文档库 最新最全的文档下载
当前位置:文档库 › 超声速湍流混合层中小激波结构的实验研究

超声速湍流混合层中小激波结构的实验研究

超声速湍流混合层中小激波结构的实验研究
超声速湍流混合层中小激波结构的实验研究

超声波塑料件的结构设计

精心整理 .1塑料件的结构 塑料件必须有一定的刚性及足够的壁厚,太薄的壁厚有一定的危险性,超声波焊接时是需要加压的,一般气压为2-6kgf/cm2。所以塑料件必须保证在加压情况下基本不变形。 1.2罐状或箱形塑料等,在其接触焊头的表面会引起共振而形成一些集中的能量聚集点,从而产生烧伤、穿孔的情况(如图1所示),在设计时可以罐状顶部做如下考虑 ○1加厚塑料件 ○2 ○3 1.3尖角 加R 1.4 ○1 ○2 1.5塑料件孔和间隙 如被焊头接触的零件有孔或其它开口,则在超声波传递过程中会产生干扰和衰减(如图4所示),根据材料类型(尤其是半晶体材料)和孔大小,在开口的下端会直接出现少量焊接或完全熔不到的情况,因此要尽量预以避免。 1.6塑料件中薄而弯曲的传递结构

被焊头接触的塑件的形状中,如果有薄而弯曲的结构,而且需要用来传达室递超声波能量的时候,特别对于半晶体材料,超声波震动很难传递到加工面(如图5所示),对这种设计应尽量避免。 1.7 1.8 对称设计。 在焊头表面有损伤纹,或其形状与塑料件配合有少许差异的情况下,焊接时,会在塑料件表面留下伤痕。避免方法是:在焊头与塑料件表面之间垫薄膜(例如PE膜等)。 焊接线的设计 焊接线是超声波直接作用熔化的部分,其基本的两种设计方式:

○1能量导向 ○2剪切设计 2.1能量导向 能量导向是一种典型的在将被子焊接的一个面注塑出突超三角形柱,能量导向的基本功能是:集中能量,使其快速软化和熔化接触面。能量导向允许快速焊接,同时获得最大的力度,在这种导向中,其材料大部分流向接触面,能量导向是非晶态材料中最常用的方法。 能量导向柱的大小和位置取决于如下几点: ○1材料 ○2 ○3 图70.25mm。 能量导向经常采用(例如手机电池等),如图8所示。 2.2能量导向设计中对位方式的设计

超声波电机的设计

任务书 论文(设计)题目:超声波电机的设计 学号:姓名:专业: 指导教师:系主任: 一、主要内容及基本要求 超声波电机是国内外日益受到重视的一种新型驱动电机,通过查找相关文献,熟悉其工作原理和运行机理,结合本科所学机械各学科方面的知识,完成超声波电机结构部分的设计。 主要研究内容包括以下几个方面:1超声波电机的运行机理。2定子谐振频率的计算。3压电陶瓷换能器的设计和制作。4定子的设计及制作。5转子的设计及制作。6编写设计说明书:设计说明书按设计程序编写。 基本要求:学习查阅文献,具备综合归纳资料的能力;综合运用本科阶段所学知识,分析与解决超声波电机结构设计过程中所遇问题;并利用AutoCAD软件绘制了其装配图和各个零件图;通过翻译3000字的外文资料获取国外在该行业的最新发展动态。 二、重点研究的问题 理解超声波电机的工作原理和运行机理,弄清其结构特点,定子谐振频率的计算,定子的设计及制作,转子的设计及制作;理解超声波压电陶瓷和压电振子的特性,弄清超声波电机的振动特性及动力响应特性;理解超声波电机的驱动和控制及超声波电机的分析与设计。设计一台超声波电机。 三、进度安排

序号各阶段完成的内容完成时间 1 选题第1周 2 查阅与收集资料第2~5周 3 超声波电机结构的设计第6~9周 4 完成所要求图纸第10~11周 5 完成设计说明书第12~13周 6 进行最后的修改第14周 7 答辩第15周 四、应收集的资料及主要参考文献 [1] 刘晋春,特种加工,第五版[M].机械工业出版社.2008 [2] 史敬灼,超声波电机运动控制理论与技术.北京:科学出版社.2011.10 [3] 胡敏强,金龙,顾菊平,超声波电机原理与设计. 北京: 科学出版社.2005 [4] 姜楠,方光荣,刘俊标,束娜. 国内外超声波电动机驱动技术的最新进展. 微特电机. 2005.9 [5] 赵淳生,对发展我国超声电机技术的若干建议.微电机.2006 [6] 胡敏强,超声电动机的研究及其应用[J].微特电机.2000 [7] 淮良贵,纪名刚,机械设计,第六版[M].北京:高等教育出版社,1996 [8] 郑凯,杨义勇,胡仁喜.Solid Edge应用教程[M].清华大学出版社,2008.4 [9] 芦亚萍,孟繁琴,袁云龙.超声波电机研究现状.微电机.2005 [10] 杨明,阙沛文. 超声电机变频驱动源的设计与分析. 压电与声光。 [11] 顾绳谷,电机及拖动基础,第四版[M]. 机械工业出版社.2007.10 [12]罗宗泽,罗圣国.机械设计课程设计手册[M].高等教育出版社,2006.5

焊接件结构设计的几点体会

现代技能开发 !""#?$月号 %&’ 焊接件材料的选择 焊接件的材料与结构设计有着密切的关系。焊接结构件因用途不同,要求不同。现在广泛使用的材料有铁碳合金,有色金属及其合金等。我们在设计焊接结构时,首先要根据焊接结构件的受力情况、工作条件、设计要求等,选择焊接结构件的材料。选择材料时,应考虑以下几点。 尽量选用同种材料 焊接结构件是多个零件或构件焊接在 一起而形成的。考虑到焊接过程的特点,各零件的材料应尽可能地选择一致。这样购料、焊接方法的选择、焊接工艺的制订、焊条的选用等比较简单容易。但有时为减少使用贵重金属材料(如:不锈钢),也可以使用不同材料。 尽量选用焊接性能好的材料 在选择焊接结构件材料时,应 考虑材料的强度及焊接结构件的工作条件要求(如耐腐蚀、抗冲击、交变载荷等)。当多种材料能同时满足使用要求时,这些材料当中,有的焊接性能较好,而有的焊接性能较差。有的适用这种焊接方法,有的适应另一种焊接方法。所以,选择材料时,应选择焊接方法普通、焊接性能好的材料。 尽量选用价格低的材料 在选择焊接结构件材料时,除满足 了各方面的要求以外,还应考虑经济性。焊接结构件应选用价格低、资源丰富的材料,这样才符合勤俭节约、降低成本、提高产品竞争力的基本原则。 焊接件的结构设计 焊接结构件随着焊接技术的发展,开始得到越来越广泛的应用。与其他制造金属结构的工艺,如锻造、铸造、铆接相比,焊接结构的占有率是在不断上升的。工业发达国家中一般焊接结构件占钢产量的()*以上。焊接结构件已经运用于工业、 交通、能源、农业、国防等几乎国民经济的一切部门,如用于建造冶金、建筑、石油化工设备、各种锻压机械、起重运输机械、工业与民用钢结构等。焊接结构的设计是焊接件的关键,结构设计是否合理,关系到焊接结构件的强度、寿命以及能否取得合格、优质的焊接结构的问题。焊接件结构设计关系到方方面面,下面仅从以下几个方面谈一下个人的体会。 尽量减少焊缝的数量 焊接结构件一般由多个零件组装焊 接而成。在焊接结构件设计时,要尽量减少零件数量,减少焊缝数量。只有这样才能减少焊接工作量,减少焊接件的变形,同时也减少了焊接应力,提高了焊接件的强度。图+(,)焊接件中有四条焊缝,若改为图+(-) 结构,则焊缝变为两条。焊缝尽可能布置在应力较小处 焊接结构件在承受载荷时, 其材料内部必然产生内应力。由于零件的形状不同、受力特点不同,所以零件的不同截面、不同部位可能产生的应力大小也不同。如果我们把焊缝布置在产生应力较小的地方,这样就减小了焊接缺陷、应力集中等对零件破坏的影响,提高了焊接结构件的强度和可靠性。如图!悬臂梁的截面设计,焊缝在上下两面就不如改在左右两侧面。 选择合适的接头形式 焊接结构件的焊接接头性能、质量好 坏直接与焊接结构件的性能、安全性和可靠性有关。多年来焊接工作者对焊接接头进行了广泛的试验研究,这对于提高焊接结构件的性能和可靠性,扩大焊接结构件的应用范围起了很大作用。熔焊的焊缝主要有对接焊缝和角焊缝,以这两种焊缝为主体构成的焊接接头有对接接头、角接接头、.形(十字)接头、搭接接头和塞焊接头等。焊接结构应该优先采用接头形式简单、应力集中小、不破坏结构连续性的焊接接头形式。对接接头应力集中最小、形式最简单、力的传递也较少转折,故是最合理的、典型的焊接接头形式。 尽量减小焊缝的截面尺寸 焊接变形与熔敷金属的数量有 很大关系,所以应尽量减小焊缝截面尺寸。在条件许可的情况下,用双/形坡口和双0形坡口来代替0形坡口, 熔敷金属减少,且焊缝在厚度方向对称,收缩一致,可减少焊接变形。角焊缝引起的焊接变形较大,所以要尽量减小角焊缝的焊脚尺寸。当钢板较厚时,开坡口的焊缝比角焊缝的熔敷金属量小,板厚不同时,坡口应开在薄板上。如图#所示,显然图#(1)比图#(,)、(-) 的焊缝尺寸焊接件结构设计的几点体会 !李银生 白建军!河南 训练技法 !""

超声波焊接件的工艺设计

超声波焊接件的工艺设计 作者:欣宇机械来源:本站原创日期:2014-5-5 17:32:38 点击:6943 属于:行业新闻超声波焊接件的工艺设计-东莞市欣宇超声波机械有限公司 在超声波焊接行业中,很多客户都不知道塑料件焊接,焊接产品优良不只是跟材质,超声波选择机型功率有关系,最容易被忽略的一点是:超声波焊接件的工艺设计,塑料焊接件需要设计有超声线,焊接出来的产品才是比较完美的。那么,超声波焊接件的工艺设计是怎么样的呢?要怎么设计呢?很多客户初步使用超声波焊接,都会对个问题不了解,今天,欣宇小陈为大家讲解:超声波焊接件的工艺设计,希望对朋友有所帮助! 超声波塑料件的结构设计必须首先考虑如下几点: 1.是否需要水密、气密。 2.是否需要完美的外观。 3.是否适合焊头加工要求。 4.焊缝的大小(即要考虑所需强度)。 5.避免塑料熔化或合成物的溢出。 超声波焊接质量获得原因: 1.材质 2.上下表面的位置和松紧度 3.焊头与塑料件的妆触面 4.顺畅的焊接路径 5.塑料件的结构 6.焊接线的位置和设计 7.焊接面的大小 8.底模的支持 为了获得完美的、可重复的超声波熔焊方式,必须遵循三个主要设计方向: 1.围绕着连接界面的焊接面必须是统一而且相联系互紧密接触的。如果可能的话,接触面尽量在同一个平面上,这样可使能量转换时保持一致。 2.最初接触的两个表面必须小,以便将所需能量集中,并尽量减少所需要的总能量(即焊接时间)来完成熔接。 3.找到适合的固定和对齐的方法,如塑料件的接插孔、台阶或齿口之类。 下面就对超声波塑料件设计中的要点进行分类举例说明: 超声波整体塑料件的结构 1.1塑料件的结构 塑料件必须有一定的刚性及足够的壁厚,太薄的壁厚有一定的危险性,超声波焊接时是需要加压的,一般气压为 2-6kgf/cm2 。所以塑料件必须保证在加压情况下基本不变形。 1.2罐状或箱形塑料等,在其接触焊头的表面会引起共振而形成一些集中的能量聚集点,从而产生烧伤、穿孔的情况(如图1所示),在设计时可以罐状顶部做如下考虑

超声波换能器选用说明及其原理介绍

超声波换能器选用说明及其原理介绍 超声波换能器是一种能量转换器件,它的功能是将输入的电功率转换成机械功率(即超声波)再传递出去,而它自身消耗掉很少的一部分功率(小于10%)。所以,使用超声波换能器最应考虑的问题就是与输入输出端的匹配,其次是机械安装和配合尺寸。市面上超声波机械种类繁多,客户必须提供准确可靠的指标,才能保证公司提供的换能器产品能与贵公司的机器良好匹配,发挥最佳性能。 因换能器品种繁多,本文只提供了部分换能器参数。 ①谐振频率:f, 单位:KHz 该频率是指用频率发生器,毫伏表等通过传输线路法测得的频率,或用阻抗特性分析仪等类似仪器测得的频率。一般通称小信号频率。与它相对的是上机频率,即客户将换能器通过电缆连到驱动电源上,通电后空载或有载时测得的实际工作频率。因客户的匹配电路各不相同,同样的换能器配不同的驱动电源表现出来的频率是不同的,这样的频率不能作为订货依据。 ②换能器电容量:CT ,单位:PF 即换能器自由电容,一般可用电容电桥在400Hz-1000Hz的频率下测得,也可用阻抗特性分析仪类似仪器。再简单点,用一般的便携式电容表测量也可满足要求。 ③换能器工作方式 因加工方式和要求不同,换能器的工作方式大致可分为连续工作(花边机,CD套机,拉链机,金属焊接等)和脉冲式工作(如塑焊机),

不同的工作方式对换能器的要求是不同的。一般而言,连续式工作几乎没有停顿时间,但工作电流不是很大,脉冲工作是间歇式的,有停顿,但瞬间电流很大。平均而言,两种状态的功率都很大的。

④换能器型式和最大功率 整机厂家可能对于不同用途和目的的机器的标称功率有不同的规定,换句话说,同样的换能器用在不同的机器上标称功率可能是不同的。为避免产生岐义,客户应详细说明换能器的结构型式,如柱型、倒喇叭型等,及压电陶瓷晶片的直径和片数。 ⑤安装和配合尺寸 主要有变幅杆材质,表面处理方式,形状。换能器与变幅杆连接螺纹,变幅杆与模具连接螺纹,变幅杆法兰盘处直径、厚度、缺口或螺孔数量和位置。 如有侵权请联系告知删除,感谢你们的配合!

超声波传感器

超声波传感器的实验报告 一、超声波传感器的定义: 超声波传感器是将超声波信号转换成其他能量信号(通常是电信号)的传感器。超声波是振动频率高于20KHz的机械波。它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中。超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。超声波传感器广泛应用在工业、国防、生物医学等方面。 超声波传感器的原理: 二、超声波传感器按其工作原理,可分为 1、压电式 2、磁致伸缩式 3、电磁式 压电式超声波传感器 压电式超声波传感器是利用压电材料的压电效应原理来工作的。常用的敏感元件材料主要有压电晶体和压电陶瓷。 根据正、逆压电效应的不同,压电式超声波传感器分为发生器(发射探头)和接收器(接收探头)两种,根据结构和使用的波型不同可分为直探头、表面波探头、兰姆波探头、可变角探头、双晶探头、聚焦探头、水浸探头、喷水探头和专用探头等。 压电式超声波发生器是利用逆压电效应的原理将高频电振动转换成高频机械振动,从而产生超声波。当外加交变电压的频率等于压电材料的固有频率时会产生共振,此时产生的超声波最强。压电式超声波传感器可以产生几十千赫到几十兆赫的高频超声波,其声强可达几十瓦每平方厘米。 压电式超声波接收器是利用正压电效应原理进行工作的。当超声波作用到压电晶片上引起晶片伸缩,在晶片的两个表面上便产生极性相反的电荷,这些电荷被转换成电压经放大后送到测量电路,最后记录或显示出来。压电式超声波接收器的结构和超声波发生器基本相同,有时就用同一个传感器兼作发生器和接收器两种用途。 典型的压电式超声波传感器结构主要由压电晶片、吸收块(阻尼块)、保护膜等组成。压电晶片多为圆板形,超声波频率与其厚度成反比。压电晶片的两面镀有银层,作为导电的极板,底面接地,上面接至引出线。为了避免传感器与被测件直接接触而磨损压电晶片,在压电晶片下粘合一层保护膜。吸收块的作用是降低压电晶片的机械品质,吸收超声波的能量。

超声波焊接工艺特点

超声波焊接的焊点,应有高的接合强度和合格的表面质量,除了表面不能有明显的挤压坑和焊点边缘的凸出以外,还应注意与上声极接触处的焊点表面情况,不允许有裂纹和局部未熔合,因此,超声波焊接的形式选择、接头设计和焊接参数选择非常重要。 一、超声波焊接特点 1) 可焊接的材料范围广,可用于同种金属材料、特别是高导电、高导热性的材料(如金、银、铜、铝等)和一些难熔金属的焊接,也可用于性能相差悬殊的异种金属材料(如导热、硬度、熔点等)、金属与非金属、塑料等材料的焊接,还可以实现厚度相差悬殊以及多层箔片等特殊结构的焊接。 2) 焊件不通电,不需要外加热源,接头中不出现宏观的气孔等缺陷,不生成脆性金属间化合物,不发生像电阻焊时易出现的熔融金属的喷溅等问题。 3) 焊缝金属的物理和力学性能不发生宏观变化,其焊接接头的静载强度和疲劳强度都比电阻焊接头的强度高,且稳定性好。 4) 被焊金属表面氧化膜或涂层对焊接质量影响较小,焊前对焊件表面准备工作比较简单。 5) 形成接头所需电能少,仅为电阻焊的5%;焊件变形小。 6) 不需要添加任何粘结剂、填料或溶剂,具有操作简便、焊接速度快、接头强度高、生产效率高等优点。超声波焊接的主要缺点是受现有设备功率的限制,因而与上声极接触的焊件厚度不能太厚,接头形式只能采用搭接接头,对接接头还无法应用。 二、超声波焊接的分类 超声波焊接分类按照超声波弹性振动能量传入焊件的方向,超声波焊接的基本类型可以分为两类:一类是振动能量由切向传递到焊件表面而使焊接界面产生

相对摩擦,这种方法适用于金属材料的焊接;另一类是振动能量由垂直于焊件表面的方向传入焊件,主要是用于塑料的焊接。常见的金属超声波焊接可分为点焊、环焊、缝焊及线焊;近年来,双振动系统的焊接和超声波对焊也有一定的应用。 (1)点焊点焊是应用最广的一种焊接形式,根据振动能量的传递方式,可以分为单侧式、平行两侧式和垂直两侧式。振动系统根据上声极的振动方向也可以分为纵向振动系统、弯曲振动系统以及介于两者之间的轻型弯曲振动系统。功率500W以下的小功率焊机多采用轻型结构的纵向振动;千瓦以上的大功率焊机多采用重型结构的弯曲振动系统;而轻型弯曲振动系统适用于中小功率焊机,它兼有上述两种振动系统的优点。 (2)环焊环焊方法如图5所示,主要用于一次成形的封闭形焊缝,能量传递采用的是扭转振动系统。焊接时,耦合杆4带动上声极5作扭转振动,振幅相对于声极轴线呈对称分布,轴心区振幅为零,边缘位置振幅最大。该类焊接方法最适合于微电子器件的封装工艺,有时环焊也用于对气密性要求特别高的直线焊缝的场合,用来代替缝焊。由于环焊的一次焊缝的面积较大,需要有较大的功率输入,因此常常采用多个换能器的反向同步驱动方式。 (3)缝焊与电阻焊中的缝焊类似,超声波缝焊实质上是由局部相互重叠的焊点形成一条连续焊缝。缝焊机的振动系统按其滚轮振动状态可分为纵向振动、弯曲振动以及扭转振动三种形式(图6)。其中最常见的是纵向振动形式,只是滚轮的尺寸受到驱动功率的限制。缝焊可以获得密封的连续焊缝,通常焊件被夹持在上下滚轮之间,在特殊情况下可采用平板式下声极。 (4)线焊它是点焊方法的一种延伸,利用线状上声极,在一个焊接循环内形成一条狭窄的直线状焊缝,声极长度就是焊缝的长度,现在可以达到150mm,这种方法最适用于金属薄箔的封口。 (5)双超声波振动系统的点焊:上下两个振动系统的频率分别为27kHz和20kHz(或15kHz),上下振动系统的振动方向相互垂直,焊接时二者作直交振动。当上下振动系统的电源各为3kW时,可焊铝件的厚度达10mm,焊点强度达到材料本身的强度。双超声波振动系统多用于集成电路和晶体管细导线的焊接,虽然焊接方法与点焊基本相同,但焊接设备复杂,要求设备的控制精度高,以便实现焊点的高质量和高可靠性焊接。

超声波结构的设计介绍

关于超声波结构的设计要点 一、超音波应用原理: 超声波焊接是一种快捷、干净、有效的装配工艺,用来装配处理热塑性塑料配件,超声波焊接不但有连接装配功能,而且具有防潮、防水的密封效果。 超声波焊接装置是通过一个电晶体功能设备将当前50/60HZ的电频转变成20HZ或40HZ 的高频电能,供应给转换器。转换器将电能转换成用于超声波的机械振动能,调压装置负责传输转变后的机械能至超声波焊接机的焊头(焊头是将机械振动能直接传输至需压合产品的一种声学装置)。振动通过焊接工作件传给粘合面振动摩擦产生热能使塑胶熔化,振动会在熔融状态物质达到其介面时停止,短暂保持压力可以使熔化物在粘合面固化时产生个强分子键。整个周期通常不到一秒便完成。 二、超声波结构 一般来说,在设计超声波结构之前,需考虑 ?选择什么塑料 ?是否只需要结构性的熔接,如果需要的话,要求它能承受多少压力 ?是否需要水气密 ?是否有外观上的要求 ?是否允许有任何溢胶微粒的产生 ?是否还有其它特殊要求等问题。 焊接件的品质主要通过以下几个方面的控制来获得

?材质 ?焊接的位置和设计 ?焊接面的大小 ?焊头与塑胶件的接触面 ?顺畅的焊接路径 ?底模的支撑 三、焊接塑胶件结构要求 1)塑胶件必须有一定的刚性及足够的壁厚,太薄的壁厚有一定的危险性,超声波焊接时是需要加压的,一般压力是2~6kg/cm2。所以塑胶件必须保证在加压的情况下基本不变形 2)如果一个注塑出来的零件出现应力非常集中的情况,比如尖角位置,在超声波的作用下会产生断裂,这种情况考虑在尖角位置加R角 3)注塑件内部或外部表面附带的突出或细小件会因为超声波振动产生影响而断裂或脱落,通过在附属物与主体相交的位置加一个大R角或加加强筋 4)如果被焊头接触的零件有孔或其它开口,则在超声波传送过程中会产生干扰和衰减,根据材料类型(尤其是半晶体材料)和孔大小,在开口的下端会直接出现少量焊接或完全熔不到的情况,因此应尽量避免 5)对焊头接触的塑胶件形状中,如果有薄而弯曲的结构,而且需要用来传送超声波能量,特别是对半晶体材料,超声波振动很难传送到加工面,对这种设计应尽量避免 三、熔接面的设计准则 超声波结构设计中,最重要的就是熔接面的设计。为了获得可接受的、稳定性高的熔接效果,必需遵循下述三项基本设计准则:

超声波传感器设计报告

重庆三峡职业学院 智能电子产品设计与制作实训报告项目名称超声波传感器 班级13级应用电子技术1班 姓名___________________________ 学号___________________________ 2014 --2015 学年度2 学期 机械与电子工程系

一超声波传感器简介 超声波传感器是利用超声波的特性研制而成的传感器。超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好,能够成为射线而定向传播等特点。超声波传感器可以对集装箱状态进行探测,可以应用于食品加工厂,实现塑料包装检测的闭环控制系统。超声波传感器对透明或有色物体,金属或非金属物体,固体、液体、粉状物质均能检测。 超声波传感器主要材料有压电晶体(电致伸缩)及镍铁铝合金(磁致伸缩)两类。电致伸缩的材料有锆钛酸铅(PZT)等。压电晶体组成的超声波传感器是一种可逆传感器,它可以将电能转变成机械振荡而产生超声波,同时它接收到超声波时,也能转变成电能,所以它可以分成发送器或接收器。有的超声波传感器既作发送,也能作接收。这里仅介绍小型超声波传感器,发送与接收略有差别,它适用于在空气中传播,工作频率一般为23-25KHZ 及40-45KHZ。这类传感器适用于测距、遥控、防盗等用途。该种有T/R-40-60,T/R-40-12等(其中T表示发送,R表示接收,40表示频率为40KHZ,16及12表示其外径尺寸,以毫米计)。另有一种密封式超声波传感器(MA40EI型)。它的特点是具有防水作用(但不能放入水中),可以作料位及接近开关用,它的性能较好。超声波应用有三种基本类型,透射型用于遥控器,防盗报警器、自动门、接近开关等;分离式反射型用于测距、液位或料位;反射型用于材料探伤、测厚等。 二超声波传感器的组成 超声波传感器是指产生超声波和接收超声波的装置,习惯上称为超声波换能器或超声波探头。超声波传感器利用压电晶体的压电效应和电致伸缩效应,将机械能与电能相互转换,并利用波的传输特性,实现对各种参量的测量,属典型的双向传感器。因此,超声波传感器由发射传感器(简称发射探头)和接收传感器(简称接收探头)两部分组成,如图6-3所示。 图6-3 超声波传感器的组成

超声波传感器

超声波传感器 超声波传感器是利用超声波的特性研制而成的传感器。超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。因此超声波检测广泛应用在工业、国防、生物医学等方面。 以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功 能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。 以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。 超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。小功率超声探头多作探测作用。它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头反射、一个探头接收)等。 超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。构成晶片的材料可以有许多种。晶片的大小,如直径和厚度也各不相同,因此每个探头的性能是不同的,使用前必须预先了解它的性能。 组成部分 超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。小功率超声探头多作探测作用。它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头反射、一个探头接收)等。 性能指标

超声探头的核心是其塑料外套或者金属外套中的一块压 超声波传感器 电晶片。构成晶片的材料可以有许多种。晶片的大小,如直径和厚度也各不相同,因此每个探头的性能是不同的,我们使用前必须预先了解它的性能。超声波传感器的主要性能指标包括: 工作频率 工作频率就是压电晶片的共振频率。当加到它两端的交流电压的频率和晶片的共振频率相等时,输出的能量最大,灵敏度也最高。 工作温度 由于压电材料的居里点一般比较高,特别是诊断用超声波探头使用 超声波传感器 功率较小,所以工作温度比较低,可以长时间地工作而不失效。医疗用的超声探头的温度比较高,需要单独的制冷设备。[1] 灵敏度 主要取决于制造晶片本身。机电耦合系数大,灵敏度高;反之,灵敏度低。 主要应用 超声波传感技术应用在生产实践的不同方面,而医学应用是其

超声波传感器原理及应用

[日期:2007-06-05] 来源:作者:[字体:大中小] 超声波发射原理是把铁磁材料置于交变磁场中,产生机械振动,发射出超声波。 接收原理是当超声波作用在磁致材料上时,使磁滞材料磁场变化,使线圈产生感应电势输出。 超声波传感器原理与应用 2008-04-18 02:40 超声波传感器原理及应用 信息来源:转载https://www.wendangku.net/doc/967868066.html,发布时间:2008-01-02字号:小中大 关键字:超声波传感器 1、遥控开关超声波遥控开关可控制家用电器及照明灯。采用 2、液位指示及控制器由于超声波在空气中有一定的衰减,则发送到液面及从液面反射回来的信号大小与液位有关,液面位置越高,信号越大;液面越低则信号就小。接收到的信号经BG1、BG2放大,经D1、D2整流成直流电压。当4.7KΩ上的电压超过BG3的导通电压时,有电流流过BG3,电流表有指示,电流大小与液面有关。A点与上图A点相连接。当液位低于设置值时,比较器输出为低电平。BG 不导通,若液位升到规定位置,比较器翻转,输出高电平。BG导通,J吸合,可通过电磁阀将输液开关关闭,以达到控制的目的(高位控制)。 超声波传感器 信息来源:https://www.wendangku.net/doc/967868066.html,/ca.htm发布时间:2007-11-27字号:小中大 关键字:超声波传感器传感器压电陶瓷超声传感器超声波距离传感器 超声波传感器的测距系统设计图

信息来源:中国超声波发布时间:2008-03-17字号:小中大 关键字:超声波传感器 安全避障是移动机器人研究的一个基本问题。障碍物与机器人之间距离的获得是研究安全避障的前提,超声波传感器以其信息处理简单、价格低廉、硬件容易实现等优点,被广泛用作测距传感器。本超声波测距系统选用了senscomp公司生产的polaroid6500系列超声波距离模块和600系列传感器,微处理器采用了atmel公司的at89c51。本文对此超声波测距系统进行了详细的分析与介绍。 1、超声波传感器及其测距原理 超声波是指频率高于20khz的机械波[1]。为了以超声波作为检测手段,必须产生超生波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声波换能器或超声波探头。超声波传感器有发送器和接收器,但一个超声波传感器也可具有发送和接收声波的双重作用。超声波传感器是利用压电效应[1]的原理将电能和超声波相互转化,即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声振动转换成电信号。 超声波测距的原理一般采用渡越时间法tof(timeofflight)[2]。首先测出超声波从发射到遇到障碍物返回所经历的时间,再乘以超声波的速度就得到二倍的声源与障碍物之间的距离,即 1、硬件电路设计 我们设计的超声波测距系统由polaroid600系列传感器、polaroid6500系列超声波距离模块和at89c51单片机构成。

超声波焊接接头结构设计

SEE- IN ULTRASONIC SDN. BHD. ( Company No. : 750998 – H ) Lot 25-4-10, Plaza Prima, Batu 4 1/2, Jalan Klang Lama, 58200 Kuala Lumpur, Malaysia. Tel : 03-7982 6466 Fax: 03–7982 6468 Joint Designs for Ultrasonic Welding Perhaps the most critical facet of ultrasonic welding is joint design (the configuration of two mating surfaces). It should be considered when the parts to be welded are still in the design stage, and incorporated into the molded parts. There are a variety of joint designs, each with specific features and advantages. Their selection is determined by such factors as type of plastic, part geometry, weld requirements, machining and molding capabilities, and cosmetic appearance. Butt Joint with Energy Director The butt joint with energy director is the most common joint design used in ultrasonic welding, and the easiest to mold into a part. The main feature of this joint is a small 90" or 60" triangular shaped ridge molded into one of the mating surfaces. This energy director limits initial contact to a very small area, and focuses the ultrasonic energy at the apex of the triangle. During the welding cycle, the concentrated ultrasonic energy causes the ridge to melt and the plastic to flow throughout the joint area, bonding the parts together. For easy-to-weld resins (amorphous polymers such as ABS, SAN, acrylic and polystyrene) the size of the energy director is dependent on the area to be joined. Practical considerations suggest a minimum height between .008 and .025 inch (.2 and .6 mm). Crystalline polymers, such as nylon, thermoplastic polyesters, octal, polyethylene, polypropylene, and polyphenylene sulfide, as well as high melt temperature amorphous resins, such as polycarbonate and polysulfide are more difficult to weld. For these resins, energy directors with a minimum height between .015 and, 020 inch (.4 and .5 mm) with a 60" included angle are generally recommended. The 90" included angle energy director height should be at least 10% of the joint width, and the width of the energy director should be at least 20% of the joint width. Image 1 (to the right) shows a butt joint with a 90" included angle energy director. With thick-walled joints, two or more energy directors should be used, and the sum of their heights should equal 10% of the joint width. To achieve hermetic seals when welding poly-carbonate components, it is recommended that a 60" included angle energy director should be designed into the part. The energy director width should be 25% to 30% of the wall thickness. Image 2 (to the right) shows a butt joint with a 60" included angle energy director. Image 3 (to the right) shows how the ports should be dimensioned to allow for the flow of molten material from the energy director throughout the joint area. With assemblies whose components are mode of identical thermoplastics, the energy director can be designed into either half of the assembly. However, when designing energy directors into assemblies consisting of a part mode of copolymers or terpolymers, such as ABS, and another part made of a photopolymer such as acrylic, the energy director should always be incorporated into the photopolymer half of the assembly. Thermoplastic Assembly Solutions for Every Application:

超声波塑料件的结构设计

.1塑料件的结构 塑料件必须有一定的刚性及足够的壁厚,太薄的壁厚有一定的危险性,超声波焊接时是需要加压的,一般气压为2-6kgf/cm2 。所以塑料件必须保证在加压情况下基本不变形。 1.2罐状或箱形塑料等,在其接触焊头的表面会引起共振而形成一些集中的能量聚集点,从而产生烧伤、穿孔的情况(如图1所示),在设计时可以罐状顶部做如下考虑 ○1 加厚塑料件 ○2 增加加强筋 ○3 焊头中间位置避空 1.3尖角 如果一个注塑出来的零件出现应力非常集中的情况,比如尖角位,在超声波的作用下会产生折裂、融化。这种情况可考虑在尖角位加R角。如图2所示。 1.4塑料件的附属物 注塑件内部或外部表面附带的突出或细小件会因超声波振动产生影响而断裂或脱落,例如固定梢等(如图3所示)。通过以下设计可尽可能减小或消除这种问题: ○1 在附属物与主体相交的地方加一个大的R角,或加加强筋。 ○2 增加附属物的厚度或直径。 1.5塑料件孔和间隙 如被焊头接触的零件有孔或其它开口,则在超声波传递过程中会产生干扰和衰减(如图4所示),根据材料类型(尤其是半晶体材料)和孔大小,在开口的下端会直接出现少量焊接或完全熔不到的情况,因此要尽量预以避免。 1.6塑料件中薄而弯曲的传递结构 被焊头接触的塑件的形状中,如果有薄而弯曲的结构,而且需要用来传达室递超声波能量的时候,特别对于半晶体材料,超声波震动很难传递到加工面(如图5所示),对这种设计应尽量避免。

1.7近距离和远距离焊接 近距离焊接指被焊接位距离焊头接触位在6mm以内,远距离焊接则大于6mm,超声波焊接中的能量在塑料件传递时会被衰减地传递。衰减在低硬底塑料里也较厉害,因此,设计时要特别注意要让足够的能量传到加工区域。 远距离焊接,对硬胶(如PS,ABS,AS,PMMA)等比较适合,一些半晶体塑料(如POM,PETP,PBTB,PA)通过合适的形状设计也可用于远距离焊接。 1.8塑料件焊头接触面的设计 注塑件可以设计成任何形状,但是超声波焊头并不能随意制作。形状、长短均可能影响焊头频率、振幅等参数。焊头的设计需要有一个基准面,即按照其工作频率决定的基准频率面。基准频率面一般占到焊头表面的70%以上的面积,所以,注塑件表面的突超等形状最好小于整个塑料面的30%。一滑、圆弧过渡的塑料件表面,则比标准可以适当放宽,且突出位尽量位于塑料件的中部或对称设计。 塑料件焊头接触面至少大于熔接面,且尽量对正焊接位,过小的焊头接触面(如图6所示),会引起较大损伤和变形,以及不理想的熔接效果。 在焊头表面有损伤纹,或其形状与塑料件配合有少许差异的情况下,焊接时,会在塑料件表面留下伤痕。避免方法是:在焊头与塑料件表面之间垫薄膜(例如PE膜等)。 焊接线的设计 焊接线是超声波直接作用熔化的部分,其基本的两种设计方式: ○1能量导向 ○2 剪切设计 2.1能量导向 能量导向是一种典型的在将被子焊接的一个面注塑出突超三角形柱,能量导向的基本功能是:集中能量,使其快速软化和熔化接触面。能量导向允许快速焊接,同时获得最大的力度,在这种导向中,其材料大部分流向接触面,能量导向是非晶态材料中最常用的方法。 能量导向柱的大小和位置取决于如下几点: ○1 材料 ○2 塑料件结构 ○3 使用要求 图7所示为能量导向柱的典型尺寸,当使用较易焊接的材料,如聚苯乙烯等硬度高、熔点低的材料时,建议高度最低为0.25mm。当材料为半晶体材料或高温混合树脂时(如聚乙碳),则高度至少要为0.5mm,当用能量导向来焊接半晶体树脂时(如乙缩荃、尼龙),最大的连接力主要从能量柱的底盘宽带度来获得。

超声波传感器测距原理

一、超声波测距原理 超声波测距原理是通过超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播时碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。超声波在空气中的传播速度为v ,而根据计时器记录的测出发射和接收回波的时间差△t ,就可以计算出发射点距障碍物的距离S ,即: S = v·△t /2 ① 这就是所谓的时间差测距法。 由于超声波也是一种声波, 其声速C与温度有关,表1列出了几种不同温度下的声速。在使用时,如果温度变化不大, 则可认为声速是基本不变的。常温下超声波的传播速度是334 米/秒,但其传播速度V 易受空气中温度、湿度、压强等因素的影响,其中受温度的影响较大,如温度每升高1 ℃, 声速增加约0. 6 米/ 秒。如果测距精度要求很高, 则应通过温度补偿的方法加以校正(本系统正是采用了温度补偿的方法)。已知现场环境温度T 时, 超声波传播速度V 的计算公式为: V = 331.45 + 0.607T ② 声速确定后, 只要测得超声波往返的时间,即可求得距离。这就是超声波 测距仪的机理。

二、系统硬件电路设计 图2 超声波测距仪系统框图 基于单片机的超声波测距仪框图如图2所示。该系统由单片机定时器产生40KHZ 的频率信号、超声波传感器、接收处理电路和显示电路等构成。单片机是整个系统的核心部件,它协调和控制各部分电路的工作。工作过程:开机,单片机复位,然后控制程序使单片机输出载波为40kHz 的10个脉冲信号加到超声波传感器上,使超声波发射器发射超声波。当第一个超声波脉冲群发射结束后,单片机片内计数器开始计数,在检测到第一个回波脉冲的瞬间,计数器停止计数,这样就得到了从发射到接收的时间差△t;根据公式①、②计算出被测距离,由显示装置显示出来。下面分别介绍各部分电路: 1 、超声波发射电路 超声波发射电路如图3所示,89C51通过外部引脚P1.0 输出脉冲宽度为250μs , 40kHz 的10个脉冲串通过超声波驱动电路以推挽方式加到超声波传感器而发射出超声波。由于超声波的传播距离与它的振幅成正比,为了使测距范围足够远,可对振荡信号进行功率放大后再加在超声波传感器上。 图3中T 为超声波传感器,是超声波测距系统中的重要器件。利用逆压电效应将加在其上的电信号转换为超声机械波向外辐射; 利用压电效应可以将作用

超声波焊接线的设计与超声波焊接机的调试

超声波焊接线的设计与超声波焊接机的调试 2009-04-23 09:39 1.强度无法达到欲求标准。当然我们必须了解超音波熔接作业的强度绝不可能达到一体成型的强度,只能说接近于一体成型的强度,而其熔接强度的要求标准必须仰赖于多项的配合,这些配合是什么呢?※塑料材质:ABS与ABS相互相熔接的结果肯定比ABS与PC相互熔接的强度来的强,因为两种不同的材质其熔点也不会相同,当然熔接的强度也不可能相同,虽然我们探讨ABS与PC这两种材质可否相互熔接?我们的答案是绝对可以熔接,但是否熔接后的强度就是我们所要的?那就不一定了!而从另一方面思考假使ABS与耐隆、PP、PE相熔的情形又如何呢?如果超音波HORN瞬间发出150度的热能,虽然ABS材质己经熔化,但是耐隆、PVC、PP、PE只是软化而已。我们继续加温到270度以上,此时耐隆、PVC、PP、PE已经可达于超音波熔接温度,但ABS材质已解析为另外分子结构了!由以上论述即可归纳出三点结论:1.相同熔点的塑料材质熔接强度愈强。2.塑料材质熔点差距愈大,熔接强度愈小。3.塑料材质的密度愈高(硬质)会比密度愈低(韧性高)的熔接强度高。 2.制品表面产生伤痕或裂痕。在超音波熔接作业中,产品表面产生伤痕、结合处断裂或有裂痕是常见的。因为在超音波作业中会产生两种情形:1.高热能直接接触塑料产品表面 2.振动传导。所以超音波发振作用于塑料产品时,产品表面就容易发生烫伤,而1m/m以内肉厚较薄之塑料柱或孔,也极易产生破裂现象,这是超音波作业先决现象是无可避免的。而在另一方面,有因超音波输出能量的不足(分机台与HORN上模),在振动摩擦能量转换为热能时需要用长时间来熔接,以累积热能来弥补输出功率的不足。此种熔接方式,不是在瞬间达到的振动摩擦热能,而需靠熔接时间来累积热能,期使塑料产品之熔点到达成为熔接效果,如此将造成热能停留在产品表面过久,而所累积的温度与压力也将造成产品的烫伤、震断或破裂。是以此时必须考虑功率输出(段数)、熔接时间、动态压力等配合因素,来克服此种作业缺失。 解決方法:1.降低压力。2.减少延迟时间(提早发振))。3.减少熔接时间。4.引用介质覆盖(如PE袋)。5.模治具表面处理(硬化或镀铬)。6.机台段数降低或减少上模扩大比。7.易震裂或断之产品,治具宜制成缓冲,如软性树脂或覆盖软木塞等(此项指不影响熔接强度)。8.易断裂产品于直角处加R角。 3.制品产生扭曲变形。发生这种变形我们规纳其原因有三:1.本体与欲熔接物或盖因角度或弧度无法相互吻合. 2.产品肉厚薄(2m/m以内)且长度超出60m/m以上. 3.产品因射出成型压力等条件导致变形扭曲.所以当我们的产品经超音波作业而发生变形时,从表面看来好像是超音波熔接的原因,然而这只是一种结果,塑料产品未熔接前的任何因素,熔接后就形成何种结果。如果没有针对主因去探讨,那将耗费很多时间在处理不对症下药的问题上,而且在超音波间接传导熔接作业中(非直熔),6kg以下的压力是无法改变塑料的轫性与惯性。所以不要尝试用强大的压力,去改变熔接前的变形(熔接机最高压力为6kg),包含用模治具的强迫挤压。或许我们也会陷入一个盲点,那就是从表面探讨变形原因,即未熔接前肉眼看不出,但是经完成超音波熔接后,就很明显的发现变形。其原因乃产品在熔接前,会因导熔线的存在,而较难发现产品本身各种角度、弧度与余料的累积误差,而在完成超音波熔接后,却显现成肉眼可看到的变形。解決方法:1.降低压力(压力最好在2kg 以下)。2.减少超音波熔接时间(降低强度标准)。3.增加硬化时间(至少0.8 秒以上)。 4.分析超音波上下模是否可局部调整(非必要时)。 5.分析产品变形主因,予以改善。 4.制品内部零件破坏※超音波熔接后发生产品破坏原因如下:1.超音波熔接机功率输出太

相关文档