的方程为)(x f y =,已知在曲线上任意点),(y x 处满足x y 6='',且在曲线上的)2,0(-点处的曲线的切线方程为632=-y x ,求此曲线方程。 五、(15分)求齐次方程0)1(2)21(=-++dy y x e dx e y x y x 的通解.

六、(15分)求解初值问题:?????='==+''==0,10 1311 x x y y y y . 七、(15分)求方程x y y y 2344-=+'+''的通解.

高职高专高等数学第一章教案

第一章 函数、极限、连续 教学要求 1.了解分段函数、复合函数、初等函数等概念。 2.理解数列极限、函数极限的定义。 3.掌握极限的四则运算法则。 4.了解无穷大、无穷小及其比较的概念,了解函数及其极限与无穷小的关系。理解无穷小的性质。 5.了解夹逼准则和单调有界数列极限存在准则。熟练掌握两个重要极限求极限。 6.理解函数连续与间断概念,会判断间断点类型,了解初等函数连续性及闭区间上连续函数性质。 教学重点 函数的概念、复合函数的概念,基本初等函数的图形和性质;极限概念,极限四则运算法则;函数的连续性。 教学难点 函数与复合函数的概念;极限定义,两个重要极限;连续与间断的判断。 教学内容 第一节 函数 一、函数的定义与性质 1.集合; 2.邻域; 3.常量与变量; 4.函数的定义; 5.函数的特性。 二、初等函数 1.反函数; 2.复合函数; 3.初等函数。 三、分段函数 一、 函数的定义与性质 1集合定义 具有某种特定性质的事物的总体;组成这个集合的事物称为该集合的元素,元素a 属于集 合A ,记作a A ∈, 元素a 不属于集合A, ,a A ? 2集合的表示法: 列举法 12{,, ,}n A a a a = 描述法 {}M x x =所具有的特征 3集合间的关系: 若,x A ∈则必,x B ∈就说A 是B 的子集,记做A B ?;若A B ?且A B,≠ A B 则称是的真子集;若A B ?且B A ?,则A B =。

4常见的数集 N----自然数集;Z----整数集;Q----有理数集;R----实数集 它们间关系: ,,.N Z Z Q Q R ??? 5例 {1,2}A =,2{320}C x x x =-+=,则A C = 不含任何元素的集合称为空集, 记作? 例如, 2 {,10}x x R x ∈+==? 规定 空集为任何集合的子集. 6运算 设A 、B 是两集合, 则 1) 并 A ?B ? {x ∣x ∈A 或x ∈B}; 2) 交 A ?B ?{x ∣x ∈A 且x ∈B} 3) 差“A \B” ?{x ∣x ∈A 且x ?B} 4) 补(余)?S/A ,其中S 为全集 5) 其运算律 (1) A ?B= B ?A , A ?B =B ?A (2)(A ?B )?C =A ?(B ?C) , (A ?B)= A ?(B ?C) (3)(A ?B ) ? C =(A ? C )?(B ? C) (A ? B ) ? C =(A ? C ) ? (B ? C) (4) (),()c C C c c c A B A B A B A B ?=??=? 注意A 与B 的直积A ?B ?{(x,y)∣x ∈A 且y ∈B} 例如:R ?R={(x,y)∣x ∈R 且y ∈R} 表示xoy 面上全体点的集合, R R ?常记为2 R 7邻域: 设a 与δ是两个实数且0δ>,称集合{}x a x a δδ-<<+为点a 的δ邻域。点a 叫做这邻域的中心,δ叫做这邻域的半径。记作(){}U a x a x a δδδ=-<<+ 点a 的去心δ邻域记做0 ()U a δ ,0(){0}U a x x a δδ=<-<。 注意:邻域总是开集。 8常量与变量: 在某个过程中变化着的量称为变量,保持不变状态的量称为常量, 注意:常量与变量是相对于“自变量变化过程”而言的. x δ δ

高等数学同济第七版下册课后答案

1.设 u =a -b +2c , v =-a +3b -c .试用 a , b , c 表示 2u -3v . 解 2u -3v =2( a -b +2c ) -3( -a +3b -c ) =5a -11b +7c . 2.如果平面上一个四边形的对角线互相平分,试用向量证明它是平 行四边形 . 证 如图 8-1,设四边形 ABCD 中 AC 与 BD 交于 M ,已知 AM =MC , DM MB . 故 AB AM MB MC DM DC . 即 AB// DC AB |=| DC |,因此四边形 ABCD 3.把△ ABC 的 BC 边五等分,设分点依次为 D 1, D 2, D 3, D 4 ,再把各 分点与点 A 连接 .试以 AB =c, BC=a 表向量 D 1A , D 2A , D 3A , D A . 4 证 如图 8-2,根据题意知 1 5 1 5 1 5 BD 1 D 1D 2 D 2D 3 a, a, a, 1 5 D 3D 4 a, 1 故 D 1A =-( 1) =- a- c AB BD 5

2 D 2A =-( AB BD 2)D 3A =-( AB BD 3)=- a- c 5 3 =- a- c 5 4 D A =-( AB BD 4) =- a- c. 4 5 4.已知两点 M 1( 0, 1, 2)和 M 2( 1, -1, 0) . 试用坐标表示式表示 向量 M 1M 2及 -2M 1M 2 . M 1M 2 =( 1-0, -1-1, 0-2) =( 1, -2, -2) . 解 -2M 1M 2 =-2( 1, -2, -2) =( -2, 4, 4) . 5.求平行于向量 a =( 6, 7, -6)的单位向量 . a 解向量 a 的单位向量 为 ,故平行向量 a 的单位向量为 a a 1 6 7 6 , , 11 11 11 ( 6, 7, -6)= , = a 11 其中 a 62 72 ( 6)2 11. 6.在空间直角坐标系中,指出下列各点在哪个卦限? A ( 1, -2, 3), B ( 2, 3, -4), C ( 2, -3, -4) , D ( -2, -3, 1) . 解 A 点在第四卦限, B 点在第五卦限, C 点在第八卦限, D 点 在第三卦限 . 7.在坐标面上和在坐标轴上的点的坐标各有什么特征?指出下列各 点的位置: A ( 3, 4, 0), B ( 0, 4, 3), C ( 3, 0, 0), D ( 0,

高等数学第七版下册复习纲要

第七章:微分方程 一、微分方程的相关概念 1. 微分方程的阶数:方程中所含未知函数导数的最高阶数叫做微分方程的阶. 2. 微分方程的解:使微分方程成为恒等式的函数称为微分方程的解. 通解:所含独立的任意常数的个数与方程的阶数相同的解称为微分方程的通解. 特解:确定了任意常数的通解称为微分方程的特解. 3. 特解与通解的关系:可通过初始条件确定通解中的常数而得到满足条件的特解; 也可通过方程的表达式直接观察得到特解,因此特解不总包含在通解中. 二、微分方程的常见类型及其解法 1. 可分离变量的微分方程及其解法 (1).方程的形式:dx x f dy y g )()(= . (2). 方程的解法:分离变量法 (3). 求解步骤 ①. 分离变量,将方程写成dx x f dy y g )()(=的形式; ②. 两端积分: ??=dx x f dy y g )()(,得隐式通解C x F y G +=)()(; ③. 将隐函数显化. 2. 齐次方程及其解法 (1).方程的形式: ?? ? ??=x y dx dy ?. (2).方程的解法:变量替换法 (3). 求解步骤 ①.引进新变量x y u = ,有ux y =及dx du x u dx dy +=; ②.代入原方程得:)(u dx du x u ?=+; ③.分离变量后求解,即解方程x dx u u du =-)(?; ④.变量还原,即再用 x y 代替u . 3. 一阶线性微分方程及其解法 (1).方程的形式: )()(x Q y x P dx dy =+. 一阶齐次线性微分方程:0)(=+y x P dx dy . 一阶非齐次线性微分方程: 0)()(≠=+x Q y x P dx dy .

高数第七章

习题7.1 1.求点)3,2,4(- M 与原点及各坐标面间的距离. 解 M 与原点的距离 ,29)03()02()04(222=--+-+-= M 与x 轴的距离 ,4))3(3()22()04(222=---+-+-=x d M 与y 轴的距离 ,2))3(3()02()44(222=---+-+-=y d M 与z 轴的距离 .3)03()22()44(222=--+-+-=z d 2. 求yz 面上与已知三点)2,1,3( A ,)2,2,4(-- B 和)1,5,0( C 等距离的点. 解 设所求点M 的坐标为(0,y ,z ). 则 (),)1()5(2)2(4)2()1()03(222 22222z y z y z y -+-=--+--+=-+-+- 即 . 16)2()2()1()5(, 16)2()2(9)2()1(22222222++++=-+-++++=+-+-z y z y z y z y 化简得 ? ??=+-=+.2614,1086z y z y 所以, ???-==. 2,1z y 故所求点为(0,1,-2). 3. 已知平面过点(1,0,0),(0,2,0)和(0,0,3). 试求该平面. 解 设平面方程为0Ax By Cz D +++=。则

?? ???=+?+?+?=+?+?+?=+?+?+?,0300,0020,0001D C B A D C B A D C B A 即 ?? ???=+=+=+,03,02,0D C D B D A 故 ???? ?????-=-=-=.31,21,D C D B D A 故所求平面方程为.06236=-++z y x 4. 试绘出以下柱面的图形(图形略): (1) 准线: 22 1,9250x z y ?+=???=? 母线平行于y 轴; (2) 准线:? ??==0,22x z y 母线平行于x 轴; (3) 准线:?????==-0 ,19422z y x 母线平行于z 轴 5. 已知准线为222 1,49252x y z z ?++=???=? 母线平行于z 轴,试求此柱面方程,并绘出其图形. 解 准线方程可写为 ???????==+. 3,25219422z y x 它表示一个椭圆. 故所求柱面为椭圆柱面,其方程为25219422=+y x (图形略).

高等数学上册第一章教案

第一章:函数、极限与连续 教学目的与要求 1.解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式。 2.解函数的奇偶性、单调性、周期性和有界性。 3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。 4.掌握基本初等函数的性质及其图形。 5.理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系。 6.掌握极限的性质及四则运算法则。 7.了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。 8.理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。 9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。 10.了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。 所需学时:18学时(包括:6学时讲授与2学时习题) 第一节:集合与函数 一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。比如“身材较高的人”不能构成集合,因为它的元素不是确定的。 我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。如果a是集合A 中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a?A。 ⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。记作N ⑵、所有正整数组成的集合叫做正整数集。记作N+或N+。 ⑶、全体整数组成的集合叫做整数集。记作Z。 ⑷、全体有理数组成的集合叫做有理数集。记作Q。 ⑸、全体实数组成的集合叫做实数集。记作R。 集合的表示方法 ⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。 集合间的基本关系 ⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A?B(或B?A)。。 ⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。 ⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。 ⑷、空集:我们把不含任何元素的集合叫做空集。记作?,并规定,空集是任何集合的子集。 ⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。即A?A ②、对于集合A、B、C,如果A是B的子集,B是C的子集,则A是C的子集。 ③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。 集合的基本运算 ⑴、并集:一般地,由所有属于集合A或属于集合B的元素组成的集合称为A与B的并集。记作A∪B。(在求并集时,它们的公共元素在并集中只能出现一次。) 即A∪B={x|x∈A,或x∈B}。 ⑵、交集:一般地,由所有属于集合A且属于集合B的元素组成的集合称为A与B的交集。记作A∩B。 即A∩B={x|x∈A,且x∈B}。 ⑶、补集:

《高数(同济六版)》第七章 微分方程--参考答案

第七章 微分方程—练习题参考答案 一、填空题 1. 三阶; 2. 023=+'-''y y y ; 3. 1-=' x y y ; 4. x e 22ln ? ; 5. x x e c e c 221-+; 6. 错误 、错误、错误、正确. 二、选择题 1-5:ACDCB; 6-8: CCB; 三、计算与应用题 1、(1)解:变量分离得, 1 1 2 2 -= +x xdx y ydy , 两边积分得, c x y ln 2 1)1ln(2 1)1ln(2 12 2 +-=+, 从而方程通解为 )1(122-=+x c y . (2)解:整理得, x y x y dx dy ln =,可见该方程是齐次方程, 令 u x y =,即xu y =,则dx du x u dx dy +=,代入方程得,u u dx du x u ln =+, 变量分离得, x dx u u du = -) 1(ln ,积分得,c x u ln ln )1ln(ln +=-, 所以原方程的通解为cx x y =-1ln ,或写为1 +=cx xe y . (3)解:整理得,x e y x y =+ '1,可见该方程是一阶线性方程,利用公式得通解为 )(1)(1)(1 1 c e xe x c dx xe x c dx e e e y x x x dx x x dx x +-= +=+??=??- . (4)解:整理得, x y x x dx dy 1ln 1= +,这是一阶线性方程,利用公式得通解为 )2 ln (ln 1)ln (ln 1)1(2 ln 1 ln 1 c x x c dx x x x c dx e x e y dx x x dx x x +=+=+??=??- , 代入初始条件1==e x y 得2 1= c ,从而所求特解为)ln 1(ln 2 1x x y + = . (5)解:将方程两边逐次积分得,12 arctan 11c x dx x y +=+= '? , 212 1)1ln(2 1arctan )(arctan c x c x x x dx c x y +++-=+= ? ,

高等数学习题详解-第7章 多元函数微分学

1. 指出下列各点所在的坐标轴、坐标面或卦限: A (2,1,-6), B (0,2,0), C (-3,0,5), D (1,-1,-7). 解:A 在V 卦限,B 在y 轴上,C 在xOz 平面上,D 在VIII 卦限。 2. 已知点M (-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标面的对称点的坐标. 解:设所求对称点的坐标为(x ,y ,z ),则 (1) 由x -1=0,y +2=0,z +3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3). (2) 由x =-1,y +2=0,z +3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3). 同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3). (3)由x =-1,y =2,z +3=0,得到点M 关于xOy 面的对称点的坐标为:(-1, 2,-3). 同理,M 关于yOz 面的对称点的坐标为:(1, 2,3);M 关于zOx 面的对称点的坐标为:(-1,-2,3). 3. 在z 轴上求与两点A (-4,1,7)和B (3,5,-2)等距离的点. 解: 设所求的点为M (0,0,z ),依题意有|MA |2=|MB |2,即 (-4-0)2+(1-0)2+(7-z)2=(3-0)2+(5-0)2+(-2-z)2. 解之得z =11,故所求的点为M (0,0, 149 ). 4. 证明以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 解:由两点距离公式可得2 12 14M M =,2 2 13236,6M M M M == 所以以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 5. 设平面在坐标轴上的截距分别为a =2,b =-3,c =5,求这个平面的方程. 解:所求平面方程为1y x z ++=。 6. 求通过x 轴和点(4,-3,-1)的平面方程. 解:因所求平面经过x 轴,故可设其方程为 Ay +Bz =0. 又点(4,-3,-1)在平面上,所以-3A -B =0.即B=-3 A 代入并化简可得 y -3z =0. 7. 求平行于y 轴且过M 1(1,0,0),M 2(0,0,1)两点的平面方程. 解:因所求平面平行于y 轴,故可设其方程为 Ax +Cz +D =0. 又点M 1和M 2都在平面上,于是 0A D C D +=?? +=? 可得关系式:A =C =-D ,代入方程得:-Dx -Dz +D =0. 显然D ≠0,消去D 并整理可得所求的平面方程为x +z -1=0. 8. 方程x 2+y 2+z 2-2x +4y =0表示怎样的曲面? 解:表示以点(1,-2,0 9. 指出下列方程在平面解析几何与空间解析几何中分别表示什么几何图形? (1) x -2y =1; (2) x 2+y 2=1; (3) 2x 2+3y 2=1; (4) y =x 2. 解:(1)表示直线、平面。(2)表示圆、圆柱面。(3)表示椭圆、椭圆柱面。 (4)表示抛物线、抛物柱面。

高数 第七章题库 微分方程

第十二章 微分方程答案 一、 选择题 1.下列不是全微分方程的是 C 1 A.2()(2)0x y dx x y dy ++-= B.2 (3)(4)0y x dx y x dy ---= C.3 2 2 2 3(23)2(2)0x xy dx x y y dy +++= D.2 2 2(1)0x x x ye dx e dy -+= 2. 若3y 是二阶非齐次线性方程(1):()()()y P x y Q x f x '''++=的一个特解,12,y y 是对应的 齐次线性方程(2)的两个线性无关的特解,那么下列说法错误的是(123,,c c c 为任意常数) C 2 A.1122c y c y +是(2)的通解 B. 113c y y +是(1)的解 C. 112233c y c y c y ++是(1)的通解 D. 23y y +是(1)的解 3.下列是方程xdx ydy += 的积分因子的是 D 2 A.2 2x y + B. 221x y + 4.方程32 2321x x d y d y e e dx dx ++=的通解应包含得独立常数的个数为 ( B ). 1 (A) 2 (B) 3 (C) 4 (D) 0 5.已知方程'()0y p x y +=的一个特解cos 2y x =,则该方程满足初始特解(0)2y =的特解为( C ). 2 (A) cos 22y x =+ (B) cos 21y x =+ (C) 2cos 2y x = (D) 2cos y x = 6.方程32232 1x x d y d y e e dx dx ++=的通解应包含得独立常数的个数为 ( B ). 1 (A) 2 (B) 3 (C) 4 (D) 0 7.设线性无关的函数123,,y y y 都是微分方程''()'()()y p x y q x y f x ++=的解,则该方程的通解为 ( D ). 2 (A) 11223y c y c y y =++ (B) 1122123()y c y c y c c y =+-+ (C) 1122123(1)y c y c y c c y =+--- (D) 1122123(1)y c y c y c c y =++-- 8.设方程''2'3()y y y f x --=有特解*y ,则其通解为( B ). 1

高等数学同济第七版7版下册习题 全解

数,故 /, =Jj( x2 + y1)3d(j =2jj(x2+ y1) 3dcr. fh i)i 又由于D3关于;t轴对称,被积函数(/ +r2)3关于y是偶函数,故jj(x2 +j2)3dcr=2j(x2+y2)3da=2/2. Dy 1): 从而得 /, = 4/2. (2)利用对称性来计算二重积分还有以下两个结论值得注意: 如果积分区域关于^轴对称,而被积函数/(x,y)关于y是奇函数,即fix, -y) = -f(x,y) ,PJ jf/(x,y)da =0; D 如果积分区域D关于:K轴对称,而被积函数/(x,y)关于:c是奇函数,即/(~x,y)=-/(太,y),则 =0. D ?3.利用二重积分定义证明: (1)jj da=(其中(7为的面积); IJ (2)JJ/c/( X ,y)drr =Aj|y’(A:,y)do■(其中A:为常数); o n (3 )JJ/( x,y)clcr = JJ/( x,y)drr +jJ/( x ,y) dcr ,其中 /) = /)! U /)2,, A 为两个 I) b\ lh 尤公共内点的WK域. 证(丨)由于被枳函数./U,y)=1,故山二t积分定义得 n"

jj'ltr = Hm y^/( ,rji) A

高数答案第七章

第七章空间解析几何与向量代数 §7.1向量及其线性运算 必作题:P300---301:1,3,4,5,6,7,8,9,12,13,15,18,19. 必交题: 1、求点(a,b,c)分别关于⑴各坐标面;⑵各坐标轴;⑶坐标原点的对称点 的坐标. 解:(1)xoy面(a,b,-c),yoz面(-a,b,c),xoz面(a,-b,c); (2)ox轴(a,-b,-c),oy轴(-a,b,-c),oz轴(-a,-b,c); (2)关于原点(-a,-b,-c)。 2、坐标面上的点与坐标轴上的点的坐标各有什么特征,指出下列各点的 位置 A(3,4,0),B(0,4,3),C(3,0,0),D(0,1,0). 解:xoy面:z=0,yoz面:x=0,xoz面:y=0. ox轴:y=0,z=0,oy轴:x=0,z=0,oz轴:x=0,y=0, A在xoy面上,B在yoz面上,C在x轴上,D在y轴上。 3、在z轴上求与点A(4,1,7)和点B(3,5,2)等距离的点的坐标. 解:设C(0,0,z),有|AC|=|BC|,解得:z= 14 9 ,所求点为(0,0, 14 9 ) . 4、设uab2c,va3bc,试用a,b,c表示2u3v. 解:2u3v5a11b7c. 5、已知两点M 1(4,2,1)和M2(3,0,2),求向量M1M2的模,方向余弦和方向角. 解:M 1M21,2,1,M1M22,方向余弦为c o s 1 2 , cos 2 2 ,cos 1 2 ,方向角 2 3 , 3 4 , 3 . 1

6、设向量a的模a2,方向余弦 13 cos0,cos,cos, 22 求 a. x 解:设ax,y,z,则0 2 , y1 22 , y 3 22 ,所以x0,y1, z3,a0,1,3 7、设有向量P 1P2,P1P22,它与x轴、y轴的夹角分别为 和,如果已34 知P 1(1,0,3),求P2的坐标. 解:设P的坐标为(x,y,z) ,P1P2x1,y,z3,2 x11 cos 232 , 所以x2;y2 cos 242 ,所以y2,又P P,所以 122, 2 12(z3)2,解得z2或z4,所以P2的坐标为(2,2,2) 或者(2,2,4). 8、求平行于向量a6,7,6的单位向量. 解:a36493611,与a平行的单位向量为16,7,6 11 ,即 为 676 ,, 111111 ,或者 676 ,, 111111 . §7.2数量积向量积混合积 必作题:P309--310:1,2,3,4,6,7,8,9. 必交题: 1、已知向量a1,2,2与b2,3,垂直,向量c1,1,2与d2,2,平行,求和的值. 解:ab,ab2620,2 2

《高等数学》教案 第一章 函数

第一章函数 函数是积分的主要研究对象,后边关于微积分性质的研究都是对函数性质的研究。本章首先引入集合,然后研究两个实数集合之间的一种对应关系——函数关系,并介绍函数的基本性质和常见的初等函数。 §1.1 集合 一、概念 集合是具有某种属性的事物的全体,或者说是一些确定对象的汇总。构成集合的事物或对象,称为集合的元素。 举例: 有限集合:由有限个元素构成的集合。 无限集合:由无限个元素构成的集合。 集合通常用大写字母A、B、C、X、Y等表示。元素由小写字母a、b、c、x、y等表示。如果a是集合A的元素,记作a∈A;否则记作a?A。 二、表示方法 1、列举法:按任意顺序列出集合的所有元素,并用花括号“{ }”括起来。如:A ={a,b,c,d} 即列出集合中所有元素,不计较顺序,但不能遗漏和重复。 2、描述法:设P(a)为某个与a有关的条件或法则,A为满足P(a)的一切a 构成的集合,记为A ={a∣P(a)}。如:A ={x∣x2-5x+6=0} 即把集合中元素所具有的某个共同属性描述出来,用{a∣a具有的共同属性}。 3、文氏图:可以表示集合以及集合间的关系。 三、全集与空集 由所研究的所有事物构成的集合称为全集,记为U。全集是相对的。 不包含任何元素的集合称为空集,记为Φ。 四、子集 1、定义:如果集合A的每一个元素都是集合B的元素,即“如果a∈A,则

a∈B”,则称A为B的子集。记为A?B或B?A。 如果A?B成立,且B中确有元素不属于A,则称A为B的真子集。记作A?B或B?A。 2、定义:设有集合A和B,如果A?B且B?A,则称A与B相等。 结论:(1)A?A,即“集合A是其自己的子集”; (2)Φ?A,即“空集是任意集合的子集”; (3)若A?B,B?C,则A?C,即“集合的包含关系具有传递性”。 五、集合的运算 1、定义:设有集合A和B,由A和B的所有元素构成的集合,称为A和B 的并,记为A∪B。即A∪B ={x∣x∈A或x∈B}。 性质:(1)A?A∪B,B?A∪B; (2)A∪Φ = A,A∪U = U,A∪A = A。 2、定义:设有集合A和B,由A和B的所有公共元素构成的集合,称为A 与B的交,记为A∩B。即A∩B ={x∣x∈A且x∈B}。 性质:(1)A∩B?A,A∩B?B; (2)A∩Φ =Φ,A∩U = A,A∩A = A。 3、定义:设有集合A和B,属于A而不属于B的所有元素构成的集合,称为A与B的差,记为A-B。即A-B ={x∣x∈A且x ? B}。 4、定义:全集中所有不属于A的元素构成的集合,称为A的补集,记为A。即A={x∣x∈U且x ? A}。 性质:A∪A =U,A∩A=Φ。 习题7、8:

高等数学第七章测试题答案(第7版)

第七章测试题答案 一、填空(20分) 1、5322x y x y x y x =+'+'''是 3 阶微分方程; 2、与积分方程?=x x dx y x f y 0),(等价的微分方程初值问题是?????=='=0),(0 x x y y x f y ; 3、已知微分方程02=+'-''y y y ,则函数x e x y 2=不是 (填“是”或“不是”)该微分方程的解; 4、设1y 和2y 是二阶齐次线性方程0)()(=+'+''y x q y x p y 的两个特解, 21,C C 为任意常数,则2211y C y C y +=一定是该方程的 解 (填“通解”或“解”); 5、已知1=y 、x y =、2x y =是某二阶非齐次线性微分方程的三个解,则该 方程的通解为:1)1()1(221+-+-=x C x C y ; 6、方程054=+'-''y y y 的通解为)sin cos (212x C x C e y x +=. 7、微分方程x y y cos 4=+''的特解可设为x B x A y sin cos *+=; 8、以221==x x 为特征值的阶数最低的常系数线性齐次微分方程是: 044=+'-''y y y ; 9、微分方程1+=-''x e y y 的特解*y 形式为:b axe y x += ; 10、微分方程044=-'+''-'''y y y y 的通解:x C x C C x 2sin 2cos e 221++。 二、(10分)求x x y y =+'的通解. 解:由一阶线性微分方程的求解公式 )(11C xdx e e y x dx x +??=?-, x C x C dx x x +=+=?2231)(1 三、(10分)求解初值问题2)0(,0==+'y xy y .

高等数学第七章微分方程试题及答案

第七章 常微分方程 一.变量可分离方程及其推广 1.变量可分离的方程 (1)方程形式: ()()()()0≠=y Q y Q x P dx dy 通解() ()? ?+=C dx x P y Q dy (注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意常数另外再加) (2)方程形式:()()()()02211=+dy y N x M dx y N x M 通解()()()() C dy y N y N dx x M x M =+??1221 ()()()0,012≠≠y N x M 2.变量可分离方程的推广形式 (1)齐次方程 ?? ? ??=x y f dx dy 令 u x y =, 则()u f dx du x u dx dy =+= ()c x c x dx u u f du +=+=-?? ||ln 二.一阶线性方程及其推广 1.一阶线性齐次方程 ()0=+y x P dx dy 它也是变量可分离方程,通解()?-=dx x P Ce y ,(c 为任意常数) 2.一阶线性非齐次方程 ()()x Q y x P dx dy =+ 用常数变易法可求出通解公式 令()()?-=dx x P e x C y 代入方程求出()x C 则得 ()()()[] ?+=??-C dx e x Q e y dx x P dx x P 3.伯努利方程 ()()()1,0≠=+ααy x Q y x P dx dy 令α-=1y z 把原方程化为()()()()x Q z x P dx dz αα-=-+11 再按照一阶线性非齐次方程求解。 4.方程: ()()x y P y Q dx dy -=1可化为()()y Q x y P dy dx =+ 以y 为自变量,x 为未知函数 再按照一阶线性非齐次方程求解。

高数答案第七章

第七章 空间解析几何与向量代数 §7.1 向量及其线性运算 必作题:P300---301:1,3,4,5,6,7,8,9,12,13,15,18,19. 必交题: 1、 求点(,,)a b c 分别关于⑴各坐标面;⑵各坐标轴;⑶坐标原点的对称点的坐标. 解:(1) xoy 面(a,b,-c ),yoz 面(-a,b,c ), xoz 面(a,-b,c ); (2)ox 轴(a,-b,-c ), oy 轴(-a,b,-c ), oz 轴(-a,-b,c ); (2)关于原点(-a,-b,-c )。 2、 坐标面上的点与坐标轴上的点的坐标各有什么特征, 指出下列各点的 位置 (3,4,0),(0,4,3),(3,0,0),(0,1,0).A B C D - 解:xoy 面:z=0, yoz 面:x=0, xoz 面:y=0. ox 轴:y=0,z=0, oy 轴:x=0,z=0, oz 轴:x=0,y=0, A 在xoy 面上,B 在yoz 面上, C 在x 轴上, D 在y 轴上。 3、 在z 轴上求与点(4,1,7)A -和点(3,5,2)B -等距离的点的坐标. 解:设C (0,0,z ),有|AC|=|BC|,解得:z= 149,所求点为(0,0, 149 ). 4、 设2,3,u a b c v a b c =-+=-+- 试用,,a b c 表示23.u v - 解:235117u v a b c -=-+ . 5、已知两点1M 和2(3,0,2),M 求向量12M M 的模,方向余弦和方 向角. 解:{} 121,M M =- ,122M M = ,方向余弦为1c o s 2 α=-, cos 2β=- ,1cos 2γ=,方向角23πα=,34πβ=,3 πγ=.

高等数学第七章定积分的应用

第七章 定积分的应用 一、本章提要 1. 基本概念 微元法,面积微元,体积微元,弧微元,功微元,转动惯量微元,总量函数. 2. 基本公式 平面曲线弧微元分式. 3. 基本方法 (1) 用定积分的微元法求平面图形的面积, (2) 求平行截面面积已知的立体的体积, (3) 求曲线的弧长, (4) 求变力所作的功, (5) 求液体的侧压力, (6) 求转动惯量, (7) 求连续函数f (x )在[]b a ,区间上的平均值, (8) 求平面薄片的质心,也称重心. 二、要点解析 问题1 什么样的量可以考虑用定积分求解?应用微元法解决这些问题的具体步骤如何? 解析 具有可加性的几何量或物理量可以考虑用定分求解,即所求量Q 必须满足条件: (1)Q 与变量x 和x 的变化区间[]b a ,以及定义在该区间上某一函数f (x )有关;(2) Q 在[]b a ,上具有可加性,微元法是“从分割取近似,求和取极限”的定积分基本思想方法中概括出来的,具体步骤如下: (1)选变量定区间:根据实际问题的具体情况先作草图,然后选取适当的坐标系及适当的变量(如x ),并确定积分变量的变化区间[]b a ,; (2)取近似找微分:在[]b a ,内任取一代表性区间[]x x x d ,+,当x d 很小时运用“以 直代曲,以不变代变”的辩证思想,获取微元表达式d =()d Q f x x ≈Q ?(Q ?为量Q 在小区间[]x x x d ,+上所分布的部分量的近似值);

(3)对微元进行积分得 =d ()d b b a a Q Q f x x =??. 下面举例说明. 例1 用定积分求半径为R 的圆的面积. 解一 选取如图所示的坐标系,取x 为积分变量,其变化区间为[]R R ,-,分割区间 []R R ,-成若干个小区间,其代表性小区间[]x x x d ,+所对应的面积微元 x x R x x R x R A d 2d ))((d 222222-=----=, 于是 ? ?---==R R R R x x R A A d 2d 22=2πR . 解二 选取如图所示的坐标系, 取θ 为积分变量,其变化区间为[]π2,0.分割区间[]π2,0成若干个小区间,其代表性小区 间[]θθθd ,+所对应的面积微元θd 2 1d 2 R A = ,于是 22π 20 2π 20 ππ22 1 d 21d R R R A A =?===? ?θ. 解三 选取r 为积分变量, 其变化区间为[]R ,0,如图,分割[]R ,0成若干个小区间,

相关文档
相关文档 最新文档