文档库 最新最全的文档下载
当前位置:文档库 › 化工原理过滤实验

化工原理过滤实验

化工原理过滤实验
化工原理过滤实验

化工实验二 过滤实验

13生物工程2班 陈忠杰 201330550204 指导老师:李璐

一、实验目的

1.了解板框过滤机的构造、流程和操作方法。

2.测定某一压力下过滤方程中的过滤常数K 、e q 、e τ值,增进对过滤理论的理解。

3.测定洗涤速率与最终过滤速率间的关系。

二、基本原理

恒压过滤是在恒定压力下,使悬浮液中的液体通过介质(成为滤液),而固体粒子被介质截留,形成虑饼,从而达到固—液分离目的的操作。过滤速度由过滤介质两侧的压差及过滤阻力决定。因为过滤过程滤渣厚度不断增加,过滤阻力亦不断增大,故恒压过滤速度随过滤时间而降低。当过滤介质及阻力均应计入时,恒压过滤方程如下: )()(22e e KA V V ττ+=+ (5-1)

)()(2

e e K q q ττ+=+ (5-2)

将式(5-2)微分,得:

e e q K

q K dq

d Kd dq q q 2

2)(2+=

=+τ

τ

(5-3) 式(5-3)为一条直线,但

dq

d τ

难以测得,实际可用q ??/τ代替,即 e q K

q K q 2

2+=??τ (5-4) 因此,只需在恒压下进行过滤试验,测取一系列的τ?、q ?,做q ??/τ与q 的关系图,得

一直线,这条直线斜率为K

2,截距为e q

K 2

,进而可算出K 、e q 的值:再以q=0,τ=0带入

式(5-2),即可求得e τ。

2洗涤速率与最终过滤速率的测得:

在一定压力下洗涤速率是恒定不变的。 w d dV )(

τ=w

w V

τ (5-5) 最终过滤速率的确定比较困难,因为它是一个变数,为了测得比较准确,应让过滤操作进行到率框全部被滤渣充满后在停止。根据恒压过滤方程,可得恒压过滤方程的最终过滤速率E d dV

)(

τ

为: E d dV )(τ=)

(2)(22e e q q KA

V V KA +=

+ (5-6) 式中:V —整个过滤时间内所得的滤液总量:

q —整个过滤时间内通过单位过滤面积所得的滤液总量。

三、实验装置与流程

本实验装置GL200B 由空压机、配料槽、压力料槽、板框过滤机等组成,其流程示意如图5-1.

MgCO3 的悬浮液在配料桶内配制一定浓度后,利用压差送入压力槽中,用压缩空气加以搅拌使MgCO3不致沉降,同时利用压缩空气的压力将滤浆送入板框压滤机过滤,滤液流入量筒计量,压缩空气从压力槽上排空管中排出。

板框压滤机的结构尺寸:框厚度20mm ,每个框过滤面积0.0177m3,框数2个。 空气压缩机规格型号:风量0.06m3/min ,最大气压0.8Mpa 。

四、实验步骤

过滤实验 1、 试验准备

(1)配料:在配料罐内配制含MgCO 32%~3%的水悬浮液,MgCO 3事先由天平沉重,水位高度按标尺示意,筒身直径35mm 。配置时,应将配料罐底部阀门关闭。利用波镁计,在其度数2.5-3.0之间,偏小加粉末,偏大加水。

(2)搅拌:开启空压机,将压缩空气通入配料罐(空压机的出口小球阀保持半开,进入配料罐的两个阀门保持适当开度),使MgCO

悬浮液搅拌均匀。搅拌时,应将配料罐的顶盖合

3

上。

(3)设定压力:分别打开进压力罐的三路阀门,空压机过来的压缩空气经各定值调节阀分别设定为0.1、0.2MPa。设定定值调节阀时,压力罐泄压阀可略开。建议第一次操作压力控制在0.1MPa(表压),第二次控制在0.2MPa(表压)。

(4)装板框:按板、框的钮数1-2-3-2-1-2-3的顺序排列好板框过滤机的板与框。正确装好滤板、滤框及滤布。滤布使用前用水浸湿,滤布要绷紧,不能起皱。滤布紧贴滤板,密封垫贴紧滤布,以免漏液,然后用压紧螺杆压紧板和框。(注意:用螺旋压紧时,千万不要把手指压伤,先慢慢转动手轮使板框合上,然后再压紧)。

(5)灌清水:向清水罐通入自来水,液面打视镜2/3高度左右。灌清水时,应将阀门处的泄压阀打开。

(6)灌料:在压力罐泄压阀打开的情况下,打开配料罐和压力罐间的进料阀门,使料浆自动出配料桶流入压力罐至其视镜1/2~2/3处,关闭进料阀门。

2、过滤过程

(1)鼓泡:通压缩空气至压力罐,使容器内料浆不断搅拌。压力料槽的排气阀应不断排气,但又不能喷浆。

(2)过滤:将中间双面板下通孔切换阀开到通孔通路状态。打开进板框前料液进口的两个阀门,打开出板框后清液出口球阀。此时,压力表表示过滤压力,清液出口流出滤液。

每次实验应在滤液从汇集管刚流出的时候作为开始时刻,开始用秒表记录时间,计量筒中液面升至约600mL记录一次时间,使时间不至于中断。即每次ΔV取600 mL,记录相应的过滤时间Δ。当滤液流速渐慢,呈细线状流出,表明滤渣已充满整个滤框,关闭滤浆进口阀门,停止过滤实验。

量筒交换接滤液是不要流失滤液,等量筒内滤液静止后读出ΔV值(注意:若ΔV约600mL时交替换量筒,这时量筒内滤液量并非正好600mL。要事先熟悉量筒刻度,不要打碎量筒),此外,要熟练双秒表轮流读数的方法。每个压力下,测量8~10个读数即可。

3.洗涤过程

(1)关闭板框过滤的进出阀门。将中间双面板下通孔切换阀开到通孔关闭状态(阀门手柄与滤板平行为过滤状态,垂直为洗涤状态)。

(2)维持洗涤压力与过滤时压力相同,开启洗水进出口阀(板框前两个进口阀,板框后一个出口阀)进行洗涤。洗水穿过滤渣后由滤液出口流出,并流入计量筒,同时记录时间,测取有关数据。洗涤速度比同压力下过滤速度小很多。每次ΔV取100~300ml左右。记录两组数据即可。

(3)洗涤完毕,关闭洗液进板框的阀门、关闭进气阀门。

一个压力下的实验完成后,先打开泄压阀使压力罐泄压。放开压紧螺杆将滤框拉开,卸出滤渣,清洗滤布,清洗时滤布不要折,重新组装。调节另一压力数值进行另一次实验。

注意若清水罐水不足,可补充一定水源,补水时仍应打开该罐的泄压阀。

每次滤液几滤饼均收集在小桶内,以便下次实验使用。

4、实验结束

(1)先关闭空压机出口球阀,关闭空压机电源。

(2)打开安全阀处泄压阀,使压力罐和清水罐泄压。

(3)卸下滤框、滤板、滤布进行清洗,清洗时滤布不要折。

(4)将压力罐内物料反压到配料罐内备下次使用,或将该二罐物料直接排空后用清水冲洗,以免沉淀堵塞罐管道和阀门。

(5)做好设备、地面的清洁。

五、实验数据及数据处理

表5-1 过滤实验数据整理表

过滤机类型: GL200B 滤框个数: 2 滤布种类:帆布

虑框尺寸(长、宽、高):_____133?133?20_mm 过滤总面积:0.0708 m2

滤浆名称: MgCO 3 温度: 26 ℃

数据记录表

过滤实验数据整理表

压力压)

0.1MPa 0.2MPa

序号

q/(m3/m 2) Δq/(m3/m2

)

ΔT/(s)

ΔT/Δq(s/m)

q Δq/(m3/m

2)

ΔT/(s) ΔT/Δq(s/m)

(m3/m2) 1 0.007768 0.007768 4126.996364 0.008474576 0.0084751784.16 2 0.015508

0.00774

5930.145985 0.0168079

1 0.0083332584.8 3 0.022994 0.007486 7614.339623 0.0252824

86 0.0084752920.5 4 0.030621 0.007627 7365.822222 0.0334039

55 0.0081214055.917 5

0.038672 0.008051

9191.578947 0.0414548

02 0.0080514584.611 6 0.046723 0.008051

10538.02105

0.0496468

0.0081925320.986

93

7 0.054915 0.008192 30887.11034 0.0579802

26 0.0083336183.6 8

0.061102 0.006186

120151.4795

0.0661723

16

0.0081927243.572

9

1、 根据以上处理结果,作出不同压力下的q q

t

-?曲线,如图1,图2,图3。 图1

图2

图3

2、计算举例:

以0.1MPa 第一次实验结果为例,计算如下 以

q

T

??为纵坐标,q 为横坐标作图,如图1,得到直线的斜率为a=1188.3,截距为b=3302.1 K=2/a=2/1188.3=1.683*10-5m 2

/s

qe=b/a=3302.1/1188.3=2. 779m 3/m

2

te=qe2/k=2.7792/(1.683*10-5

)=4588.73s

(dv/dt)w=Vw/tw=150*10-6/91.31=1.643*10-6

(dv/dt)E=KA/2(q+qe)=1.683*10-5*1.0177*4/2*(0.061102+2.779)=2.098*10-5

(dv/dt)w/(dv/dt)e=1.643*10-6

/(2.098*10-5

)

六、实验结果讨论与分析

1、在数据处理时,发现0.1Mpa 下的最后一个数据与0.2Mpa 下的第7、8组数据,,明显偏大,过滤时间比之前都要长,但是,滤液还是很少。其原因为:随着过滤的进行,滤饼不断在滤框形成,阻力不断增大,过滤速率逐渐下降,直到过滤的后期,滤饼形成充满了滤框,使过滤速率几乎为零。所以,在进行数据处理时,把这些数据舍弃了。

2、比较0.1MPa 与0.2MPa 压力下的过滤常数K :K 0.1=1.683*10-5

,K 0.2=2.627*10-5

,K 0.1< K 0.2。表明,过滤常数受压力的影响。在过滤同种物料时,压力越大,过滤常数越大。 3、在一定压力下洗涤速率变化中,0.1Mpa 的w dV

d τ

)均比0.2Mpa 的要小,而最终过滤速

率e dV

d τ

),0.1Mpa 的小于0.2Mpa 下的最终过滤速率。一般情况下,加压或减压均可加快过滤速率,但可压缩滤饼会使过滤速率变慢。一般在压力恒定时,洗涤速率不变,当其他条件不变时,压差变大,洗涤速率加快。实验中,理论上,洗涤速率与过滤速率的比值应该为0.25,但是实际上的比值偏差比较大。这可能是:在进行0.1Mpa 压力洗涤过程中,人为操作使设备调节过快,使洗涤速率过快,引起结果误差。

4、在理论上,在过滤相同的物料,而且在压差相同是,洗涤速率约为过滤最终的速率的1/4。在这次实验中,都出现了很大的误差,0.1Mpa 下,洗涤速率约为过滤最终的速率的0.07倍,0.2Mpa 下,洗涤速率约为过滤最终的速率的0.1倍。其原因有可能为:在0.1Mpa 下的过滤时,过滤速率有点慢,但是,洗涤时,速率很快

七、思考题

1、板框过滤机的优缺点是什么?适用于什么场合?

答:板框过滤机的优点是构造简单、制作方便、价格低;过滤面积大,可根据需要增减滤板以调节过滤能力;推动力大,对物料的适应能力强,对颗粒细小而液体较大的滤浆也能适用。缺点是,间歇操作,生产效率低;卸渣、清洗和组装需要时间、人力,劳动强度大。 适用于间歇操作的场合。

2、板框压滤机的操作分哪几个阶段?

答:板框过滤机的操作是间歇式的,每个操作循环由装合、过滤、洗涤、卸渣、整理五个阶段。

3、为什么过滤开始时,滤液常常有点浑浊,而过段时间后才变清?

答:因为刚开始的时候,滤布没有固体附着,所以空隙较大,浑浊液会通过滤布,从而滤液是浑浊的。当一段时间后,待过滤液体中的固体中汇填满滤布上的空隙,从而使固体颗粒不能通过滤布,此时的液体就回变得清澈。

4、影响过滤速率的主要因素有哪些?当你在某一恒压下所测得的K ,q e 、τ

e

值后,若将过

滤压强提高一倍,问上述三个值将有何变化?

答:①过滤介质两侧的压力差②过滤设备的性能以及质量③被过滤的物料的性质。

值增大τe值会变小。

若将过滤压强提高一倍,K值会增大,q

e

值会否不同?5、q

?取大些好还是取小些好?同一次实验,q

?取值不同,得出的K、q

e

值会答:q

?取值不同,得出的K、q ?需要适度,不需太大,也不需太小。同一次实验,q

e

不同。

6、过滤压力增大一倍,得到统一滤液量所需要的时间是否会减半?为什么?

答:如果过滤压力增大一倍,过滤速度不会也相应倍数地增大。过滤速度与物料性质,滤饼的形成时间,阻力的不同,这些都对过滤速度有影响。

化工原理实验

流量计的种类很多,本实验是研究差压式(速度式)流量计的校正,这类差压式流量计是用测定流体的压差来确定流体流量(或流速)常用的有孔板流量计、文丘里流量计和毕托管等。实验装置用孔板流量计如同2。a)所示,是在管道法兰向装有一中心开孔的不诱钢板。 孔板流量计的缺点是阻力损失大,流体流过孔板流量计,由于流体与孔板有摩擦,流道突然收缩和扩大,形成涡流产生阻力,使部分压力损失,因此流体流过流量计后压力不能完全恢复,这种损失称为永久压力损失(局部阻力损失)。流量计的永久压力损失可以用实验方法测出。如下图所示,实验中测定3、4两个截面的压力差,即为永久压力损失。对孔板流量计,测定孔板前为d1的地方和孔板后6d1的地方两个截面压差 工厂生产的流量计大都是按标准规范生产的。出厂时一般都在标准技术状况下(101325Pa,20℃)以水或空气为介质进行标定,给出流量曲线或按规定的流量计算公式给出指定的流量系数,然而在使用时,往往由于所处温度、压强、介质的性质同标定时不同,因此为了测定准确和使用方便,应在现场进行流量计的校正。即使已校正过的流量计,由于在长时间使用中被磨损较大时,也需要再一次校正。 量体法和称重法都是以通过一定时间间隔内排出的流体体积或质量的测量来实现的 《化工原理实验指导》李发永 流量计原理 工厂生产的流量计,大都是按标准规范制造的。流量计出厂前要经过校核,并作出流量曲线,或按规定的流量计算公式给出指定的流量系数,或将流量系数直接刻在显示仪表刻度盘上供用户使用。 如果用户丢失原厂的流量曲线图;或者流量计经长期使用,由于磨损造成较大的计量误差;或者用户自行制造非标准形式的流量计;或者被测量流体与标定的流体成分或状态不同,则必须对流量计进行校核(或称为标定)。也就是用实验的方法测定流量计的指示值与实际流量的关系,作出流量曲线或确定流量的计算公式。因此,流量计的校核在生产、科研中都具有很重要的实际意义。 Φ16×2.5 Ф:是表示外径 DN:公称直径(近似内径) “Φ”标识普通圆钢管的直径,或管材的外径乘以壁厚,如:Φ25×3标识外径25mm,壁厚为3mm的管材; 以孔板流量计为例进行说明,文丘里流量计的原理与此完全一样,只是流量系数不同。

化工原理实验报告

实验一 伯努利实验 一、实验目的 1、熟悉流体流动中各种能量和压头的概念及相互转化关系,加深对柏努利方程式的理解。 2、观察各项能量(或压头)随流速的变化规律。 二、实验原理 1、不可压缩流体在管内作稳定流动时,由于管路条件(如位置高低、管径大小等)的变化,会引起流动过程中三种机械能——位能、动能、静压能的相应改变及相互转换。对理想流体,在系统内任一截面处,虽然三种能量不一定相等,但能量之和是守恒的(机械能守恒定律)。 2、对于实际流体,由于存在内磨擦,流体在流动中总有一部分机械能随磨擦和碰撞转化为热能而损失。故而对于实际流体,任意两截面上机械能总和并不相等,两者的差值即为机械损失。 3、以上几种机械能均可用U 型压差计中的液位差来表示,分别称为位压头、动压头、静压头。当测压直管中的小孔(即测压孔)与水流方向垂直时,测压管内液柱高度(位压头)则为静压头与动压头之和。任意两截面间位压头、静压头、动压头总和的差值,则为损失压头。 4、柏努利方程式 ∑+++=+++f h p u gz We p u gz ρ ρ2222121122 式中: 1Z 、2Z ——各截面间距基准面的距离 (m ) 1u 、2u ——各截面中心点处的平均速度(可通过流量与其截面 积求得) (m/s) 1P 、2p ——各截面中心点处的静压力(可由U 型压差计的液位 差可知) (Pa ) 对于没有能量损失且无外加功的理想流体,上式可简化为 ρ ρ2 2 22121122p u gz p u gz + +=++ 测出通过管路的流量,即可计算出截面平均流速ν及动压g 22 ν,从而可得到各截面测管水头和总水头。 三、实验流程图

化工专业化工原理实验---过滤

实验二 过滤实验 1 实验目的 (1)了解过滤设备的构造和操作方法。 (2)掌握过滤问题的简化工程处理方法。 (3)测定在恒压操作时的过滤常数K ,q e ,τe ,并以实验所得结果验证过滤方程式,增进对过滤理论的理解。 (4)改变压强差重复上述操作,测定压缩指数s 和物料特性常数k (选做)。 2 基本原理 过滤过程是将悬浮液送至过滤介质及滤饼一侧,在其上维持另一侧较高的压力,液体则通过介质而成滤液,而固体粒子则被截留逐渐形成滤饼。过滤速度由过滤介质两端的压力差及过滤介质的阻力决定。过滤介质阻力由二部分组成,一为过滤介质,一为滤饼(先沉积下来的滤饼成为后来的过滤介质)。因为滤饼厚度(亦即滤饼阻力)随着时间而增加, 所以恒压过滤速度随着时间而降低。对于不可压缩性滤饼,在恒压过滤情况下,滤液量与过滤时间的关系可用下式表示: 2e e ()(+) q q K θθ+= (2.1) (2.1)式中:q —单位过滤面积获得的滤液体积,m 3/m 2;q e —单位过滤面积的虚拟滤液体积,m 3/m 2;θ—实际过滤时间,s ;θe —虚拟过滤时间,s ;K —过滤常数,m 2/s 。 将(2.1)式微分,可以得到: e 22 d q q dq K K θ=+ (2.2) 当各数据点的时间间隔不大时,d θ/ d q 可以用增量之比△θ/△q 来代替,即: e 22 q q q K K θ?=+? (2.3) 式(2.3)为一直线方程。试验时,在恒压下过滤要测定的悬浮液,测出过滤时间θ及滤液累积量q 的数据,在直角坐标纸上标绘△θ/△q 对q 的关系,所得直线斜率为2/K ,截距为2q e /K ,从而可以分别得到K 和q e 。 式(2.1)中的θe 可由下式获得:

化工原理实验指导

化工2004/02 化工原理实验 福州大学化工原理实验室 二〇〇四年二月

前言 实施科教兴国战略和可持续发展战略,迎接知识经济时代的到来,建设面向知识经济时代的国家创新体系,要求造就一支庞大的高素质的创造性人才队伍。因此,作为高级人才的培养基地,高等院校应当把创造力的教育和培养贯穿于各门课程教学及实践性教学环节中。实践性教学环节相对于课堂理论教学环节,更能贯穿对学生创造力的开发,其教学内容、方法、手段如何能适应创造性人才的培养要求尤为重要。传统的大学实验教学,其内容是以验证前人知识为主的验证型实验,其方法是教师手把手地教,这些都不利于培养学生的主动性和创造性。当今,大学实验教学改革中,普遍开设综合型、设计型、研究型实验,是对学生进行创造教育的重要思路和做法。在“211工程”重点建设的大学必须通过的本科教学评优工作指标中就明确要求综合型、设计型、研究型实验应占70%以上。 《化工原理实验》是一门技术基础实验课,在培养化工类及相关专业的高级人才中起举足轻重的作用,被学校确定为我校参加本科教学评优工作重点建设的基础课程之一。福州大学投入247万元用于建设以“三型”实验为主的现代化的具有国内先进水平的化工原理实验室。目前,第一期投入100万元的化工原理实验室建设工作已经完成,第二期投入147万元的建设工作正在进行中。已建成具有国内先进水平的实验装置18套,其中有6套是我校与北京化工大学、天津大学共同联合研制的,有2套是我们自行研制的。这些装置将化工知识与计算机技术紧密地结合起来,同时还融合了化学、电工电子、数学、物理及机械等多学科的知识,具有计算机数据采集、处理和控制等功能,能够针对不同专业的要求开出不同类型的“三型”实验。有了这些高新技术装备的实验装置,我们还必须花大力气进行化工原理实验内容、方法的改革,必须以当代教育思想、教育方法论及教育心理学为指导,研究以学生自主学习为主的启发式、交互式、研讨式、动手式的实验教学方法,从实验方案拟定、实验步骤设计、实验流程装配、实验现象观察、实验数据处理和实验结果讨论等方面有效地培养学生的创造性思维和实践动手能力。《化工原理实验讲义》就是为了适应化工原理实验教学内容、方法、手段的改革要求而编写的。 《化工原理实验讲义》由施小芳高级实验师执笔主编,李微高级实验师、林述英实验师参与编写工作,阮奇教授主审。叶长燊等老师参加了编写讲义的讨论,并提出许多宝贵意见。在此,对本讲义在编写过程中给予热心帮助和支持的老师,表示衷心的感谢。 本讲义在编写过程中,参阅了有关书籍、杂志、兄弟院校的讲义等大量资料,由于篇幅所限,未能一一列举,谨此说明。本讲义难免存在不妥之处,衷心地希望读者给予指教,使本讲义日臻完善。 福州大学化工原理实验室 2004.2.5

化工原理实验数据处理关于

离心泵特性曲线原始数据 序号 水流量Q/m3/h 水温°C 出口压力/m 入口压力 /m 电机功率 /KW 1 0.00 27.70 21.50 0.00 0.49 2 1040.00 27.70 20.40 0.00 0.53 3 2170.00 27.70 19.20 0.00 0.58 4 3110.00 27.60 18.10 -0.30 0.64 5 3890.00 27.60 17.10 -0.40 0.69 6 4960.00 27.50 15.20 -0.70 0.75 7 5670.00 27.50 14.30 -1.00 0.80 8 6620.00 27.30 13.10 -1.20 0.85 9 7380.00 27.40 11.50 -1.50 0.88 10 8120.00 27.00 8.90 -1.70 0.90 11 8950.00 26.60 5.80 -2.10 0.93 已知 ΔZ=0.2m η电=0.9 η转=1.0 此温度下水的密度约为ρ=997.45kg/m3 以第 组数据为例计算 根据扬程Z g p g p H ?+-= ρρ12e 转电电轴ηη??=N N 102Q e e ρ??= H N 轴 N N e =η He= N 轴= e N = η=

离心泵特性曲线 序号 水流量 Q/m3/s He/m N 轴/KW Ne/KW η 1 0.00 21.70 0.44 0.00 0.00 2 0.29 20.60 0.48 0.06 0.12 3 0.60 19.40 0.52 0.11 0.22 4 0.86 18.60 0.58 0.16 0.27 5 1.08 17.70 0.62 0.19 0.30 6 1.38 16.10 0.68 0.22 0.32 7 1.58 15.50 0.72 0.24 0.33 8 1.84 14.50 0.77 0.26 0.34 9 2.05 13.20 0.79 0.26 0.33 10 2.26 10.80 0.81 0.24 0.29 11 2.49 8.10 0.84 0.20 0.24 2 0.00 0.050.100.150.200.250.300.350.400.450.500.550.600.650.700.750.800.85Q (m3/s ) 离心泵 特 性曲线 η N E (K W ) 8 1012141618 2022 He-Q η-Q N 轴-Q He (m )

化工原理实验思考题答案

化工原理实验思考题 实验一:柏努利方程实验 1. 关闭出口阀,旋转测压管小孔使其处于不同方向(垂直或正对流向),观测并记录各测 压管中的液柱高度H 并回答以下问题: (1) 各测压管旋转时,液柱高度H 有无变化这一现象说明了什么这一高度的物理意义是 什么 答:在关闭出口阀情况下,各测压管无论如何旋转液柱高度H 无任何变化。这一现象可通过柏努利方程得到解释:当管内流速u =0时动压头02 2 ==u H 动 ,流体没有运动就不存在阻力,即Σh f =0,由于流体保持静止状态也就无外功加入,既W e =0,此时该式反映流体静止状态 见(P31)。这一液位高度的物理意义是总能量(总压头)。 (2) A 、B 、C 、D 、E 测压管内的液位是否同一高度为什么 答:A 、B 、C 、D 、E 测压管内的液位在同一高度(排除测量基准和人为误差)。这一现象说明各测压管总能量相等。 2. 当流量计阀门半开时,将测压管小孔转到垂直或正对流向,观察其的液位高度H /并回 答以下问题: (1) 各H /值的物理意义是什么 答:当测压管小孔转到正对流向时H /值指该测压点的冲压头H /冲;当测压管小孔转到垂直流向时H /值指该测压点的静压头H /静;两者之间的差值为动压头H /动=H /冲-H /静。

(2) 对同一测压点比较H 与H /各值之差,并分析其原因。 答:对同一测压点H >H /值,而上游的测压点H /值均大于下游相邻测压点H /值,原因显然是各点总能量相等的前提下减去上、下游相邻测压点之间的流体阻力损失Σh f 所致。 (3) 为什么离水槽越远H 与H /差值越大 (4) 答:离水槽越远流体阻力损失Σh f 就越大,就直管阻力公式可以看出2 2 u d l H f ??=λ与 管长l 呈正比。 3. 当流量计阀门全开时,将测压管小孔转到垂直或正对流向,观察其的液位高度 H 2222d c u u =22 ab u ρcd p ρab p 2 2 u d l H f ??=λ计算流量计阀门半开和全开A 点以及C 点所处截面流速大小。 答:注:A 点处的管径d=(m) ;C 点处的管径d=(m) A 点半开时的流速: 135.00145.036004 08.0360042 2=???=???= ππd Vs u A 半 (m/s ) A 点全开时的流速: 269.00145 .036004 16.0360042 2=???=???=ππd Vs u A 全 (m/s ) C 点半开时的流速: 1965.0012 .036004 08.0360042 2=???=???= ππd Vs u c 半 (m/s )

恒压过滤实验常数测定实验报告

恒压过滤实验
一、实验目的
1、掌握恒压过滤常数 K、通过单位过滤面积当量滤液量 qe 、当量过滤时间 ? e 的测定方法; 加深 K、 qe 、 ? e 的概念和影响因素的理解。 2、 学习滤饼的压缩性指数 s 和物料常数 k 的测定方法。 3、 学习
d? ——q 一类关系的实验测定方法。 dq
4、 学习用正交试验法来安排实验,达到最大限度的减小实验工作量的目的。 5、 学习对正交试验法的实验结果进行科学的分析,分析出每个因素重要性的大小,指出试 验指标随各因素的变化趋势,了解适宜操作条件的确定方法。
二、实验内容
1、设定试验指标、因素和水平。因可是限制,分 4 个小组合作共同完成一个正交表。 故同意规定实验指标为恒压过滤常数 K,设定的因素及其水平如表 6-1 所示。假定各因素之 间无交互作用。 2、为便于处理实验结果,应统一选择一个合适的正交表。 3、按选定正交表的表头设计,填入与各因素水平对应的数据,使它变成直观的“实验 方案”表格。 4、分小组进行实验,测定每个实验条件下的过滤常数 K、q 5、对试验指标 K 进行极差分析和方差分析;之处各个因素重要性的大小;讨论 K 随其 影响因素的变化趋势;以提高过滤速度为目标,确定适宜的操作条件。
三、实验原理
1.恒压过滤常数 K、 qe 、 ? e 的测定方法。 在过滤过程中,由于固体颗粒不断地被截留在介质表面上,滤饼厚度增加,液体流过固 体颗粒之间的孔道加长,而使流体阻力增加,故恒压过滤时,过滤速率逐渐下降。随着过滤 的进行,若得到相同的滤液量,则过滤时间增加。 恒压过滤方程
(q ? qe ) 2 ? K (? ? ? e )
式中 q———单位过滤面积获得的滤液体积, m / m ;
3 2
(1)

恒压过滤实验报告

恒压过滤 . 一、实验名称: 恒压过滤 二、实验目的: 1、熟悉板框过滤机的结构; 2、测定过滤常数K、q e、θe; 三、实验原理: 板框压滤是间歇操作。一个循环包括装机、压滤、饼洗涤、卸饼和清洗五个工序。板框机由多个单元组合而成,其中一个单元由滤板(·)、滤框(∶)、洗板( )和滤布组成,板框外形是方形,如图2-2-4-1所示,板面有内槽以便滤液和洗液畅流,每个板框均有四个圆孔,其中两对角的一组为过滤通道,另一组为洗涤通道。滤板和洗板又各自有专设的小通道。图中实线箭头为滤液流动线路,虚线箭头则为洗液流动路线。框的两面包以滤布作为滤面,滤浆由泵加压后从下面通道送入框内,滤液通过滤布集于对角上通道而排出,滤饼被截留在滤框内,如图2-2-4-2a)所示。过滤完毕若对滤饼进行洗涤则从另一通道通入洗液,另一对角通道排出洗液,如图 2-2-4-2b)所示。

图2-2-4-2 过滤和洗涤时液体流动路线示意图 在过滤操作后期,滤饼即将充满滤框,滤液是通过滤饼厚度的一半及一层滤布而排出,洗涤时洗液是通过两层滤布和整个滤饼层而排出,若以单位时间、单位面积获得的液体量定义为过滤速率或洗涤速率,则可得洗涤速率约为最后过滤速率的四分之一。 恒压过滤时滤液体积与过滤时间、过滤面积之间的关系可用下式表示: )()(2 2e e KA V V θθ+=+ (1) 式中:V ——时间θ内所得滤液量[m 3 ] V e ——形成相当于滤布阻力的一层滤饼时获得的滤液量,又称虚拟滤液量[m 3 ] θ——过滤时间[s] θe ——获过滤液量V e 所需时间[s] A ——过滤面积[m 2 ] K ——过滤常数[m 2/s]

化工原理实验指导(1)

实验1 雷诺实验 一、实验目的 1、观察液体在不同流动状态时的流体质点的运动规律。 2、观察液体由层流变紊流及由紊流变层流的过渡过程。 3、测定液体在园管中流动时的上临界雷诺数Rec1和下临界雷诺数Rec2。 二、实验要求 1、实验前认真阅读实验教材,掌握与实验相关的基本理论知识。 2、熟练掌握实验内容、方法和步骤,按规定进行实验操作。 3、仔细观察实验现象,记录实验数据。 4、分析计算实验数据,提交实验报告。 三、实验仪器 1、雷诺实验装置(套), 2、蓝、红墨水各一瓶, 3、秒表、温度计各一只, 4、 卷尺。 四、实验原理 流体在管道中流动,有两种不同的流动状态,其阻力性质也不同。在实验过程中,保持水箱中的水位恒定,即水头H不变。如果管路中出口阀门开启较小,在管路中就有稳定的平均流速u,这时候如果微启带色水阀门,带色水就会和无色水在管路中沿轴线同步向前流动,带色水成一条带色直线,其流动质点没有垂直于主流方向的横向运动,带色水线没有与周围的液体混杂,层次分明的在管道中流动。此时,在速度较小而粘性较大和惯性力较小的情况下运动,为层流运动。如果将出口阀门逐渐开大,管路中的带色直线出现脉动,流体质点还没有出现相互交换的现象,流体的运动成临界状态。如果将出口阀门继续开大,出现流体质点的横向脉动,使色线完全扩散与无色水混合,此时流体的流动状态为紊流运动。

雷诺数:γ d u ?= Re 连续性方程:A ?u=Q u=Q/A 流量Q 用体积法测出,即在时间t 内流入计量水箱中流体的体积ΔV 。 t V Q ?= 4 2 d A ?=π 式中:A-管路的横截面积 u-流速 d-管路直径 γ-水的粘度 五、实验步骤 1、连接水管,将下水箱注满水。 2、连接电源,启动潜水泵向上水箱注水至水位恒定。 3、将蓝墨水注入带色水箱,微启水阀,观察带色水的流动从直线状态至脉动临界状态。 4、通过计量水箱,记录30秒内流体的体积,测试记录水温。 5、调整水阀至带色水直线消失,再微调水阀至带色水直线重新出现,重复步骤4。 6、层流到紊流;紊流到层流各重复实验三次。 六、数据记录与计算 d= mm T (水温)= 0C 七、实验分析与总结(可添加页) 1、描述层流向紊流转化以及紊流向层流转化的实验现象。 2、计算下临界雷诺数以及上临界雷诺数的平均值。

化工原理精馏实验报告

北京化工大学 实验报告 精馏实验 一、摘要 精馏是实现液相混合物液液分离的重要方法,而精馏塔是化工生产中进行分离过程的主要单元,板式精馏塔为其主要形式。本实验用工程模拟的方法模拟精馏塔在全回流的状态下及部分回流状态下的操作情况,从而计算单板效率和总板效率,并分析影响单板效率的主要因素,最终得以提高塔板效率。 关键词:精馏、板式塔、理论板数、总板效率、单板效率 二、实验目的 1、熟悉精馏的工艺流程,掌握精馏实验的操作方法。 2、了解板式塔的结构,观察塔板上气- 液接触状况。 3、测测定全回流时的全塔效率及单板效率。 4、测定部分回流时的全塔效率。 5、测定全塔的浓度或温度分布。 6、测定塔釜再沸器的沸腾给热系数。 三、实验原理 在板式精馏塔中,由塔釜产生的蒸汽沿塔逐板上升与来自塔顶逐板下降的回流液,在塔 板上实现多次接触,进行传热和传质,使混合液达到一定程度的分离。 回流是精馏操作得以实现的基础。塔顶的回流量和采出量之比,称为回流比。回流比是精馏操作的重要参数之一,其大小影响着精馏操作的分离效果和能耗。 回流比存在两种极限情况:最小回流比和全回流。若塔在最小回流比下操作,要完成分离任务,则

需要有无穷多块塔板的精馏塔。当然,这不符合工业实际,所以最小回流比只是 一个操作限度。若操作处于全回流时,既无任何产品采出,也无原料加入,塔顶的冷凝液全部返回塔中,这在生产中无实验意义。但是,由于此时所需理论板数最少,又易于达到稳定,故常在工业装置开停车、排除故障及科学研究时采用。 实际回流比常取用最小回流比的倍。在精馏操作中,若回流系统出现故障,操作情况会急剧恶化,分离效果也将变坏。 板效率是体现塔板性能及操作状况的主要参数,有以下两种定义方法。 (1)总板效率E N e 式中E —总板效率;N—理论板数(不包括塔釜);Ne —实际板数。 2)单板效率E ml E x n 1 x n E ml * x n 1 x n* 式中E ml—以液相浓度表示的单板效率; x n,x n-1—第n 块板的和第(n-1 )块板得液相浓度; x n*—与第n 块板气相浓度相平衡的液相浓度。 总板效率与单板效率的数值通常由实验测定。单板效率是评价塔板性能优劣的重要数据。物系性质、板型及操作负荷是影响单板效率的重要因素。当物系与板型确定后,可通过改变气液负荷达到最高的板效率;对于不同的板型,可以在保持相同的物系及操作条件下,测定其单板效率,已评价其性能的优劣。总板效率反映全塔各塔板的平均分离效果,常用于板式塔设计中。 若改变塔釜再沸器中电加热器的电压,塔板上升蒸汽量将会改变,同时,塔釜再沸器电加热器表面的温度将发生变化,其沸腾给热系数也将发生变化,从而可以得到沸腾给热系数也加热量的关系。由牛顿冷却定律,可知 Q A t m

化工原理实验习题答案

1、填料吸收实验思考题 (1)本实验中,为什么塔底要有液封?液封高度如何计算? 答:保证塔内液面,防止气体漏出,保持塔内压力.0.1 设置液封装置时,必须正确地确定液封所需高度,才能达到液封的目的。 U形管液封所需高度是由系统内压力(P1 塔顶气相压力)、冷凝器气相的压力(P2)及管道压力降(h,)等参数计算确定的。可按式(4.0.1-1)计算: H =(P1一P2)X10.2/Y一h- 式中 H.,- —最小液封高度,m; P1,—系统内压力; P2—受液槽内压力; Y—液体相对密度; h-—管道压力降(液体回流道塔内的管线) 一般情况下,管道压力降(h-)值较小,可忽略不计,因此可简化为 H=(P1一P2)X10.2/Y 为保证液封效果,液封高度一般选取比计算所需高度加0. 3m-0. 5m余量

为宜。 (2)测定填料塔的流体力学性能有什么工程意义? 答:是确定最适宜操作气速的依据 (3)测定Kxa 有什么工程意义? 答:传质系数Kxa是气液吸收过程重要的研究的内容,是吸收剂和催化剂等性能评定、吸收设备设计、放大的关键参数之一 (4)为什么二氧化碳吸收过程属于液膜控制? 答:易溶气体的吸收过程是气膜控制,如HCl,NH3,吸收时的阻力主要在气相,反之就是液膜控制。对于CO2的溶解度和HCl比起来差远了,应该属于液膜控制(5)当气体温度和液体温度不同时,应用什么温度计算亨利系数? 答:液体温度。因为是液膜控制,液体影响比较大。 2对流给热系数测定 1. 答:冷流体和蒸汽是并流时,传热温度差小于逆流时传热温度差,在相同进出口温度下,逆流传热效果大于并流传热效果。 2.答:不凝性气体会减少制冷剂的循环量,使制冷量降低。并且不凝性气体会滞留在冷凝器的上部管路内,致使实际冷凝面积减小,冷凝负荷增大,冷凝压力升

化工原理恒压过滤常数测定实验报告

恒压过滤常数测定实验 一、实验目的 1. 熟悉板框压滤机的构造和操作方法。 2. 通过恒压过滤实验,验证过滤基本理论。 3. 学会测定过滤常数K 、q e 、τe 及压缩性指数s 的方法。 4. 了解过滤压力对过滤速率的影响。 二、基本原理 过滤是以某种多孔物质为介质来处理悬浮液以达到固、液分离的一种操作过程,即在外力的作用下,悬浮液中的液体通过固体颗粒层(即滤渣层)及多孔介质的孔道而固体颗粒被截留下来形成滤渣层,从而实现固、液分离。因此,过滤操作本质上是流体通过固体颗粒层的流动,而这个固体颗粒层(滤渣层)的厚度随着过滤的进行而不断增加,故在恒压过滤操作中,过滤速度不断降低。 过滤速度u 定义为单位时间单位过滤面积通过过滤介质的滤液量。影响过滤速度的主要因素除过滤推动力(压强差)△p,滤饼厚度L 外,还有滤饼和悬浮液的性质,悬浮液温度,过滤介质的阻力等。 过滤时滤液流过滤渣和过滤介质的流动过程基本上处在层流流动围,因此,可利用流体通过固定床压降的简化模型,寻求滤液量与时间的关系,可得过滤速度计算式: (1) 式中:u —过滤速度,m/s ; V —通过过滤介质的滤液量,m 3 ; A —过滤面积,m 2 ; τ —过滤时间,s ; q —通过单位面积过滤介质的滤液量,m 3/m 2 ; △p —过滤压力(表压)pa ; s —滤渣压缩性系数; μ—滤液的粘度,Pa.s ; r —滤渣比阻,1/m 2 ; C —单位滤液体积的滤渣体积,m 3 /m 3 ; Ve —过滤介质的当量滤液体积,m 3; r ′ —滤渣比阻,m/kg ;

C —单位滤液体积的滤渣质量,kg/m3。 对于一定的悬浮液,在恒温和恒压下过滤时,μ、r、C和△p都恒定,为此令: (2) 于是式(1)可改写为: (3)式中:K—过滤常数,由物料特性及过滤压差所决定,m2/s 将式(3)分离变量积分,整理得: (4) 即V2+2VV e=KA2τ (5) 和从0到积分,则: 将式(4)的积分极限改为从0到V e V e2=KA2τ (6)将式(5)和式(6)相加,可得: 2(V+V e)dv= KA2(τ+τe) (7) 所需时间,s。 式中:—虚拟过滤时间,相当于滤出滤液量Veτ e 再将式(7)微分,得: 2(V+V e)dv= KA2dτ (8)将式(8)写成差分形式,则 (9)式中:Δq—每次测定的单位过滤面积滤液体积(在实验中一般等量分配),m3/ m2; Δτ—每次测定的滤液体积所对应的时间,s; —相邻二个q值的平均值,m3/ m2。 以Δτ/Δq为纵坐标,为横坐标将式(9)标绘成一直线,可得该直线的斜率和截距, 斜率:S= 截距:I= q e 则,K= ,m2/s

化工原理实验实验报告

篇一:化工原理实验报告吸收实验 姓名 专业月实验内容吸收实验指导教师 一、实验名称: 吸收实验 二、实验目的: 1.学习填料塔的操作; 2. 测定填料塔体积吸收系数kya. 三、实验原理: 对填料吸收塔的要求,既希望它的传质效率高,又希望它的压降低以省能耗。但两者往往是矛盾的,故面对一台吸收塔应摸索它的适宜操作条件。 (一)、空塔气速与填料层压降关系 气体通过填料层压降△p与填料特性及气、液流量大小等有关,常通过实验测定。 若以空塔气速uo[m/s]为横坐标,单位填料层压降?p[mmh20/m]为纵坐标,在z ?p~uo关系z双对数坐标纸上标绘如图2-2-7-1所示。当液体喷淋量l0=0时,可知 为一直线,其斜率约1.0—2,当喷淋量为l1时,?p~uo为一折线,若喷淋量越大,z ?p值较小时为恒持z折线位置越向左移动,图中l2>l1。每条折线分为三个区段, 液区,?p?p?p~uo关系曲线斜率与干塔的相同。值为中间时叫截液区,~uo曲zzz ?p值较大时叫液泛区,z线斜率大于2,持液区与截液区之间的转折点叫截点a。 姓名 专业月实验内容指导教师?p~uo曲线斜率大于10,截液区与液泛区之间的转折点叫泛点b。在液泛区塔已z 无法操作。塔的最适宜操作条件是在截点与泛点之间,此时塔效率最高。 图2-2-7-1 填料塔层的?p~uo关系图 z 图2-2-7-2 吸收塔物料衡算 (二)、吸收系数与吸收效率 本实验用水吸收空气与氨混合气体中的氨,氨易溶于水,故此操作属气膜控制。若气相中氨的浓度较小,则氨溶于水后的气液平衡关系可认为符合亨利定律,吸收姓名 专业月实验内容指导教师平均推动力可用对数平均浓度差法进行计算。其吸收速率方程可用下式表示: na?kya???h??ym(1)式中:na——被吸收的氨量[kmolnh3/h];?——塔的截面积[m2] h——填料层高度[m] ?ym——气相对数平均推动力 kya——气相体积吸收系数[kmolnh3/m3·h] 被吸收氨量的计算,对全塔进行物料衡算(见图2-2-7-2): na?v(y1?y2)?l(x1?x2) (2)式中:v——空气的流量[kmol空气/h] l——吸收剂(水)的流量[kmolh20/h] y1——塔底气相浓度[kmolnh3/kmol空气] y2——塔顶气相浓度[kmolnh3/kmol空气] x1,x2——分别为塔底、塔顶液相浓度[kmolnh3/kmolh20] 由式(1)和式(2)联解得: kya?v(y1?y2)(3) ??h??ym 为求得kya必须先求出y1、y2和?ym之值。 1、y1值的计算:

化工原理实验课课后习题答案

流体流动阻力的测定 1.如何检验系统内的空气已经被排除干净答:可通过观察离心泵进口处的真空表和出口处压力表的读数,在开机前若真空表和压力表的读数均为零,表明系统内的空气已排干净;若开机后真空表和压力表的读数为零,则表明,系统内的空气没排干净。 行压差计的零位应如何校正答:先打开平衡阀,关闭二个截止阀,即可U行压差计进行零点校验 3.进行测试系统的排气工作时,是否应关闭系统的出口阀门为什么答:在进行测试系统的排气时,不应关闭系统的出口阀门,因为出口阀门是排气的通道,若关闭,将无法排气,启动离心泵后会发生气缚现象,无法输送液体。 4.待测截止阀接近出水管口,即使在最大流量下,其引压管内的气体也不能完全排出。试分析原因,应该采取何种措施答:待截止阀接近进水口,截止阀对水有一个阻力,若流量越大,突然缩小直至流回截止阀,阻力就会最大,致使引压管内气体很难排出。改进措施是让截止阀与引压阀管之间的距离稍微大些。 5.测压孔的大小和位置,测压导管的粗细和长短对实验有无影响为什么答:由公式2p可知,在一定u下,突然扩大ξ,Δp增大,则压差计读数变大;2u反之,突然缩小ξ,例如:使ξ=,Δp 减小,则压差计读数变小。 6.试解释突然扩大、突然缩小的压差计读数在实验过程中有什么不同现象答:hf与很多值有关,Re是其中之一,而λ是为了研究hf而引入的一个常数,所以它也和很多量有关,不能单单取决于Re,而在Re在一定范围内的时候,其他的变量对于λ处于一个相对较差的位置,可以认为λ与Re关系统一。 7.不同管径、不同水温下测定的~Re曲线数据能否关联到同一曲线答:hf与很多值有关,Re是其中之一,而λ是为了研究hf而引入的一个常数,所以它也和很多量有关,不能单单取决于Re,而在Re在一定范围内的时候,其他的变量对于λ处于一个相对较差的位置,可以认为λ与Re关系统一。正如Re在3×103~105 范围内,λ与Re的关系遵循Blasius关系式,即λ= 8.在~Re曲线中,本实验装置所测Re在一定范围内变化,如何增大或减小Re的变化范围答:Redu,d为直管内径,m;u为流体平均速度,m/s;为流体的平均密度,kg/m3;s。为流体的平均黏度,Pa· 8.本实验以水作为介质,作出~Re曲线,对其他流体是否适用为什么答:可以使用,因为在湍流区内λ=f(Re,)。说明在影响λ的因素中并不包含流体d本身的特性,即说明用什么流体与-Re 无关,所以只要是牛顿型流体,在相同管路中以同样的速度流动,就满足同一个-Re关系。 9.影响值测量准确度的因素有哪些答:2dp,d为直管内径,m;为流体的平均密度,kg/m3;u为流体平均速2u度,m/s;p为两测压点之间的压强差,Pa。△p=p1-p2,p1为上游测压截面的压强,Pa;p2为下游测压截面的压强,Pa 离心泵特性曲线的测定 1.为什么启动离心泵前要先灌泵如果灌水排气后泵仍启动不起来,你认为可能是什么原因 答:离心泵若在启动前未充满液体,则泵壳内存在空气。由于空气密度很小,所产生的离心力也很小。此时,在吸入口处所形成的真空不足以将液体吸入泵内。虽启动离心泵,但不能输送液体。泵不启动可能是电路问题或是泵本身已损坏,即使电机的三相电接反了,泵也会启动的。 2.为什么启动离心泵时要关出口调节阀和功率表开关启动离心泵后若出口阀不开,出口处压力表的读数是否会一直上升,为什么答:关闭阀门的原因从试验数据上分析:开阀门意味着扬程极小,这意味着电机功率极大,会烧坏电机。当泵不被损坏时,真空表和压力表读数会恒定不变,水泵不排水空转不受外网特性曲线影响造成的。 3.什么情况下会出现气蚀现象答:金属表面受到压力大、频率高的冲击而剥蚀以及气泡内夹带的少量氧气等活泼气体对金属表面的电化学腐蚀等,使叶轮表面呈现海绵状、鱼鳞状破坏。 4.为什么泵的流量改变可通过出口阀的调节来达到是否还有其他方法来调节流量答:用出口阀门调节流量而不用泵前阀门调节流量保证泵内始终充满水,用泵前阀门调节过度时会造成泵内出现负压,使叶轮氧化,腐蚀泵。还有的调节方式就是增加变频装置,很好用的。 5.正常工作的离心泵,在其进口管线上设阀门是否合理为什么答:合理,主要就是检修,否则可以不用阀门。 6.为什么在离心泵吸入管路上安装底阀 答:为便于使泵内充满液体,在吸入管底部安装带吸滤网的底阀,底阀为止逆阀,滤网是为了防止固体物质进入泵内而损坏叶轮的叶片或妨碍泵的正常操作。 7.测定离心泵的特性曲线为什么要保持转速的恒定答:离心泵的特性曲线是在一定转速n下测定的,当n改变时,泵的流量Q、扬程H及功率P也相应改变。对同一型号泵、同一种液体,在效率η不变的条件下,Q、H、P随n的变化关系如下式所示见课本81页当泵的转速变化小于20%时,效率基本不变。 8.为什么流量越大,入口真空表读数越大而出口压力表读数越小答:据离心泵的特征曲线,出口阀门开大后,泵的流速增加,扬程降低,故出口压力降低;进口管道的流速增加,进口管的阻力降增加,故真空度增加,真空计读数增加。 过滤实验 1.为什么过滤开始时,滤液常有些混浊,经过一段时间后滤液才转清答:因为刚开始的时候滤布没有固体附着,所以空隙较大,浑浊液会通过滤布,从而滤液是浑浊的。当一段时间后,待过滤

化工原理实验指导书

化工原理实验指导书

目录 实验一流体流动阻力的测定 (1) 实验二离心泵特性曲线的测定 (5) 实验三传热系数测定实验 (7) 实验四筛板式精馏塔的操作及塔板效率测定 (9) 实验五填料塔吸收实验 (12) 演示实验柏努利方程实验 (14)

雷诺实验 (16)

实验一流体流动阻力的测定 、实验目的 1、 了解流体在管道内摩擦阻力的测定方法; 2、 确定摩擦系数入与雷诺数 Re 的关系。 二、基本原理 由于流体具有粘性, 在管内流动时必须克服内摩擦力。 当流体呈湍流流动时, 质点间不 断相互碰撞,弓I 起质点间动量交换,从而产生了湍动阻力,消耗了流体能量。流体的粘性和 流体 的涡流产生了流体流动的阻力。 在被侧直管段的两取压口之间列出柏努力方程式, 可得: △ P f = △ P ’ P f L u 2 h f d 2 L —两侧压点间直管长度(m ) 2d P f d —直管内径(m ) 入一摩擦阻力系数 u —流体流速(m/s ) △ P f —直管阻力引起的压降(N/m 2 ) 厂流体粘度(Pa.s ) p — 流体密度(kg/m 3 ) 本实验在管壁粗糙度、管长、管径、一定的条件下用水做实验,改变水流量,测得一系 列流量下的△ P f 值,将已知尺寸和所测数据代入各式,分别求出入和 Re ,在双对数坐标纸 上绘出入?Re 曲线。 三、实验装置简要说明 水泵将储水糟中的水抽出, 送入实验系统,首先经玻璃转子流量计测量流量, 然后送入 被测直管段测量流体流动的阻力,经回流管流回储水槽,水循环使用。 被测直管段流体流 动阻力△ P 可根据其数值大小分别采用变压器或空气一水倒置 U 型管来测量。 四、实验步骤: 1、 向储水槽内注蒸馏水,直到水满为止。 2、 大流量状态下的压差测量系统 ,应先接电预热10-15分钟,观擦数字仪表的初始值并 记 录后方可启动泵做实验。 3、 检查导压系统内有无气泡存在 .当流量为0时打开B1、B2两阀门,若空气一水倒置 U 型管内两液柱的高度差不为 0,则说明系统内有气泡存在,需要排净气泡方可测取数据。 排气方法:将流量调至较大,排除导压管内的气泡,直至排净为止。 4、 测取数据的顺序可从大流量至小流量,反之也可,一般测 15?20组数,建议当流量 读数 小于300L/h 时,用空气一水倒置 U 型管测压差△ P 。 5、待数据测量完毕,关闭流量调节阀,切断电源。 Re du

实验报告一:恒压过滤参数的测定

恒压过滤参数的测定实验报告 前言 1.过滤介质 过滤是在推动力的作用下,位于一侧的悬浮液(或含尘气)中的流体通过多孔介质的孔道向另一侧流动。颗粒则被截留,从而实现流体与颗粒的分离操作过程。被过滤的悬浮液又称为滤浆,过滤时截留下的颗粒层称为滤饼,过滤的清液称为滤液。 过滤介质即为使流体通过而颗粒被截留的多孔介质。无论采用何种过滤方式,过滤介质总是必须的,因此过程介质是过滤操作的要素之一。 多ZJ系列真空净油机过滤介质的共性要求是多空、理化性质稳定、耐用和可反复利用等。可用作过滤介质的材料很多,主要可以分为: (1)织物介质 织物是非常常用的过滤介质。工业上称为滤布(网),由天然纤维、玻璃纤维、合成纤维或者金属丝组织而成。可截留的最小颗粒视网孔大小而定,一般在几到几十微米的范围。 (2)多孔材料 制成片、板或管的各种多孔性固体材料,如素瓷、烧结金属和玻璃、多孔性塑料以及过滤和压紧的毡与棉等。此滤油机类介质较厚,孔道细,能截留1~3μm 的微小颗粒。 (3)固体颗粒床层 由沙、木炭之类的固体颗粒堆积而成的床层,称为率床。用做过滤介质使含少量悬浮物的液体澄清。 (4)多孔膜 过滤是使水通过滤料时去除水中悬浮物和微生物等的净水过程。滤池通常设在沉淀池或澄清池之后。目的是使滤后水的浊度达到水质标准的要求。水经过滤后,残留的细菌、病毒失去了悬浮物的保护作用,从而为过滤后消毒创造了条件。所以,在以地面水为水源的饮用水净化中,有时可省去沉淀或澄清,但过滤是不可缺少的。 由特殊工艺合成的聚合物薄膜,最常见的是醋酸纤维膜与聚酰胺膜。膜过滤属精密过滤(ultrafiltration),可分离5nm的微粒。 2.滤饼过滤与深层过滤 根据过滤过程的机理有滤饼过滤和深层过滤之分。滤饼过滤又称为表面过滤。使用织物、多孔材料或膜等作为过滤介质。过滤介质的孔径不一定要小于最小颗粒的粒径。过滤开始时,部分小颗粒可以进入甚至穿过介质的小孔。但很快由颗粒的架桥作用使介质的孔径缩小形成有效的阻挡。被截留在介质表面的颗粒形成称为滤饼的滤渣层,透过滤饼层的则是被净化了的滤液。随着滤饼的形成真正起过滤介质作用的是滤饼本身,因此称为滤饼过滤。滤饼过滤主要适用于含固量较大(>过滤纸;1%)的场合。 深层过滤一般应用介质层较厚的滤床类(如沙层、硅藻土等)作为过滤介质。颗粒小于介质空隙进入到介质内部,而长而曲折的孔道中被截留并附着于介质之上。深层过滤无滤饼形成,主要用于净化含固量很少(<0.1%)的流体,如水的

化工原理实验讲

1流体阻力测定实验 实验目的 1)掌握流体流经直管和阀门时阻力损失的测定方法,通过实验了解流体流动中能量损失的变化规律。 2 )测定直管摩擦系数入与雷诺准数Re的关系,将所得的入~Re方程与经验公式比较。 3 )测定流体流经阀门时的局部阻力系数E。 4 )学会倒U形差压计、差压传感器、涡轮流量计的使用方法。 5 )观察组成管路的各种管件、阀门,并了解其作用。 基本原理 流体在管内流动时,由于粘性剪应力和涡流的存在,不可避免地要消耗一定的机械能,这种机械能的消耗包括流体流经直管的沿程阻力和因流体运动方向改变所引起的局部阻力。 1)沿程阻力 流体在水平等径圆管中稳定流动时,阻力损失表现为压力降低,即 h f 仏上厘(1 —1) 影响阻力损失的因素很多,尤其对湍流流体,目前尚不能完全用理论方法求解,必须通 过实验研究其规律。为了减少实验工作量,使实验结果具有普遍意义,必须采用因次分析方法将各变量组合成准数关联式。根据因次分析,影响阻力损失的因素有, (1)流体性质:密度P、粘度卩; (2)管路的几何尺寸:管径d、管长I、管壁粗糙度£; (3)流动条件:流速卩。 可表示为: p f (d,l,,,u,)(1—2)组合成如下的无因次式: p 2 (du I J d ,—)(1—3) u d p du I u2 (,—)? d d 2 du 令( , d )/ (1 — 4) 则式(1 —1)变为: 2 h f P 1u(1 - 5) d2 式中,入称为摩擦系数。层流(滞流)时,入=64/R e;湍流时入是雷诺准数R e和相对粗糙度的函数,须由实验确定。

2) 局部阻力 局部阻力通常有两种表示方法,即当量长度法和阻力系数法。 (1)当量长度法 流体流过某管件或阀门时,因局部阻力造成的损失,相当于流体流过与其具有相当管径 长度的直管阻力损失,这个直管长度称为当量长度,用符号le表示。这样,就可以用直管 阻力的公式来计算局部阻力损失,而且在管路计算时.可将管路中的直管长度与管件、阀门的当量长度合并在一起计算,如管路中直管长度为I,各种局部阻力的当量长度之和为le,则流体在管路中流动时的总阻力损失h f为 I leu2 h f(1 —6) d 2 (2)阻力系数法\ 流体通过某一管件或阀门时的阻力损失用流体在管路中的动能系数来表示,这种计算局 部阻力的方法,称为阻力系数法。 即 2 . u h f (1 —7) 2 式中,E――局部阻力系数,无因次;u 在小截面管中流体的平均流速,m/ s。 由于管件两侧距测压孔间的直管长度很短?引起的摩擦阻力与局部阻力相比,可以忽略不计。因此h f'直可应用柏努利方程由压差计读数求取。 实验装置与流程 1)实验装置 实验装置如图1 —1所示。主要由水箱、管道泵,不同管径、材质的管子,各种阀门和管件,转子流量计等组成。第一根为粗糙管,第二根为光滑管。第三根不锈钢管,装有待测闸阀,用于局部阻力的测定。 1、水箱 2、管道泵 3、5、6、球阀 4、均压环7、系统排水阀8闸阀9、流量调节阀 10、排污水阀11倒U形差压计12、不锈钢管13、粗糙管14、光滑管15、转子流量计16、导压管17、温度计18、进水阀

相关文档
相关文档 最新文档