文档库 最新最全的文档下载
当前位置:文档库 › 泊松分布参数的点估计

泊松分布参数的点估计

泊松分布参数的点估计

泊松分布的概念及表和查表方法

泊松分布的概念及表和查表方法 Poisson分布,是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩·德 目录 1命名原因 2分布特点 3关系 4应用场景 5应用示例 6推导 7形式与性质

命名原因 泊松分布实例 泊松分布(Poisson distribution),台译卜瓦松分布(法语:loi de Poisson,英语:Poisson distribution,译名有泊松分布、普阿松分布、卜瓦松分布、布瓦松分布、布阿松分布、波以松分布、卜氏分配等),是一种统计与概率学里常见到的离散机率分布(discrete probability distribution)。泊松分布是以18~19 世纪的法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)命名的,他在1838年时发表。这个分布在更早些时候由贝努里家族的一个人描述过。 分布特点 泊松分布的概率函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生次数。泊松分布适合于描述单位时间内随机事件发生的次数。 泊松分布的期望和方差均为特征函数为 关系 泊松分布与二项分布 泊松分布 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦0.05时,就可以用泊松公式近似得计算。 事实上,泊松分布正是由二项分布推导而来的,具体推导过程参见本词条相关部分。应用场景

在实际事例中,当一个随机事件,例如某电话交换台收到的呼叫、来到某公共汽车站的乘客、某放射性物质发射出的粒子、显微镜下某区域中的白血球等等,以固定的平均瞬时速率λ(或称密度)随机且独立地出现时,那么这个事件在单位时间(面积或体积)内出现的次数或个数就近似地服从泊松分布P(λ)。因此,泊松分布在管理科学、运筹学以及自然科学的某些问题中都占有重要的地位(在早期学界认为人类行为是服从泊松分布,2005年在nature上发表的文章揭示了人类行为具有高度非均匀性)。 应用示例 泊松分布适合于描述单位时间(或空间)内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数,一块产品上的缺陷数,显微镜下单位分区内的细菌分布数等等。 观察事物平均发生m次的条件下,实际发生x次的概率P(x)可用下式表示: 例如采用0.05J/㎡紫外线照射大肠杆菌时,每个基因组(~4×106核苷酸对)平均产生3个嘧啶二体。实际上每个基因组二体的分布是服从泊松分布的,将取如下形式: …… 是未产生二体的菌的存在概率,实际上其值的5%与采用0.05J/㎡照射时的大肠杆菌uvrA-株,recA-株(除去既不能修复又不能重组修复的二重突变)的生存率是一致的。由于该菌株每个基因组有一个二体就是致死量,因此就意味着全部死亡的概率。 推导 泊松分布是最重要的离散分布之一,它多出现在当X表示在一定的时间或空间内出现的事件个数这种场合。在一定时间内某交通路口所发生的事故个数,是一个典型的例子。泊松分布的产生机制可以通过如下例子来解释。

数学分布(泊松分布、二项分布、正态分布、均匀分布、指数分布) 生存分析 贝叶斯概率公式 全概率公式讲解

数学期望:随机变量最基本的数学特征之一。它反映随机变量平均取值的大小。又称期望或均值。它是简单算术平均的一种推广。例如某城市有10万个家庭,没有孩子的家庭有1000个,有一个孩子的家庭有9万个,有两个孩子的家庭有6000个,有3个孩子的家庭有3000个,则此城市中任一个家庭中孩子的数目是一个随机变量,记为X,它可取值0,1,2,3,其中取0的概率为0.01,取1的概率为0.9,取2的概率为0.06,取3的概率为0.03,它的数学期望为0×0.01+1×0.9+2×0.06+3×0.03等于1.11,即此城市一个家庭平均有小孩1.11个,用数学式子表示为:E(X)=1.11。 也就是说,我们用数学的方法分析了这个概率性的问题,对于每一个家庭,最有可能它家的孩子为1.11个。 可以简单的理解为求一个概率性事件的平均状况。 各种数学分布的方差是: 1、一个完全符合分布的样本 2、这个样本的方差 概率密度的概念是:某种事物发生的概率占总概率(1)的比例,越大就说明密度越大。比如某地某次考试的成绩近似服从均值为80的正态分布,即平均分是80分,由正态分布的图形知x=80时的函数值最大,即随机变量在80附近取值最密集,也即考试成绩在80分左右的人最多。 下图为概率密度函数图(F(x)应为f(x),表示概率密度):

离散型分布:二项分布、泊松分布 连续型分布:指数分布、正态分布、X 2分布、t 分布、F 分布 抽样分布只与自由度,即样本含量(抽样样本含量)有关 二项分布(binomial distribution ):例子抛硬币 1、 重复试验(n 个相同试验,每次试验两种结果,每种结果概率恒定————伯努利试验) 2、 抽样分布

浅析二项分布与泊松分布之间的关系

学年论文 题目:浅析二项分布与泊松分布之间的关系 学生: 学号: 院(系):理学院 专业:信息与计算科学 指导教师:安晓钢 2013 年11月25日

浅析二项分布与泊松分布之间的关系 信息121班; 指导教师:安晓钢 (陕西科技大学理学院 陕西 西安 710021) 摘 要:泊松分布刻画了稀有事件在一段时间内发生次数这一随机变量的分布,如电话交换台单位时间内接到的呼唤次数等。二项分布是n 个独立的是/非试验中成功的次数的离散概率分布。它们有着密切的关系。泊松分布是二项分布的特例。某现象的发生率很小,而样本例数n 很大时,则二项分布接近于泊松分布,即:如果试验次数n 很大,二项分布的概率p 很小,且乘积np =λ比较适中,则事件出现的次数的概率可以用泊松分布来逼近。事实上,二项分布可以看作泊松分布在离散时间上的对应物,是二项分布的特例。通过分析二项分布和泊松分布之间的关系,使学生对概率分布理论的理解更为深刻,能够将学到的理论知识应用在实际生活中,从而提高自己的综合素质。 关 键 词:二项分布, 泊松分布, 近似 The Application of Asignment Poblem ABSTRACT: Poisson distribution is used to depict the distribution of rare events that a random variable frequency over a period of time, such as a telephone exchange in unit time received the call number. The two distribution is n independent / discrete probability distributions of number of successful non trials. They have a close relationship. Poisson distribution is two distribution case. The incidence of the phenomenon is very small, and the number of sample n is large, then the two distribution is close to the Poisson distribution, i.e.: if the test number n is large, the two probability distribution P is small, and the product of lambda = N P is moderate, the probability of the event can be used to force the Poisson distribution near. In fact, the two distribution can be seen as the counterpart of Poisson distribution in discrete time, are the two distribution case. Through the analysis of the relationship between two binomial distribution and Poisson distribution, enables the student to the theory of probability distribution for more profound understanding will be able to learn the application of theoretical knowledge in real life, so as to improve their comprehensive quality. KEY WORDS : Two distribution, Poisson distribution, Approximate

双参数威布尔分布函数的确定及曲线拟合(精)

2007.NO.4. CN35-1272/TK 图 1威布尔函数拟合曲线的仿真系统模块 作者简介 :包小庆 (1959~ , 男 , 高级工程师 , 从事可再生能源的研究。 大型风电场的建设不但可以减缓用电短缺情况 , 而且并网后还能为电网提供很大一部分电能。而大型风电场的选址 , 与该地的风速分布情况有关。用于描述风速分布的模型很多 , 如瑞利分布、对数正态分布、 r 分布、双参数威布尔分布、 3参数威布尔分布 , 皮尔逊曲线拟合等。经过大量的研究表明 , 双参数威布尔分布函数更接近风速的实际分布。本文采用 4种方法计算威布尔分布函数的参数 , 并利用计算出的参数确定威布尔分布函数的实际数学模型进行曲线拟合。最后以白云鄂博矿区风电场拟选址为例 , 使用计算机软件 (MATLAB 对该地区风速威布尔分布函数进行曲线拟合 , 得到该地区不同高度的风速分布函数曲线。 1双参数威布尔分布函数的确定 双参数威布尔分布是一种单峰的正偏态分布函数 , 其概 率密度函数表达式为 : p(x=k x " exp-x " (1 式中 :k ———形状参数 , 无因次量 ; c ———

尺度参数 , 其量纲与速度相同。为了确定威布尔分布函数的实际模型 , 需计算出实际情况下对应函数的 2个参数。估算风速威布尔参数的方法很多 , 本文给出4种有效的方法以确定 k 和 c 值。 1.1HOMER 软件法 HOMER 是一个对发电系统优化配置与经济性分析的软件。通过输入 1a 逐时风速数据或者月平均风速数据 , 根据实际情况设置相应参数 , 即可计算得到 k 和c 值 , 此时计算出的 k 和 c 值是计算机系统认为的最佳值。 1.2Wasp 软件法 Wasp 是一个风气候评估、 计算风力发电机组年发电量、风电场年总发电量的软件。通过输入风速统计资料 , 计算机可以直接计算出 k 和 c 值。 1.3最小二乘法 通过风速统计资料计算出最小二乘法拟合直线 y=ax+b 的斜率 a 和截距 b 。由下式确定 k 和 c 的值 : k=b (2 c=esp a (3 1.4平均风速和最大风速估计法 从常规气象数据获得平均风速和时间 T 观测到的 10min 平均最大风速 V m ax , 设全年的平均风速为通过下式计算 k 和 c 值 : k=ln (lnT (4 c=(5

泊松分布

泊松分布 ),是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩·德尼·泊松(Siméon-Denis Poisson)在1838年时发表。 泊松分布适合于描述单位时间内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数等等。

泊松分布的概率质量函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率。 性质 服从泊松分布的随机变量,其数学期望与方差相等,同为参数λ: E(X)=V(X)=λ 动差生成函数: 泊松分布的来源 在二项分布的伯努力试验中,如果试验次数n很大,二项分布的概率p很小,而乘积λ= n p比较适中,则事件出现的次数的概率可以用泊松分布来逼近。这在现实世界中是很常见的现象,如DNA 序列的变异、放射性原子核的衰变、电话交换机收到的来电呼叫、公共汽车站候车情况等等。 证明如下。首先,回顾e的定义: 二项分布的定义: 如果令p = λ / n, n趋于无穷时P的极限:

[编辑]最大似然估计 给定n个样本值k i,希望得到从中推测出总体的泊松分布参数λ的估计。为计算最大似然估计值, 列出对数似然函数: 对函数L取相对于λ的导数并令其等于零: 解得λ从而得到一个驻点(stationary point): 检查函数L的二阶导数,发现对所有的λ与k i大于零的情况二阶导数都为负。因此求得的驻点是对数似然函数L的极大值点: [编辑]例子 对某公共汽车站的客流做调查,统计了某天上午10:30到11:47来到候车的乘客情况。假定来到候车的乘客各批(每批可以是1人也可以是多人)是互相独立发生的。观察每20秒区间来到候车的乘客批次,共得到230个观察记录。其中来到0批、1批、2批、3批、4批及4批以上的观察记录分别是100个、81个、34个、9个、6个。使用极大似真估计(MLE),得到λ的估计为0.8696。实际上各批次发生的频率与λ = 0.87的泊松分布吻合的非常好。

泊松分布及其应用研究

泊松分布及其应用研究 Prepared on 22 November 2020

湖南科技大学 信息与电气工程学院 《课程论文》 题目:泊松分布及其应用研究 专业:通信工程 班级: 13级3班 姓名:黄夏妮 学号: 目录 一、摘要 (1) 二、泊松分布的概念 (2) 三、计数过程为广义的泊松过程 (4) 四、泊松分布及泊松分布增量 (5) 五、泊松分布的特征 (5) 六、泊松分布的应用 (6) 七、基于MATLAB的泊松过程仿真 (8) 八、参考文献 (12)

摘要 作为一种常见的离散型随机变量的分布,泊松分布日益显示其重要性,成为概率论中最重要的几个分布之一。服从泊松分布的随机变量是常见的,它常与时间单位的计数过程相联系。 在现实生活中应用更为广泛,如数学建模、管理科学、运筹学及自然科学、概率论等等。并且在某些函数关系起着一种重要作用。例如线性的、指数的、三角函数的等等。同样, 在为观察现象构造确定性模型时, 某些概率分布也经常出现。泊松分布作为大量试验中稀有事件出现的频数的概率分布的数学模型, 它具有很多性质。为此本文讲述了泊松分布的一些性质, 并讨论了这些性质在实际生活中的重要作用。

二、泊松分布的概念: 定义1 设随机变量X 的可能取值为,,2,1,0 且 {}0,,2,1,0,! >===-λλ k e k x k X P k 为常数。 则称X 服从参数为λ的泊松分布,记作X ~ D(λ) 。 定义2 设ε是任意一个随机变量,称 )t (- e t)(it +∞<<∞=Φε是ε的特征函数。 主要结论: 定理1 如果X 是一个具有以λ为参数的泊松分布,则E( X) = λ且D ( X) =λ。 证明 设X 是一随机变量,若 ] X) E( - X [ E{2}存在,则称它为X 的方差,记作D( X) ,即 ] X) E( - X [ E{ X) D(2}=。设X 服从泊松分布D ( X) ,即有: 则()()λλλλλλλλ λ=?=-==- ∞ =--∞ =-∑∑ e e k e k e k X E k k k k 11 0!1! 从而()() () λλλλλλλ λ +=-+-==-∞ =-∞ =--∞ =∑ ∑ ∑2122 2 2 !1!2! e k e k e k k X E k k k k k k 故λλλλ - X) E( - ) X E( X) D(2222=+== 定理2 设随机变量) , ,2 1 n ( x n =服从二项分布,其分布律为 {}n k p p C k x P k n n k n k n n ,,2,1,0,)1( =-==-。 又设0>=λn np 是常数,则{}λλ-∞ →==e k k x P k n n ! lim 。 证明 由λ=n np 得: 显然,当k = 0 时,故λ-n e k} x P{→=。当k ≥1 且k → ∞时,有

正确理解泊松分布

正确理解泊松分布 很多人在上概率论这门课的时候就没搞明白过泊松分布到底是怎么回事,至少我就是如此。虽然那个时候大家都会背“当试验的次数趋于无穷大,而乘积np固定时,二项分布收敛于泊松分布”,大部分的教科书上也都会给出这个收敛过程的数学推导,但是看懂它和真正的理解还有很大距离。如果我们学习的意义是为了通过考试,那么我们大可停留在“只会做题”的阶段,因为试卷上不会出现“请发表一下你对泊松公式的看法”这样的题目,因为那样一来卷子就变得不容易批改,大部分考试都会出一些客观题,比如到底是泊松分布还是肉松分布。 而如果我们学习的目的是为了理解一样东西,那么我们就有必要停下来去思考一下诸如“为什么要有泊松分布?”、“泊松分布的物理意义是什么?”这样的“哲学”问题。 如果我们要向一个石器时代的人解释什么是电话,我们一定会说:“电话是一种机器,两个距离很远的人可以通过它进行交谈”,而不会说:“电话在18XX年由贝尔发明,一台电话由几个部分构成……”(泊松分布在18XX年由泊松提出,泊松分布的公式是……)所以我们问的第一个问题应该是“泊松分布能拿来干嘛?” 泊松分布最常见的一个应用就是,它作为了排队论的一个输入。什么是排队论?比如我们去每天食堂打饭,最头疼的一个问题就是排队,之所以要排队是因为食堂打饭的大叔有限,假设学校有1000个学生,而食堂恰好配了1000个大叔和打饭的窗口,那么就永远不会有人排队。但是出于经营成本方面的考虑食堂通常不会这么干,因此如何控制窗口的数量并且保证学生不会因为排队时间太长而起义是一门很高深的学问。 在一段时间t(比如1个小时)内来到食堂就餐的学生数量肯定不会是一个常数(比如一直是200人),而应该符合某种随机规律:比如在1个小时内来200 个学生的概率是10%,来180个学生的概率是20%……一般认为,这种随机规律服从的就是泊松分布。 也就是在单位时间内有k个学生到达的概率为: 其中为单位时间内学生的期望到达数。 问题是“这个式子是怎么来的呢?”——我们知道泊松分布是二项分布满足某种条件的一个特殊形式,因此可以先从简单的二项分布入手,寻找两者之间的联系。

Poisson分布的参数估计

Poisson 分布的参数估计 作者:高晨 指导老师:戴林送 摘要 泊松分布是概率统计学科中一种重要的离散分布,在参数估计这块,对点估计,矩估计,最大似然 估计以及近似的区间估计等,该文中对泊松分布的相关知识,包括其性质,参数的相关估计,研究了泊松分布的一些性质,参数的估计,以及一些在生活中的简单应用。 关键词 P o i s s o 分布 参数估计 性质 简单应用 1 引言 Poisson 分布是离散型随机变量X 作为大量试验中稀有事件出现的频数的概率分布的数学模型,其中X 可能取值为0,1,2,……而取各个值的概率为: {},0,1,2! k e P x k k k λ λ-== = 其中0λ>是常数,称X 服从参数为λ的泊松~(;)X P k x . 1.1相关定义 1. 离散型随机变量X 的函数分布律{},0,1,2k k P X x P k === ,若级数1k k k x p ∞ =∑绝 对收敛,称级数 1 k k k x p ∞ =∑为随机变量X 的数学期望[]E x , []E x =1k k k x p ∞ =∑. 2. 定理:Y 是随机变量X 的函数,(),(Y g x g =是连续函数),X 是离散型随机变量, 若 1 ()k k k g x p ∞ =∑绝对收敛,则 [][()]E Y E g x ==1 ()k k k g x p ∞ =∑. 3. 随机变量X ,若2{[()]}E X E X -存在,则称2{[()]}E X E X -为X 的方差,记 为()D x 或()Var x ,即 ()D x =()Var x =2{[()]}E X E X -.

泊松分布

泊松分布适合于描述单位时间内随机事件发生的次数。如某一服务设施在一定时间内到达的人数,电话交换机接到呼叫的次数,汽车站台的候客人数,机器出现的故障数,自然灾害发生的次数等等。 泊松分布的概率质量函数为: 泊松分布的参数λ是单位时间(或单位面积)内随机事件的平均发生率。 当二项分布的n很大而p很小时,泊松分布可作为二项分布的近似,其中λ为np。通常当n≧20,p≦0.05时,就可以用泊松公式近似计算 在概率论和统计学中,指数分布(Exponential distribution)是一种连续概率分布。指数分布可以用来表示独立随机事件发生的时间间隔,比如旅客进机场的时间间隔、中文维基百科新条目出现的时间间隔等等。 许多电子产品的寿命分布一般服从指数分布。有的系统的寿命分布也可用指数分布来近似。它在可靠性研究中是最常用的一种分布形式。指数分布是伽玛分布和威布 尔分布的特殊情况,产品的失效是偶然失效时,其寿命服从指数分布。 指数分布可以看作当威布尔分布中的形状系数等于1的特殊分布,指数分布的失效率是与时间t无关的常数,所以分布函数简单。 Gamma分布的定义 设α,β是正常数,如果X的密度是: 就称X是服从参数为(α,β)的Gamma分布。并记为Γ(β,α). Gamma分布中2参数为形状参数α(shape parameter)和尺度参数β(sc ale parameter),当α为正整数时,分布可看作α个独立的指数分布之和,当k趋向于较大数值时,分布近似于正态分布。下图为概率密度函数(图中形状参数k为(shape parameter)和尺度参数θ为(sc ale parameter))。 性质: 1、β=n,Γ(n,α)就是Erlang分布。Erlang分布常用于可靠性理论和排队论中,如一个复杂系统中从第 1 次故障到恰好再出现n 次故障所需的时间;从某一艘船到达港口直到恰好有n 只船到达所需的时间都服从Erlang分布; 2、当β= 1 时,Γ(1,α) 就是参数为α的指数分布,记为exp (α) ; 3、当α = 1/2,β=n/2时,Γ (n/2,1/2)就是数理统计中常用的χ2( n) 分布。 4、数学期望(均值)、方差分别为E( X) =β/α,D ( X) =β/(α*α)

泊松分布

2.2.19 泊松分布的图形及最值 泊松分布同二项分布一样,首先是单调增加,然后再单调递减.所以,泊松分布P(λ)的最值情况如下: (1)若λ是整数,则泊松分布在X=λ-1和X=λ处概率值最大; (2)若λ不为整数,则存在整数m有λ-1< span="">,此时泊松分布在X=m 处的概率最大. 注,这些最值的推导分析如同二项分布的分析,即通过比值P{X=k}/P{X=k-1}来推导. 2.2.20 服从泊松分布的例子 泊松分布是重要的离散型分布,它在实际中有着广泛的应用.泊松分布的应用重要集中在三个领域. 1.社会生活对某服务的需求.如 (1)电话交换台在一段时间内的呼叫次数; (2)公共汽车站在一段时间内的乘客数; (3)某餐厅在一段时间内等待就餐的顾客数; (4)某售票窗口接待的顾客数; (5)某医院每天前来就诊的病人数; (6)某地区某癌症的发病人数;?? 2.物理学和生物学领域.如 (1)放射性物质的放射粒子落在某区域的质点数; (2)显微镜下某区域中的血球数目; (3)显微镜下某区域中的细菌数目; (4)数字通讯中传输数字时发生误码的个数; (5)一段时间内某放射性物质发射出的粒子数; (6)一段时间内某容器内部的细菌数;?? 3.大量试验中稀有事件出现的次数.

(1)一页中印刷错误出现的次数; (2)大量螺钉中不合格品出现的个数; (3)三胞胎出生的次数; (4)某路口在一段时间内发生事故的次数; (5)某机器在一段时间内出现故障的次数; (6)某城市在一段时间内出现火灾(或地震)的次数; (7)一纺锭在一段时间内发生断头的次数; (8)特大洪水发生的年数;?? 注稀有事件是指在试验中出现的概率很小的事件,也称小概率事件.如,火山爆发、地震、彩票中大奖等等. 2.2.24 泊松分布(3)-例7 例2.2-7 某一城市每天发生火灾的次数X服从参数λ=0.8的泊松分布,求该城市一天内发生3次或3次以上火灾的概率. 解由概率的性质及泊松分布的定义,得 P{X≥3}=1-P{X<3}=1-P{X=0}-P{X=1}-P{X=2} =1-e-0.8(0.800!+0.811!+0.822!) ≈0.0474.■ 2.2.25 泊松分布(4)-例8 例2.2-8 某公司生产一种产品300件,根据历史生产记录知废品率为0.01,问现在这300件产品经检验废品数大于5的概率是多少? 解把每件产品的检验看作一次伯努利试验,它有两个结果:A={正品},Aˉ={废品},检验300件产品就是作300次独立的伯努利试验.用X表示检验出的废品数,则 X~b(300,0.01), 从而问题变为计算P{X>5}. 由于n>100,np=3<10,故泊松分布可以很好地近似计算二项分布.记λ=np=3,于是得 P{X>5}=∑k=6300b(k;300,0.01)=1-∑k=05b(k;300,0.01)≈1-∑k=053\spacekk

泊松分布及其应用研究

湖南科技大学 信息与电气工程学院 《课程论文》 题目:泊松分布及其应用研究 专业:通信工程 班级:13级3班 姓名:黄夏妮 学号:1304040322

一、摘要 (1) 二、泊松分布的概念 (2) 三、计数过程为广义的泊松过程 (4) 四、泊松分布及泊松分布增量 (5) 五、泊松分布的特征 (5) 六、泊松分布的应用 (6) 七、基于MATLAB的泊松过程仿真 (8) 八、参考文献 (12)

作为一种常见的离散型随机变量的分布,泊松分布日益显示其重要性,成为概率论中最重要的几个分布之一。服从泊松分布的随机变量是常见的,它常与时间单位的计数过程相联系。 在现实生活中应用更为广泛,如数学建模、管理科学、运筹学及自然科学、概率论等等。并且在某些函数关系起着一种重要作用。例如线性的、指数的、三角函数的等等。同样, 在为观察现象构造确定性模型时, 某些概率分布也经常出现。泊松分布作为大量试验中稀有事件出现的频数的概率分布的数学模型, 它具有很多性质。为此本文讲述了泊松分布的一些性质, 并讨论了这些性质在实际生活中的重要作用。

二、泊松分布的概念: 定义1 设随机变量X 的可能取值为,,2,1,0 且 {}0,,2,1,0,! >===-λλ k e k x k X P k 为常数。 则称X 服从参数为λ的泊松分布,记作X ~ D(λ) 。 定义2 设ε是任意一个随机变量,称 )t (- e t)(it +∞<<∞=Φε是ε的特征函数。 主要结论: 定理1 如果X 是一个具有以λ为参数的泊松分布,则E( X) = λ且D ( X) =λ。 证明 设X 是一随机变量,若 ] X) E( - X [ E{2}存在,则称它为X 的方差,记作D( X) ,即 ] X) E( - X [ E{ X) D(2}=。设X 服从泊松分布D ( X) ,即有: 0 , , ,2 ,1 0 k ,! k} X P{>===-λλλ e k k 则()()λλλλλλλλ λ =?=-==- ∞ =--∞ =-∑∑ e e k e k e k X E k k k k 11 0!1! 从而()() () λλλλλλλ λ +=-+-==-∞ =-∞ =--∞ =∑ ∑ ∑2122 2 2 !1!2! e k e k e k k X E k k k k k k 故λλλλ - X) E( - ) X E( X) D(2222=+== 定理2 设随机变量) , ,2 1 n ( x n =服从二项分布,其分布律为 {}n k p p C k x P k n n k n k n n ,,2,1,0,)1( =-==-。 又设0>=λn np 是常数,则{}λλ-∞ →==e k k x P k n n ! lim 。

相关文档