文档库 最新最全的文档下载
当前位置:文档库 › 第一章 电极化张量的空间对称性

第一章 电极化张量的空间对称性

应力张量的认识(一)

应力张量的认识(一)
本文主要是对材料成形相关专业学习过程中对一些问题的思考,也许并不深刻,但却是自己从初学时的迷惑到 后来逐渐认识的过程。相关还有:Levy-Mises 理论的思考
从本科的材料成形原理教材上就认识了应力张量,然后一直出现在我们的视野里。初始,以一个基本定义记住 了它,进而有过疑惑,随着矩阵论的学习又有了新的认识。曾经就有记录下对其理解的想法,但因思路尚未完 善而一再搁置;直到今天重新想起,完成了方向余弦作为线性空间的证明,才终于开始详细记录。 我将这部分思考分为以下三部分: 应力张量的认识(一) 应力张量的认识(二) 应力张量的认识(三) 本文介绍第一部分应力的基本知识和常规认识。
应力
初中物理就已知道,因外力作用而在物体内部产生的力成为内力。单位面积上的内力即是应力,表征内力的强 度。 为了研究某一点 P 处的应力,用某个截面在 P 点处切开物体,如下图所示。根据定义可以得到 P 点的正应力 σ、切应力 τ,他们的合成即为全应力 T。
需要注意的是,一个确定的截面对应了一组正应力和切应力。但是过 P 点有无数的截面,那么如何才能真正 描述 P 点的应力状态呢?
应力状态
点的应力状态是受力物体内某一点各个截面上应力的变化情况。上面已经意识到过一点点有无数的截面,只有 任意截面上的应力分量都可以确定,才可以说应力状态是确定的。 通常在无数的截面中,任意取三个互相垂直的截面,并以他们的法线方向建立笛卡尔坐标系。也即在 P 点截 取一个无限小的平行六面体,称为单元体。

单元体无限小,视为一点,因此单元体上相互平行的两个平面视为过该点的同一平面,也即他俩的应力是相同 的。这样就只用三个互相垂直的截面上的应力来分析问题。 由于单元体处于静力平衡状态,由绕各轴合力矩为零可以得到切应力互等定律。 问题:既然单元体上相互平行的两个平面视为过该点的同一平面,那为什么上图平行的平面上应力是相 反的? 单元体上相互平行的两个平面视为过该点的同一平面,但是分别是被截开的的两部分的平面,截开前他 们是重合的,截开后成为了两部分各自的表面,而外表面是有方向的。所以,从各自的方向上来看,应 力方向还是相同的。
应力张量
根据上面的微单元体上的应力分量,是否可以求出任意截面的应力分量?
答案是肯定的。根据三个方向的静力平衡就可以列式计算得到上图的任意的法向为(n1,n2,n3)的截面上的应力 分量。 三个互相垂直的截面上的 9 个应力分量可以确定任意截面的应力,也就是说可以确定一点的应力状态了。同 时从这三个截面的选取上来看,他们和坐标系无关。 于是我们把用上面九个应力分量作为一个整体来描述一点应力状态的物理量叫作应力张量,记作
主应力 如果作用在某一截面上的全应力和这一截面垂直,即该截面上只有正应力,则这一截面称为主平面,其法线方 向称为应力主方向,其上的应力称为主应力。如果三个坐标轴方向都是主方向,则称这一坐标系为主坐标系。 求解方法依然是根据静力平衡条件。

最新应力张量的认识(一)

应力张量的认识(一) 本文主要是对材料成形相关专业学习过程中对一些问题的思考,也许并不深刻,但却是自己从初学时的迷惑到后来逐渐认识的过程。相关还有:Levy-Mises理论的思考 从本科的材料成形原理教材上就认识了应力张量,然后一直出现在我们的视野里。初始,以一个基本定义记住了它,进而有过疑惑,随着矩阵论的学习又有了新的认识。曾经就有记录下对其理解的想法,但因思路尚未完善而一再搁置;直到今天重新想起,完成了方向余弦作为线性空间的证明,才终于开始详细记录。 我将这部分思考分为以下三部分: 应力张量的认识(一) 应力张量的认识(二) 应力张量的认识(三) 本文介绍第一部分应力的基本知识和常规认识。 应力 初中物理就已知道,因外力作用而在物体内部产生的力成为内力。单位面积上的内力即是应力,表征内力的强度。 为了研究某一点P处的应力,用某个截面在P点处切开物体,如下图所示。根据定义可以得到P点的正应力σ、切应力τ,他们的合成即为全应力T。 需要注意的是,一个确定的截面对应了一组正应力和切应力。但是过P点有无数的截面,那么如何才能真正描述P点的应力状态呢? 应力状态 点的应力状态是受力物体内某一点各个截面上应力的变化情况。上面已经意识到过一点点有无数的截面,只有任意截面上的应力分量都可以确定,才可以说应力状态是确定的。 通常在无数的截面中,任意取三个互相垂直的截面,并以他们的法线方向建立笛卡尔坐标系。也即在P点截取一个无限小的平行六面体,称为单元体。

单元体无限小,视为一点,因此单元体上相互平行的两个平面视为过该点的同一平面,也即他俩的应力是相同的。这样就只用三个互相垂直的截面上的应力来分析问题。 由于单元体处于静力平衡状态,由绕各轴合力矩为零可以得到切应力互等定律。 问题:既然单元体上相互平行的两个平面视为过该点的同一平面,那为什么上图平行的平面上应力是相反的? 单元体上相互平行的两个平面视为过该点的同一平面,但是分别是被截开的的两部分的平面,截开前他们是重合的,截开后成为了两部分各自的表面,而外表面是有方向的。所以,从各自的方向上来看,应力方向还是相同的。 应力张量 根据上面的微单元体上的应力分量,是否可以求出任意截面的应力分量? 答案是肯定的。根据三个方向的静力平衡就可以列式计算得到上图的任意的法向为(n1,n2,n3)的截面上的应力分量。 三个互相垂直的截面上的9个应力分量可以确定任意截面的应力,也就是说可以确定一点的应力状态了。同时从这三个截面的选取上来看,他们和坐标系无关。 于是我们把用上面九个应力分量作为一个整体来描述一点应力状态的物理量叫作应力张量,记作 主应力 如果作用在某一截面上的全应力和这一截面垂直,即该截面上只有正应力,则这一截面称为主平面,其法线方向称为应力主方向,其上的应力称为主应力。如果三个坐标轴方向都是主方向,则称这一坐标系为主坐标系。求解方法依然是根据静力平衡条件。

(完整版)应力坐标变换

应力坐标变换 进行数值计算分析的时候经常会遇到要对应力的计算结果进行坐标变换,在此将其计算公式罗列如下: 式中:l1,m1,n1为x’与x、y、z的夹角余弦;l2,m2,n2为y’与x、y、z的夹角余弦;l3,m3,n3为z’与x、y、z的夹角余弦;x’y’z’为新坐标系,xyz为旧坐标系。 计算最后得到的公式为: dx'=l1^2*dx+2*l1*m1*Txy+2*l1*n1*Txz+m1^2*dy+2*m1*n1*Tyz+dz*n1^2 dy’=l2^2*dx+2*l2*m2*Txy+2*l2*n2*Txz+m2^2*dy+2*m2*n2*Tyz+n2^2*dz dz’=l3^2*dx+2*l3*m3*Txy+2*l3*n3*Txz+m3^2*dy+2*m3*n3*Tyz+n3^2*dz Tx’y’=(l1*n2+n1*l2)*Txz+(n1*m2+m1*n2)*Tyz+(l1*m2+m1*l2)*Txy+l1*l2*dx+m1*m2*dy+n 1*n2*dz Ty’z’=(l2*n3+n2*l3)*Txz+(n2*m3+m2*n3)*Tyz+(l2*m3+m2*l3)*Txy+l2*l3*dx+m2*m3*dy+n 2*n3*dz Tx’z’=(l1*n3+n1*l3)*Txz+(n1*m3+m1*n3)*Tyz+(l1*m3+m1*l3)*Txy+l1*l3*dx+m1*

§2.6 坐标变换的应力分量和应力张量 学习思路: 一点的应力不仅随着点的位置改变而变化,而且由于截面的法线方向不同,截面上的应力也不同。因此必须探讨一点任意截面应力之间的变化关系。应力分量能够描述一点的应力状态,因此确定不同截面应力分量的变化规律,就可以确定应力状态。 本节分析坐标系改变时应力分量的变化规律。为了简化分析,首先假设斜截面的法线与新坐标轴方向相同,建立斜截面应力矢量表达式。然后利用斜截面应力矢量与应力分量的关系,将应力矢量投影于各个坐标轴得到应力分量表达式。 应力分量的转轴公式说明:应力分量满足张量变换条件。 根据切应力互等定理,应力张量是二阶对称张量。 转轴公式说明了一点的应力状态,尽管截面方位的变化导致应力分量改变,但是一点的应力状态是不变的。 学习要点: 1. 坐标系的变换; 2. 坐标平面的应力矢量;

第一章 逻辑代数基础

第一章逻辑代数基础 一、简答题: 1、什么叫做算术运算,什么叫做逻辑运算? 答:当两个二进制数码表示数量大小时,它们之间进行的数值运算,称之为算术运算; 当两个二进制数码表示不同的逻辑状态时,它们之间可以按照指定的某种因果关系进行的运算,称之为逻辑运算。 2 逻辑代数中三种最基本的逻辑运算是什么?各遵循什么运算关系? 答:分别为与运算、或运算和非运算。 与逻辑的定义:仅当决定事件(Y)发生的所有条件(A,B,C,…)均满足 时,事件(Y)才能发生。表达式为:Y=ABC…… 或逻辑的定义:当决定事件(Y)发生的各种条件(A,B,C,…)中,只要 有一个或多个条件具备,事件(Y)就发生。表达式为: Y=A+B+C+…… 非逻辑:决定事件发生的条件只有一个,条件不具备时事件发生(成立),条 件具备时事件不发生。表达式为:A Y 3 逻辑函数的五种表示方法是什么?各有什么特点? 答:分别为真值表、逻辑表达式、卡诺图、逻辑图、波形图。 4 什么叫最小项?最小项有什么性质? 答:定义:对于n个变量,如果P是一个含有n个因子的乘积项,而且每一个变量都以原变量或者反变量的形式,作为一个因子在P中出现且仅出现一次,那么就 称P是这n个变量的一个最小项。 性质:(1)每一个最小项都有一组也只有一组使其值为1的对应变量取值; (2)任意两个不同的最小项之积恒为0; (3)全部最小项之和恒为1。

5 卡诺图 中合并最小项的规则是什么? 答:合并逻辑相邻项。 (1)相邻单元的个数是2n 个,并组成矩形时,可以合并。 (2)卡诺圈尽可能大:利用吸收规则, 2n 个相邻单元合并,可吸收掉n 个变量。 (3)不要圈出多余圈:各最小项可以重复使用,但每一次新的组合,至少包含一个 未使用过的项,直到所有为1的项都被使用后化简工作方算完成。 (4)注意边沿和四角。 (5)如果是具有约束的逻辑函数,要注意利用约束项,可以使结果大大简化。 二、化简逻辑函数 1、将下列逻辑表达式化成最简与-或式。 (1)B AD CD B A Y ?+++= (2)A D DCE B D B A Y +++= (3)C B C A C B C A Y +++= (4)B)CD A (B A Y ++= 解:(1)B AD CD B A Y ?+++= B A B C D )(B AD)(A B AD BCD A +=+++=+++= (2)A D DCE B D B A Y +++= DCE )A D(B B A +++= DCE A B D B A ++= (摩根定理) DCE D B A ++=D B A += (吸收定理) (3)C B C A C B C A Y +++=

张量概念的形成与张量分析的建立

张量概念的形成与张量分析的建立 【摘要】:张量分析在数学物理学中占据重要地位。由于广义相对论的成功,张量分析逐渐被人们所重视。更重要的是规范场论和弦理论的建立,张量分析被应用到了更加广泛的领域。而如此重要的数学分支的历史却极少被研究,这不能不说是一个很大的缺憾。在发掘、搜集、整理、分析张量数学的原始文献的基础上,运用概念分析的方法,梳理、研究、探讨了张量数学的发展史,得到了若干新的发现。首先,找到了向量的代数定义的原始文献,这是张量数学发展史研究的中间链条。如果没有向量的代数定义,这种扩张量是无法超出三维情形的。而张量是一种高维的数学量,因此向量的代数定义是通向张量概念的非常重要的概念。在关于张量数学史的研究中,这是一个被忽略的内容。其次,解读了张量概念的电磁学起源。从电磁学角度揭示了张量概念的物理学源头。而在过去,则一直把弹性力学作为张量概念起点,事实上,应用力学与张量概念的起源关系不大。论文最重要的发现是考证了第一个在现代意义上使用tensor的学者。论文系统论述了张量分析的建立过程。从非欧空间观念、高斯的内蕴思想、黎曼的n维流形、格拉斯曼的高维空间观念、凯莱的n维向量空间开始,逐一陈述了张量数学的历史。张量分析作为解决曲线坐标系中微分运算的数学方法,是从高斯的内蕴几何开始孕育的。而第一个真正提出这个问题的是黎曼,他的n维流形的构想,具体地提出了弯曲空间中二次微分形式的变换问题,这是通向张量分析的起点。随后,经过贝尔特拉米、克

里斯托夫、里奇等人的发展,这种方法终于得以建立。作为补充,简述了张量分析的应用史。包括爱因斯坦、希尔伯特的引力场方程,以及外尔、列维-齐维塔的黎曼几何学。这里的新发现是考证了“黎曼几何学”这个名词的最早出处。张量分析的产生,依赖19世纪的代数和几何的解放。正是非欧几何和抽象代数的出现,使得张量分析得以产生。而张量分析与黎曼几何的深入发展,极大地促进了现代数学的进步。这使得对张量数学史的研究具有深刻的意义。【关键词】:张量分析曲线坐标系向量的代数定义黎曼流形协变系统 【学位授予单位】:山西大学 【学位级别】:博士 【学位授予年份】:2008 【分类号】:O183.2 【目录】:中文摘要4-5Abstract5-11导论11-33一论文选题的意义11-12二关于张量数学的几个重要问题12-15三论文的基本内容15-22四国内外研究现状22-29五思路、研究方法、创新点与不足之处29-33第一章流形理论:张量概念形成的几何学进路33-60第二节弯曲空间观念的形成:黎曼流形的渊源之一34-481、非欧空间观念形成:张量数学的萌芽34-372、弯曲空间的首次探索:张量分析的几何学基础37-48第二节高维空间观念的形成:黎曼流形的渊源之二48-531、格拉斯曼

第1章 逻辑代数基础作业

第1章 逻辑代数基础 1. 用真值表证明下列等式。 (1) (A B)C=A (B C)⊕⊕⊕⊕ (2) C B A C B A A +=++ (1) A+ABC+ABC+CB+CB ( C A B B C BC BC A +=++++=) ()1( 2) ABC+ABC+ABC+ABC A AB B A C C AB C C B A =+=+++=) ()( 3.将下列各函数化为最小项之和的形式。 (1) Y=ABC+BC+AB 7 543)()(m m m m C B A C B A BC A ABC BC A C C B A A A BC BC A +++=++++=++++= (2) )( AB Y D C B C ABD +++=

D C AB D C B D C AB D C B C D B D A D C B C AD B BD A D C B C ABD B A =+=+++++=+++++=++++=)() () ()( 4.根据下列各逻辑式, 画出逻辑图。 ①Y=(A+B )C ; ②Y=AB+BC ; ③Y=(A+B )(A+C ); 5.试对应输入波形画出下图中 Y 1 ~ Y 4 的波形。 6.如果“与”门的两个输入端中, A 为信号输入端, B 为控制端。 设当控制端B=1和B=0两种状态时,输入信号端A 的波形如图所示, 试画出输出端Y 的波形。 如果A 和B 分别是“与非”门、“或”门、“或非”门的两个输入端,则输出端Y 的波形又如何?总结上

述四种门电路的控制作用。

第2章 组合逻辑电路 1.分析图示电路的逻辑功能。要求写出逻辑式,列出真值表,然后说明逻辑功能。 AB Y B A B A Y =+=21 半加器 真值表略 2.已知逻辑式B A AB Y +=: ①列出逻辑真值表,说明其逻辑功能; ②画出用“与非”门实现其逻辑功能的逻辑图; ③画出用双2/4线译码器74LS139实现其逻辑功能的逻辑图; ④画出用4选1数据选择器74LS153实现其逻辑功能的逻辑图; ③双2/4线译码器74LS139 有两个2-4线译码器 ④用4选1数据选择器74LS153

一一点的应力状态与应力张量

一 一点的应力状态与应力张量 二 主应力与应力不变量 对于一般空间问题,一点的应力状态可以由九个应力分量表示,如P 点处应力状态在直角坐标系可表示为 ij S σ==x xy xz yx y yz zx zy z στττστττσ?????????? 如图1-1所示。在固定受力情况下,应力分量大小与坐标轴方向有关,但由弹性力学可知,新旧坐标的应力分量具有一定变换关系。通常,我们称这种具有特定变换关系的一些量为张量。式(1-1)就是应力张量,它是二阶张量。因为它具有xz τ=zx τ,xy τ=yx τ,yz τ=zy τ。 已知物体内某点P 的九个应力分量,则可求过该点的任意倾斜面上的应力。在P 点处取出一无限小四面体oabc (图1-2) 它的三个面分别与x,y,z 三个轴相垂直。另一方面即任意斜面,它的法线N ,其方向余弦为l,m,n 。分别以dF 、x dF 、y dF 、z dF 代表abc 、obc 、oac 、 oab 三角形面积。 x y z dF ldF dF mdF dF ndF ?=?=??=? (1.2) 在三个垂直于坐标的平面上有应力分量,在倾斜面abc 上有合应力N P ,它可分解为正应力 N σ及切向剪应力N τ,即222N N N P στ=+ N P 沿坐标轴方向分量为N x ,N y ,N z ,由平衡条件可得 N x xy xz N yx y yz N zx zy z x l m n y l m n z l m n στττστττσ?=++?=++??=++? 求出N x ,N y ,N z 在法线上的投影之和,即得正应力N σ 222222N N N N x y z xy yz zx x l y m z n l m n lm mn nl σσσστττ=++=+++++ 1-5

第1章逻辑代数基础学习指导 - 第一章逻辑代数基础

第一章逻辑代数基础 一、内容提要 逻辑代数是数字电子技术的基础。本章主要介绍逻辑代数中的数制转换、逻辑运算、基本定理和基本规则、逻辑函数及其表示方法、逻辑函数的变换与化简。 二、重点难点 本章的重点内容包括以下四个方面: 1、数制转换与码制的表达方式:掌握二进制、十进制及其相互转换方法; 掌握8421 BCD码、2421 BCD码、余3码和余3循环码的编码方法;掌握格雷码的编码规律、格雷码与二进制相互转换方法。 2、逻辑代数中的三种基本运算和基本定理:掌握逻辑代数中与、或、非三种基本运算;逻辑代数基本公式;代入规则、反演规则、对偶规则三个规则。 3、逻辑函数的表示方法及相互转换:掌握真值表、逻辑表达式、逻辑图、卡诺图、波形图等常用的逻辑函数表示方法和几种表示方法之间的相互转换;掌握逻辑函数的两种标准形式。 4、逻辑函数的公式法化简方法和卡诺图化简方法:逻辑函数表达式越简单,所表示的逻辑关系越明显,越有利于用最少的电子器件实现该逻辑关系,电路的可靠性越高。常用的化简方法有公式法和卡诺图法。 三、习题精解 知识点:数制转换 例1.1 将二进制数111011.101转换成十进制数。 解:10 3 1 1 3 4 5 2 ) 625 . 59 ( 125 .0 5.0 1 8 16 32 2 1 2 1 2 1 2 1 2 1 2 1 2 1 ) 101 . 111011 ( = + + + + + = ? + ? + ? + ? + ? + ? + ? =- - 例1.2将十进制数65转换为二进制数。 解:整数部分用“辗转相除”法:

所以 D B (65)=(1000001) 例1.3 将十进制数0.625转换为二进制数。 解:乘 2 法;将十进制数的小数部分乘2,取其整数得D -1, ;再将小数部分乘2,取其整数得D -2 ;再将小数部分乘2… 所以 D B (0.625)=(0.101) 知识点:逻辑代数基本规则应用 例1.4 已知0++?=CD B A F ,求F 。 解:用反演规则得:1))((?++=D C B A F 用反演律得))((D C B A CD B A CD B A F ++=??=+?= 例1.5 已知 ) )((C A B A F ++=,求F 的对偶式。 解:用对偶规则得:AC B A F +=' 例1.6 求函数)]([G E D C B A F ?+?+?=的反函数。 解:

第一章:逻辑代数基础

第一章:逻辑代数基础 一、单选题: 1: 逻辑函数B A F ⊕= 和 G=A ⊙B 满足关系( )相等。 A. G F = B. G F =' C. G F = D. G F = 2: 下列逻辑门类型中,可以用( )一种类型门实现另三种基本运算。 A .与门 B .非门 C .或门 D .与非门 3:下列各门电路符号中,不属于基本门电路的是 ( ) 图2201 4:逻辑函数)(AB A F ⊕=,欲使1=F ,则AB 取值为( ) A .00 B .01 C .10 D .11 5:已知逻辑函数的真值表如下,其表达式是( ) A .C Y = B .AB C Y = C .C AB Y += D .C AB Y += 图2202 6:已知逻辑函数 CD ABC Y +=,可以肯定Y = 0的是 ( ) A . A = 0,BC = 1; B . B C = 1, D = 1; C . AB = 1,CD =0; D . C = 1,D = 0。 7:能使下图输出 Y = 1 的 A ,B 取值有( ) A .1 种; B . 2 种; C .3 种; D .4 种

图2203 8:下图电路,正确的输出逻辑表达式是( )。 A . CD A B Y += B . 1=Y C . 0=Y D . D C B A Y +++= 图2204 9:根据反演规则,E DE C C A Y ++?+=)()(的反函数为( ) A. E E D C C A Y ?++=)]([ B. E E D C C A Y ?++=)( C. E E D C C A Y ?++=)( D. E E D C C A Y ?++=)( 10:若已知AC AB C A B A =+=+,,则( ) A . B=C = 0 B . B= C =1 C . B=C D . B ≠C 11:在什么情况下,“与非”运算的结果是逻辑0。 ( ) A .全部输入是0 B. 任一个输入是0 C. 仅一个输入是0 D. 全部输入是1 12:逻辑函数=⊕⊕=)(B A A F ( ) A . B B .A C .B A ⊕ D . B A ⊕ 13:逻辑式=?+?+A A A 10 ( ) A . 0 B . 1 C . A D .A 14:逻辑函数ACDEF C AB A Y +++=的最简与或式为( )

(完整版)张量分析中文翻译

张量 张量是用来描述矢量、标量和其他张量之间线性 关系的几何对象。这种关系最基本的例子就是点积、 叉积和线性映射。矢量和标量本身也是张量。张量可 以用多维数值阵列来表示。张量的阶(也称度或秩) 表示阵列的维度,也表示标记阵列元素的指标值。例 如,线性映射可以用二位阵列--矩阵来表示,因此该 阵列是一个二阶张量。矢量可以通过一维阵列表示, 所以其是一阶张量。标量是单一数值,它是0阶张量。 张量可以描述几何向量集合之间的对应关系。例 如,柯西应力张量T 以v 方向为起点,在垂直于v 终点方向产生应力张量T(v),因此,张量表示了这两个 向量之间的关系,如右图所示。 因为张量表示了矢量之间的关系,所以张量必 须避免坐标系出现特殊情况这一问题。取一组坐标 系的基向量或者是参考系,这种情况下的张量就可 以用一系列有序的多维阵列来表示。张量的坐标以 “协变”(变化规律)的形式独立,“协变”把一种 坐标下的阵列和另一种坐标下的阵列联系起来。这 种变化规律演化成为几何或物理中的张量概念,其 精确形式决定了张量的类型或者是值。 张量在物理学中十分重要,因为在弹性力学、流体力学、广义相对论等领域中,张量提供了一种简洁的数学模型来建立或是解决物理问题。张量的概念首先由列维-奇维塔和格莱格里奥-库尔巴斯特罗提出,他们延续了黎曼、布鲁诺、克里斯托费尔等人关于绝对微分学的部分工作。张量的概念使得黎曼曲率张量形式的流形微分几何出现了替换形式。 历史 现今张量分析的概念源于卡尔?弗里德里希?高斯在微分几何的工作,概念的 制定更受到19世纪中叶代数形式和不变量理论的发展[2]。“tensor ”这个单词在 1846年被威廉·罗恩·哈密顿[3]提及,这并不等同于今天我们所说的张量的意思。 [注1]当代的用法是在1898年沃尔德马尔·福格特提出的[4]。 “张量计算”这一概念由格雷戈里奥·里奇·库尔巴斯特罗在1890年《绝对微分几何》中发展而来,最初由里奇在1892年提出[5]。随着里奇和列维-奇维塔1900年的经典著作《Méthodes de calcul différentiel absolu et leurs applications 》(绝对微分学的方法及其应用)出版而为许多数学家所知[6]。 在20世纪,这个学科演变为了广为人知的张量分析,1915年左右,爱因斯坦的广义相对论理论中广泛应用了这一理论。广义相对论完全由张量语言表述。爱因斯坦曾向几何学家马塞尔·格罗斯曼学习过张量方法,并学得很艰苦。[7]1915 年到1917年之间,列维·奇维塔 在与爱因斯坦互相尊重互相学习的氛围下,对爱因斯坦的张量表述给与了一些指正。 “我很佩服你的计算方法的风采,它必将使你在数学大道上策马奔腾,然而我们却只能步履蹒跚。”阿尔伯特·爱因斯坦,意大利相对论数学家[8]。 柯西应力张量是一个二阶张量。该张量的元素在三维笛卡尔坐标系下组成如下矩 阵: 312()()()111213212223313233 T T T =e e e σσσσσσσσσσ??=???????????? 该矩阵的各列表示作用在 e 1,e 2,e 3方向正方体表面上的应力(单位面积上的力)。

张量定义

§1 张量的定义 张量: 在三维笛卡儿(Descartes)坐标系中,一个含有三个与坐标相关的独立变量集合,通常可以用一个下标表示。 例如,对于位移分量u,v,w可以表示为u 1,u2,u3,缩写记为u i,i=1, 2, 3。对 于坐标x,y, z可以表示为x i。 对于一个含有九个独立变量的集合,可以用两个下标来表示。 例如九个应力分量或应变分量(由于对称,实际独立的仅有六个)可以分别表 示为σij和εij,其中σ11, σ22分别表示σx, σxy(就是τxy);ε11 , ε22分别表示εx, εxy()等。 同样,一个含有27个独立变量的集合可以用三个下标表示;而含有81个独立变量的集合可以用四个下标表示,依次可以类推。 为了给张量一个确切的定义,首先讨论矢量定义。在坐标系Ox 1x2x3中。矢量 OP的三个分量ζ 1, ζ 2,ζ3可以缩写作ζi,同一矢量OP在新坐标系Ox'1x'2x'3中,写作ζ '1,ζ '2,ζ '3,缩写为ζ'i。 设坐标系Ox 1x2 x3与Ox'1x'2x'3的夹角方向余弦如下表所示 方向余弦n i'j的第一下标对应于新坐标轴,而第二下标对应于原坐标轴。则矢量在新老坐标系中的关系为 或者 上式可以缩写为

或者。 a2, a3)和OP(ζ1, ζ2, ζ3),作它们的标量积,则 考察矢量A(a 1, 显然,此标量积与坐标轴的选取无关,如果上述矢量作坐标变换,则 反之,如ζ ' 为已知矢量,而a i为与坐标有关的三个标量,使一次形式在坐标变换时保持不变。根据矢量定义,则a i也是矢量。 推广上述的命题,可以给张量一个解析的定义。设(ζ 1, ζ 2, ζ3)和(η 1, η 2, η3)是矢量,a ij是与坐标有关的九个量,若当坐标变换时,双一次形式 保持不变,则称由两个下标i,j确定的九个量的集合a ij为二阶张量。a ij中的每一个分量被称作张量(对于指定的坐标系)的分量。 根据上述定义,可以推导出坐标变换时张量分量的变换规律。由题设条件,当坐标变换时,有 代入坐标变换关系,则 注意到

数字电子技术基础第三版第一章答案

第一章数字逻辑基础 第一节重点与难点 一、重点: 1.数制 2.编码 (1)二—十进制码( BCD 码) 在这种编码中,用四位二进制数表示十进制数中的 0~9 十个数码。常用的编码有 8421BCD 码、 5421BCD 码和余 3 码。 8421BCD 码是由四位二进制数0000 到 1111 十六种组合中前十种组合,即0000~1001 来代表十进制数0~9 十个数码,每位二进制码具有固定的权值8、 4、 2、1,称有权码。 余 3 码是由 8421BCD 码加 3( 0011)得来,是一种无权码。 (2)格雷码 格雷码是一种常见的无权码。这种码的特点是相邻的两个码组之间仅有一位不同,因而 其可靠性较高,广泛应用于计数和数字系统的输入、输出等场合。 3.逻辑代数基础 (1)逻辑代数的基本公式与基本规则 逻辑代数的基本公式反映了二值逻辑的基本思想,是逻辑运算的重要工 具,也是学习数字电路的必备基础。 逻辑代数有三个基本规则,利用代入规则、反演规则和对偶规则使逻辑函 数的公式数目倍增。 (2)逻辑问题的描述 逻辑问题的描述可用真值表、函数式、逻辑图、卡诺图和时序图,它们各具特点又相互关联,可按需选用。 (3)图形法化简逻辑函数 图形法比较适合于具有三、四变量的逻辑函数 的简化。二、难点: 1.给定逻辑函数,将逻辑函数化为最简 用代数法化简逻辑函数,要求熟练掌握逻辑代数的基本公式和规则,熟练运 用四个基本方法—并项法、消项法、消元法及配项法对逻辑函数进行化简。 用图形法化简逻辑函数时,一定要注意卡诺图的循环邻接的特点,画 包围圈时应把每个包围圈尽可能画大。 2.卡诺图的灵活应用 卡诺图除用于简化函数外,还可以用来检验化简结果是否最简、判断函数间的关系、 求函数的反函数和逻辑运算等。 3.电路的设计 在工程实际中,往往给出逻辑命题,如何正确分析命题,设计出逻辑电路 呢?通常的步骤如下:

张量第三章

第三章 几个基本的张量 §3.1 度量张量 一、 度量张量 j j i i g g δ= j i j i g g δ= 协变基矢量的逆变分量和逆变基矢量的协变分量是单位张量。若把每个基矢量看成是异名基矢量所构成的参照标架的一个特殊矢量,则可以表示为: j ij i g g g = j ij i g g g = ij g 是i g 的协变分量,ij g 是i g 的逆变分量。 ij g 和ij g 称为度量张量。 ij g ——度量张量的协变分量或协变度量张量。 ij g ——度量张量的逆变分量或逆变度量张量。 证明:ij g , ij g 是二阶张量: ' '''i j i i g g g = 又 ij j j i i j i ij j j i i j i j ij j j i i j j j ij i i j ij i i i i i i g g g g g g g g g g g g '''''''''''''''''ββββββββββ==∴====同理, 度量张量的混变分量是单位张量,即 i j i j g δ= j i j i g δ= 二、 度量张量的性质和作用 1、 度量张量各分量等于同名基矢量的点积。 ij k j ik j k ik j i g g g g g g g ==?=?δ ij j k ik j k ik j i g g g g g g g ==?=?δ 2、 度量张量是二阶对称张量。 i j j i g g g g ?=? ji ij g g = i j j i g g g g ?=? ji ij g g =

3、 度量张量的协变分量和逆变分量相乘并按一对指标求和等于单位张量。 j i jk ik g g δ= jk ik hl jl ih l jl k ik j i j i g g g g g g g g g g ==?=?=δδ 由上式,可由度量张量的协变分量求逆变分量或者反过来求。 4、 度量张量是坐标微分二次型的系数 设坐标微分dx i ,空间线元i i dx g d =,则: j i ij j j i i dx dx g dx g dx g d d =?=? 5、 度量张量确定空间两矢量的夹角 i i g u u = k j kj k k g v g g v == θcos v u =? 又 j i ij k i j i kj v u g g g v u g =?=? v u v u g j i ij = ∴θcos 又 kl l k l l k k g v u g u g u u =?==2 2 1 2 1) ()(cos n m mn l k kl j i ij v u g v u g v u g = ∴θ 6、 度量张量确定矢量的逆变分量 和协变分量之间的关系。 j kj k j kj k k i ij j k i i i ij j j j i i u g u u g u g g g u g g u g g u g u g u u ==??=??=== 即ij g 起着下降某个指标作用,ij g 则上升某个指标。 7、 度量张量的混变分量是单位张量 j i jk ik g g g ?= j i jk ik g g g ?= j i j i j i j i g g g δ===?? 上式在任何参照标架中都成立。 8、 在正交坐标系中度量张量的性质。 正交坐标系中,

第1章-逻辑代数基础习题解答

复习思考题 1-1 离散信号就是数字信号吗? 答:离散信号不一定是数字信号,如对连续信号在时间上进行采样,成为时间上离散、幅度上连续的信号就不是数字信号。 1-2 模拟信号转换成数字信号有哪些基本环节?数字系统比模拟系统有哪些优越性? 答:模拟信号转换成数字信号包括采样、保持、量化、编码等基本环节。与模拟电路相比,数字电路具有以下显著的优点: 1)数字电路的基本工作信号是用1和0表示的二进制的数字信号,反映在电路上就是高电平和低电平,运算简单。 2)结构简单、设计技术成熟、容易制造,便于集成及系列化生产,通用性强,价格便宜。 3)数字电路能对输入的数字信号进行各种算术运算和逻辑运算、逻辑判断,具有“逻辑思维”能力。 4)可编程数字系统,使用更灵活。 5)速度快,抗干扰性强,可靠性高。 6)易于存储、加密、压缩、传输和再现,便于和计算机连接。 1-3 为什么数字电路采用二进制作为其基本工作信号? 答:数字电路采用二进制作为其基本工作信号,主要原因是: 1)技术实现容易。二进制信号只有1和0两种信号,反映在电路上就是高电平和低电平,在电路上很容易由电子器件的开关特性实现。 2)运算规则简单。二进制的数值运算规则简单,在实现上可以简化电路结构、提高系统的运行速度。 3)与逻辑运算吻合。数字电路中采用1和0表示高低电平的方式和逻辑运算的数学方法—布尔代数,采用1和0表示不同的逻辑状态不谋而合,一方面可以将布尔代数广泛应用于开关电路和数字电路的设计中,设计方法简单;另一方面,可以由数字电路实现逻辑运算,而采用其它进制是很难实现的。 1-4 逻辑函数有哪两种标准表达式? 答:逻辑函数有与-或表达式(最小项和的形式)和或-与表达式(最大项积的形式)两种标准表达式。 1-5 何为最小项?简述其编号方法。 答:设m为包含n个变量的乘积项,且这n个变量以原变量形式或者反变量形式在m中出现且只出现一次,称m为n变量的一个最小项。最小项的编号规则:把最小项m中的原变量取值为1 ,反变量取值为0,所构成二进制数对应的十进制数即为该最小项的编号i,记作m i。 1-6 什么是真值表?如何得到一个逻辑函数的真值表? 答:所谓真值表是指描述逻辑关系的图表。将输入变量所有可能组合的逻辑函数的值依序对应列于一张二维表中,即可得到该逻辑函数的真值表。 1-7 与、或、非三种基本逻辑运算可以实现其它任何复杂的逻辑函数吗?

应力与应变关系

一、应力与应变 1、应力 在连续介质力学里,应力定义为单位面积所承受的作用力。 通常的术语“应力”实际上是一个叫做“应力张量” (stress tensor)的二阶张量。 概略地说,应力描述了连续介质内部之间通过力(而且是通过近距离接触作用力)进行相互作用的强度。 具体说,如果我们把连续介质用一张假想的光滑曲面把它一分为二,那么被分开的这两部分就会透过这张曲面相互施加作用力。 很显然,即使在保持连续介质的物理状态不变的前提下,这种作用力也会因为假想曲面的不同而不同,所以,必须用一个不依赖于假想曲面的物理量来描述连续介质内部的相互作用的状态。 对于连续介质来说,担当此任的就是应力张量,简称为应力。 2、应变 应变在力学中定义为一微小材料元素承受应力时所产生的单位长度变形量。因此是一个无量纲的物理量。 在直杆模型中,除了长度方向由长度改变量除以原长而得“线形变”,另外,还定义了压缩时以截面边长(或直径)改变量除以原边长(或直径)而得的“横向应变”。 对大多数材料,横向应变的绝对值约为线应变的绝对值的三分之一至四分之一,二者之比的绝对值称作“泊松系数”。 3、本构关系 应力与应变的关系我们叫本构关系(物理方程)。E σε=(应力=弹性模量*应变) 4、许用应力(allowable stress ) 机械设计或工程结构设计中允许零件或构件承受的最大应力值。要判定零件或构件受载后的工作应力过高或过低,需要预先确定一个衡量的标准,这个标准就是许用应力。 凡是零件或构件中的工作应力不超过许用应力时,这个零件或构件在运转中是安全的,否则就是不安全的。

许用应力等于考虑各种影响因素后经适当修正的材料的失效应力除以安全系数。 失效应力为:静强度设计中用屈服极限(yield limit )或强度极限(strength limit );疲劳强度设计中用疲劳极限(fatigue limit )。 5、许用应力、失效应力及安全系数之间关系 塑性材料(大多数结构钢和铝合金)以屈服极限为基准,除以安全系数后得许用应力,即[]()/ 1.5~2.5s n n σσ==。(许用应力=屈服极限/安全系数) 脆性材料(铸铁和高强钢)以强度极限为基准,除以安全系数后得许用应力, 即[]()/2~5b n n σσ==。(许用应力=强度极限/安全系数) 表3机床静力学分析结果总结 机床的位置 应力 应变 位移 油缸 27 5号顶尖 10 固定支撑钉 在分析中发现油缸所受的应力最大,油缸使用的是35钢,5号顶尖使用的材料是45钢,固定支撑钉使用的是T8,查《机械设计》三者都小于其许用应力,故设计满足要求。它们的主要力学性能参数如表,查《机械设计师手册》。 表4主要力学性能参数 材料名称 屈服强度( ) 抗拉强度 35钢 315 600 45钢 355 598 T8 900 采用安全系数法判断零件危险截面处的安全程度是疲劳强度计算中应用广泛的一种方法,其强度条件是:危险截面处的安全系数S 应大于等于许用安全系数 ,即 查《机械设计》S ,所以

4.张量代数

第四章 张量代数 §4.1 张量的线性运算 (1)张量的加减运算A B + 条件 ,A B 为同型张量(即张量的阶数及逆变、协变指标数分别相 等). 法则 对应分量相加减. 例(P.407-1)证明三阶混合张量. (2)标量与张量的乘积 设 ?为标量,{,,,}12 A A A A m =??? 为某张量. 法则 12{,,,}N A A A A ????=??? 例(P.407-2) (3)张量的线性运算 张量的加减法、标量与张量的乘法运算,通称为张量的线性运算. (4)张量线性运算的性质 设?为标量, ,,A B C 为同型张量. 交换律 A B B A +=+ 结合律 ()()A B C A B C ++=++ 分配律 ()A B A B ???+=+ §4.2 张量的乘积 4.2.1 张量的并积(外积)

记号 张量A B 与的并积: AB 法则 ,A B 的各分量作所有可能的乘积. 阶数 AB 的逆变、协变阶数=,A B 逆变、协变阶数之和. 指标 AB 的分量指标的顺序、上下指标的位置与,A B 的相应顺序和 位置相同. 例如: ()()j j i k i k AB A e e B e A B e e e j i j i k k == . 例(P.408-5) 例(P.408-6) 4.2.2 张量的缩并 (1)向量的缩并 法则 取两向量的点乘. 阶数 每缩并一次, 阶数降低2阶 如 ()j q q i e e e e e e e e e e p p i i k k →? . (2)张量的缩并 法则 将两张量的一对上下自由指标进行缩并 运算 对张量的哑指标求和. 阶数 每缩并一次, 阶数降低2阶 如: 1212 j q ijk ijk i k i k iNk A A A A A pq pq pN p p ????→==++???+.(3阶) 例(P.408-7) 例(P.408-9)

第2章 应力状态分析

第二章应力状态分析 一、内容介绍 弹性力学的研究对象为三维弹性体,因此分析从微分单元体入手,本章的任务就是从静力学观点出发,讨论一点的应力状态,建立平衡微分方程和面力边界条件。 应力状态是本章讨论的首要问题。由于应力矢量与内力和作用截面方位均有关。因此,一点各个截面的应力是不同的。确定一点不同截面的应力变化规律称为应力状态分析。首先是确定应力状态的描述方法,这包括应力矢量定义,及其分解为主应力、切应力和应力分量;其次是任意截面的应力分量的确定—转轴公式;最后是一点的特殊应力确定,主应力和主平面、最大切应力和应力圆等。应力状态分析表明应力分量为二阶对称张量。本课程分析中使用张量符号描述物理量和基本方程,如果你没有学习过张量概念,请进入附录一,或者查阅参考资料。 本章的另一个任务是讨论弹性体内一点-微分单元体的平衡。弹性体内部单元体的平衡条件为平衡微分方程和切应力互等定理;边界单元体的平衡条件为面力边界条件。 二、重点 1、应力状态的定义:应力矢量;正应力与切应力;应力分量; 2、平衡微分方程与切应力互等定理; 3、面力边界条件; 4、应力分量的转轴公式; 5、应力状态特征方程和应力不变量; 知识点: 体力;面力;应力矢量;正应力与切应力;应力分量;应力矢量与应力 分量;平衡微分方程;面力边界条件;主平面与主应力;主应力性质; 截面正应力与切应力;三向应力圆;八面体单元;偏应力张量不变量; 切应力互等定理;应力分量转轴公式;平面问题的转轴公式;应力状态 特征方程;应力不变量;最大切应力;球应力张量和偏应力张量 §2.1 体力和面力 学习思路:

本节介绍弹性力学的基本概念——体力和面力,体力F b和面力F s的概念均不难理解。 应该注意的问题是,在弹性力学中,虽然体力和面力都是矢量,但是它们均为作用于一点的力,而且体力是指单位体积的力;面力为单位面积的作用力。 体力矢量用F b表示,其沿三个坐标轴的分量用F b i(i=1,2,3)或者F b x、F b y和F b z表示,称为体力分量。 面力矢量用F s表示,其分量用F s i(i=1,2,3)或者F s x、F s y和F s z表示。 体力和面力分量的方向均规定与坐标轴方向一致为正,反之为负。 学习要点: 1、体力; 2、面力。 1、体力 作用于物体的外力可以分为两种类型:体力和面力。 所谓体力就是分布在物体整个体积内部各个质点上的力,又称为质量力。例如物体的重力,惯性力,电磁力等等。 面力是分布在物体表面上的力,例如风力,静水压力,物体之间的接触力等。为了表明物体在xyz坐标系内任意一点P 所受体力的大小和方向,在P点的邻域取一微小体积元素△V,如图所示 设△V 的体力合力为△F,则P点的体力定义为 令微小体积元素△V趋近于0,则可以定义一点P的体力为

相关文档