文档库 最新最全的文档下载
当前位置:文档库 › 第二章 第二节系统误差

第二章 第二节系统误差

误差和数据处理习题解答

第一章 误差和数据处理习题解答 1、指出下列情况属于随机误差还是系统误差: (1)视差; (2)天平零点漂移; (3)千分尺零点不准; (4)照相底版收缩; (5)水银温度计毛细管不均匀; (6)电表的接入误差。 解:(1)忽左忽右,属随机误差; (2)往单方向漂移属系统误差;随机漂移属随机误差; (3)属系统误差,应作零点修正; (4)属系统误差; (5)按随机误差处理; (6)属系统误差,可作修正。 2、说明以下因素的系统误差将使测量结果偏大还是偏小: (1)米尺因低温而收缩; (2)千分尺零点为正值; (3)测密度铁块内有砂眼; (4)单摆公式测重力加速度,没考虑θ≠0; (5)安培表的分流电阻因温度升高而变大。 解:(1)使结果偏大; (2)使结果偏大,属系统误差,修正时应减去这正零点值; (3)使密度值偏小; (4)使结果偏小: 当θ≠0时,单摆公式为: )2 sin 411(220θπ +=g l T 或 2220 2)2sin 1(4θπ+=T l g 若用θ=0的2 0204T l g π=近似,结果偏小; (5)分流电阻变大,分流变小,使结果偏大。 3、用物理天平(仪?=0.020g )称一物体的质量m ,共称5次,结果分别为36.127g 、 36.122g 、36.121g 、36.120g 和36.125g 。试求这些数据的平均值、绝对不确定度和相对不确定度。 解:36.12736.12236.12136.12036.12536.12336.1230 m g +++++== m S =0.0026g , 已知:仪? =0.020g , 0.020u g ==?

谈谈系统误差的产生原因及其消除或减少的方法

谈谈系统误差的产生原因及其消除或减少的方法 在讨论随机误差时,总是有意忽略系统误差,认为它等于零。若系统误差不存在,期望值就是真值。但是,在实际工作中系统误差是不能忽略的。所以要研究系统误差,发现和消除系统误差。 一、系统误差产生的原因 在长期的测量实践中人们发现,系统误差的产生一般的与测量仪器或装置本身的准确程度有关;与测量者本身的状况及测量时的外界条件有关。 1、在检定或测试中,标准仪器或设备的本身存在一定的误差。在进行计量检定,向下一级标准量值传递时,标准值的误差是固定不变的,属于系统误差。又称为工具误差或仪器误差。如:标称值为100g的砝码,经检定实际值为99.997g,即误差为+0.003g。用此砝码去秤量其他物体的质量,按标称值使用,则始终把被测量秤大,产生+0.003g的恒定系统误差。 某些仪器或设备,在测量前须先进行调零位,若因测量前未调零位或存在调零偏差,使得标准仪器在测量前即具有某一初始值,该初始值必然直接影响测量结果,给测量结果带来误差。这种误差,一般称零位误差,或简称零差。 某些仪器或设备,如未按要求放置,特别是某些电磁测量和无线电测量仪器或设备,未正确接地或屏蔽,或未用专用连接导线,也会给测量结果带来误差。这种误差称为装置误差。 2、测量时的客观环境条件(如温度、湿度、恒定磁场等),也会给测量结果带来误差。如,重力加速度因地点不同而异,若与重力加速度有关的某些测量,未按测量地点的不同加以适当的修正,也会给测量结果带来误差。因这种误差是由客观环境因素引起的,一般把它称为环境误差。 3、由于某些测量方法的不完善,特别是检定与测试中所使用的某些仪器或设备,在设计制造时受某些条件的限制(如元器件,制造工艺等),不得不降低某些指标,采用一些近似公式,这也会给测量结果带来误差。这种误差称方法误差或称理论误差。 4、在测量中,测量者本身生理上的某些缺陷,如听觉、视力等缺陷,也会给测量结果带来误差。此项误差又称为人员误差。 二、消除或减少系统误差的方法 mad消除或减少系统误差有两个基本方法。一是事先研究系统误差的性质和大小,以修正量的方式,从测量结果中予以修正;二是根据系统误差的性质,在测量时选择适当的测量方法,使系统误差相互抵消而不带入测量结果。

计算机控制系统的稳态误差

计算机控制系统报告 --计算机控制系统的稳态误差 在计算机控制系统中存在稳态误差。怎样计算稳态误差呢? 在连续系统中,稳态误差的计算可以通过两种方法计算:一是建立在拉氏变换中值定理基础上的计算方法,可以求出系统的终值误差;另一种是从系统误差传递函数出发的动态误差系数法,可以求出系统动态误差的稳态分量。 在离散系统中,根据连续系统稳态误差的两种计算方法,在一定的条件下可以推广到离散系统。又由于离散系统没有唯一的典型结构形式,离散系统的稳态误差需要针对不同形式的离散系统来求取。 书上主要介绍了利用z 变换的终值定理方法,求取误差采样的离散系统在采样瞬时的终值误差。 设单位反馈误差采样系统如图4.12所示。 图4.12 单位反馈误差采样反馈系统 系统误差脉冲传递函数为 (4.1) 若离散系统是稳定的,则可用z 变换的终值定理求出采样瞬时的终值误差 (4.2) Φ==+e ()1()()1()E z z R z G z )](1[)()1(lim )()1(lim )(lim )(1111*z G z R z z E z t e e z z t +-=-==∞-→-→∞ →

(4.2)式表明,线性定常离散系统的稳态误差,不但与系统本身的结构和参数有关,而且与输入序列的形式及幅值有关。除此之外,离散系统的稳态误差与采样系统的周期的选取也有关。上式只是计算单位反馈误差采样离散系统的基本公式,当开环脉冲传递函数G(z)比较复杂时,计算e(∞)仍然有一定的计算量,因此希望把线性定常连续系统中系统型别及静态误差系数的概念推广到线性定常离散系统,以简化稳态误差的计算过程。 在离散系统中,把开环脉冲传递函数G(z)具有z=1的极点数v 作为划分离散系统型别的标准,与连续系统类似地把G(z)中 v=0,1,2,…的系统,称为0型,Ⅰ型和Ⅱ型离散系统等。下面讨论不同类别的离散系统在三种典型输入信号作用下的稳态误差,并建立离散系统静态误差系数的概念。 1.单位阶跃输入时的稳态误差 对于单位阶跃输入r(t)=1(t),其z 变换函数为 (4.3) 得单位阶跃输入响应的稳态误差 (4.4) 上式代表离散系统在采样瞬时的终值位置误差。式中 (4.5) 称为静态位置误差系数。若G(z)没有z=1的极点,则Kp ≠∞,从而e(∞)≠0;若G(z)有一个或一个以上z=1的极点,则Kp= ∞,从1 11)(--=z z R →∞==+1p 11()lim 1()z e G z K →=+p 1lim[1()]z K G z

系统误差和偶然误差的区别

偶然错误也称为随机错误,与系统错误不同,如下所示: 1,原因不同 1.随机误差:它是由各种不稳定的随机因素引起的,例如室温,相对湿度和气压。 2.系统误差:样本与研究任务不符;他们不了解人口分布的性质,并选择可能扭曲人口分布的抽样程序;有意识地选择最方便,最有利的人口要素来解决问题,但是这些要素并不代表人口(例如,仅抽样先进企业)。 2,不同的表达方式 1.随机误差:是由于在确定较小的随机波动和形成相互补偿误差的过程中的一系列相关因素。 2.系统误差:指一种非随机误差。例如,违反随机原则的偏差误差,采样中的记录记录引起的误差等。 3,不同的特点 1.随机误差:其绝对值和符号是不可预测的。 2.系统错误:可重复性,单向性,可测试性。 主要区别在于性质,原因和特征不同 1,性质不同 1.意外错误 偶然误差一般是指随机误差,是由于在确定过程中一系列相关因素的随机小波动,具有相互补偿的关系。 2.系统错误

系统误差是一种非随机误差。在重复性条件下,测量结果的平均值与测量结果的真实值之间的差是无限的。 2,原因不同 1.意外错误 原因是分析过程中各种不稳定的随机因素的影响,例如室温,相对湿度和气压等环境条件的不稳定性,分析人员操作的细微差异以及仪器的不稳定性。 2.系统错误 主要原因如下: (1)样本不符合研究任务。 (2)在不了解人口分布本质的情况下,我们选择了可能会使人口分布失真的抽样程序。 (3)有意识地选择解决问题的最方便,最有利的要素,但这些要素并不代表人口(例如,仅抽样先进企业)。 3,不同的特点 1.意外错误 大小和方向不固定。 2.系统错误 重复性,单向性和可测试性。

系统误差和偶然误差的区别

系统误差: 系统误差,是指一种非随机性误差。如违反随机原则的偏向性误差,在抽样中由登记记录造成的误差等。它使总体特征值在样本中变得过高或过低。产生原因主要有:(1)所抽取的样本不符合研究任务;(2)不了解总体分布的性质选择了可能曲解总体分布的抽样程序;(3)有意识地选择最方便的和解决问题最有利的总体元素,但这些元素并不代表总体(例如只对先进企业进行抽样)。这类误差只要事先作好充分准备,是可以避免的。 定义: 系统误差(Systematic error) 在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值与被测量的真值之差。 系统误差是与分析过程中某些固定的原因引起的一类误差,它具有重复性、单向性、可测性。即在相同的条件下,重复测定时会重复出现,使测定结果系统偏高或系统偏低,其数值大小也有一定的规律。例如,测定的结果虽然精密度不错,但由于系统误差的存在,导致测定数据的平均值显著偏离其真值。如果能找出产生误差的原因,并设法测定出其大小,那么系统误差可以通过校正的方法予以减少或者消除,系统误差是定量分析中误差主要来源。 在对同一被测量进行多次测量过程中,出现某种保持恒定或按确定的方法变化的误差,就是系统误差。 原理:

相同待测量大量重复测量的平均结果和待测量真值的差。一般而言,由于测量步骤的不尽完善会引起测量结果的误差,其中有的来自系统误差,有的来自随机误差。随机误差被假设来自无法预测的影响量或影响的随机的时间和空间变异。一些系统误差可以消除,通常可以降低,如果系统来自影响量对测量结果的可辨识效应。 系统误差有下列情况:误读、误算、视差、刻度误差、磨损误差、接触力误差、挠曲误差、余弦误差、阿贝误差、热变形误差等。 系统误差的特点是测量结果向一个方向偏离,其数值按一定规律变化,具有重复性、单向性。我们应根据具体的实验条件,系统误差的特点,找出产生系统误差的主要原因,采取适当措施降低它的影响。

怎样减小系统误差和偶然误差对物理实验的不良影响

如何减小物理实验中系统误差和偶然误差 一:减小系统误差 1.系统误差的来源:系统误差总是偏大或总偏小,来自以下几方面 (1)仪器误差 如温度计的刻度不准确 天平砝码不准等。 (2)环境误差 如受环境的温度、电源电压、频率、波形、外界电磁场等发生变化的影响。 (3)方法误差这种测量误差是由于测量方法不完善及所依据的理论不严密所产生的 例如 测量设备的绝缘漏电等。 (4)个人误差这是由实验者的分辨能力、感觉器官的不完善和生理变化、反应速度和固有习惯等引起的误差。例如:记录读数始终偏大或偏小,记录信号时超前或滞后。 2.减少系统误差的方法: (1):减少产生系统误差的根源。在测量之前要求测量者对可能产生系统误差的环节作仔细的分析,从产生根源上加以消除。 例如:若系统误差来自仪器不准确或使用不当, 则应该把仪器校准并按规定的使用条件去使用。 若理论公式只是近似的, 则应在计算时加以修正。 若测量方法上存在着某种因素会带来系统误差, 则应估计其影响的大小或改变测量方法以消除其影响。若外界环境条件急剧变化、或存在着某种干扰,则应设法稳定实验条件,排除有关干扰。若测量人员操作不善、或者读数有不良偏向,则应该加强训练以改进操作技术以及克服不良偏向等。总之,从产生系统误差的根源上加以消除无疑是一种最根本的方法。 (2)减少系统误差还可用下列方法: I.抵消法。有些定值的系统误差无法从根源上消除,也难以确定其大小而修正 ,但可以进行两次不同的测量,使两次读数时出现的系统误差大小相等而符号相反,然后取两次测量的平均值便可消除系统误差。例如: 用电表测量电流时,因受地磁的作用而使测量值存在系统误差,可以用异号法完全消除。 II.代替法。在某些装置上对未知量测量后,马上用一标准量代替未知量再进行测量.若仪器示值不变,便可肯定被测的未知量即等于标准量的值从而消除了测量结果中的仪器误差。例如用天平秤物体质量时,由于天平的称量是利用“杠杆平衡时作用在等力臂上的力相等”的原理制成的。天平在制造或使用中会出现两臂的长度不完全相等,从而引起测量的系统误差.测量物体的质量m时,设天平两臂分别为L1和L2,先使m与砝码G平衡,则有m=21GLL再以标准砝码P取代质量为m的物体.若调节P和G达到平衡,则有P=21GLL从而得到m=P.消除了天平不等臂引起的系统误差。 二:减小偶然误差 1.偶然误差来源:偶然误差是由各种偶然因素对实验者、测量仪器、被测物理量的影响而产生的。偶然误差总是有时偏大,有时偏小,并且偏大偏小的概率相同。 2.消除偶然误差的方法: 在测量时,即使精心排除产生系统误差的因素之后,由于人的感觉灵敏程度、仪器的精度所限和周围环境的干扰等一些难以控制的偶然因素的影响,也还会产生偶然误差。减小偶然误差的方法主要有累积法、平均值法、逐差法和图像法。 (1)、累积法。实验中常采用累积法,这种方法的优点在于将测量宽度展延了若干倍,增加了待测量的有效数字位数,降低了测量值的相对误差。如测单摆振动周期,由于人的大脑反应速度和观察到摆球运动位置之间的差异,每次揿表的偶然误差为±0.1秒,设单摆振动周期为2.0秒,若只测一个周期,则相对误差为:T/T=10% 若测50个周期,则相对误差为:T/50T=0.2% 这样就使测量的准确度大大提高。还有测一滴油酸的体积、纸的厚度、细铜丝的直径等均采用了累积法。

系统误差和随机误差

系统误差和随机误差 测量误差包括系统误差和随机误差两类不同性质的误差 系统误差 是指“在重复性条件下,对同一被测量进行无限次测量所得结果的平均值与被测量真值之差”。它是在重复测量中保持恒定不变或可按预见方式变化的测量误差的分量。由于只能进行有限次数的重复测量,真值也只能是用约定真值代替,因此可能确定的系统误差也只是估计值。系统误差的来源可以是已知或未知的,那么怎样发现系统误差呢? 1、在规定的测量条件下多次测量同一个被测对量,从所得测量结果与计量标准所复现的量值之差可以发现并得到恒定的系统误差的估计值 2、在测量条件改变时,例如随时间、温度等街道条件改变时按某一确定的规律变化,可能是线性的或非线性地增长可减小,就可以发现测量结果中存在的可变的系统误差。通常消除或减小系统误差的方法有以下几种: (1)采用修正的方法:对系统误差的已知部分,用对测量结果进行修正的方法来减小系统误差。修正系统误差的方法包括在测量结果上加修正值;对测量结果乘修正因子;画修正曲线;以及制定修正值表等。例如:测量结果为20℃,用计量标准测量的结果是℃,则已知系统误差的估计值为℃,也就是说修正值是+℃,已修正测量结果等于未修正测量结果加修正值。即已修正测量结果为20℃+℃=℃。 (2)在实验过程中尽可能减少或消除一切产生系统误差的因素。例如在使用仪器时,应该对中的未能对中,应该调整到水平、垂直或平行理想状态的未能调好等等,都会带来系统误差,操作者要仔细调整,以便减小误差等。 (3)选择适当的测量方法,使系统误差抵消而不致带入测量结果中。例如:对恒定系统误差消除法,可采用异号法,即改变测量中的某些条件,例如测量方向、电压极性等,使两种

随机误差与系统误差

二、随机误差和系统误差 1.随机误差是指“测量结果与在重复性条件下,对同一被测量进行无限多次测量所得结果的平均值之差”(5.19条)。 这是1993年由BIPM、IEC、ISO、OIML等国际组织做了原则修改后的新定义。它表明测量结果是真值、系统误差与随机误差这三者的代数和;而测量结果与无限多次测量所得结果的平均值(即总体均值)差,则是这一测量结果的随机误差分量。随机误差等于误差减去系统误差。1993年前,随机误差被定义为在同一量的多次测量过程中,以不可预知方式变化的测量误差的分量。 老定义中这个以不可预知方式变化的分量,是指相同条件下多次测量时误差的绝对值和符号变化不定的分量,它时大时小、时正时负、不可预定。例如:天平的变动性、测微仪的示值变化等,都是随机误差分量的反映。事实上,多次测量时的条件不可能绝对地完全相同,多种因素的起伏变化或微小差异综合在一起,共同影响而致使每个测得值的误差以不可预定的方式变化。现在,随机误差是按其本质进行定义的,但可能确定的只是其估计值,因为测量只能进行有限次数,重复测量也是在“重复性条件”下进行的(见5.6条)。就单个随机误差估计值而言,它没有确定的规律;但就整体而言,却服从一定的统计规律,故可用统计方法估计其界限或它对测量结果的影响。 随机误差大抵来源于影响量的变化,这种变化在时间上和空间上是不可预知的或随机的,它会引起被测量重复观测值的变化,故称之为“随机效应”。可以认为正是这种随机效应导致了重复观测中的分散性,我们用统计方法得到的实验标准[偏]差是分散性,确切地说是来源于测量过程中的随机效应,而并非来源于测量结果中的随机误差分量。 随机误差的统计规律性,主要可归纳为对称性、有界性和单峰性三条: 1.对称性是指绝对值相等而符号相反的误差,出现的次数大致相等,也即测得值是以它们的算术平均值为中心而对称分布的。由于所有误差的代数和趋近于零,故随机误差又具有抵偿性,这个统计特性是最为本质的;换言之,凡具有抵偿性的误差,原则上均可按随机误差处理。

系统误差和偶然误差的区别

系统误差和偶然误差的区别 系统误差是由于仪器本身不精确,或实验方法粗略,或实验原理不完善而产生的。 系统误差的特点是在多次重做同一实验时,误差总是同样的偏大或偏小,不会出现这几次偏大另几次偏小的情况。要减小系统误差,必须校准测量仪器,改进实验方法,设计在原理上更为完善的实验。 偶然误差 偶然误差是由各种偶然因素对实验者、测量仪器、被测物理量的影响而产生的。偶然误差总是有时偏大,有时偏小,并且偏大偏小的概率相同。因此,可以多进行几次测量,求出几次测得的数值的平均值,这个平均值比一次测得的数值更接近于真实值。 当多次重复同一测量时,偏大和偏小的机会比较接近,可以用求平均值的方法来减小偶然误差。 如何区分 偶然误差是由于主观因素引起的误差,系统误差是由于客观因素引起的误差。系统误差不可避免(但可通过平衡摩擦力等方法减小),而人为误差可通过多次测量的避免。 “从来源看,误差可以分成系统误差和偶然误差两种。” “系统误差是由于仪器本身不精确,或实验方法粗略,或实验原理不完善而产生的。系统误差的特点是在多次重做同一实验时,误差总是同样的偏大或偏小,不会出现这几次偏大另几次偏小的情况。要减小系统误差,必须校准测量仪器,改进实验方法,设计在原理上更为完

善的实验。” “偶然误差是由各种偶然因素对实验者、测量仪器、被测物理量的影响而产生的。偶然误差总是有时偏大,有时偏小,并且偏大偏小的概率相同。因此,可以多进行几次测量,求出几次测得的数值的平均值,这个平均值比一次测得的数值更接近于真实值。”2.人民教育出版社2004年5月第一版普通高中课程标准教科书物理必修1第102页“误差和有效数字”中的表述是这样的: “当多次重复同一测量时,偏大和偏小的机会比较接近,可以用求平均值的方法来减小偶然误差。” “多次重复测量的结果总是大于(或小于)被测量的真实值,呈现单一倾向。”

定位误差计算

定位误差计算 定位误差计算是工艺设计中经常的事。下面的几个例题属于典型定位条件下的计算。 例题一:如下图所示零件,外圆及两端面已加工好(外 圆直径0 1.050-=D ) 。现加工槽 B ,要求保证位置尺寸 L 和 H ,不考虑槽底面斜度对加工质量的影响。试求: 1)确定加工时必须限制的自由度; 2)选择定位方法和定位元件,并在图中示意画出; 3)计算所选定位方法的定位误差。 解:① 必须限制4个自由度:Z X Z Y ,,, 。 ② 定位方法如下图所示。

③ 定位误差计算: 对于尺寸H : 工序基准是外圆下母线 定位基准是外圆下母线 限位基准是与外圆下母线重合的一条线(也可认为是一个平面) 因此: 基准不重合误差0=?B 基准位移误差0=?Y 所以定位误差0=?DW 同理,对于尺寸L 其定位误差 :0=DW ? 例题二:如下图所示齿轮坯,内孔及外圆已加工合格( 025 .00 35+=φD mm ,0 1.080-=φd mm ),现在插床 上以调整法加工键槽,要求保证尺寸2 .005.38+=H mm 。试计算图示定位方法的定位误差(忽略外圆与内孔同轴度误差)。

解:工序基准是D 孔下母线;定位基准是D 轴中心线;限位基准V 型块的对称中心(垂直方向上)。定位误差计算如下: 1、基准不重合误差:T D /2; 2、基准位移误差:0.707Td 0825 .0025.05.01.07.05.07.0=?+?=?+?=?D d DW T T (mm) 例题三:a )图工件设计图。试分别计算按b )、c )、d )三种定位方式加工尺寸A 时的定位误差。

浅谈测量误差、系统误差和随机误差的理解

浅谈测量误差、系统误差和随机误差的理解 发表时间:2019-01-03T11:59:36.120Z 来源:《基层建设》2018年第34期作者:刘思良 [导读] 摘要:测量误差包括了系统误差与随机误差,从概念上存在以下公式:测量误差=系统误差+随机误差。 黑龙江省尚志市检验检测中心黑龙江 150600 摘要:测量误差包括了系统误差与随机误差,从概念上存在以下公式:测量误差=系统误差+随机误差。通常情况下测量误差、系统误差和随机误差都是理想的概念性术语,不可能通过测量得到它们的准确值。 在我们日常工作中,经常提及测量误差、随机误差和系统误差等专业名词,那么究竟它们是如何定义和理解的呢? 关键词:测量误差;减小;随机误差 1 依据JJF1001-1998《通用计量术语及定义》,测量误差的定义是“测量结果减去被测量真值”,实际工作中测量误差又简称误差。“测量结果是指由测量所得到的赋予被测量的值”,是客观存在的量的实验表现,仅是对测量所得被测量之值的近似或估计,它不仅与量本身有关,而且与测量程序、测量仪器、测量环境及测量人员等有关。“真值是与给定的特定量的定义相一致的值”,它是通过完美的测量才能获得的。一般情况下,由于真值不能确定,测量误差是未知的,实际上应用的是约定真值,这样便可以得到测量误差。实际上无论是测量标准的标准值,还是其他的约定真值,都是存在不确定度的,所以得到的只是测量误差的估计值。获得测量误差的估计值的目的通常是为了得到测量结果的修正值。 2 测量误差包括系统误差和随机误差两类不同性质的误差 2.1 系统误差,是指“在重复性条件下,对同一被测量进行无限次测量所得结果的平均值与被测量真值之差”。它是在重复测量中保持恒定不变或可按预见方式变化的测量误差的分量。由于只能进行有限次数的重复测量,真值也只能是用约定真值代替,因此可能确定的系统误差也只是估计值。系统误差的来源可以是已知或未知的,那么怎样发现系统误差呢? 2.1.1 在规定的测量条件下多次测量同一个被测对量,从所得测量结果与计量标准所复现的量值之差可以发现并得到恒定的系统误差的估计值。 2.1.2 在测量条件改变时,例如随时间、温度等街道条件改变时按某一确定的规律变化,可能是线性的或非线性地增长可减小,就可以发现测量结果中存在的可变的系统误差。 2.2 通常消除或减小系统误差的方法有以下几种: 2.2.1 采用修正的方法:对系统误差的已知部分,用对测量结果进行修正的方法来减小系统误差。修正系统误差的方法包括在测量结果上加修正值;对测量结果乘修正因子;画修正曲线;以及制定修正值表等。例如:测量结果为20℃,用计量标准测量的结果是20.1℃,,则已知系统误差的估计值为-0.1℃,也就是说修正值是+0.1℃,已修正测量结果等于未修正测量结果加修正值。即已修正测量结果为20℃+0.1℃=21℃。 2.2.2 在实验过程中尽可能减少或消除一切产生系统误差的因素。例如在使用仪器时,应该对中的未能对中,应该调整到水平、垂直或平行理想状态的未能调好等等,都会带来系统误差,操作者要仔细调整,以便减小误差等。 2.2.3 选择适当的测量方法,使系统误差抵消而不致带入测量结果中。 例如:对恒定系统误差消除法,可采用异号法,即改变测量中的某些条件,例如测量方向、电压极性等,使两种条件下的测量结果中的误差符号相反,取其平均值以消除系统误差。交换法,即将测量中的某些条件适当交换,例如被测物的位置相互交换,设法使两次测量中的误差源对测量结果的作用相反,从而抵消了系统误差。替代法,即保持测量条件不变,用一已知量值的标准器替代被测件再作测量,使指示仪器的指示不变或指零,这时被测量等于已知的标准量,达到消除系统误差的目的。 对可变的系统误差的消除,合理地设计测量程序可以消除测量系统的线性漂移或周期性变化引入的系统误差。 2.3 下面说一下随机误差 随机误差是“测量结果与在重复性条件下,对同一被测量进行无限多次测量所得结果平均值之差”。事实上,多次测量时的条件不可能绝对地完全相同,多种因素的起伏变化或微小差异综合在一起,共同影响而致使每个测得值的误差以不可预定的方式变化。所以随机误差可能确定的只是其估计值,因为测量只能进行有限次数,就单个随机误差而言,它没有确定的规律性;但就整体而言,却服从一定的统计规律。随机误差一般是由影响量的随机时空变化引起的,它们导致重复测量中数据的分散性。测量结果的重复性就是由于所有影响测量结果的影响量不能完全保持恒定而引起的。 随机误差的统计规律性,主要可归纳为对称性、有界性和单峰性。对称性是指绝对值相等而符号相反的误差,出现的次数大致相等地。即测得值是以它们的算术平均值为中心而对称分布的。由于所有误差代数和趋近于零,故随机误差又具有抵偿性。有界性是指测得值误差的绝对值不会超过一不定期的界限,也即不会出现绝对值很大的误差。单峰性是指绝对值小的误差比绝对值大的误差数目多,也就是测得值是以它们的算术平均值为中心而相对集中地分布。 随机误差是在重复测量中按不可预见的方式变化的测量误差的分量。随机误差的大小程度反映于测量值的分散性,即测量重复性。测量重复性是用实验标准偏差表征的,当用多次测量的算术平均值作为测量结果时,测量结果的实验标准偏差是测量值实验标准偏差的1/倍(n为测量次数),因此,当重复性较差时增加测量次数,可以减小测量的随机误差。但随测量次数的进一步增加,算术平均值的实验标准偏差减小的程度减弱,相反会增加人力、时间和仪器的磨损等问题,所以一般取3~20次为宜。 总之测量误差包括了系统误差与随机误差,从概念上存在以下公式:测量误差=系统误差+随机误差。通常情况下测量误差、系统误差和随机误差都是理想的概念性术语,不可能通过测量得到它们的准确值。 参考文献: [1] 杨建潮.测量误差中粗大误差的判别与处理[J].计量与测试技术.2004(06) [2] 严昌顺.用计算机快速剔除含粗大误差的“坏值”[J].计量技术.1994(05) [3] 金建广,王蔚.运用Excel实现粗大误差的自动检测和最佳方程的拟合[J].中国计量.2008(10)

精密度 准确度 精确度 偶然误差 系统误差

§1.1误差分析 物理实验中,绝大多数实验都涉及到物理量的测量和物理规律的研究,要求学生能应用所选择的合适仪器,尽可能获得令人满意的结果。一个待测物理量,在客观上具有真值。但由于受到测量仪器、测量方法、测量条件和观察者生理反应能力、操作水平等因素的限制,测得的结果只可能是一个近似值。测量值与真值之差称为绝对误差,简称误差。即 误差=测量值-真值 在实验中进行测量和数据处理时,都应着眼于减少误差,尽可能使实验结果接近真值。误差产生的原因是多方面的,从误差的性质和来源上可分为系统误差和偶然误差两大类。 一、系统误差 系统误差的特点是:在相同条件下,对同一物理量进行多次测量时,误差的大小和正负总保持不变,或按一定的规律变化,或是有规律地重复。 系统误差主要来自以下三个方面: 1.仪器误差 这是由于测量仪器不完善或有缺陷,以及没有按规定条件使用而造成的误差。仪器误差常表现在下面三种情况: (1)示值误差。如米尺由于变形造成刻度不标准;电表的轴承磨损引起示值不准等。 (2)零值误差。如千分尺由于磨损致使在零位时,读数不为零;电表在使用之前未调整零位等。 (3)仪器机构和附件误差。如天平两臂不等长;砝码不准;电桥的标准电阻不准等。 2.方法误差

这是由于实验理论、实验方法或实验条件不合要求而引起的误差。如用伏安法测电阻,采用不同的连接方法,电表的内阻会给测量带来误差;在热学实验中,绝热条件的好坏对测量结果的影响等。 3.人员误差 这是由于观测者个人生理和心理上的特点所造成的误差。如在使用停表计时中,有的人失之过长,有的人失之过短;在电表读数时,有人偏左而有人偏右;在估计读数时,有人习惯偏大而有人习惯偏小等。 系统误差常分为两类,即已定系统误差和未定系统误差。前者指其误差的符号和绝对值均已确定,而后者是指其误差的符号或绝对值尚未确定。 二、偶然误差 在同一条件下,对某一物理量进行多次测量时,每次测量的结果有差异,其差异的大小和符号以不可预定的方式变化着。这种误差称为偶然误差或随机误差。 遇然误差是由于一些偶然的、不确定的因素引起的。例如,各次观察时仪器对得不准;调节平衡时,平衡点确定不准;读数不准确;实验仪器由于环境温度、湿度、振动、杂散电磁场的干扰、电源电压的波动等因素引起测量值的变化。这些因素的影响一般是微小的、混杂的,并且是随机出现的,这就难以确定某个因素产生的具体影响的大小。 每项测量的偶然误差是无规则的,但若测量次数充分多时,就会发现在一定条件下,它具有一定的规律性。这种规律性表现在偶然误差服从一定的统计规律,具体表现为 (1)绝对值小的误差出现的概率比绝对值大的误差出现的概率要大得多。 (2)比真值大的测量值与比真值小的测量值出现的概率相等。 (3)绝对值相等的正误差与负误差出现的概率相等。 三、系统误差与偶然误差的关系

定位误差计算习题

习题一:如下图所示零件,外圆及两端面已加工好(外圆直径0 1.050-=D )。现加工槽 B ,要求保证位置尺寸 L 和 H ,不考虑槽底面斜度对加工质量的影响。试求: 1)确定加工时必须限制的自由度; 2)选择定位方法和定位元件,并在图中 示意画出; 3)计算所选定位方法的定位误差。 习题二:如下图所示齿轮坯,内孔及外圆 已加工合格(025 .0035+=φD mm ,01.080-=φd mm ) ,现在插床上以调整法加工键槽,要求保证尺寸2.005.38+=H mm 。 试计算图示定位方法的定位误差(忽略外圆与内孔同轴度误差)。 习题三:a )图工件设计图。试分别计算按b )、c )、d )三种定位方式加工尺寸A 时的定位误差。 例题四:计算以图示定位方案加工尺寸A 时的定位误差。

习题五: 如图下图工件分别以A 、B 面定位加工E 面,计算定位误差。 习题六:如图两种方案铣平面,试分析定位误差。 习题七:如图,工件以内孔 在心轴 上固 定单边接触或任意边接触定位加工平面,试分析工序尺寸分别为 h1、h2、h3(工序基准为外圆中心线)、h4、h5时的定位误差。(工件外圆和内孔的同轴度误差为△b ) 习题八:有一批如图所示的工件, 外圆, 内 孔和两端面均已加工合格,并保证外圆对内孔的同轴度误差在T (e)=φ0.015范围内。今按图示的定位方案,用 心轴定位,在立式铣床上用顶尖顶住心轴铣 的槽子。除槽宽要求外,还应保证下列要求: (1) 槽的轴向位置尺寸 (2) 槽底位置尺寸 (3) 槽子两侧面对φ50外圆轴线的对称度公差 T (c)=0.25 习题九:用角度铣刀铣削斜面,求加工尺寸为39±0.04mm 的定位误差 习题十: D D ?+d -d ?00.016506()h φ-0.021 0307()H φ+0.007 0.020306() g φ+-00.043 129h -0 10.212512()L H -=010.254212()H h - =00.010 10.0120.056 30,55,400.15,0.03d mm d H mm t mm φφφ---===± =

定位误差分析计算综合实例

定位误差分析计算综合实例 定位误差的分析与计算,在夹具设计中占有重要的地位,定位误差的大小是定位方案能否确定的重要依据。为了掌握定位误差计算的相关知识,本小节将给出一些计算实例,抛砖引玉,以使学习者获得触类旁通、融会贯通的学习效果。 例3-3 如图3.25所示,工件以底面定位加工孔内键槽,求尺寸h 的定位误差? 解:(1)基准不重合误差求jb ? 设计基准为孔的下母线,定位基准为底平面,影响两者的因素有尺寸h 和h 1,故jb ?由两部分组成: φD 半径的变化产生2 D ? 尺寸h 1变化产生12h T ,所以 122 h jb T D +?= ? 底平面,对刀基准(2)基准位置误差jw ? 定位基准为工件为与定位基准接触的支承板的工作表面,不记形状误差, 则有 0=?jw 所以槽底尺寸h 的定位误差为 122 h dw T D +?= ? 例3-4 有一批直径为0 d T d -φ的工件如图3.27所示。外圆已加工合格,今用V 形块定位铣宽度为b 的槽。若要求保证槽底尺寸分别为1L 、2L 和3L 。试分别分析计算这三种不同尺寸要求的定位误差。 解:(1)首先计算V 形块定位外圆时的基准位置误差jw ? 在图3.26中,对刀基准是一批工件平均轴线所处的位置O 点,设定位基准为外圆的轴线,加工精度参数的方向与21O O 相同,则基准位置误差jw ?为图中O 1 点到O 2点的距离。在ΔO 1CO 2中,2 2212α =∠= O CO T CO d ,,根据勾股定理求得 2 21sin 2α d jw T O O E = =?=? (2)分别计算图3.27三种情 况的定位误差 ①图a )中1L 尺寸的定位误差 2 )(2 sin 2sin 20 1ααd L dw d jw jb T T E B = ?= ?=?=?=? ②图b )中2L 尺寸的定位误差 L 2 L 3 L 1 0d T d -φ b 图3.27 V 形块定位外圆时定位误差的计算 图3.25 内键槽槽底尺寸定位误差计算 图3.26 V 形块定位外圆时 基准位置误差jw ?的计算 1—最大直径 2—平均直径 3—最小直径 B A α/ 2 1 C 3 2 O 2 O O

定位误差计算方法

定位误差计算方法 皇甫彦卿 (杭州电子科技大学信息工程学院,浙江杭州310018) 摘要:分析了定位误差产生的原因和定位误差的本质,并结合具体的实例,对定位误差的计算提出了三种方法:几何法、微分法、组合法,并且为正确选择计算方法提供了依据。 关键词:定位误差;几何法;微分法;组合法 Position error calculation method Abstract:To analyze the causes of the positioning error and the nature of the positioning error, and combined with concrete examples, three methods are put forward for the calculation of position error: geometric method, differential method, group legal, and provide the basis for correct selection of calculation method. Key words: positioning error; Geometry method; Differentiation; Set of legal 1 引言 定位误差分析与计算,是机床夹具设计课程中的重点和难点。在机械加工中,能否保证工件的加工要求,取决于工件与刀具间的相互位置。而引起相互位置产生误差的因素有四个,定位误差就是重要因素之一(定位误差一般允许占工序公差的三分之一至五分之一)。定位误差分析与计算目的是为了对定位方案进行论证,发现问题并及时解决。 2 工件定位误差 2.1定位误差计算的概念 按照六点定位原理,可以设计和检查工件在夹具上的正确位置,但能否满足工件对工序加工精度的要求,则取决于刀具与工件之间正确的相互位置,而影响这个正确位置关系的因素很多,如夹具在机床上的装夹误差、工件在夹具中的定位误差和夹紧误差、机床的调整误差、工艺系统的弹性变形和热变形误差、机床和刀具的制造误差及磨损误差等。 因此,为保证工件的加工质量,应满足如下关系式: δ ?式中:?--各种因素产生的误差总和;δ--工件被加工尺寸的公差。 ≤ 2.2定位误差及其产生原因 所谓定位误差,是指由于工件定位造成的加工面相对工序基准的位置误差。因为对一批

系统误差和偶然误差的区别

系统误差和意外误差之间的区别 系统误差和偶然误差之间的区别在于,系统误差是不可避免的(但可以通过平衡摩擦力来减小),而多次测量可以避免偶然误差。系统误差是实验中不可避免的误差。偶然误差是指人为和可避免的误差,例如实验操作误差。 1个系统误差 系统误差是指一种非随机误差。例如,违反随机原则的偏差误差,以及采样中的配准记录引起的误差等。这会使样本中的总特征值变得太高或太低。 回避方法 (1)交换法:在测量中,某些条件(例如被测物体的位置)相互交换,从而导致系统误差的原因对测量结果产生相反的影响,从而实现抵消系统误差的目的。 (2)替代方法:替代方法需要进行两次测量,进行第一次测量,并且在不改变测量条件的情况下立即将测量值替换为已知的标准值。如果测量设备可以达到平衡,则测量值等于已知的标准值。如果无法达到平衡,则对其进行修剪以使其平衡,然后可以获得测量值与标准值之间的差,即测量值=标准值差。

(3)补偿方法:补偿方法需要进行两次测量,并改变测量的某些条件,以使两次测量结果中获得的误差值大小相等而符号相反,两次测量的算术平均值为作为测量结果,从而抵消了系统误差。 (4)对称测量法:即在测量测量前后对称地测量相同的已知量,通过将两次测量的已知量的平均值进行比较,可获得消除线性系统误差的测量结果。测量值。 (5)半周期偶数测量法:对于周期性的系统误差,可以采用半周期偶数观察法,即可以采用每半个周期观察偶数次的方法来消除。。 (6)组合测量法:难以分析根据复杂规律变化的系统误差。使用组合的测量方法可以使系统误差以尽可能多的方式出现在测量值中,从而将系统误差变成随机误差。 随机误差 随机误差,也称为偶然误差和不确定误差,是在确定过程中由一系列相关因素的微小随机波动引起的相互补偿误差。原因是分析过程中各种不稳定的随机因素,例如不稳定的环境条件(例如室温,相对湿度和气压),分析人员操作中的细微差异以及仪器的不稳定。

误差理论与数据处理简答题及答案

基本概念题 1.误差的定义是什么?它有什么性质?为什么测量误差不可避免? 答:误差=测得值-真值。 误差的性质有: (1)误差永远不等于零; (2)误差具有随机性; (3)误差具有不确定性; (4)误差是未知的。 由于实验方法和实验设备的不完善,周围环境的影响,受人们认识能力所限,测量或实 验所得数据和被测量真值之间不可避免地存在差异,因此误差是不可避免的。 2.什么叫真值?什么叫修正值?修正后能否得到真值?为什么? 答:真值:在观测一个量时,该量本身所具有的真实大小。 修正值:为消除系统误差用代数法加到测量结果上的值,它等于负的误差值。 修正后一般情况下难以得到真值。因为修正值本身也有误差,修正后只能得到较测得值更为准确的结果。 3.测量误差有几种常见的表示方法?它们各用于何种场合? 答:绝对误差、相对误差、引用误差 绝对误差——对于相同的被测量,用绝对误差评定其测量精度的高低。 相对误差——对于不同的被测俩量以及不同的物理量,采用相对误差来评定其测量精度的高低。 引用误差——简化和实用的仪器仪表示值的相对误差(常用在多档和连续分度的仪表中)。4.测量误差分哪几类?它们各有什么特点? 答:随机误差、系统误差、粗大误差 随机误差:在同一测量条件下,多次测量同一量值时,绝对值和符号以不可预定方式变化着的误差。 系统误差:在同一条件下,多次测量同一量值时,绝对值和符号保持不变,或在条件改变时,按一定规律变化的误差。 粗大误差:超出在规定条件下预期的误差。误差值较大,明显歪曲测量结果。 5.准确度、精密度、精确度的涵义分别是什么?它们分别反映了什么? 答:准确度:反映测量结果中系统误差的影响程度。 精密度:反映测量结果中随机误差的影响程度。 精确度:反映测量结果中系统误差和随机误差综合的影响程度。 准确度反映测量结果中系统误差的影响程度。精密度反映测量结果中随机误差的影响程度。精确度反映测量结果中系统误差和随机误差综合的影响程度。

系统误差和偶然误差的区别

系统误差和偶然误差的区别 系统误差和偶然误差的区别是:系统误差不可避免(但可通过平衡摩擦力等方法减小),而偶然误差可通过多次测量的避免。系统误差是指:实验时不可避免的误差。偶然误差是指:实验操作失误等人为的,可避免的误差。 1系统误差 系统误差,是指一种非随机性误差。如违反随机原则的偏向性误差,在抽样中由登记记录造成的误差等。它使总体特征值在样本中变得过高或过低。 避免方法 (1)交换法:在测量中将某些条件,如被测物的位置相互交换,使产生系统误差的原因对测量结果起相反作用,从而达到抵消系统误差的目的。 (2)替代法:替代法要求进行两次测量,第一次对被测量进行测量,达到平衡后,在不改变测量条件情况下,立即用一个已知标准值替代被测量,如果测量装置还能达到平衡,则被测量就等于已知标准值。如果不能达到平衡,修整使之平衡,这时可得到被测量与标准值的差值,即:被测量=标准值差值。 (3)补偿法:补偿法要求进行两次测量,改变测量中某些条件,使两次测量结果中,得到误差值大小相等、符号相反,取这两次测量的算术平均值作为测量结果,从而抵消系统误差。

(4)对称测量法:即在对被测量进行测量的前后,对称地分别对同一已知量进行测量,将对已知量两次测得的平均值与被测量的测得值进行比较,便可得到消除线性系统误差的测量结果。 (5)半周期偶数测量法:对于周期性的系统误差,可以采用半周期偶数观察法,即每经过半个周期进行偶数次观察的方法来消除。 (6)组合测量法:由于按复杂规律变化的系统误差,不易分析,采用组合测量法可使系统误差以尽可能多的方式出现在测得值中,从而将系统误差变为随机误差处理。 2随机误差 随机误差也称为偶然误差和不定误差,是由于在测定过程中一系列有关因素微小的随机波动而形成的具有相互抵偿性的误差。其产生的原因是分析过程中种种不稳定随机因素的影响,如室温、相对湿度和气压等环境条件的不稳定,分析人员操作的微小差异以及仪器的不稳定等。

系统误差

系统误差:受确定因素影响,大小变化有方向性的误差,又称为偏差。通过合理选择试验地,安排试验小区,校正仪器设备,观察记载及操作严格按标准进行,仪控制系统误差的形成。 随机误差:多种偶然的、无法控制的因素引起的误差。可以通过增加样本容量的方法降低误差值。 总体:根据研究目的确定的具有某种共性个体的集合。 样本:从总体中随机抽取的部分个体。 参数:描述总体特征、特性的数值如总,体平均数μ、标准差σ等。 统计数:描述样本特征、特性的数值,如总样本平均数x、标准差s等。 数量性状资料:能计数或量测的性状; 质量性状资料:能观察而不能量测的性状。 一、总体与样本 总体(population ):根据研究目的确定的具有某种共性个体的集合。组成总体的基本单元称为个 体。 无限总体(infinite population):总体中包含的个体数目有无穷多个,这种总体称为无限总体。 有限总体(finite population):总体中包含的个体数目有限,这种总体称为有限总体。 样本( sample ):从总体中随机抽取的部分个体。 三、参数与统计数 参数:描述总体特征、特性的数值,如总体均数、标准差,采用希腊字母分别记为μ、σ。固 定的常数。 统计数:描述样本特征、特性的数值,如样本均数、标准差,采用英文字母分别记为x、s 。参数附近波动的随机变量。 四 (1)数量性状(quantitative trait)的度量有计数和量测两种方式,其所得变数不同。 1.不连续性变量(离散变量、间断变量) ? 计数方法 ? 两个相邻整数间不允许带小数的数值出现。 2.连续性变量 ? 称量、度量或测量方法 ? 其各个观察值并不限于整数。 (2)质量性状( qualitative trait )指能观察而不能量测的性状即属性性状,如花药、子粒、颖壳等器官的颜色、芒的有无、绒毛的有无等。要从这类性状获得数量资料,可采用下列两种方法: 1. 统计次数法于一定总体或样本内,统计其具有某个性状的个体数目及具有不同性状的个体数目,按类别计其次数或相对次数。 2. 评分法用数字级别表示某种现象在表现程度上的差别。 次数分布表 (一)连续性变数资料的整理 1. 数据排序(sort) 首先对数据按从小到大排列(升序)或从大到小排列(降序)。 2. 求极差(range) 所有数据中的最大观察值和最小观察值的差数,称为极差,亦即整个样本的变异幅度。从表3中查到最大观察值为254g,最小观察值为75g,极差为254-75=179g。

相关文档
相关文档 最新文档