文档库 最新最全的文档下载
当前位置:文档库 › 交联电缆单位长度电容

交联电缆单位长度电容

交联电缆单位长度电容
交联电缆单位长度电容

交流耐压标准一、交联聚乙烯电缆单位长度电容量值

二、断路器相对地和相同的耐受电压(DL/620-1997)

注意:上下两行分别代表是和非低电阻接地系统。对于40.5KV及其以下者,可取上表的规定值,对于70.5KV 及其以上者,按上表规定值的80%选取。

三、橡胶绝缘电力电缆的30---300Hz的交流耐压试验电压

四、橡胶绝缘电力电缆的0.1Hz超低频耐压试验电压

五、高压电气设备的工频耐压试验电压标准

六、发电机用试验变压器的额定电压

七、发电机用试验变压器的额定容量

电力电缆主要电气参数计算及计算实例

电力电缆主要电气参数计算及计算实例 Document number:PBGCG-0857-BTDO-0089-PTT1998

1.设计电压 及附件的设计必须满足额定电压、雷电冲击电压、操作冲击电压和系统最高电压的要求。其定义如下: 额定电压 额定电压是电缆及附件设计和电性试验用的基准电压,用U0/U表示。 U0——电缆及附件设计的导体和绝缘屏蔽之间的额定工频电压有效值,单位为kV; U——电缆及附件设计的各相导体间的额定工频电 压有效值,单位为kV。 雷电冲击电压 UP——电缆及附件设计所需承受的雷电冲击电压的峰值,既基本绝缘水平BIL,单位为kV。 操作冲击电压 US——电缆及附件设计所需承受的操作冲击电压的峰值,单位为kV。 系统最高电压 Um——是在正常运行条件下任何时候和电网上任何点最高相间电压的有效值。它不包括由于故障条件和大负荷的突然切断而造成的电压暂时的变化,单位为kV。 定额电压参数见下表(点击放大)

330kV操作冲击电压的峰值为950kV;500kV操作冲击电压的峰值为1175kV。 2.导体电阻 导体直流电阻 单位长度电缆的导直流电阻用下式计算: 式中: R'——单位长度电缆导体在θ℃温度下的直流电阻; A——导体截面积,如导体右n根相同直径d的导线扭合而成,A=nπd2/4; ρ20——导体在温度为20℃时的电阻率,对于标准软铜ρ20=Ω˙mm2/m:对于标准硬铝:ρ20=Ω˙mm2/m; 1 α——导体电阻的温度系数(1/℃);对于标准软铜:=℃-1;对于标准硬铝:=℃-1; k1——单根导线加工过程引起金属电阻率的增加所引入的系数。一般为(线径越小,系数越大);具体可见《电线电缆手册》表3-2-2; k2——用多根导线绞合而成的线芯,使单根导线长度增加所引入的系数。对于实心线芯,=1;对于固定敷设电缆紧压多根导线绞合线芯结构,=(200mm2以下)~(240mm2以上) k3——紧压线芯因紧压过程使导线发硬、电阻率增加所引入的系数(约);

控制电缆感应电压的分析及解决方法

控制电缆感应电压的分析及解决方法 摘要:本文根据本人参加福建鸿山电厂2X600MW 1号机组的试运调试中发现主厂房至外围脱硫系统一根长控制电缆中感应电压引起6kV真空接触器误跳的分析、判断及处理过程进行了描述,希望对以后的施工、调试提供参考。 关键词:长控制电缆感应电压分析处理 Abstract: in this paper, according to the power plant in fujian mountains I 2 X600MW unit 1, such as found in the commissioning of main building to peripheral desulfurization system a long piece of control cables caused by 6 kV inductive voltage vacuum contactor mistakenly jump of analysis, judgement and processing are described, and hope for the future construction, commissioning to provide the reference. Keywords: long control cable induced voltage analysis 1.引言 控制电缆中由于分布电容的存在,同一根电缆中通电线芯会给其他芯线带来感应电。通常如果控制电缆不是很长,这种感应电不明显,因此设计人员常忽视这种感应电的存在。但是当控制电缆达到一定的长度,再加上其它外部因素的影响,这种感应电就会表现出来,往往造成现场就地控制开关误动以及人员触电,给生产和运行人员带来安全隐患,而这种感应电是不可能被完全消除的,只能采取措施去降低它。 福建鸿山电厂为新建2X600MW机组,两台机组各设两段厂用6KV段,布置在各汽机房厂用6KV配电间,脱硫不设6KV段,6KV电源从各机组的6KV 厂用段取,控制脱硫6KV开关的ECS布置在离主厂房较远的脱硫综合楼,脱硫氧化风机6KV开关采用厦门ABB VSC-400A带熔断器的真空接触器。此接触器接受以脉冲方式发出的合分闸命令而合分闸。采用国电南京自动化股份有限公司的WDZ-430EX电动机综合保护测控装置,控制回路采用110V直流电源;控制电缆采用江苏上上电缆厂生产的ZR-KVVP2型电缆。 2.问题提出 在试运传动#1机组#1氧化风机6kV电动机控制回路的过程中,6kV接触器不能正常合闸,一合闸就误跳。将分闸二次控制电缆线折下,合闸正常,用数字万用表实测分闸二次控制电缆线电压为20V,电压小于开关30%额定操作电压,不可能使开关分闸动作,检查电缆屏蔽接地也为良好,将分闸二次控制电缆线从

电容电流计算书

电容电流的计算书 电网的电容电流,应包括有电气连接的所有架空线路、电缆线路、发电机、变压器以及母线和电器的电容电流,并应考虑电网5~10年的发展。 1.架空线路的电容电流可按下式估算: I C =(2.7~3.3)U e L×10-3 (F-1) 式中:L——线路的长度(㎞); U e——线路系统电压(线电压KV) I C ——架空线路的电容电流(A); 2.7 ——系数,适用于无架空地线的线路; 3.3 ——系数,适用于有架空地线的线路; 同杆双回线路的电容电流为单回路的1.3~1.6倍。 亦可按附表1所列经验数据查阅。 附表1 架空线路单相接地电容电流(A/km) 2.电缆线路的电容电流可按(F-2)式估算,亦可进行计算 I C=0.1U e L (F-2) 按电容计算电容电流 具有金属保护层的三芯电缆的电容值见附表2。 附表2 具有金属保护层的三芯电缆每相对地电容值(μF/㎞)

将求得的电缆总电容值乘以1.25即为全系统总的电容近似值(即包括变压器绕组、电 动机以及配电装置等的电容)。单相接地电容电流可由下式求出: I C = 3 U e ωC ×10-3 (F-3) 其中 ω=2πf e 式中 I C —— 单相接地电容电流(A ); U e —— 厂用电系统额定线电压(kV ); ω —— 角频率; f e —— 额定功率(Hz ); C —— 厂用电系统每相对地电容(μF ); 2.2、6~10 kV 电缆和架空线的单相接地电容电流I C 也可通过下式求出近似值。 6kV 电缆线路 = I C 6S 22002.84S 95++U e (A ) (F-4) 10kV 电缆线路 =I C 0.23S 22001.44S 95++U e (A ) (F-5) 式中 S —— 电缆截面 (㎜2) U e —— 厂用电系统额定电压(kV ) 2.3 电容电流的经验值见附表3。 附表3 6~35kV 电缆线路单位长度的电容电流(A/㎞) 2.4 6~10 kV 交联聚乙烯绝缘电力电缆的接地电容电流。 前述各公式主要用于油浸纸绝缘电力电缆,而目前广泛采用的交联聚乙烯绝缘电力电 缆,由于其结构特点,其单独接地电容电流比同截面的纸绝缘电缆的电容电流大,根据厂家提供的参数和现场实测数据,大约增大20%左右,其值见附表4。 附表4 6~10 kV 交联聚乙烯绝缘电缆的接地电容电流

电缆线损计算

电缆线损计算 35平方铜芯单相直流电缆,长度为100M,电流70A,铺设方式是裸线水中铺设,为什么我用两种方法算的线损结果差好多啊谁能告诉我比较精确的计算方法啊~~谢谢了~~ 方法1:线损=电流×电路总线长×线缆电压因子=70×100×(mv)= 方法2:△P=IR,,R用电阻率计算出来 (参考: 理论线损计算的概念 1.输电线路损耗 当负荷电流通过线路时,在线路电阻上会产生功率损耗。 (1)单一线路有功功率损失计算公式为 △P=I2R 式中△P--损失功率,W; I--负荷电流,A; R--导线电阻,Ω (2)三相电力线路 线路有功损失为 △P=△PA十△PB十△PC=3I2R (3)温度对导线电阻的影响: 导线电阻R不是恒定的,在电源频率一定的情况下,其阻值 随导线温度的变化而变化。 铜铝导线电阻温度系数为a=。 在有关的技术手册中给出的是20℃时的导线单位长度电阻值。但实际运行的电力线路周围的环境温度是变化的;另外;负载电流通过导线电阻时发热又使导线

温度升高,所以导线中的实际电阻值,随环境、温度和负荷电流的变化而变化。为了减化计算,通常把导线电阴分为三个分量考虑: 1)基本电阻20℃时的导线电阻值R20为 R20=RL 式中R--电线电阻率,Ω/km,; L--导线长度,km。 2)温度附加电阻Rt为 Rt=a(tP-20)R20 式中a--导线温度系数,铜、铝导线a=0.004; tP--平均环境温度,℃。 3)负载电流附加电阻Rl为 Rl= R20 4)线路实际电阻为 R=R20+Rt+Rl (4)线路电压降△U为 △U=U1-U2=LZ ) 环境温度25度,算得结果

控制电缆的分布电容对继电保护的防范措施2011

控制电缆的分布电容对继电保护的防范措施2011-09-14 来源:中国仪表网随着继电保护技术的发展,集成电路保护和微机保护在电力系统中的应用越来越广泛。在220kV及以上变电站中,所有由开关场引入控制室继电保护设备的交流电流、电压和直流跳闸等回路都可能由开关场引入干扰电压到基于微电子器件的继电保护设备,因此二次回路要采用带屏蔽层的电缆,且要求屏蔽层在开关场和控制室两端同时接地。电缆的芯线和屏蔽层之间存在有分布电容,电缆越长,分布电容效应越明显。由于屏蔽层两端接地,实际上这种分布电容也就是电缆芯线对地之间的分布电容。 在直流系统受到某些干扰时,如发生直流接地或交流电源串入到直流回路时,由于长电缆对地分布电容效应的存在,往往可能导致一些灵敏保护继电器的误动作。在某500kV变电站发生的一起高压并联电抗器保护误跳闸事故就充分说明了这一点。 一、事故情况介绍 在该500kV变电站中,一条装设有高压并联电抗器的500kV线路开关发生跳闸。值班人员对继电保护信号进行检查时发现高压并联电抗器保护中本体保护的跳闸单元有出口掉牌信号,除此以外,未发现其他保护动作信号。运行人员对高压并联电抗器本体进行检查,未发现异常情况;从录波图上也未看出故障电流或故障电压波形,说明系统当时并没有事故发生,跳闸前也无人在该条线路的线路保护和高压并联电抗器保护回路上进行工作。 二、事故原因分析 事故发生后,保护专业人员迅速组织对高压并联电抗器保护进行了检查。检查的重点在其保护的本体保护部分。本体保护回路如图1所示。 KS1、KS2、KS3、KS4为掉牌继电器,指示本体保护动作信号,跳闸时这4只继电器都未掉牌;KOM为本体保护出口中间继电器,其触点启动本体跳闸单元;KTM为时间继电器,其作用是在接收本体跳闸信号后,无论本体跳闸信号闭合时间的长短,都使KOM保持一固定的动作时间,保证开关可靠跳闸。 对高压并联电抗器本体保护进行检查试验,未发现在继电保护和二次回路中有足以引起保护误动作的缺陷。但由于本体保护的跳闸单元确有出口掉牌信号,则从本体保护误出口的可能性非常大。由于能同时启动跳闸单元3的跳闸出口继电器和掉牌继电器的,只有图1中所示KOM继电器的一对触点;从回路上看基本上能认定KOM继电器触点闭合引起动作的可能性非常大。 保护专业人员在检查时发现了3点情况。 a.KOM动作电压过低,动作值为DC28V,在额定电压下其动作时间为3ms。 b.本体保护继电器的输入回路是由长电缆从远方引来的空触点启动,电缆长度约为500m,为变电站内最长的二次控制电缆。该电缆为屏蔽电缆,屏蔽层两端分别在开关场和控制室接地。

电缆隧道接地电阻计算书

接地电阻计算书 一、垂直接地体接地电阻计算: 1.单根接地体接地电阻计算: 计算公式:() (1) 式中:R v ——垂直接地极的接地电阻(Ω); ——土壤电阻率(1000Ω?m); ——垂直接地极的长度(1.5m); d ——接地极的直径(0.03m)。 数值代入公式计算得:R v=529.88(Ω) 2.间距为s的多根垂直接地极并联后的接地电阻计算: 计算公式: (2) 式中:R N——n根垂直接地极的并联接地电阻(Ω); ρ ——土壤电阻率(1000Ω?m); ι——垂直接地极的长度(1.5m); s ——接地极的间距(5m); n ——接地极的总根数(920); d ——接地极的直径(0.03m); 数值代入公式计算得:R N=97.82(Ω) 二、水平接地体接地电阻计算: 计算公式:() 式中:R h——水平接地极的接地电阻(Ω); ρ ——土壤电阻率(1000Ω?m);

L ——水平接地极的总长度(4600m); h ——水平接地极的埋设深度(0.2m); d ——水平接地极的等效直径(0.02m); A——水平接地极的形状系数(1)。 数值代入公式计算得:R h=0.81(Ω) 三、综合接地电阻计算: 计算公式: (3) 式中:——综合接地电阻(Ω); R N——垂直接地极的并联接地电阻(Ω); R h——水平接地极的接地电阻(Ω); R Nh——垂直接地极和水平接地极之间的互阻(Ω),可根据公式(4)计算; (4) 式中:ρ ——土壤电阻率(1000Ω?m); ——垂直接地极的长度(1.5m); ——水平接地极的总长度(4600m); 数值代入公式计算得: R Nh=0.60(Ω) Rz=0.81(Ω) 石墨基柔性接地体的接地电阻可用降阻效果系数带入进行计算:最终接地电阻为: =0.7×0.81=0.567(Ω)。

配电网电容电流计算

配电网电容电流计算 一、概述 随着城市电网的扩大,电缆出线的增多,系统电容电流大大增大。当系统发生单相接地故障,其接地电弧不能自熄,极易产生间隙性弧光接地过电压,持续时间一长,在线路绝缘弱点还会发展成两相短路事故。因此,当网络足够大时,就需要采用消弧线圈补偿电容电流,这是保证电力系统安全运行的重要技术措施之一。为避免不适当的补偿给电力系统安全运行带来威胁,首先必须正确测定系统的电容电流值,并据此合理调整消弧线圈电流值,才能做到正确调谐,既可以很好地躲过单相接地的弧光过电流,又不影响继电保护的选择性和可靠性。 目前,电容电流的测定方法很多,通常采用附加电容法和金属接地法进行测量和计算,但前者测量方法复杂,附加电容对测量结果影响较大,后者试验中具有一定危险性。目前,根据各种消弧线圈不同的调谐原理,有多种间接测量电网电容电流的方法。其根本思想都是利用电网正常运行时的中性点位移电压、中性点电流以及消弧线圈电感值等参数,计算得到电网的对地总容抗,然后由单相故障时的零序回路,计算当前运行方式下的电容电流。 在实际运行中,对于出线数较多、线路较长或包含大量电缆线路的配电系统,当其发生单相接地故障时,对地电容电流会相当大,接地电弧如果不能自熄灭,极易产生间隙性弧光接地过电压或激发铁磁谐振,持续时间长,影响面大,线路绝缘薄弱点往往还会发展成两相短路事故。因此,DL/T620-1997《交流电气装置的过电压保护和绝缘配合》规定:3~10kV钢筋混凝土或金属杆塔的架空线路构成的系统和所有35kV、66kV系统,当单相接地故障电流大于10A时应装设消弧线圈;3~10kV电缆线路构成的系统,当单相接地故障电流大于30A,又需在接地故障条件下运行时,应采用消弧线圈接地方式。消弧线圈一般为过补偿运行(即流过消弧线圈的电感电流大于电容电流),也就是说装设的消弧线圈的电感必须根据对地电容电流的大小来确定,以防止中性点不接地系统发生单相接地而引起弧光过电压。 故障后,消弧线圈必须快速合理地补偿电容电流,以使接地电弧快速自熄,所以消弧线圈应实时跟踪电网运行方式的变化,在电网正常运行时,测量计算当前运行方式下的电容电流,以合理调节消弧线圈的出力。显然,电网电容电流的

电力电缆常用计算公式

?电线电缆载流量计算 交流电阻计算 绝缘介质损耗计算 电线电缆金属套和屏蔽的损耗计算 铠装损耗计算 热阻计算 载流量计算 ?电线电缆允许短路电流计算 ?电线电缆短时过负荷电缆载流量计算?电力电缆相序阻抗计算 ?电线电缆导体和金属屏蔽热稳定计算

电线电缆载流量计算 一、交流电阻计算 1. 集肤和邻近效应对应的Ks 和Kp 系数的经验值: 导体不干澡浸渍: 0.1=s k 0.1=p k 导体干燥浸渍: 0.1=s k 8.0=p k 2. 工作温度下导体直流电阻: )]20(1[200-+?='θαR R 0R —20oC 时导体直流电阻 OHM/M 20α—20oC 时导体电阻温度系数 3. 集肤效应系数: 1.一般情况: s S R f X κπ72108-?' = 4 4 8.0192s s s X X Y += 2. 穿钢管时: s S R f X κπ72108-?' = 5.18.01924 4 ?+=s s s X X Y f —电源频率Hz 4. 邻近效应系数: a. 二芯或二根单芯电缆邻近效应因数: p p R f X κπ72108-?' = 一般情况: 9.2)(8.01922 4 4?+=s d X X Y c p p

穿钢管时: 5.19.2)(8.01922 4 4??+=s d X X Y c p p p dc:导体直径 mm s :各导体轴心间距 mm b. 三芯或三根单芯电缆邻近效应因数: p p R f X κπ72108-?' = (1) 圆形导体电缆 一般情况: ]27 .08.019218.1)(312.0[)(8.0192442 24 4 +++?+=p p c c p p p X X s d s d X X Y dc:导体直径 mm s :各导体轴心间距 mm 穿钢管时: 5.1]27 .08.019218.1)(312.0[)(8.0192442 24 4 ?+++?+=p p c c p p p X X s d s d X X Y dc:导体直径 mm s :各导体轴心间距 mm (2) 成型导体电缆 一般情况: ]}27 .08.019218.1)(312.0[)(8.0192{3244 2 24 4++++?++=p p x X x X p p p X X t d d t d d X X Y 穿钢管时: 5.1]}27 .08.019218.1)(312.0[)(8.0192{3244 2 24 4?++++?++=p p x X x X p p p X X t d d t d d X X Y

超长控制电缆分布电容影响工程实例分析

超长控制电缆分布电容影响工程实例分析 发表时间:2017-01-13T16:20:29.123Z 来源:《电力设备》2016年第22期作者:李论涛穆峰磊丁赞成单强 [导读] 通过对新疆某换流站扩建工程跳闸回路采用超长控制电缆进行分布电容影响分析。 (1.中国能源建设集团新疆电力设计院有限公司新疆乌鲁木齐 830002;2.国网新疆电力公司建设部新疆乌鲁木齐 830002) 摘要:通过对新疆某换流站扩建工程跳闸回路采用超长控制电缆进行分布电容影响分析,并结合工程实际进行理论计算、仿真计算验证、现场实测分布电容和现场直流接地试验,采取防止长电缆分布电容影响的措施后,跳闸回路采用800米长控制电缆后保护不会误动。 关键词:长控制电缆;分布电容;影响 1 问题的提出 新疆某换流站扩建工程因为突破原有规划建设且受场地限制,使用长控制电缆难以避免,其中保护跳500kV侧断路器回路控制电缆敷设长度约800米。目前设计规程针对长电缆尚未有明确规定,经验值一般将电缆的长度控制在400~500米左右,若使用单根约800米长的控制电缆可能会因为分布电容的影响造成该回路误动或不可靠。 2 反措条文规定及执行情况 国家电网生〔2012〕352号关于印发《国家电网公司十八项电网重大反事故措施》中条文15.7.16规定:对经长电缆跳闸的回路,应采取防止长电缆分布电容影响和防止出口继电器误动的措施。 由于长电缆有较大的分布电容,从而使得干扰信号较容易通过长电缆窜入保护装置,严重时可导致保护装置不正确动作。在现代保护装置中通常对外部侵入的干扰有一定的防护措施,而对于出口继电器,则通常采用加大继电器动作功率或延长动作时间的方法抵御外部干扰。 执行情况:(1)本工程断路器保护所有涉及直接跳闸的重要回路均采用动作电压在额定直流电源电压的 55%~70%范围以内的中间继电器,并满足其动作功率大于 5W的要求。对于在直流系统发生接地、交流混入直流以及存在较强空间电磁场的情况下引入干扰信号,采用动作电压在一定范围之内、动作功率较大的重动继电器可有效提高抗干扰能力,防止继电器误动。(2)针对本工程800米长电缆(ZRB-KYJVP2/22-450/750-4×2.5)的分布电容进行实测,并利用MATLAB仿真软件进行了仿真计算和验证,仿真计算综合电容值与实测综合电容非常接近,实测800米长电缆电容值为78.5nF。 3 长电缆分布电容实测及仿真校核 由于国家标准GB/T9330.3中对控制电缆没有要求电缆厂家提供电容值,因此,通过现场实测对长电缆分布电容的影响进行分析。 (1)分布电容测试 电缆足够长以后芯线对屏蔽、芯线对芯线的分布电容都不能忽略,它们的分布电容大小是由它们在空间的相互距离、极板(导线表面)的大小及它们之间的介质决定的。因此, 可以按它们的空间布置假设有如下电容组成,用C0代表1根芯线对屏蔽的分布电容,用C1代表两相邻芯线之间的分布电容,用C2代表两不相邻芯线之间的分布电容。由此,可以得到4芯电缆等效分布电容结构见图3.1。 图3.1 四芯电缆等效分布电容结构图 总电容测试方法1 : 用施加工频电压U (100V) , 测试流入测量点的电流I,计算总分布容抗X总= U/I。按C总=1/2πf X总=1/2π50 X总 =I/314U。 总电容测试方法2 : 直接用高精度电容表在测量点直接测取。 1)芯线对屏蔽层分布总电容C总的测试。 此项记录结果:U=100V;I=0.0023A,计算得C总=73.25nF。利用高精度电容表实测C总=78.5nF。 2)芯线对屏蔽层分布电容C0的测试。 此项记录结果:U=100V;I0=0.0071A,计算得C0=C0总/4=56.53nF。利用高精度电容表实测C0=57.5nF。 3)相邻芯线间分布电容C1测试。 此项记录结果:U=100V;I1=0.0049A,计算得C1=(C1总-2 C0)/4=10.74nF,其中C0为2)节的计算结果。利用高精度电容表实测 C1=10.1nF。 4)不相邻芯线间分布电容C2测试。 此项记录结果:U=100V;I2=0.0044A,计算得C2=(C2总-2 C0-2 C1)/2=2.73nF,其中C0、C1为前面的结果。利用高精度电容表实测C2=2.05nF。

电容电流估算方法

1.1.1 电容电流估算方法 1.1.1.1 6~10kV 电网单相接地电流的计算 在中性点不接地的6~10kV 电网中,电网每相对地存在着分布电容和分布绝缘电阻,在计算接地电流时,可以把它们用集中参数来表示,如图8所示。当电网某相发生单相经电阻接地时(电阻为零便为直接接地),在接地点有一接地电流流过,下面分析一下接地电流的计算。 图8 6~10kV 供电系统 A U 、B U 、C U ——电网各相电源电压;A U ' 、B U ' 、C U ' ——电网各相对地电压; C ——电网每相对地电容;R ——电网每相对地绝缘电阻;E R ——接地电阻 当电网某相(如图8中的A 相)经电阻E R 接地时,按照对称分量法的原理, 可以将故障点处的三相电流、电压分解成正序电流(1A I 、1B I 、1C I )、电压(1A U 、1 B U 、1 C U );负序电流(2A I 、2B I 、2C I )、电压(2A U 、2B U 、2C U )和零序电流0I 、零序电压0U 。可以求出流过电阻E R 的电流E I 和各序电流之间]的关系为: E A A I I I I 3 1021=== (31) 由(31)式得出复合序网如图9所示。 C U

图 9 单相接地故障的复合序网 图9中1Z 、2Z 、0Z 分别表示电网的正序阻抗、负序阻抗、零序阻抗,由于1Z 、2Z 是电网线路和变压器的漏抗与电网对地阻抗的并联,很小,均可忽略,0Z 是电网线路阻抗与电网对地阻抗的串联,有:1Z =2Z ≈0,0Z ≈Z = C j R ω+1 1。 根据对称分量的原理,故障点处的对地电压: ?????++='++='++='0 21021021U U U U U U U U U U U U C C C B B B A A A (32) 可以得出: ???????======0 22211 1C B A C C B B A A U U U U U U U U U (33) 所以在故障点存在有正序电压和零序电压,负序电压接近于零。 下面分析计算一下零序电压和零序电流以及接地电流。根据前面的分析我们知道:流过每相对地电容和对地绝缘电阻及流过接地电阻的电流分别为: E R 3

10KV电缆的线路损耗及电阻计算公式

10KV电缆的线路损耗及电阻计算公式 线损理论计算是降损节能,加强线损管理的一项重要的技术管理手段。通过理论计算可发现电能损失在电网中分布规律,通过计算分析能够暴露出管理和技术上的问题,对降损工作提供理论和技术依据,能够使降损工作抓住重点,提高节能降损的效益,使线损管理更加科学。所以在电网的建设改造过程以及正常管理中要经常进行线损理论计算。 线损理论计算是项繁琐复杂的工作,特别是配电线路和低压线路由于分支线多、负荷量大、数据多、情况复杂,这项工作难度更大。线损理论计算的方法很多,各有特点,精度也不同。这里介绍计算比较简单、精度比较高的方法。 理论线损计算的概念 1.输电线路损耗 当负荷电流通过线路时,在线路电阻上会产生功率损耗。 (1)单一线路有功功率损失计算公式为 △P=I2R 式中△P--损失功率,W; I--负荷电流,A; R--导线电阻,Ω (2)三相电力线路 线路有功损失为 △P=△PA十△PB十△PC=3I2R (3)温度对导线电阻的影响: 导线电阻R不是恒定的,在电源频率一定的情况下,其阻值 随导线温度的变化而变化。 铜铝导线电阻温度系数为a=0.004。 在有关的技术手册中给出的是20℃时的导线单位长度电阻值。但实际运行的电力线路周围的环境温度是变化的;另外;负载电流通过导线电阻时发热又使导线温度升高,所以导线中的实际电阻值,随环境、温度和负荷电流的变化而变化。为了减化计算,通常把导线电阴分为三个分量考虑:1)基本电阻20℃时的导线电阻值R20为 R20=RL 式中R--电线电阻率,Ω/km,; L--导线长度,km。 2)温度附加电阻Rt为 Rt=a(tP-20)R20 式中a--导线温度系数,铜、铝导线a=0.004; tP--平均环境温度,℃。 3)负载电流附加电阻Rl为 Rl= R20 4)线路实际电阻为 R=R20+Rt+Rl (4)线路电压降△U为 △U=U1-U2=LZ 2.配电变压器损耗(简称变损)功率△PB 配电变压器分为铁损(空载损耗)和铜损(负载损耗)两部分。铁损对某一型号变压器来说是固定的,与负载电流无关。铜损与变压器负载率的平方成正比。 配电网电能损失理论计算方法 配电网的电能损失,包括配电线路和配电变压器损失。由于配电网点多面广,结构复杂,客户用电性质不

单相接地电容电流

自动化论坛: 单相接地电容电流的计算方法 单相接地电容电流的计算 4.1 空载电缆电容电流的计算方法有以下两种: (1)根据单相对地电容,计算电容电流(见参考文献2)。 Ic=√3×UP×ω×C×103 式中: UP━电网线电压(kV) C ━单相对地电容(F) 一般电缆单位电容为200-400 pF/m左右(可查电缆厂家样本)。 (2)根据经验公式,计算电容电流 Ic=0.1×UP ×L 式中: UP━电网线电压(kV) L ━电缆长度(km) 4.2 架空线电容电流的计算有以下两种: (1)根据单相对地电容,计算电容电流 Ic=√3×UP×ω×C×103 式中: UP━电网线电压(kV) C ━单相对地电容(F) 一般架空线单位电容为5-6 pF/m。 (2)根据经验公式,计算电容电流 Ic= (2.7~3.3)×UP×L×10-3 式中: UP━电网线电压(kV) L ━架空线长度(km) 2.7━系数,适用于无架空地线的线路 3.3━系数,适用于有架空地线的线路 关于单相接地电容电流计算 单相接地电容电流我所知道估算公式: 对架空线:Ic=UL / 350 对电缆:Ic=UL / 10 我想请问的是L是指的架空线长度还是架空线距离?比如是三相的L是不是为距离X 3 另请问有没有更详细的计算方法? 工业与民用配电设计手册上对L的定义是线路的长度,单位km,这里的长度与楼主说的距离是同一个概念,也就是说L是指架空线或电缆的距离,三相不需要再用距离乘以3 更详细的单相接地电容电流计算公式见附件,摘自工业与民用配电设计手册152页 描述:没有文件说明 附件:( 189 K)单相接地电容电流计算.pdf下载次数(27) 首先应该明确为什么要算这个电容电流,一般计算单相接地电容电流首先要了解,中性点接地系统的分类,什么样的系统才要计算单相接地电容电流,相关国家规定是怎样规定的,算出这个电流怎样进行相关的补偿,选用什么装置进行补偿,补偿的分类是欠补偿,还是过补

接地电容电流分析

摘要:随着城市电网的发展,变电站10kV出线中电缆所占比重越来越高,导致10kV系统的电容电流越来越大,远远超过了规程规定的10A(10kV为架空线和电缆线混合的系统)。因此需要在10kV中压电网中采用中性点谐振接地(经消弧线圈接地)方式。理想的消弧线圈能实时监测电网电容电流的大小,在正常运行时电抗值很大,相当于中性点不接地系统,在发生单相接地故障时能在极短时间内自动调节电抗值完全补偿电容电流,使接地点残流的基波无功分量为零。自动跟踪补偿消弧装置基本能实现上述功能,技术现已相当成熟,能将接地故障电流限制在允许范围内,保证系统的可靠运行及人身和设备的安全。 [关键词]:中压电网中性点谐振接地方式 一、引言 对10kV中压电网而言,设备的绝缘裕度受经济因素的制约作用较小,工频电压升高的不良影响较低,相反限制单相接地故障电流及其一系列危害显得尤为重要,加之接地继电保护选择性难题的攻克(之前为了检出和清除故障线路曾采用低电阻接地方式),现国内10kV中压电网多采用中性点非有效接地方式。其包括如下几种方式:1、中性点不接地方式; 2、中性点经高电阻接地方式; 3、中性点谐振接地(经消弧线圈接地)方式。 所谓中性点不接地方式,实际系统是经过一定数值容抗接地的。当系统发生一点接地时,保护不跳闸,仅发出接地信号,可带故障运行1-2小时(前提是系统接地故障电流不大 于10A)。因接地系数(零序阻抗与正序阻抗比值)k小于0,△U=-U相可能高于相 电压,非故障相的工频电压升高将会略高于线电压,约为1.05U线。另外,中性点不接地系统还具有中性点不稳定的特点,当单相接地电弧自行熄灭后,容易导致电压互感器的铁芯饱和激发中性点不稳定过电压,引起电压互感器烧毁与高压熔丝熔断等事故。 如采用中性点经高电阻接地方式:可限制电弧接地过电压;限制单相接地电弧熄灭后激起的中性点不稳定过电压。但如系统发生单相接地故障时的故障电流超过10A,接地电弧不能自行熄灭,将引起电弧接地过电压,所以中性点经高电阻接地方式有一定局限性,只适合用于规模较小的10kV电网中。 随着城市的发展,对环境要求的提高,蜘蛛网式满天横飞的架空线路影响了城市的美观,城市的各大街道纷纷将架空线路改为电缆入地。而每公里电缆的电容电流远大于同等长度的架空线路。以10kV线路为例: 架空线路的电容电流计算(按水泥杆、有避雷线计算) Ic=3.7U线l×10-3=3.7×10×1×10-3=0.037A(1)式 电缆线路的电容电流计算 Ic(u)=[(95+1.44S)/2200+0.23S]U线(2)式 其中S为电缆心线截面积(mm2) 以截面积为300的10kV电缆为例,每公里电容电流为2.32A。 10kV线路每公里电缆的电容电流约为架空线路的63倍,10kV出线中电缆比重的增大势必引起电容电流的增大,从而导致接地电弧无法熄灭,严重影响系统的可靠性,影响人身及设备的安全。我国电力行业标准DL\T620-1997《交流电气装置的过电压保护和绝缘配合》中明确规定:3-10kV不直接连接发电机且由架空线路构成的系统,当单相接地故障电容电流超过10A又需在接地故障条件下运行时,应采用消弧线圈接地方式。 中性点经消弧线圈接地方式与前两种小电流接地方式相比,单相接地故障电流明显减小,非故障相的工频电压升高降低,且不存在中性点不稳定过电压的情况,基本运行特性明显优越。

分布电容

分布电容是指由非电容形态形成的一种分布参数。一般是指在印制板或其他形态的电路形式,在线与线之间、印制板的上下层之间形成的电容。这种电容的容量很小,但可能对电路形成一定的影响。在对印制板进行设计时一定要充分考虑这种影响,尤其是在工作频率很高的时候。 线圈的匝和匝之间、线圈与地之间、线圈与屏蔽盒之间以及线圈的层和层之间都存在分布电容。分布电容的存在会使线圈的等效总损耗电阻增大,品质因数Q降低。高频线圈常采用蜂房绕法,即让所绕制的线圈,其平面不与旋转面平行,而是相交成一定的角度,这种线圈称为蜂房式线圈。线圈旋转一周,导线来回弯折的次数,称为折点数。蜂房绕法的优点是体积小,分布电容小,而且电感量。蜂房式线圈都是利用蜂房绕线机来绕制的,折点数越多,分布电容越小。 变压器在初级和次级之间存在分布电容,该分布电容会经变压器进行耦合,因而该分布电容的大小直接影响变压器的高频隔离性能。也就是说,该分布电容为信号进入电网提供了通道。所以在选择变压器时,必须考虑其分布电容的大小。 输出变压器层间分布电容对音频信号的高频有极大的衰减作用,直接导致音频信号在整个频带内不均匀传输,是音频信号失真增大的主要因数。为了削弱极少的分布电容就要采用初级每层分段的特殊绕法,以降低分布电容对音频信号的衰减。 词条图册更多图册 电容的组成是两个导体之间有绝缘无,所以任何导体和与之绝缘体另侧的导体(如大地)都可以形成电容。这个电容就是分布电容。低频时对电路几乎没有影响。高频就要考虑分布电容的影响,有时电路要不断调整,就是因为环境保护分布参数变化的原因,所以高频电路一般密封在金属盒子里,就是阻止环境对电路的影响。另外还有分布电感。比如高频电缆在一定频率下有阻抗,就是分布电容和分布电感造成的,查高频电缆手册就会给出高频下的分布电容和分布电感数据。这些是电路匹配的重要参数。

电缆的特性阻抗

电缆的阻抗 术语 音频:人耳可以听到的低频信号。范围在20-20kHz。 视频:用来传诵图象的高频信号。图象信号比声音复杂很多,所以它的带宽(范围)也大过音频很多,少说也有0-6MHz。 射频:可以通过电磁波的形式想空中发射,并能够传送很远的距离。射频的范围要宽很多,10k-3THz(1T=1024G)。 电缆的阻抗 本文准备解释清楚传输线和电缆感应的一些细节,只是此课题的摘要介绍。如果您希望很好地使用传输线,比如同轴电缆什么的,就是时候买一本相关课题的书籍。什么是理想的书籍取决于您物理学或机电工程,当然还少不了数学方面的底蕴。 什么是电缆的阻抗,什么时候用到它? 首先要知道的是某个导体在射频频率下的工作特性和低频下大相径庭。当导体的长度接近承载信号的1/10波长的时候,good o1风格的电路分析法则就不能在使用了。这时该轮到电缆阻抗和传输线理论粉墨登场了。 传输线理论中的一个重要的原则是源阻抗必须和负载阻抗相同,以使功率转移达到最大化,并使目的设备端的信号反射最小化。在现实中这通常意味源阻抗和电缆阻抗相同,而且在电缆终端的接收设备的阻抗也相同。 电缆阻抗是如何定义的? 电缆的特性阻抗是电缆中传送波的电场强度和磁场强度之比。(伏特/米)/(安培/米)=欧姆 欧姆定律表明,如果在一对端子上施加电压(E),此电路中测量到电流(I),则可以用下列等式确定阻抗的大小,这个公式总是成立: Z = E / I 无论是直流或者是交流的情况下,这个关系都保持成立。 特性阻抗一般写作Z0(Z零)。如果电缆承载的是射频信号,并非正弦波,Z0还是等于电缆上的电压和导线中的电流比。所以特性阻抗由下面的公式定义: Z0 = E / I 电压和电流是有电缆中的感抗和容抗共同决定的。所以特性阻抗公式可以被写成后面这个形式: 其中 R=该导体材质(在直流情况下)一个单位长度的电阻率,欧姆 G=单位长度的旁路电导系数(绝缘层的导电系数),欧姆 j=只是个符号,指明本项有一个+90'的相位角(虚数) π=3.1416

阻抗计算

关于电缆的正序阻抗和负序阻抗的计算 对于电缆当提到正序阻抗和负序阻抗时,一般是指电力电缆产品,像控制电缆和计算机电缆不提此参数。 当电力系统在对称状态下短路时,正序阻抗和负序阻抗是相等的,其计算公式是: Z1(正序阻抗)=Z2(负序阻抗)=R+jX 上述公式中:R为导体在工作温度下的交流电阻值; X为电抗值。 不同的产品和不同的产品结构(或敷设方式),其正序和负序阻抗是不同的。根据不同的产品计算如下: 导体在工作温度下的交流电阻值R的计算: R=R'(1+ Ys + Yp ) R'=R20(1+α20(t-20)) R20为导体在20度时直流电阻(Ω/m) α20电阻的温度系数:对铜α20=0.00393 对铝α20=0.00403 Yp为邻近效应系数取决与线芯与线芯之间的距离,对于0.6/1 kV及以下的电缆,Yp近似为0。 X为电抗值计算 (工频情况下) X=ωL=2πfL=314L(Ω/m)(L单位为H) L为回路的电感 三芯电缆时:电感计算公式如下: L=2×10×ln(a÷0.39D)(mH/km) a是电缆线芯与线芯的中心距离(mm),D为电缆导体的直径(mm)。 举例:YJV22 0.6/1 kV 3*50 在对称状态下短路时,正序阻抗和负序阻抗为: R'=R20(1+α20(t-20)) =0.000387(1+0.00393(90-20) (90是电缆的工作温度) =0.000493(Ω/m) R=R'(1+ Ys + Yp )

=0.000493(1+0.0136+0) (导体Ys 在截面70到300范围中取0.02) =0.0005(Ω/m) L=2×ln(a÷0.39D) =2×ln(10÷0.39×8) (a取导体直径加二倍的绝缘厚度,D为导体直径) =2×1.16 =2.32(mH/km)) X=314L =314×2.32×10 =0.00007(Ω/m) 那么: Z1(正序阻抗)=Z2(负序阻抗)=R+jX=0.0005+0.00007j(Ω/m) 其他型号和规格可以参照上述计算。 如有问题请电话联系 吴长顺 2005/04/02

单相接地电容电流及保护定值计算

摘自本人撰写的《余热(中册)》 一一五、已知热电厂10KV 供电线路有8回,额定电压为10.5KV ,架空线路总长度为 9.6Km ,电缆线路总长度为6Km ,计算单相接地时系统总的零序(电容)电流为多少安? 由于热电厂10KV 供电系统为中性点不接地的运行方式,所以应按照公式1、2进行计算: 1.对于架空线路 I dC0(架空)=350 UL (A ) 2.对于电缆线路 I dC0(电缆)=10 UL (A ) 式中 U ——线路额定线电压(KV ) L ——与电压U 具有电联系的线路长度(Km ) 解:根据公式1、2计算出10KV 供电线路单相接地时的零序(电容)电流为: I dC0(总)=350 9.610.5?+10610.5?=0.288+6.3≈6.6(A ) 一一六、如何计算10KV 中性点不接地系统,线路单相接地的零序电流保护定值? 中性点不接地系统发生单相接地故障时,非故障线路流过的零序电流为本线路的对地电容电流,而故障线路流过的零序电流为所有非故障线路的对地电容电流之和。为使保护装置具有高度的灵敏性,所以非故障线路的零序电流保护不应动作,故零序电流保护的动作电流必须大于外部接地故障时流过本线路的零序电流,因此零序电流保护的动作电流I dz 应为: I dz =K K 3U φωC 0=K K I dC0 式中 K K ——可靠系数。本次计算按8回线路中的4回在运行,故选取4。 I dC0——本线路的对地电容电流。 举例:已知上题10KV 线路单相接地时,系统总的零序电流I dC (总)=6.6安,计算其中1回线路零序电流保护的定值为多少安? 解: I dz =K K I dC0 本计算的可靠系数按照K K =4选取 则: I dz =4×8 6.6=3.3(A ) 选取3.3A 该电流系流过零序电流互感器一次侧的动作电流。如果零序电流互感器标明了其变流比,则应根据变流比计算出零序电流保护装置的动作电流;若零序电流互感器未标明其变流比,则应通过现场实测的方法,测量零序电流互感器二次测的电流,该电流就是保护装置的动作电流。 一一七、如何进行零序电流保护的灵敏度校验? 零序电流保护的定值确定之后,还应校验本线路接地故障时,保护是否有足够的灵敏度。 通常在系统最小运行方式下(即系统各相对地电容电流最小时),用本线路接地故障时流过的零序电流来校验灵敏度。因此,灵敏系数: K Lm =0dc 0 dc (dz I ?I I k 总)K - 对于电缆线路要求灵敏系数K Lm ≥1.25;对于架空线路要求灵敏系数K Lm ≥1.5。 举例:根据上题的已知条件,进行零序电流保护的灵敏度校验。 灵敏系数: K Lm = 81816.66.66.6???-4= 3.3775.5=1.75 校验:1.75>1.5合格

单相接地电容电流的计算.

1 前言前言前言前言众所周知10kV中性点不接地系统(小电流接地系统具有如下特点:当一相发生金属性接地故障时,接地相对地电位为零,其它两相对地电位比接地前升高√3倍,一般情况下,当发生单相金属性接地故障时,流过故障点的短路电流仅为全部线路接地电容电流之和其值并不大,发出接地信号,值班人员可在2小时内选择和排除接地故障,保证连续不间断供电。 2 单相接地电容电流的危害单相接地电容电流的危害单相接地电容电流的危害单相接地电容电流的危害当电网发展到一定规模,10kV出线总长度增加,对地电容较大时,单相接地电流就不容忽视。当单相接地电流超出允许值,接地电弧不易熄灭,易产生较高弧光间歇接地过电压,波及整个电网。单相接地电容电流过大的危害主要体现在五个方面:1弧光接地过电压危害当电容电流过大,接地点电弧不能自行熄灭,出现间歇性电弧接地时,产生弧光接地过电压,这种过电压可达相电压的3-5倍或更高,它遍布于整个电网中,并且持续时间长,可达几小时,它不仅击穿电网中的绝缘薄弱环节,可使用电设备、电缆、变压器变压器变压器变压器等绝缘老化,缩短使用寿命,而且对整个电网绝缘都有很大的危害。2造成接地点热破坏及接地网电压升高单相接地电容电流过大,使接地点热效应增大,对电缆等设备造成热破坏,该电流流入接地网后由于接地电阻的原因,使整个接地电网电压升高,危害人身安全。3交流杂散电流危害电容电流流入大地后,在大地中形成杂散电流,该电流可能产生火花,引燃可燃气体、煤尘爆炸等,可能造成雷管先期放炮,并且腐蚀水管,气管等金属设施。4接地电弧还会直接引起火灾,甚至直接引起可燃气体、煤尘爆炸。5配电网对地电容电流增大后,架空线路尤其是雷雨季节,因单相接地引起的短路跳闸事故占很大比例。 3 单相接地电容电流的补偿原则单相接地电容电流的补偿原则单相接地电容电流的补偿原则单相接地电容电流的补偿原则我国的相关电力设计技术规程中规定,3~10kV的电力网单相接地故障电流大于30A时应装设消弧线圈。消弧线圈的作用是当电网发生单相接地故障后,提供一电感电流,补偿接地电容电流,使接地电流减小,也使得故障相接地电弧两端的恢复电压速度降低,达到熄灭电弧的目的。当消弧线圈正确调谐时,不仅可以有效的减少产生弧光接地过电压的机率,还可以有效的抑制过电压的辐值,同时也最大限度的减小了故障点热破坏作用及接地网的电压等。

相关文档