文档库 最新最全的文档下载
当前位置:文档库 › 铸造工艺方案示例

铸造工艺方案示例

铸造工艺方案示例
铸造工艺方案示例

2. 铸造工艺方案示例

1) 轴座

工艺分析:该零件的主要作用是支承轴件,故Φ40 mm内孔表面是应当保证质量的重要部位。此外,底板平面也有

一定的加工及装配要求,底板上的四个Φ8 mm的螺钉孔可不铸出,留待钻削

(a)轴座的零件图;(b)

从对轴座结构的总体分析来看,该件适于采用水平位置的造型、浇注方案,此时Φ40 mm内孔处只要加大加工余量,

(1)

如图1-48中方案(1)所示采用两个分模面、三箱造型,浇注位置为底板朝下。这样做可使底板上的长方形凹槽用下

型的砂垛形成。如将轴孔朝下而底板向上,则凹槽就得用吊砂,使造型操作麻烦。该方案只需制造一个圆柱形内孔型

图1-48 轴座

(a)轴座的零件图;(b)轴座铸件的两种工艺方案

(2)

图1-49 轴座铸件的一型两铸方案 如图1-48中方案(2)所示,采用一个分模面、两箱造型,轴孔处于

中间的浇注位置。该方 案造型操作简

便,生产效率高,但增加了四个

形成Φ16 mm 圆形凸台的1#外型芯及

一 个形成 长方形凹坑的3#外型

芯,因而增加制造芯盒及造芯的费用。

但由于批量大,该费用均分到每

个铸件上的成本就较低,因而是合算

另外,3#型芯是悬臂型芯,其型芯头的长度较长。大批生产时,

还可考虑一箱中同时铸造两件的方案

(图1-49),使悬臂型芯成为挑担型

芯,这样可使芯头长度缩短,且下芯定

位简便,成本更低。

2) 车床刀架转盘 材质:HT200,生产批量:小批生产。

刀架转盘为车床刀架上的重要件,其下为转盘,其上为燕尾形导轨。转

盘面和导轨面虽然都 是需要刮研的重要面,

不容许有砂眼、气孔、夹渣等表面缺陷,但导轨更易受磨损、更要求

(1)平造平浇工艺方案(图1-50,A-A 视图右半边)

采用导轨面朝下的浇注位置,利于防止导轨面产生铸造缺陷。为保证朝

上的转盘面的质量,应加大其加工余量,并

铸件的分型面选在燕尾形导轨的底面。为使燕尾及转盘均不妨碍起模,

又可避免活块和外型 芯,将燕尾处的加工余

量填成直角,并采用挖砂,使底盘上表面暴露于分型面,以形成如 图1-50中曲折线所示的曲面分型面。

图1-50 刀架转盘的铸造工艺图

本方案的工艺装备简单、成本低,但转盘处的质量难以控制。

图1-51 刀架转盘铸件的平造

立浇方案

(2)平造立浇铸造工艺方案(图1-50,A-A 视图左半边)

增加了两个2#型芯取代挖砂,形成了平

直的分型面,使造型方

便,并减少了清理曲面分 型的飞翅所增加的

工作量;采用配对的专用砂

箱。经造型、下芯、合型并锁紧后,将铸型

竖立(见图1-51)进行浇注;

燕尾形导轨和转盘需刮研的上、下两面均处

于侧立的浇注位置,较方案

(1)易于保证转盘铸件重要面的质量;便于采用底注式浇注系统,充型

平稳该方案的 缺点是:浇注位置与造型位置

不一致,增加了转立铸型

的操作。

3)车床床身(CW6140型)

材质:HT300,生产批量:大量生产。

床身的基本技术要求是:具有一定的强度,良好的刚度和减震性。主要工作部位是导轨面, 不 允许有任何铸造缺

陷,要有较高的耐磨性、较高的尺寸精度和较低的表面粗糙度。其工艺方案见图1-52。

铸型工艺:两箱造型,沿床身纵向分型和分模,使造型、合型简便。为保证导轨面质量,在下芯合型后将铸型翻转

90°浇注,使导轨面朝下。为使床身主体砂芯的长度不过大,将其分为3#,4#两个砂芯,其间留2 mm装配负数,并

且将3#,4#砂芯分为两半,以便于制造,两半芯各留0.5mm分芯负数,烘干后装配成整体。浇注系统为从一端的底部

沿导轨面引入,共设四个内浇道,并在前、后床脚座处设出气冒口以加强排气。

图1-52 CW6140型车床床身的铸造工艺

4)80t启闭机大齿轮

材质:ZG270-500

采用刮板造型以节省木材和制造模型的工时。分型面通过轮缘上表面,采用六条筋条向上的浇注位置。除轮毂及

辐板处的大孔铸出外,其余小孔均不铸出。因铸钢的收缩大,而轮缘和轮毂又存在较大热节,故在轮缘处设四个暗冒口

(尺寸为480 mm×240 mm×310 mm ) ,轮毂处设一个Φ220 mm×280 mm暗冒口进行补缩。内浇道通过两个冒口引入钢液

,使冒口温度较高,并在冒口处设出气孔以加强排气。

5) 6100型汽车曲轴

材质:QT60-2(铸态)

其工艺方案见图1-54。采用一箱两件,分型面通过1,6连杆颈和主轴颈轴线,第2,3,4,5 连杆颈用砂芯形成以

便于起模。

球铁曲轴的浇注,冷却位置常用立浇立冷、横浇立冷和横浇横冷三种。前两种方案将曲轴大端的冒口置于高位,有

利于补缩,但难于适应大量生产的要求。故采用1-54所示的横浇横冷方案,使充型平稳,便于大量生产。为了增强补缩

效果,铁液经过冒口引入型腔。

图1-54 6100型曲轴铸型装配图

图1-53 80t启闭机大齿轮的铸造工工艺

3.铸造工艺图示例

减速器箱座ss 材质:HT150;生产批量:单件小批)。

铸造工艺图的绘制步骤

1)

该箱座是装配减速器的基准件上面为剖分面,用定位销和螺栓与箱盖连接,内

腔安装齿轮、轴和滚动轴承等,并贮

存润滑油。其右端有一个带孔的斜凸台,供插入测量储油量的油针,下面还有一个放油孔凸台。底板下面设计有铸槽,

以减少加工面面积并可增强安装时的密合度。其壁厚大部分为8 mm,基本上是

箱座上的加工面有:剖分面、底面、轴承孔及其端面、斜凸台上的孔及其端

面、放油孔螺纹及其端面、各定位销孔

和螺栓孔等。其中的剖分面质量要求最高,加工后不准有缩松、气孔等铸造缺

2)

因生产数量少,故采用手工造型。

图1-55 减速器箱座立体图

3)

方案Ⅰ沿箱座高度方向分型。箱座截面为两端大、中间小,所以应有两个分型

面,采用三箱造型。型腔全部在中

型内,底板和其他部分制成分开模,可分别从中型的上下两面起模。阻碍起模的斜凸台和放油孔凸台可制成活块模。底

板下面的铸槽部分采用挖砂造型。可见此方案同时使用了三箱、分模、活块和挖砂等四种造型方法。其优点是重要加工

面(剖分面)朝下,能够保证质量,下芯方便且型芯支撑稳固。此方案仅适用于

单件小批生产时的手工造型

方案Ⅱ沿箱座宽度方向在中心线处分型,可采用两箱造型,妨碍起模的底板铸

槽可制成四个活块模。此方案比

方案Ⅰ造型操作简便,但型芯呈悬臂状,支撑不牢固。上型有吊砂,容易发生塌箱;错型则影响外形尺寸等。只有生产

批量大时才能考虑此方案,但此时应对箱座结构作必要的修改,即将底板下面

的四块加工面联成左右两块,使之不妨

浇注位置及分型面选定后,可进一步设计浇注系统。因箱座材质为收缩小的

HT150,且壁厚均匀,故可使其按同时

凝固的原则进行凝固。浇注系统包括浇口盆、直浇道、横浇道和两个内浇道。

内浇道从剖分面一端引入,属底注式浇注

系统。不设冒口,仅在底板处设置四个直径为20 mm

然后确定各工艺参数,并绘制铸造工艺图。图1-56为采用方案Ⅰ的铸造工艺简

该箱座最大尺寸为730 mm,位于剖分面,该加工面与基准面的距离为200 mm,

由表1-9 可确定各加工面的加工余量

:箱座底面(顶面)为7 mm,剖分面(底面)和轴承孔端面(侧面)为5 mm,轴承孔面按顶面考虑也为7 mm。定位销孔、螺栓

孔等直径较小,均不铸出,内腔部分由一个型芯形成,型芯的有关尺寸如图1-

56所示。

图1-56 箱座铸造工艺简图

铸造工艺设计实例

轴承座铸造工艺设计说明书 一、工艺分析 1、审阅零件图 仔细审阅零件图,熟悉零件图,而且提供的零件图必须清晰无误,有完整的尺寸和各种标记。仔细样。注意零件图的结构是否符合铸造工艺性,有两个方面:(1)审查零件结构是否符合铸造工艺 (2 )在既定的零件结构条件下,考虑铸造过程中可能出现的主要缺陷,在工艺设计中采取措施避 零件名称:轴承座 零件材料:HT150 生产批量:大批量生产 2、零件技术要求 铸件重要的工作表面,在铸造是不允许有气孔、砂眼、渣孔等缺陷。 3、选材的合理性 铸件所选材料是否合理,一般可以结合零件的使用要求、车间设备情况、技术状况和经济成本等, 用铸造合金(如铸钢、灰铸铁、球墨铸铁、可锻铸铁、蠕墨铸铁、铸造铝合金、铸造铜合金等)的 牌号、性能、工艺特点、价格和应用等,进行综合分析,判断所选的合金是否合理。 4、审查铸件结构工艺性 铸件壁厚不小于最小壁厚5-6又在临界壁厚20-25以下。 二、工艺方案的确定

1、铸造方法的确定 铸造方法包括:造型方法、造芯方法、铸造方法及铸型种类的选择 (1)造型方法、造芯方法的选择 根据手工造型和机器造型的特点,选择手工造型 (2)铸造方法的选择 根据零件的各参数,对照表格中的项目比较,选择砂型铸造。 (3)铸型种类的选择 根据铸型的特点和应用情况选用自硬砂。 2、浇注位置的确定 根据浇注位置选择的4条主要规则,选择铸件最大截面,即底面处。 3、分型面的选择 本铸件采用两箱造型,根据分型面的选择原则,分型面取最大截面,即底面。 三、工艺参数查询 1、加工余量的确定 根据造型方法、材料类型进行查询。查得加工余量等级为11~13, 取加工余量等级为12。

《铸造工艺学》课后习题答案

《铸造工艺学》课后习题答案 湖南大学 1、什么是铸造工艺设计? 铸造工艺设计就是根据铸造零件的结构特点、技术要求、生产批量、生产条件等,确定铸造方案和工艺参数,绘制铸造工艺图,编制工艺卡等技术文件的过程。 2、为什么在进行铸造工艺设计之前要弄清楚设计的依据,设计依据包括哪些内容? 在进行铸造工艺设计前设计者应该掌握生产任务和要求,熟悉工厂和车间的生产条件这些是铸造工艺设计的基本依据,还需要求设计者有一定的生产经验,设计经验并应对铸造先进技术有所了解具有经济观点发展观点,才能很好的完成设计任务 设计依据的内容 一、生产任务1)铸件零件图样提供的图样必须清晰无误有完整的尺寸,各种标记2)零件的技术要求金属材质牌号金相组织力学性能要求铸件尺寸及重量公差及其它特殊性能要求3)产品数量及生产期限产品数量是指批量大小。生产期限是指交货日期的长短。二、生产条件1)设备能力包括起重运输机的吨位,最大起重高度、熔炉的形式、吨位生产率、造型和制芯机种类、机械化程度、烘干炉和热处理炉的能力、地坑尺寸、厂房高度大门尺寸等。2)车间原料的应用情况和供应情况3)工人技术水平和生产经验4)模具等工艺装备制造车间的加工能力和生产经验 三、考虑经济性对各种原料、炉料等的价格、每吨金属液的成本、各级工种工时费用、设备每小时费用等、都应有所了解,以便考核该工艺的经济性。 3.铸造工艺设计的内容是什么? 铸造工艺图,铸件(毛坯)图,铸型装配图(合箱图),工艺卡及操作工艺规程。 4.选择造型方法时应考虑哪些原则? 1、优先采用湿型。当湿型不能满足要求时再考虑使用表干砂型、干砂型或其它砂型。 选用湿型应注意的几种情况1)铸件过高的技术静压力超过湿型的抗压强度时应考 虑使用干砂型,自硬砂型等。2)浇注位置上铸件有较大水平壁时,用湿型易引起 夹砂缺陷,应考虑使用其它砂型3)造型过程长或需长时间等待浇注的砂型不宜 选用湿型4)型内放置冷铁较多时,应避免使用湿型 2、造型造芯方法应和生产批量相适应 3、造型方法应适用工厂条件 4、要兼顾铸件的精度要求和生产成本 5-浇注位置的选择或确定为何受到铸造工艺人员的重视?应遵循哪些原则? 确定浇注位置是铸造工艺设计中重要的一环,关系到铸件的内在质量、铸件的尺寸精度铸造工艺过程中的难易,因此往往须制定出几种方案加以分析,对此择优选用。 应遵循的原则为:1、铸件的重要部分应尽量置于下部2、重要加工面应朝下或呈直立状态3、使铸件的大平面朝下,避免夹砂伤疤类缺陷4、应保证铸件能充满5、应有利于铸件的补缩6、避免用吊砂,吊芯或悬臂式砂芯,便于下芯,合箱及检验7、应使合箱位置,浇注位置和铸件冷却位置相一致 5为什么要设计分型面?怎样选择分型面? 分型面的优劣,在很大程度上影响铸件的尺寸精度、成本和生产率。选择分型面的原则:1、应使铸件的全部或大部置于同一半型内2、应尽量减少分型面数目,分型面少,铸件精度容易保证3、分型面应尽量选用平面4、便于下芯,合箱,检查型腔尺寸。5、不使砂箱过高6、受力件的分型面的选择不应削弱铸件结构强度7、注意减轻铸件的清理和机

铸造工艺设计基础样本

铸造工艺设计基础 铸造生产周期较长, 工艺复杂繁多。为了保证铸件质量, 铸造 工作者应根据铸件特点, 技术条件和生产批量等制订正确的工艺 方案, 编制合理的铸造工艺流程, 在确保铸件质量的前提下, 尽 可能地降低生产成本和改进生产劳动条件。本章主要介绍铸造工艺设计的基础知识, 使学生掌握设计方法, 学会查阅资料, 培养分 析问题和解决问题的能力。 §1-1 零件结构的铸造工艺性分析 铸造工艺性, 是指零件结构既有利于铸造工艺过程的顺利进行, 又有利于保证铸件质量。 还可定义为: 铸造零件的结构除了应符合机器设备本身的使 用性能和机械加工的要求外, 还应符合铸造工艺的要求。这种对铸造工艺过程来说的铸件结构的合理性称为铸件的铸造工艺性。 另定义: 铸造工艺性是指零件的结构应符合铸造生产的要求, 易于保证铸件品质, 简化铸造工艺过程和降低成本。 铸造工艺性不好, 不但给铸造生产带来麻烦, 不便于操作, 还 会造成铸件缺陷。因此, 为了简化铸造工艺, 确保铸件质量, 要求铸件必须具有合理的结构。 一、铸件质量对铸件结构的要求 1.铸件应有合理的壁厚

某些铸件缺陷的产生, 往往是由于铸件结构设计不合理而造成的。采用合理的铸件结构, 可防止许多缺陷。 每一种铸造合金, 都有一个合适的壁厚范围, 选择得当, 既可保证铸件性能( 机械性能) 要求, 又便于铸造生产。在确定铸件壁厚时一般应综合考虑以下三个方面: 保证铸件达到所需要的强度和刚度; 尽可能节约金属; 铸造时没有多大困难。 ( 1) 壁厚应不小于最小壁厚 在一定的铸造条件下, 铸造合金能充满铸型的最小壁厚称为该铸造合金的最小壁厚。为了避免铸件的浇不足和冷隔等缺陷, 应使铸件的设计壁厚不小于最小壁厚。各种铸造工艺条件下, 铸件最小允许壁厚见表7-1~表7-5 表1-1 砂型铸造时铸件最小允许壁厚( 单位: ㎜) 表1-2 熔模铸件的最小壁厚( 单位: ㎜)

铸造工艺分析与设计

3.6 工艺分析与设计 3.6.1浇注位置的确定 根据对合金凝固理论的研究和生产经验,确定浇注位置时应考虑以下原则: 1.铸件的重要部分应尽量置于下部。 2.重要加工面应朝下或呈直立状态。 3. 使铸件的大平面朝下,避免夹砂结疤类缺陷。 对于大的平板类铸件,可采用倾斜浇注,以便增大金属液面的上升速度,防止夹砂结疤类缺陷(见图1、2)。倾斜浇注时,依砂箱大小,H值一般控制在200~400mm范围内。 图1具有大平面的铸件正确的浇注位置图2 大平板类铸件的倾斜浇注 4.应保证铸件能充满。 对具有薄壁部分的铸件,应把薄壁部分放在下半部或置于内浇道以下,以免出现浇不到、冷却等缺陷。图3为曲轴箱的浇注位置。 5.应有利于铸件的补缩。 6. 避免用吊砂、吊芯或悬臂式砂芯,便于下芯、合箱及检验。 7. 应使合箱位置、浇注位置和铸件冷却位置相一致这样可避免变合箱后或于浇注后再次翻转铸型。 此外,应注意浇注位置、冷却位置与生产批量密切相关。 图 3 曲轴箱的浇注位置 a)不正确b)正确 3.6.2 分型面的选择 分型面是指两半铸型相互接触的表面。除了地面软床造型、明浇的小件和实型铸造法以外,都要选择分型面。 分型面一般在确定浇注位置后再选择。但分析各种分型面方案的优劣之后,可能需重新调整浇注位置。生产中,浇注位置和分型面有时是同时确定的。分型面的优劣,在很大程度上影响铸件的尺寸精度、成本和生产率。应仔细地分析、对比,慎重选择。 分型面的选择原则如下:

1. 应使铸件全部或大部分置于同一半型内; 2. 应尽量减少分型面的数目; 分型面数目少,铸件精度容易保证,且砂箱数目少。 3. 分型面尽量选用平面; 平直分型面可简化造型过程和模底版制造,易于保证铸件精度。 4. 便于下芯、合箱和检查型腔尺寸; 5. 不使砂箱过高; 分型面通常选在铸件最大截面上,以使砂箱不致过高。 6. 受力件的分型面选择不应削弱铸件结构强度; 7. 注意减轻铸件清理和机械加工量。 一个铸件应以哪几项原则为主来选择分型面,需要进行多方案的对比,根据实际生产条件,并结合经验来作出正确的判断,最后选出最佳方案。 3.6.3浇注系统设计 浇注系统是铸型中液态金属流入型腔的通道之总称。铸铁件浇注系统的典型结构如图4所示,它由浇口杯(外浇口)、直浇道、直浇道窝、横浇道和内浇道等部分组成。广义地说,浇包和浇注设备也可认为是浇注系统的组成部分,浇注设备的结构、尺寸、位置高低等,对浇注系统的设计和计算有一定影响;此外,出气孔也可看成是浇注系统的组成部分。 图4 典型浇注系统的结构 a)封闭式b)开放式 1浇口环2直浇道3直浇道窝4横浇道5末端延长段6内浇道 一、对浇注系统的基本要求 1)所确定的内浇道的位置、方向和个数应符合铸件的凝固原则或补缩方法。 2)在规定的饶注时间内充满型腔。 3)提供必要的充型压力头,保证铸件轮廓、棱角清晰。 4)使金属液流动平稳,避免严重紊流。防止卷入、吸收气体和使金属过度氧化。 5)具有良好的阻渣能力。 6)金属液进入型腔时线速度不可过高,避免飞溅、冲刷型壁或砂芯。 7)保证型内金属液面有足够的上升速度,以免形成夹砂结疤、皱皮、冷隔等缺陷。 8)不破坏冷铁和芯撑的作用。 9)浇注系统的金属消耗小,并容易清理。 10)减小砂型体积,造型简单,模样制造容易。

铸造工艺设计方案确定

第一章铸造工艺方案确定 1.夹具的生产条件,结构,技术要求 ●产品生产性质——大批量生产 ●零件材质——35Cr ●夹具的零件图如图2.2所示,夹具的外形轮廓尺寸为285mm*120mm*140mm,主要壁厚40mm,为一小型铸件;铸件除满足几何尺寸精度及材质方面的要求外,无其他特殊技术要求。零件图如下图所示: 2.夹具结构的铸造工艺性 零件结构的铸造工艺性是指零件的结构应符合铸造生产的要求,易于保证铸件品质,简化铸件工艺过程和降低成本。审查、分析应考虑如下几个方面: 1.铸件应有合适的壁厚,为了避免浇不到、冷隔等缺陷,铸件不应太薄。 2.铸件结构不应造成严重的收缩阻碍,注意薄壁过渡和圆角铸件薄厚壁的相接拐弯等厚度的壁与壁的各种交接,都应采取逐渐过渡和转变的形式,并应使用较大的圆角相连接,避免因应

力集中导致裂纹缺陷。 3.铸件内壁应薄于外壁铸件的内壁和肋等,散热条件较差,应薄于外壁,以使内、外壁能均匀地冷却,减轻内应力和防止裂纹。 4.壁厚力求均匀,减少肥厚部分,防止形成热节。 5.利于补缩和实现顺序凝固。 6.防止铸件翘曲变形。 7.避免浇注位置上有水平的大平面结构。 3.造型,造芯方法的选择 支座的轮廓尺寸为285mm*140mm*120mm,铸件尺寸较小,属于中小型零件且要大批量生产。采用湿型粘土砂造型灵活性大,生产率高,生产周期短,便于组织流水生产,易于实现机械化和自动化,材料成本低,节省烘干设备、燃料、电力等,还可延长砂箱使用寿命。因此,采用湿型粘土砂机器造型,模样采用金属模是合理的。 在造芯用料及方法选择中,如用粘土砂制作砂芯原料成本较低,但是烘干后容易产生裂纹,容易变形。在大批量生产的条件下,由于需要提高造芯效率,且常要求砂芯具有高的尺寸精度,此工艺所需的砂芯采用热芯盒法生产砂芯,以增加其强度及保证铸件质量。选择使用射芯工艺生产砂芯。 4.浇注位置的确定 铸件的浇注位置是指浇注时铸件在型内所处的状态和位置。确定浇注位置是铸造工艺设计中重要的环节,关系到铸件的内在质量,铸件的尺寸精度及造型工艺过程的难易程度。 确定浇注位置应注意以下原则: 1.铸件的重要部分应尽量置于下部 2.重要加工面应朝下或直立状态 3.使铸件的答平面朝下,避免夹砂结疤内缺陷 4.应保证铸件能充满 5.应有利于铸件的补缩 6.避免用吊砂,吊芯或悬臂式砂芯,便于下芯,合箱及检验 初步对支座对浇注位置的确定有:方案一如图4.1,方案二图4.2,方案三图4.3,方案四图4.4

熔模铸造工艺流程-图文.

熔模铸造工艺流程 模具制造 制溶模及浇注系 统 模料处理 模组焊接 模组清洗 上涂料及撒砂 涂料制备 重

复 型壳干燥(硬化 多 次 脱蜡 型壳焙烧 浇注 熔炼 切 割 浇 口 抛 光 或 机

工 钝化 修整焊补 热处理 最后清砂 喷丸或喷砂 磨内

口 震 动 脱 壳 模料 制熔模用模料为日本牌号:K512模料 模料主要性能: 灰分≤0.025% 铁含量灰分的10% ≤0.0025% 熔点 83℃-88℃(环球法)60℃±1℃ 针入度 100GM(25℃)3.5-5.0DMM 450GM(25℃)14.0-18.0DMM 收缩率 0.9%-1.1% 比重 0.94-0.99g/cm3 颜色新蜡——兰色、深黄色 旧蜡——绿色、棕色

蜡(模)料处理 工艺参数: 除水桶搅拌时温度 110-120℃ 搅拌时间 8-12小时 静置时温度 100-110℃ 静置时间 6-8小时 静置桶静置温度 70-85℃ 静置时间 8-12小时 保温箱温度 48-52℃ 时间 8-24小时 二、操作程序 1、从脱蜡釜泄出的旧蜡用泵或手工送到除水桶中,先在105-110℃下置6-8小时沉淀,将水分泄掉。 2、蜡料在110-120℃下搅拌8-12小时,去除水份。 3、将脱完水的蜡料送到70-85℃的静置桶中保温静置桶中保温静置8-12小时。 4、也可将少量新蜡加入静置桶中,静置后清洁的蜡料用手工灌到保温箱蜡缸中,保温温度48-52℃,保温时间8-24小时后用于制蜡模。

5、或把静置桶中的回收蜡料输入到气动蜡模压注机的蜡桶中,保温后压制浇道。 三、操用要点 1、严格按回收工艺进行蜡料处理。 2、除水桶、静置桶均应及时排水、排污。 3、往蜡缸灌蜡时,蜡应慢没缸壁流入,防止蜡液中进入空气的灰尘。 4、蜡缸灌满后应及时盖住,避免灰尘等杂物落入。 5、经常检查每一个桶温,防止温度过高现象发生。 6、作业场地要保持清洁。 7、防止蜡液飞溅。 8、严禁焰火,慎防火灾。 压制蜡(熔)模 一、工艺参数 室温20-24℃压射蜡温50-55℃ 压射压力0.2-0.5Mpa 保压时间10-20S 冷却水温度15±3℃ 二、操作程序

典型铸铁件铸造工艺设计与实例

典型铸铁件铸造工艺设计与实例叙述铸造生产中典型铸铁件——气缸类铸件、圆筒形铸件、环形铸件、球墨铸铁曲轴、盖类铸件、箱体及壳体类铸件、阀体及管件、轮形铸件、锅形铸件及平板类铸件的铸造实践。内容涉及材质选用、铸造工艺过程的主要设计、常见主要铸造缺陷及对策等。 第1章气缸类铸件 1.1 低速柴油机气缸体 1.1.1 一般结构及铸造工艺性分析1.1.2 主要技术要求 1.1.3 铸造工艺过程的主要设计1.1.4 常见主要铸造缺陷及对策1.1.5 铸造缺陷的修复 1.2 中速柴油机气缸体 1.2.1 一般结构及铸造工艺性分析1.2.2 主要技术要求 1.2.3 铸造工艺过程的主要设计1.3 空气压缩机气缸体 1.3.1 主要技术要求 1.3.2 铸造工艺过程的主要设计第2章圆筒形铸件 2.1 气缸套 2.1.1 一般结构及铸造工艺性分析2.1.2 工作条件 2.1.3 主要技术要求 2.1.4 铸造工艺过程的主要设计2.1.5 常见主要铸造缺陷及对策2.1.6 大型气缸套的低压铸造2.1.7 气缸套的离心铸造 2.2 冷却水套 2.2.1 一般结构及铸造工艺性分析2.2.2 主要技术要求 2.2.3 铸造工艺过程的主要设计2.2.4 常见主要铸造缺陷及对策2.3 烘缸 2.3.1 结构特点 2.3.2 主要技术要求 2.3.3 铸造工艺过程的主要设计2.4 活塞 2.4.1 结构特点 2.4.2 主要技术要求 2.4.3 铸造工艺过程的主要设计2.4.4 砂衬金属型铸造 第3章环形铸件 3.1 活塞环3.1.1 概述 3.1.2 材质 3.1.3 铸造工艺过程的主要设计 3.2 L形环 3.2.1 L形环的单体铸造 3.2.2 L形环的筒形铸造 第4章球墨铸铁曲轴 4.1 主要结构特点 4.1.1 曲臂与轴颈的连接结构 4.1.2 组合式曲轴 4.2 主要技术要求 4.2.1 材质 4.2.2 铸造缺陷 4.2.3 质量检验 4.2.4 热处理 4.3 铸造工艺过程的主要设计 4.3.1 浇注位置 4.3.2 模样 4.3.3 型砂及造型 4.3.4 浇冒口系统 4.3.5 冷却速度 4.3.6 熔炼、球化处理及浇注 4.4 热处理 4.4.1 退火处理 4.4.2 正火、回火处理 4.4.3 调质(淬火与回火)处理 4.4.4 等温淬火 4.5 常见主要铸造缺陷及对策 4.5.1 球化不良及球化衰退 4.5.2 缩孔及缩松 4.5.3 夹渣 4.5.4 石墨漂浮 4.5.5 皮下气孔 4.6 大型球墨铸铁曲轴的低压铸造 第5章盖类铸件 5.1 柴油机气缸盖 5.1.1 一般结构及铸造工艺性分析 5.1.2 主要技术要求 5.1.3 铸造工艺过程的主要设计 5.2 空气压缩机气缸盖 5.2.1 一般结构及铸造工艺性分析 5.2.2 主要技术要求 5.2.3 铸造工艺过程的主要设计 5.3 其他形式气缸盖 5.3.1 一般结构 5.3.2 主要技术要求 5.3.3 铸造工艺过程的主要设计 第6章箱体及壳体类铸件 6.1 大型链轮箱体 6.2 增压器进气涡壳体 6.3 排气阀壳体 6.4 球墨铸铁机端壳体 6.5 球墨铸铁水泵壳体 6.6 球墨铸铁分配器壳体 第7章阀体及管件 7.1 灰铸铁大型阀体 7.2 灰铸铁大型阀盖 7.3 球墨铸铁阀体 7.4 管件 7.5 球墨铸铁螺纹管件 7.6 球墨铸铁管卡箍 7.6.1 主要技术要求 7.6.2 铸造工艺过程的主要设计 7.6.3 常见主要铸造缺陷及对策 第8章轮形铸件 8.1 飞轮 8.2 调频轮 8.3 中小型轮形铸件 8.4 球墨铸铁轮盘 第9章锅形铸件 9.1 大型碱锅 9.2 中小型锅形铸件 第10章平板类铸件 10.1 大型龙门铣床落地工作台 10.2 大型立式车床工作台 10.3 大型床身中段 10.4 大型底座 中国机械工业出版社精装16开定价:299元

铸造工艺标准设计基础学习知识

铸造工艺设计基础 铸造生产周期较长,工艺复杂繁多。为了保证铸件质量,铸造工作者应根据铸件特点,技术条件和生产批量等制订正确的工艺方案,编制合理的铸造工艺流程,在确保铸件质量的前提下,尽可能地降低生产成本和改善生产劳动条件。本章主要介绍铸造工艺设计的基础知识,使学生掌握设计方法,学会查阅资料,培养分析问题和解决问题的能力。 §1-1 零件结构的铸造工艺性分析 铸造工艺性,是指零件结构既有利于铸造工艺过程的顺利进行,又有利于保证铸件质量。 还可定义为:铸造零件的结构除了应符合机器设备本身的使用性能和机械加工的要求外,还应符合铸造工艺的要求。这种对铸造工艺过程来说的铸件结构的合理性称为铸件的铸造工艺性。 另定义:铸造工艺性是指零件的结构应符合铸造生产的要求,易于保证铸件品质,简化铸造工艺过程和降低成本。 铸造工艺性不好,不仅给铸造生产带来麻烦,不便于操作,还会造成铸件缺陷。因此,为了简化铸造工艺,确保铸件质量,要求铸件必须具有合理的结构。 一、铸件质量对铸件结构的要求 1.铸件应有合理的壁厚 某些铸件缺陷的产生,往往是由于铸件结构设计不合理而造成的。采用合理的铸件结构,可防止许多缺陷。

每一种铸造合金,都有一个合适的壁厚范围,选择得当,既可保证铸件性能(机械性能)要求,又便于铸造生产。在确定铸件壁厚时一般应综合考虑以下三个方面:保证铸件达到所需要的强度和刚度;尽可能节约金属;铸造时没有多大困难。 (1)壁厚应不小于最小壁厚 在一定的铸造条件下,铸造合金能充满铸型的最小壁厚称为该铸造合金的最小壁厚。为了避免铸件的浇不足和冷隔等缺陷,应使铸件的设计壁厚不小于最小壁厚。各种铸造工艺条件下,铸件最小允许壁厚见表7-1~表7-5 表1-2 熔模铸件的最小壁厚(单位:㎜)

端盖铸造工艺设计说明

科技大学 课程设计 课程设计名称:端盖铸造工艺设计学生姓名: 学院: 专业及班级: 学号: 指导教师: 2015 年7 月7 日

铸造工艺课程设计任务书 一、任务与要求 1.完成产品零件图、铸件铸造工艺图各一,铸造工艺图需要三维建模(完成3D图)。 2.完成芯盒装配图一。 3.完成铸型装配图一。 4. 编写设计说明书一份(15~20页),并将任务书及任务图放置首页。 二、设计容为2周 1. 绘制产品零件图、铸造工艺图及工艺图的3D图(2天)。 2. 铸造工艺方案设计:确定浇注位置及分型面,确定加工余量、起模斜度、铸造圆角、收缩率,确定型芯、芯头间隙尺寸。(1天)。 3. 绘制芯盒装配图(1天)。 4. 绘制铸型装配图、即合箱图(包括流道计算共2天)。 5. 编制设计说明书(4天)。 三、主要参考资料 1. 亮峰主编,材料成形技术基础[M],高等教育,2011. 2. 丁根宝主编,铸造工艺学上册[M] ,机械工业,1985. 3. 铸造手册编委会,铸造手册:第五卷[M] ,机械工业,1996. 4. 其文主编, 材料成形工艺基础(第三版)[M],华中科技大学,2003.

摘要 本设计是端盖的铸造工艺设计。端盖的材料为QT400-15,结构简单,无复杂的型腔。根据端盖的零件图进行铸造工艺性分析,选择分型面,确定浇注位置、造型、造芯方法、铸造工艺参数并进行浇注系统、冒口和型芯的设计。在确定铸造工艺的基础上,设计模样、芯盒和砂箱,并利用CAD、Pro/E等设计软件绘制端盖零件图、芯盒装配图。 关键词:铸造;端盖;型芯

ABSTRACT This design is about the casting process of end cap. The material of end cap is QT400-15. The end cap without complex cavity owns simple structures. Select the right parting line, pouring position, modeling method ,core making method, parameters of casting by analyzing the part drawing, then design gating system, riser, core. After the design of casting process, accomplish the part drawing of end cap and assembly drawing of core box with the aid of design software such as CAD and Pro/E. Keywords:Cast; End cap; Core

铝合金铸件的铸造工艺分析

铝合金铸件的铸造工艺分析 摘要:随着我国汽车工业的迅猛发展,一方面对汽车用压铸件的需求量日益提升;另一方面为了应对环境污染以及资源紧张的发展现状,对汽车用压铸件的质 量要求及应用范围提出了更高的要求。本文从高压铸造的角度探讨铝合金铸件几 种关键的高圧鋳造工艺。 关键词:铝合金铸件;铸造工艺 压力铸造是近代金属加工工艺中发展较快的一种少无切削的特种铸造方法, 具有生产效率高、经济指标优良、铸件尺寸精度高和互换性好等特点,在制造业,尤其是规模化产业得到了广泛应用和迅速发展。压力铸造是铝、镁和锌等轻金属 的主要成形方法,适用于生产大型复杂薄壁壳体零件。压铸件已成为汽车、运动 器材、电子和航空航天等领域产品的重要组成部分,其中汽车行业是压铸技术应 用的主要领域,占到70%以上。随着汽车、摩托车、内燃机、电子通信、仪器仪表、家用电器、五金等行业的快速发展,压铸件的功能和应用领域不断扩大,从 而促进了压铸技术不断发展,压铸件品质不断提高。本文针对铝合金高压压铸技 术进行分析探讨。 1高性能压铸合金技术 对于新型高强韧压铸铝合金的开发,主要包括两个方面:一是针对现有传统压 铸铝合金的合金成分或添加合金元素进行优化设计;二是开发新型压铸铝合金系。而新型压铸铝合金一般要求其满足以下几点:①适用于壁厚为2-v4 mm复杂结构 压铸件的生产;②铸态下的抗拉强度和屈服强度分别可以达到300 MPa和150 MPa,且具有15%的伸长率;③具有良好的耐腐蚀性能;④可以通过工业上对变形 铝合金常用的高温喷漆过程对合金进行一定的强化;⑤可进行热处理强化处理;⑥ 可回收利用且环境友好。当前常用的高强韧压铸铝合金有Silafont-36, Magsimal-59, Aural-2及ADC-3等牌号,均为国外开发,其共同特点是Fe含量均比普通压 铸铝合金更低;另外其他杂质元素如Zn,Ti等均进行了严格控制。 对于新型压铸镁合金的开发,主要包含三个方面:超轻高强度压铸镁合金;抗高温蠕变压铸镁合金;耐蚀压铸镁合金。超轻高强度压铸镁合金的研究主要集中在 Mg-Li系合金,Li元素可提高合金的韧性,而强度则下降,通过添加第三元素, 经热处理后,合金的强度得到大幅度提高。抗高温蠕变压铸镁合金的研究主要集 中在添加合金元素,其有三方面作用:一是细晶强化,合金元素的添加有利于形成高熔点形核质点达到异质形核细化晶粒的效果;二是析出相强化并钉扎晶界,组织晶界滑移;三是固溶强化,Y等元素固液界面前沿形成强的溶质过冷层,抑制了初 生相生长而细化晶粒。而耐蚀压铸镁合金的研究同样集中在添加合金元素上,同 时还应与提高力学性能和抗高温蠕变性能相结合,以开发耐腐蚀热稳定优良的压 铸镁合金系列为目的,加强对压铸镁合金添加合金元素的研究;开展压铸镁合金后期处理的研究,例如对镁合金表面进行涂层、强化处理,阻止氧化反应和介质腐蚀。 目前国内对这部分压铸合金的规模化回收处理通常是采用直接加入火焰炉或 感应炉内重熔的方式,此种回收处理工艺所带来的主要问题是金属烧损大、重熔 能耗高、环境污染较重、人工劳动强度大、作业条件恶劣等。 2高真空压铸技术 当前,真空压铸以抽除型腔内气体的形式为主流,将真空阀装在模具上,其 最大的优点在于模具的设计和结构基本上与常规压铸相同,在分型面、推杆配合

铸造工艺设计说明书(1)

材料成型过程控制 院系:材料科学与工程学院 专业:材料成型与控制工程 姓名: 学号: 指导老师: 日期:2012.9.19至2012.10.15

目录 一、铸造工艺分析 (1) 二、砂芯设计 (3) 三、冒口设计 (5) 四、浇注系统的设计及计算 (7) 五、沙箱铸件数量的确定 (10) 六、参考数目、资料 (11)

图1所示的事U型座,主要用于拆卸主轴上的皮带轮。 材料为ZG25(主要元素含量:W C%=0.22~0.32%,W Mn%=0.5~0.8%,W Si%=0.2~0.45%)。 技术要求:①未标示的铸造圆角半径R=3~5。②未标铸造倾斜度按工厂规格H59~21。③铸件应仔细地清理去掉毛刺及不平处。 图1

一、铸造工艺分析 1.确定铸型种类和造型、制芯方法 此铸件是铸钢件,铸件最大三维尺寸270x110x220 mm,为中小型铸件,铸件结构简单,仅有两个加工面,其他非加工面表面光洁度要求不高,采用温型普通机器造型,砂芯外形简单,采用热芯盒射芯机制芯。 2.确定浇注位置和分型面 方案1:将铸件放置于下箱,分型面选取如图2所示,采用顶注式浇注,此方案浇注系统简单,不用翻箱操作;但是浇注时金属液对型腔冲刷力大,难以下芯,不便设置冒口进行补缩。容易产生夹砂、结疤类缺陷,补缩困难会形成缩孔、缩松结晶等缺陷。 方案2:将铸件放于上箱,分型面选取如图3所示,采用底注式浇注,此方案浇注系统相对复杂,下芯方便,可以将冒口设计在顶部,补缩效果好。 综合以上两种方案考虑,选择方案2较为合理。 图2 图3 铸件全部位于上箱,下表面为分型面 上 下 上 下

铸造工艺流程介绍

铸造生产的工艺流程 铸造生产是一个复杂的多工序组合的工艺过程,它包括以下主要工序: 1)生产工艺准备,根据要生产的零件图、生产批量和交货期限,制定生产工艺方案和工艺文件,绘制铸造工艺图; 2)生产准备,包括准备熔化用材料、造型制芯用材料和模样、芯盒、砂箱等工艺装备; 3)造型与制芯; 4)熔化与浇注; 5)落砂清理与铸件检验等主要工序。 成形原理 铸造生产是将金属加热熔化,使其具有流动性,然后浇入到具有一定形状的铸型型腔中,在重力或外力(压力、离心力、电磁力等)的作用下充满型腔,冷却并凝固成铸件(或零件)的一种金属成形方法。 图1 铸造成形过程

铸件一般作为毛坯经切削加工成为零件。但也有许多铸件无需切削加工就能满足零件的设计精度和表面粗糙度要求,直接作为零件使用。 型砂的性能及组成 1、型砂的性能 型砂(含芯砂)的主要性能要求有强度、透气性、耐火度、退让性、流动性、紧实率和溃散性等。2、型砂的组成 型砂由原砂、粘接剂和附加物组成。铸造用原砂要求含泥量少、颗粒均匀、形状为圆形和多角形的海砂、河砂或山砂等。铸造用粘接剂有粘土(普通粘土和膨润土)、水玻璃砂、树脂、合脂油和植物油等,分别称为粘土砂,水玻璃砂、树脂砂、合脂油砂和植物油砂等。为了进一步提高型(芯)砂的某些性能,往往要在型(芯)砂中加入一些附加物,如煤份、锯末、纸浆等。型砂结构,如图2所示。 图2 型砂结构示意图 工艺特点 铸造是生产零件毛坯的主要方法之一,尤其对于有些脆性金属或合金材料(如各种铸铁件、有色合金铸件等)的零件毛坯,铸造几乎是唯一的加工方法。与其它加工方法相比,铸造工艺具有以下特点:1)铸件可以不受金属材料、尺寸大小和重量的限制。铸件材料可以是各种铸铁、铸钢、铝合金、铜合金、镁合金、钛合金、锌合金和各种特殊合金材料;铸件可以小至几克,大到数百吨;铸件壁厚可以从0.5毫米到1米左右;铸件长度可以从几毫米到十几米。 2)铸造可以生产各种形状复杂的毛坯,特别适用于生产具有复杂内腔的零件毛坯,如各种箱体、缸体、叶片、叶轮等。 3)铸件的形状和大小可以与零件很接近,既节约金属材料,又省切削加工工时。 4)铸件一般使用的原材料来源广、铸件成本低。 5)铸造工艺灵活,生产率高,既可以手工生产,也可以机械化生产。 铸件的手工造型 手工造型的主要方法 砂型铸造分为手工造型(制芯)和机器造型(制芯)。手工造型是指造型和制芯的主要工作均由手工完成;机器造型是指主要的造型工作,包括填砂、紧实、起模、合箱等由造型机完成。泊头铸造工量具友介绍手工造型的主要方法: 手工造型因其操作灵活、适应性强,工艺装备简单,无需造型设备等特点,被广泛应用于单件小批量生产。但手工造型生产率低,劳动强度较大。手工造型的方法很多,常用的有以下几种: 1.整模造型 对于形状简单,端部为平面且又是最大截面的铸件应采用整模造型。整模造型操作简便,造型时整个模样全部置于一个砂箱内,不会出现错箱缺陷。整模造型适用于形状简单、最大截面在端部的铸件,如齿轮坯、轴承座、罩、壳等(图2)。

毕业设计锻造工艺分析与模具设计

锻造模具设计 摘要 模具是机械制造业中技术先进、影响深远的重要工艺装备,具有生产效率高、材料利用率高、制件质量优良、工艺适应性好等特点,被广泛应用于汽车、机械、航天、航空、轻工、电子、电器、仪表等行业。随着我国汽车工业的迅猛发展,汽车性能不断提高,汽车零部件中对高精度、形状复杂锻件的需求量越来越大,锻造新工艺、省材、节能工艺等技术的开发对于新型汽车零件的生产尤为重要。我国冲压模具无论在数量上,还是在质量、技术和能力等方面都已有了很大发展,但与国民经济需求和世界先进水平相比,差距仍很大,一些大型、精密、复杂、长寿命的高档模具每年仍大量进口,特别是中高档轿车的覆盖件模具,目前仍主要依靠进口。 本文主要是以轴类锻件的生产,加工工艺等,设计制造了,一些模具,包括,堕轮锻件的镦粗,终锻等后期加工模具。 首先介绍了,模具的一些简单情况,模具的分类,发展现状和趋势等,其次介绍了,零件的工艺性,毛坯的制定,镦粗,终锻模膛的设计,包括飞边槽的设计。 关键词:模具,终锻模膛,飞边槽,钳口,镦粗

An inert wheel forging the design specification Abstract Mold is mechanical manufacturing technology advanced, profoundly important technical equipment,High production efficiency, material with high efficiency and good quality, technology parts good adaptability etc. Characteristics.Widely used in motor vehicles, machinery, aerospace, aviation, light industry, electronics, electric appliances, instruments and other industries.With the rapid development of China's automobile industry,The car's performance to improve, Auto parts of high precision, complicated shape of forging an increasing demand for,Forging new craft, material, energy saving technology province technology development for new type of car parts production is especially important.Our country stamping die in the number no matter, or in quality, technology and ability are already has great development,But with the national economy needs and the advanced world level, compared to a gap still, Some large, sophisticated, complex, the long life of high-grade die every year in the importation of large still, Especially in high-grade car covering mould, at present still mainly rely on imports. The paper is an inert round of forging production, Processing techniques, Design and manufacturing, some mould, including, fall round of forgings upsetting, eventually forging, and trimming punching production processing mould. Firstly introduces, die some simple case, the classification of mould, development situation and trends,Secondly introduces, the technology of parts, blank the formulation, the upsetting, and the design of the chamber forging die,Including flash slots of design, Introduced again, trimming punching the design of the composite film. Key words:Mould,Finally bore, Flash tank,Clamp mouth,Upsetting,Trimming, punching

铸造工艺设计步骤

铸造工艺设计: 就是根据铸造零件的结构特点,技术要求,生产批量和生产条件等,确定铸造方案和工艺参数,绘制铸造工艺图,编制工艺卡等技术文件的过程.设计依据: 在进行铸造工艺设计前,设计者应掌握生产任务和要求,熟悉工厂和车间的生产条件,这些是铸造工艺设计的基本依据.设计内容: 铸造工艺设计内容的繁简程度,主要决定于批量的大小,生产要求和生产条件.一般包括下列内容: 铸造工艺图,铸件(毛坯)图,铸型装配图(合箱图),工艺卡及操作工艺规程.设计程序: 1零件的技术条件和结构工艺性分析;2选择铸造及造型方法;3确定浇注位置和分型面;4选用工艺参数;5设计浇冒口,冷铁和铸肋;6砂芯设计;7在完成铸造工艺图的基础上,画出铸件图;8通常在完成砂箱设计后画出;9综合整个设计内容.铸造工艺方案的内容: 造型,造芯方法和铸型种类的选择,浇注位置及分型面的确定等.铸件的浇注位置是指浇注时铸件在型内所处的状态和位置.分型面是指两半铸型相互接触的表面.确定砂芯形状及分盒面选择的基本原则,总的原则是: 使造芯到下芯的整个过程方便,铸件内腔尺寸精确,不至造成气孔等缺陷,使芯盒结构简单.1保证铸件内腔尺寸精度;2保证操作方便;3保证铸件壁厚均匀;4应尽量减少砂芯数目;5填砂面应宽敞,烘干支撑面是平面;6砂芯形状适应造型,制型方法.铸造工艺参数通常是指铸型工艺设计时需要确定的某些数据.1铸件尺寸公差: 是指铸件各部分尺寸允许的极限偏差,它取决于铸造工艺方法等多种因素.2主见重量公差定义为以占铸件公称质量的百分率为单位的铸件质量变动的允许值.3机械加工余量: 铸件为保证其加工面尺寸和零件精度,应有加工余量,即在铸件工艺设计时预先增加的,而后在机械加工时又被切去的金属层厚度,称为机械加工余量,简称加工余量.代号用MA,由精到粗分为ABCDEFGH和J9个等级。

铸造工艺具体分析与介绍汇总

铸造工艺具体分析与介绍 1.铸造 铸造还可按金属液的浇注工艺分为重力铸造和压力铸造。 重力铸造是指金属液在地球重力作用下注入铸型的工艺,也称浇铸。广义的重力铸造包括砂型浇铸、金属型浇铸、熔模铸造,泥模铸造等;窄义的重力铸造专指金属型浇铸。压力铸造是指金属液在其他外力(不含重力)作用下注入铸型的工艺。广义的压力铸造包括压铸机的压力铸造和真空铸造、低压铸造、离心铸造等;窄义的压力铸造专指压铸机的金属型压力铸造,简称压铸。这几种铸造工艺是目前有色金属铸造中最常用的、也是相对价格最低的。 2.砂型铸造 砂型铸造是一种以砂作为主要造型材料,制作铸型的传统铸造工艺。 砂型一般采用重力铸造,有特殊要求时也可采用低压铸造、离心铸造等工艺。砂型铸造的适应性很广,小件、大件,简单件、复杂件,单件、大批量都可采用。砂型铸造用的模具,以前多用木材制作,通称木模。旭东精密铸件厂为改变木模易变形、易损坏等弊病,除单件生产的砂型铸件外,全部改为尺寸精度较高,并且使用寿命较长的铝合金模具或树脂模具。虽然价格有所提高,但仍比金属型铸造用的模具便宜得多,在小批量及大件生产中,价格优势尤为突出。此外,砂型比金属型耐火度更高,因而如铜合金和黑色金属等熔点较高的材料也多采用这种工艺。但是,砂型铸造也有一些不足之处:因为每个砂质铸型只能浇注一次,获得铸件后铸型即损坏,必须重新造型,所以砂型铸造的生产效率较低;又因为砂的整体性质软而多孔,所以砂型铸造的铸件尺寸精度较低,表面也较粗糙。不过,旭东精密铸件厂集多年的技术积累,已大大改善了砂型铸件的表面状况,其抛丸后的效果可与金属型铸件媲美。 3.金属型铸造 是用耐热合金钢制作铸造用中空铸型模具的现代工艺。 金属型既可采用重力铸造,也可采用压力铸造。金属型的铸型模具能反复多次使用,每浇注一次金属液,就获得一次铸件,寿命很长,生产效率很高。金属型的铸件不但尺寸精度好,表面光洁,而且在浇注相同金属液的情况下,其铸件强度要比砂型的更高,更不容易损坏。因此,在大批量生产有色金属的

铸造工艺具体分析与介绍

编辑本段铸造工艺具体分析与介绍 1.铸造 铸造还可按金属液的浇注工艺分为重力铸造和压力铸造。重力铸造是指金属液在地球重力作用下注入铸型的工艺,也称浇铸。广义文档收集自网络,仅用于个人学习 文档收集自网络,仅用于个人学习 铸造工艺书籍 的重力铸造包括砂型浇铸、金属型浇铸、熔模铸造,泥模铸造等;窄义的重力铸造专指金属型浇铸。压力铸造是指金属液在其他外力(不含重力)作用下注入铸型的工艺。广义的压力铸造包括压铸机的压力铸造和真空铸造、低压铸造、离心铸造等;窄义的压力铸造专指压铸机的金属型压力铸造,简称压铸。这几种铸造工艺是目前有色金属铸造中最常用的、也是相对价格最低的。文档收集自网络,仅用于个人学习 2.砂型铸造 砂型铸造是一种以砂作为主要造型材料,制作铸型的传统铸造工艺。砂型一般采用重力铸造,有特殊要求时也可采用低压铸造、离心铸造等工艺。砂型铸造的适应性很广,小件、大件,简单件、复杂件,单件、大批量都可采用。砂型铸造用的模具,以前多用木材制作,通称木模。旭东精密铸件厂为改变木模易变形、易损坏等弊病,除单件生产的砂型铸件外,全部改为尺寸精度较高,并且使用寿命较长的铝合金模具或树脂模具。虽然价格有所提高,但仍比金属型铸造用的模具便宜得多,在小批量及大件生产中,价格优势尤为突出。此外,砂型比金属型耐火度更高,因而如铜合金和黑色金属等熔点较高的材料也多采用这种工艺。但是,砂型铸造也有一些不足之处:因为每个砂质铸型只能浇注一次,获得铸件后铸型即损坏,必须重新造型,所以砂型铸造的生产效率较低;又因为砂的整体性质软而多孔,所以砂型铸造的铸件尺寸精度较低,表面也较粗糙。不过,旭东精密铸件厂集多年的技术积累,已大大改善了砂型铸件的表面状况,其抛丸后的效果可与金属型铸件媲美。文档收集自网络,仅用于个人学习

铸造工艺学期末考试复习汇总

一.绪论 1,材料成形工艺(有时也称材料成形技术),是将材料制造成所需形状及尺寸的毛坯或成品的所有加工方法或手段的总称。 2 成形方法的选择原则 1)适用性原则满足使用要求;适应成形加工性能。2)经济性原则获得最大的经济效益。3)与环境相宜原则环境保护问题,对环境友好。 3成形方法选择的主要依据 (1)产品功能及其结构、形状尺寸和使用要求等;2)产量;3)生产条件 铸造 1概念:铸造是将液态金属在重力或外力作用下充填到铸型腔中使之冷却、凝固,从而获得所需形状及尺寸的毛坯或零件的方法,所铸出的产品称为铸件。 金属液态成形金属液态成型近净形化生产 2 分类通常从铸型材料、充型和凝固等方面对铸造进行分类。 1)按铸型材料、充型和凝固条件铸造方法分为砂型铸造(用砂型作铸型在重力下充型和凝固的铸造方法)和特种铸造(在铸型材料、充型和凝固等方面与砂型铸造有显著差别的铸造方法的统称) 2)按液态合金充型和凝固条件铸造方法分为重力铸造(如砂型铸造、壳型铸造、陶瓷型铸造、熔模铸造、金属型铸造)和非重力铸造(如压力铸造、低压铸造、挤压铸造和离心铸造)。 3)按铸型材料铸造方法分为一次型铸造(如砂型铸造、壳型铸造和熔模铸造,铸型材料为非金属材料)和永久型铸造(如金属型铸造、压力铸造和低压铸造,铸型材料为金属材料)。 4特点 1)优点 (1)适用范围广合金种类、铸件的形状和大小及质量几乎不受限制; (2)铸件具有一定的尺寸精度通常比普通锻件高,熔模铸件可达到无加工余量;(3)成本较低原材料来源广,价格低廉;铸件与零件形状和尺寸相近,节省材料。2)缺点 (1)铸件晶粒粗大,组织疏松,易产生缩孔和气孔等缺陷; (2)铸件力学性能较低,尤其是冲击韧性较低; (3)生产工序多,铸件质量难以精确控制。

相关文档