文档库 最新最全的文档下载
当前位置:文档库 › 讲座 导数与函数的极值(含单元检测)

讲座 导数与函数的极值(含单元检测)

讲座  导数与函数的极值(含单元检测)
讲座  导数与函数的极值(含单元检测)

讲座三 导数与函数的极值

疑难点、易错点剖析

1取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值。请注意以下几点:

(1)极值是一个局部概念。由定义可知,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小

(2)函数的极值不是唯一的。即一个函数在某区间上或定义域内极大值或极小值可以不止一个 (3)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值。

(4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点。而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点。

(5)可导函数的极值点的导数为0,但是导数为0的点不一定是极值点。 (6)函数在一点x 0处有极值,不一定在该点可导。 2.对于函数的最值问题,应注意以下几点:

(1)在闭区间[]b a ,上图像连续不断的函数)(x f 在[]b a ,上必有最大值与最小值.在开区间(,)

a b 内图像连续的函数)(x f 不一定有最大值与最小值.

(2)函数的最值是比较整个定义域内的函数值得出的;而函数的极值是比较极值点附近函数值得出的.

(3)函数)(x f 在闭区间[]b a ,上的图像连续不断,是)(x f 在闭区间[]b a ,上有最大值与最小值的充分条件而非必要条件.

(4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个。若函数f(x)只有一个极值,则必为最值。 例题选讲

例1:设a 为实数,函数.)(2

3

a x x

x

x f +--=

(Ⅰ) 求)(x f 的极值.

(Ⅱ) 当a 在什么范围内取值时,曲线x x f y 与)(=轴仅有一个交点.

例2:已知a 为实数,))(4()(2

a x x x f --=

(Ⅰ)若0)1(=-'f ,求)(x f 在[-2,2] 上的最大值和最小值;

(Ⅱ)若)(x f 在(—∞,—2]和[2,+∞)上都是递增的,求a 的取值范围.

例3:已知函数()f x x b =+的图象与函数23)(2

++=x x x g 的图象相切,记()()()F x f x g x =. (Ⅰ)求实数b 的值及函数()F x 的极值;

(Ⅱ)若关于x 的方程k x F =)(恰有三个不等的实数根,求实数k 的取值范围.

例4:设函数

1323

1)(2

3

+-+-

=ax ax

x x f ,其中10<

(Ⅰ)求函数)

(x f 的极值;

(Ⅱ)若当]2,1[++∈a a x 时,恒有()'≤f x a

,试确定实数a 的取值范围.

自我检测 1.函数131)(2

3

+++=

x ax

ax

x f 有极值的充要条件是( )

A .01≤≥a a 或

B .01<>a a 或

C .0

1<≥a a

或 D .10<

2.函数512322

3

+--=x x x y 在]3,0[上的最大值和最小值依次是( )

A 15,12-

B 15,5-

C 4,5-

D 15,4-- 3.函数 f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,则( )

A .a =-11,b =4

B .a =-4,b =11

C .a =11,b =-4

D .a =4,b =-11 4.方程010962

3

=-+-x x x 的实根个数是 ( )

A 3

B 2

C 1

D 0 5.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( )

A .1个

B .2个

C .3个

D . 4个

6..如果函数y=f(x)的导函数的图像如右图所示,给出下列判断: (1) 函数y=f(x)在区间(3,5)内单调递增; (2) 函数y=f(x)在区间(-1/2,3)内单调递减; (3) 函数y=f(x)在区间(-2,2)内单调递增;

(4) 当x= -1/2时,函数y=f(x)有极大值;

(5) 当x=2时,函数y=f(x)有极大值;

则上述判断中正确的是 .

A ①③

B ③⑤

C ①⑤

D ③④ 二.填空题

7. 已知m m x x x f (62)(2

3

+-=为常数)在[-2,2]上有最大值3,那么此函数在[-2,2] 的最小值为 . 8.设)(),(x g x f 分别是定义在R 上的奇函数和偶函数,当0'+'x g x f x g x f 且

0)2

1(=-

g 则不等式0)()(

=

9.f (x )= 1+3sin x + 4cos x 取得最大值时,tan x = 10.设函数(),(0,1],.f x x a x a R +

=-++∈∈ (1) 若f(x)在(0,1]上是增函数,求a 的取值范围; (2) 求()f x 在(0,1]上的最大值. 11.已知函数3

2

()3f x x ax x =-+.

(1)若)(x f 在∈x [1,+∞)上是增函数,求实数a 的取值范围;

(2)若x =3是)(x f 的极值点,求)(x f 在∈x [1,a ]上的最小值和最大值. 12.已知函数()2

a

f x x x

=+

,()ln g x x x =+,其中0a >.

(1)若1x =是函数()()()h x f x g x =+的极值点,求实数a 的值;

(2)若对任意的[]12,1x x e ∈,(e 为自然对数的底数)都有()1f x ≥()2g x 成立,求实数a 的取值范围

8.设函数f (x )=2x 2+2x

x 2+1

,函数g (x )=ax 2+5x -2a .

(1)求f (x )在[0,1]上的值域;

(2)若对于任意x 1∈[0,1],总存在x 0∈[0,1],使得g (x 0)=f (x 1)成立,求a 的取值范围.

8.【解答】 (1)f (x )=2x 2+2x x 2+1=2(x 2+1)+2x -2x 2

+1=2+2(x -1)

x 2+1

, 令x -1=t ,则x =t +1,t ∈[-1,0],f (t )=2+2t

t 2+2t +2,当t =0时,f (t )=2;当t ∈[-1,0),f (t )

=2+2

t +2t

+2,由函数的单调性得f (t )∈[0,2),故函数f (x )在[0,1]上的值域是[0,2].

(2)f (x )的值域是[0,2],要g (x 0)=f (x 1)成立, 则[0,2]?{y |y =g (x ),x ∈[0,1]}.

①当a =0时,x ∈[0,1],g (x )=5x ∈[0,5],符合题意;

②当a >0时,函数g (x )的对称轴为x =-5

2a <0,故当x ∈[0,1]时,函数为增函数,则g (x )的值域是

[-2a,5-a ],由条件知[0,2]?[-2a,5-a ],∴????

?

a >0,-2a ≤0,

5-a ≥2

?0

③当a <0时,函数g (x )的对称轴为x =-5

2a >0.

当0<-52a <1,即a <-5

2

时,

g (x )的值域是????-2a ,-8a 2-254a 或????5-a ,

-8a 2

-254a ,

由-2a >0,5-a >0知,此时不合题意;

当-52a ≥1,即-5

2

≤a <0时,g (x )的值域是[-2a,5-a ],由-2a >0知,此时不合题意.

综合①②③得0≤a ≤3.

附加题(本小题10分)已知函数x x f =)(,函数x x f x g sin )()(+=λ是区间]11[-上的减函数。(1)求λ的最大值;(2)若1)(2

++

m ex x

x f x +-=2)

(ln 2

根的个数。

附加题:解(1),sin )(,)(x x x g x x f +=∴=λ因为)(x g 在]1,1[-上单调递减,所以=)(/

x g

x x cos ,0cos -≤∴≤+λλ在]1,1[-上恒成立,1-≤∴λ,故λ的最大值为1-………2分

(2)由题意1sin )1()(max --=-=λg x g ,只需11sin 2++<--t t λλ,+++2

)1(t t λ

011sin >+(其中)1-≤λ恒成立,令=)(λh +++2

)1(t

t λ011sin >+()1-≤λ,则只能有

???>+--<∴???>+++--<+0

1sin 1,011sin 10

12

2

t t t t t t ,而01sin 2

>+-t t 恒成立, 所以1-

(3)由

m ex x

x

x x f x +-==

2ln )(ln 2

,令m ex x

x G x

x x F +-==

2)(,ln )(2

,所以有

)(/

x F 0ln 12

>-=

x

x

,解得e x <<0,0)(/

,即函数)(x F 在],0(e 上是增函数,在

),[+∞e 上是减函数,e

e F x F 1)()(max =

=,而2

2)()(e m e x x G -+-=,所以

2

min )()(e m e G x G -==,

当e e m e e m 1,12

2

+>>-时,方程无解; 当e e m e e m 1,12

2

+==-时,方程有一个根; 当e

e

m e

e m 1,12

2+

<<-时,方程有两个根。

函数的极值与导数教案完美版

《函数的极值与导数》教案 §1.3.2函数的极值与导数(1) 【教学目标】 1.理解极大值、极小值的概念. 2.能够运用判别极大值、极小值的方法来求函数的极值. 3.掌握求可导函数的极值的步骤. 【教学重点】极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 【教学难点】对极大、极小值概念的理解及求可导函数的极值的步骤. 【内容分析】 对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号. 【教学过程】 一、复习引入: 1. 函数的导数与函数的单调性的关系:设函数y=f(x) 在某个区间内有导数,如果在这个区间内/ y >0,那么函数y=f(x) 在为这个区间内的增函数;如果在这个区间内/ y <0,那么函数y=f(x) 在为这个区间内的减函数. 2.用导数求函数单调区间的步骤:①求函数f (x )的导数f ′(x ). ②令f ′(x )>0解不等式,得x 的范围就是递增区间.③令f ′(x )<0解不等式,得x 的范围,就是递减区间. 二、讲解新课: 1.极大值: 一般地,设函数f(x)在点x 0附近有定义,如果对x 0附近的所有的点,都有f(x)<f(x 0),就说f(x 0)是函数f(x)的一个极大值,记作y 极大值=f(x 0),x 0是极大值点. 2.极小值:一般地,设函数f(x)在x 0附近有定义,如果对x 0附近的所有的点,都有f(x)>f(x 0).就说f(x 0)是函数f(x)的一个极小值,记作y 极小值=f(x 0),x 0是极小值点. 3.极大值与极小值统称为极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值.请注意以下几点: (ⅰ)极值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小.并不意味着它在函数的整个的定义域内最大或最小. (ⅱ)函数的极值不是唯一的.即一个函数在某区间上或定义域内极大值或极小值可以不止一个. (ⅲ)极大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示,1x 是极大值点,4x 是极小值点,而)(4x f >)(1x f . (ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点.而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点. 4. 判别f (x 0)是极大、极小值的方法: 若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,) (0x f

高中数学人教版选修2-2(理科)第一章导数及其应用1.3.2函数的极值与导数同步练习C卷

高中数学人教版选修2-2(理科)第一章导数及其应用 1.3.2函数的极值与导数同 步练习C卷 姓名:________ 班级:________ 成绩:________ 一、选择题 (共7题;共14分) 1. (2分)点是曲线上任意一点,则点到直线的距离的最小值是() A . 1 B . C . 2 D . 2. (2分)下面说法正确的是() A . 若不存在,则曲线在点处没有切线 B . 若曲线在点处有切线,则必存在 C . 若不存在,则曲线在点处的切线斜率不存在 D . 若曲线在点处没有切线,则有可能存在 3. (2分)函数有(). A . 极大值5,极小值-27; B . 极大值5,极小值-11; C . 极大值5,无极小值; D . 极小值-27,无极大值

4. (2分)已知函数f(x)=ax+4,若,则实数a的值为() A . 2 B . -2 C . 3 D . -3 5. (2分)已知函数在x=1处的导数为1,则() A . 3 B . C . D . 6. (2分)已知f(x)为R上的可导函数,且对?x∈R,均有f(x)>f′(x),则有() A . e2016f(﹣2016)<f(0),f(2016)<e2016f(0) B . e2016f(﹣2016)>f(0),f(2016)>e2016f(0) C . e2016f(﹣2016)<f(0),f(2016)>e2016f(0) D . e2016f(﹣2016)>f(0),f(2016)<e2016f(0) 7. (2分)若f(x)=x4﹣4x+m在区间[0,2]上任取三个数a,b,c,都存在f(a),f(b),f(c)为边长的三角形,则m的取值范围是() A . m>3 B . m>6 C . m>8

函数极值与导数解析

函数的极值与导数练习 基础篇 1.函数f(x)的定义域为开区间(a,b),其导函数f′(x)在(a,b)内的图象如图1-3-10所示,则函数f(x)在开区间(a,b)内的极大值点有() 图1-3-10 A.1个B.2个 C.3个D.4个 【答案】B[依题意,记函数y=f′(x)的图象与x轴的交点的横坐标自左向右依次为x1,x2,x3,x4,当a<x<x1时,f′(x)>0;当x1<x<x2时,f′(x)<0;当x2<x<x4时,f′(x)≥0;当x4<x<b时,f′(x)<0.因此,函数f(x)分别在x=x1,x=x4处取得极大值,选B.] 2.函数y=x3-3x2-9x(-2<x<2)有() A.极大值5,极小值-27 B.极大值5,极小值-11 C.极大值5,无极小值 D.极小值-27,无极大值 【答案】C[由y′=3x2-6x-9=0,得x=-1或x=3. 当x<-1或x>3时,y′>0;由-1<x<3时,y′<0. ∴当x=-1时,函数有极大值5;3?(-2,2),故无极小值.] 3.已知a是函数f(x)=x3-12x的极小值点,则a=() A.-4 B.-2 C.4 D.2

【答案】D [∵f (x )=x 3-12x ,∴f ′(x )=3x 2-12,令f ′(x )=0,则x 1=-2,x 2=2. 当x ∈(-∞,-2),(2,+∞)时,f ′(x )>0,则f (x )单调递增; 当x ∈(-2,2)时,f ′(x )<0,则f (x )单调递减,∴f (x )的极小值点为a =2.] 4.当x =1时,三次函数有极大值4,当x =3时有极小值0,且函数过原点,则此函数是( ) 过(1,4)f ′(1)=0 过(3,0)f ′(3)=0 A .y =x 3+6x 2+9x B .y =x 3-6x 2+9x C .y =x 3-6x 2-9x D .y =x 3+6x 2-9x 【答案】B [∵三次函数过原点,故可设为 y =a x 3+bx 2+cx , ∴y ′=3x 2+2bx +c . 又x =1,3是y ′=0的两个根, ∴????? 1+3=-2b 31×3=c 3 ,即????? b =-6, c =9 ∴y =x 3-6x 2+9x , 又y ′=3x 2-12x +9=3(x -1)(x -3) ∴当x =1时,f (x )极大值=4 , 当x =3时,f (x )极小值=0,满足条件,故选B.] 5.函数f (x )=x 3-3bx +3b 在(0,1) ) A .00 D .b <1 2 【答案】A [f ′(x )=3x 2 -3b ,要使f (x )在(0,1)内有极小值,则? ?? ?? f ′(0)<0, f ′(1)>0,

(完整版)专题05导数与函数的极值、最值—三年高考(2015-2017)数学(文)真题汇编.doc

1. 【 2016 高考四川文科】已知函数的极小值点,则=( ) (A)-4 (B) -2 (C)4 (D)2 【答案】 D 考点:函数导数与极值. 【名师点睛】本题考查函数的极值.在可导函数中函数的极值点是方程但是极大值点还是极小值点,需要通过这点两边的导数的正负性来判断,在 的解,附近,如 果时,,时,则是极小值点,如果时,,时,,则是极大值点, 2. 【 2015 高考福建,文A.充分而不必要条 件12】“对任意 B.必要而不充分条件 ,”是“ C .充分必要条件 D ”的() .既不充分也不必 要条件 【答案】 B 【解析】当时,,构造函数,则 .故在单调递增,故,则;当时,不等式等价于,构造函数 ,则,故在递增,故 ”是“,则.综上 ”的必要不充分条件,选 所述,“ 对任 意B. ,

【考点定位】导数的应用. 【名师点睛】 本题以充分条件和必要条件为载体考查三角函数和导数在单调性上的应用, 根 据已知条件构造函数,进而研究其图象与性质,是函数思想的体现,属于难题. 3. (2014 课标全国Ⅰ,文 12) 已知函数 f ( x ) = ax 3 - 3 2 + 1,若 f ( ) 存在唯一的零点 x 0 ,且 x x x 0>0,则 a 的取值范围是 ( ) . A . (2 ,+∞ ) B . (1 ,+∞) C . ( -∞,- 2) D .( -∞,- 1) 答案: C 解析:当 a = 0 时, f ( x ) =- 3x 2+ 1 存在两个零点,不合题意; 当 a >0 时, f ′(x ) = 3ax 2- 6x = , 令 ′( ) = 0,得 x 1 = 0, , fx 所以 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一的零点,需 ,但这时零点 x 0 一定小于 0,不合题意; 当 a <0 时, f ′(x ) = 3ax 2- 6x = , 令 f ′(x ) = 0,得 x 1=0, ,这时 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一零点,应满足 ,解得 a <- 2( a > 2 舍去 ) ,且这时 零点 x 0 一定大于 0,满足题意,故 a 的取值范围是 ( -∞,- 2) . 名师点睛:本题考查导数法求函数的单调性与极值,函数的零点,考查分析转化能力,分类讨论思想, 较难题 . 注意区别函数的零点与极值点 . 4. 【 2014 辽宁文 12】当 时,不等式 恒成立,则实数 a 的取 值范围是()

6函数的极值与导数讲义

函数的极值与导数讲义 :点a 叫做函数y =f (x )的极小值点,f (a )叫做函数y =f (x )的极小值. (2)极大值点与极大值:点b 叫做函数y =f (x )的极大值点,f (b )叫做函数y x 0)=0时: (1)如果在x 0附近的左侧f ′(x )>0,右侧f ′(x )<0,那么f (x 0)是. f ′(x )<0,右侧f ′(x )>0,那么f (x 0)是. 一点附近的大小情况. (2)由函数极值的定义知道,函数在一个区间的端点处一定不可能取得极值,即端点一定不是函数的极值点. (3)极大值不一定比极小值大,极小值也不一定比极大(1)可导函数的极值点一定是导数为0的点,但导数为0的点不一定是函数的极值点. 如y =x 3,y ′(0)=0,x =0不是极值点. 问题1如图观察,函数y =f (x )在d 、e 、f 、g 、h 、i 等点处的函数值与这些点附近的函数值有什 么关系?y =f (x )在这些点处的导数值是多少?在这些点附近,y =f (x )的导数的符号有什么规律? 思考函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有________个极小值点. 【例1】求下列函数的极值. (1)f (x )=3x +3ln x ; (2)f (x )=2x x 2+1 -2. 【例2】已知函数f (x )=ax 3+bx 2+cx (a ≠0)在x =±1处取得极值,且f (1)=-1. (1)求常数a ,b ,c 的值;(2)判断x =±1是函数的极大值点还是极小值点,试说明理由,并求出极值. 【变式】已知函数f (x )=x 3+ax 2+bx +c ,且知当x =-1时取得极大值7,当x =3时取得极小值,试求函数f (x )的极小值,并求a 、b 、c 的值. 【例3】 (12分)设a 为实数,函数f (x ) =-x 3+3x +a .(1)求f (x )的极值;(2)是否存在实数a ,使得方程f (x )=0恰好有两个实数根?若存在,求出实数a 的值;若不存在,请说明理由.

高中数学选修2-2精品教案 3.2 函数的极值与导数

§1.3.2函数的极值与导数(1课时) 【学情分析】: 在高一就学习了函数的最大(小)值,这与本小节所要研究的对象——函数极值有着本质区别的,学生容易产生混淆,易把极大值当做最大值,极小值当做最小值。在认识理解导数大小与函数单调性的关系后,结合函数图像直观地引入函数极值的概念,强化极值是描述函数局部特征的概念,使得学生对极值与最值的概念区分开来,也为下节“函数的最值与导数”做好铺垫。 【教学目标】: (1)理解极大值、极小值的概念. (2)能够运用判别极大值、极小值的方法来求函数的极值. (3)掌握求可导函数的极值的步骤 【教学重点】: 极大、极小值的概念和判别方法,以及求可导函数的极值的步骤. 【教学难点】: 极大、极小值概念的理解,熟悉求可导函数的极值的步骤 教学 环节 教学活动设计意图 创设情景 观察图3.3-8,我们发现,t a =时,高台跳水运动员距水面高度最大.那么,函数() h t在此点的导数是多少呢?此点附近的图像有什么特点?相应地,导数的符号有什么变化规律? 放大t a =附近函数() h t的图像,如图3.3-9.可以看出() h a ';在t a =,当t a <时,函数() h t单调递增,()0 h t'>;当t a >时,函数() h t单调递减,()0 h t'<;这就说明,在t a =附近,函数值先增(t a <,()0 h t'>)后减(t a >,()0 h t'<).这样,当t在a的附近从小到大经过a时,() h t'先正后负,且() h t'连续变化,于是有()0 h a '=. 对于一般的函数() y f x =,是否也有这样的性质呢? 附:对极大、极小值概念的理解,可以结合图象进行说明.并且要说明函数的极值是就函数在某一点附近的小区间而言的. 从图象观察得出,判别极大、极小值的方法.判断极值点的关键是这点两侧的导数异号

函数的极值与导数教学设计一等奖

函数的极值与导数 作者单位:宁夏西吉中学作者姓名:蒙彦强联系电话: 一.教材分析 本节课选自高中数学人教A版选修2-2教材函数的极值与导数,就本册教材而言本节既是前面所学导数的概念、导数的几何意义、导数的计算、函数的单调性与导数等内容的延续和深化,又为下节课最值的学习奠定了知识与方法的基础,起着承上启下的作用.就整个高中教学而言,函数是高中数学主要研究的内容之一,而导数又是研究函数的主要工具,同时导数在化学、物理中都有所涉及可见它的重要性. 二.教学目标 1. 了解极大值、极小值的概念,体会极值是函数的局部性质; 2. 了解函数在某点取得极值的必要条件与充分条件; 3. 会用导数求函数的极值; 4. 培养学生观察、分析、探究、推理得出数学概念和规律的学习能力; 5. 感受导数在研究函数性质中的一般性和有效性,体会导数的工具作用.三.重点与难点 重点是会用导数求函数的极值. 难点是导函数的零点是函数极值点的必要不充分条件的理解. 四.学情分析 基于本班学生基础较差,思维水平参差不齐,所以备课上既要考虑到薄弱同学的理解与接受,又要考虑到其他同学视野的拓展,因此在本节课中我设置了许多的问题,来引导学生怎样学,以问答的方式来激发学生的学习兴趣,同时让更多的学生参与到教学中来.学生已经学习了函数的单调性与导数的关系,学生已经初步具备了运用导数研究函数的能力,为了进一步培养学生的这种能力,体会导数的工具作用,本节进一步研究函数的极值与导数. 五.教具教法 多媒体、展台,问题引导、归纳、类比、合作探究发现式教学 六.学法分析 借助多媒体辅助教学,通过观察函数图像分析极值的特征后,得出极值的定义;通过函数图像上极值点及两侧附近导数符号规律的探究,归纳出极值与导数的关系;通过求极值的问题归纳用导数求函数极值的方法与步骤. 七.教学过程 1.引入 让学生观察庐山连绵起伏的图片思考“山势有什么特点”并结合诗句“横看成岭侧成峰,远近高低各不同”,由此联想庐山的连绵起伏形成好多的“峰点”与“谷点”,这就是数学上研究的函数的极值引出课题. 【设计意图】从庐山美景出发并结合学生熟悉的诗句来激发学生学习兴趣,让学生在愉快中知道学什么.

(完整版)导数与极值、最值练习题

三、知识新授 (一)函数极值的概念 (二)函数极值的求法:(1)考虑函数的定义域并求f'(x); (2)解方程f'(x)=0,得方程的根x (可能不止一个) (3)如果在x 0附近的左侧f'(x)>0,右侧f'(x)<0,那么f(x )是 极大值;反之,那么f(x )是极大值 题型一图像问题 1、函数() f x的导函数图象如下图所示,则函数() f x在图示区间上() (第二题图) A.无极大值点,有四个极小值点 B.有三个极大值点,两个极小值点 C.有两个极大值点,两个极小值点 D.有四个极大值点,无极小值点 2、函数() f x的定义域为开区间() a b ,,导函数() f x '在() a b ,内的图象如图所示,则函数() f x在 开区间() a b ,内有极小值点() A.1个 B.2个 C.3个 D.4个 3、若函数2 () f x x bx c =++的图象的顶点在第四象限,则函数() f x '的图象可能为() D. C. B. A. 4、设() f x '是函数() f x的导函数,() y f x ' =的图象如下图所示,则() y f x =的图象可能是() C. A.

5、 已知函数 () f x 的导函数 () f x '的图象如右图所示,那么函数()f x 的图象最有可能的是( ) -1 1 f '(x ) y x O 6、()f x '是()f x 的导函数,()f x '的图象如图所示,则()f x 的图象只可能是( ) 2x O 22D. C. B. A. O x O x x O x y 7、如果函数 () y f x =的图象如图,那么导函数()y f x '=的图象可能是( ) y y y x x x y x D C A x y y=f(x)

函数的极值与导数-复习课导学案(可编辑修改word版)

f(a) O a x y f ( b) O b x 【学习目标】: 函数的极值与导数(复习学案) 1.回顾函数极值的概念. 2.总结掌握函数极值的四种类型题型. 3.培养分析问题、解决问题的能力. 【温故知新】: 极值的概念: 一般地,设函数f(x)在点x0附近有意义,如果对x0附近的所有的点,都有f(x)<f(x0),则f(x0)是函数f(x)的,其中x0叫作函数的. 如果对x0附近的所有的点,都有f(x)>f(x0) ,我们就说f(x0)是函数f(x)的一个,其中x0叫作函数的. 【类型1】:函数y=f(x)的图象与函数极值 【针对训练1】 1.图3 中的极大值点有;极小值点有. 2.观察函数在X2 与X6 的极值,能发现什么? 【类型2】导数y=f(x)的图象与函数极值 1.由图3 分析极值与导数的关系

x0是函数f(x)的极值点f(x0) =0 f(x0) =0 x0是函数f(x)的极值点 总结:f(x0)=0 是函数取得极值的条件. 2.利用导数判别函数的极大(小)值: 一般地,当函数f(x)在点x0处连续时,且f ' (x0)=0,判别f(x0)是极大(小)值的方法是: (1)如果在x0附近的左侧f '(x)>0,右侧f '(x)<0,那么,f(x0)是; ⑵如果在x0附近的左侧f '(x)<0,右侧f '(x)>0,那么,f(x0)是;【针对训练2】 导函数y=f’(x)的图像如图,试找出函数y=f(x)的极值点, 并指出那些是极大值点,那些是极小值点? 【针对训练3】 导函数y=f’(x)的图像如图,在标记的点中哪一点处 (1)导函数y=f’(x)有极大值? (2)导函数y=f’(x)有极小值? (3)函数y=f(x)有极大值? (4)函数y=f(x)有极小值? 【类型3】求函数y=f(x)的极值 求函数极值(极大值,极小值)的一般步骤: (1) (2) (3) (4) (5)

导数与函数的极值、最值

导数与函数的极值、最值 【题型突破】 利用导数解决函数的极值问题 ?考法1根据函数图象判断函数极值的情况 【例1】设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是() A.函数f(x)有极大值f(2)和极小值f(1) B.函数f(x)有极大值f(-2)和极小值f(1) C.函数f(x)有极大值f(2)和极小值f(-2) D.函数f(x)有极大值f(-2)和极小值f(2) D ?考法2求已知函数的极值 【例2】已知函数f(x)=(x-2)(e x-ax),当a>0时,讨论f(x)的极值情况.[解]∵f′(x)=(e x-ax)+(x-2)(e x-a) =(x-1)(e x-2a), ∵a>0,由f′(x)=0得x=1或x=ln 2a. ①当a=e 2时,f′(x)=(x-1)(e x-e)≥0,∴f(x)单调递增,故f(x)无极值. ②当0<a<e 2时,ln 2a<1,当x变化时,f′(x),f(x)的变化情况如下表: x (-∞,ln 2a)ln 2a (ln 2a,1)1(1,+∞) f′(x)+0-0+ f(x)极大值极小值 ③当a>e 2时,ln 2a>1,当x变化时,f′(x),f(x)的变化情况如下表: x (-∞,1)1(1,ln 2a)ln 2a (ln 2a,+∞) f′(x)+0-0+ f(x)极大值极小值

综上,当0<a <e 2时,f (x )有极大值-a (ln 2a -2)2,极小值a -e ; 当a =e 2 时,f (x )无极值; 当a >e 2时,f (x )有极大值a -e ,极小值-a (ln 2a -2)2. ?考法3 已知函数极值求参数的值或范围 【例3】 (1)已知f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0,则a -b =________. (2)若函数f (x )=e x -a ln x +2ax -1在(0,+∞)上恰有两个极值点,则a 的取值范围为( ) A .(-e 2,-e) B .? ? ???-∞,-e 2 C .? ? ???-∞,-12 D .(-∞,-e) (1)-7 (2)D [方法总结] 1.利用导数研究函数极值问题的一般流程 2.已知函数极值点和极值求参数的两个要领 (1)列式:根据极值点处导数为0和极值列方程组,利用待定系数法求解. (2)验证:因为一点处的导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性. A .2或6 B .2 C .23 D .6 (2)(2019·广东五校联考)已知函数f (x )=x (ln x -ax )有极值,则实数a 的取值范围 是( )

函数的极值与导数(教案

1.3.2 函数的极值与导数(教案) 一、教学目标 1 知识与技能 〈1〉结合函数图象,了解可导函数在某点取得极值的必要条件和充分条件 〈2〉理解函数极值的概念,会用导数求函数的极大值与极小值 2过程与方法 结合实例,借助函数图形直观感知,并探索函数的极值与导数的关系。 3情感与价值 感受导数在研究函数性质中一般性和有效性,通过学习让学生体会极值是函数的局部性质,增强学生数形结合的思维意识。 二、重点:利用导数求函数的极值 难点:函数在某点取得极值的必要条件与充分条件 三、教学基本流程 四、教学过程 〈一〉、创设情景,导入新课 1、通过上节课的学习,导数和函数单调性的关系是什么?

(提高学生回答) 2.观察图1.3.8 表示高台跳水运动员的高度h 随时间t 变化的函数 ()h t =-4.9t 2 +6.5t+10的图象,回答 以下问题 (1)当t=a 时,高台跳水运动员距水面的高度最大,那么函数()h t 在t=a 处的导数是多少呢? (2)在点t=a 附近的图象有什么特点? (3)点t=a 附近的导数符号有什么变化规律? 共同归纳: 函数h(t)在a 点处h /(a)=0,在t=a 的附近,当t <a 时,函数()h t 单调递增, ()'h t >0;当t >a 时,函数()h t 单调递减, ()'h t <0,即当t 在a 的附近从小到大经过a 时, ()'h t 先正后负,且()'h t 连续变化,于是h /(a)=0. 3、对于这一事例是这样,对其他的连续函数是不是也有这种性质呢? <二>、探索研讨 1、观察1.3.9图所表示的y=f(x)的图象,回答以下问题: a o h t

(完整版)导数--函数的极值练习题

导数--函数的极值练习题 一、选择题 1.下列说法正确的是( ) A.当f ′(x 0)=0时,则f (x 0)为f (x )的极大值 B.当f ′(x 0)=0时,则f (x 0)为f (x )的极小值 C.当f ′(x 0)=0时,则f (x 0)为f (x )的极值 D.当f (x 0)为函数f (x )的极值且f ′(x 0)存在时,则有f ′(x 0)=0 2.下列四个函数,在x =0处取得极值的函数是 ( ) ①y =x 3 ②y =x 2+1 ③y =|x | ④y =2x A.①② B.②③ C.③④ D.①③ 3.函数y = 2 16x x +的极大值为( ) A.3 B.4 C.2 D.5 4.函数y =x 3-3x 的极大值为m ,极小值为n ,则m +n 为( )A.0 B.1 C.2 D.4 5.y =ln 2x +2ln x +2的极小值为( ) A.e - 1 B.0 C.-1 D.1 6.y =2x 3-3x 2+a 的极大值为6,那么a 等于( ) A.6 B.0 C.5 D.1 7.对可导函数,在一点两侧的导数异号是这点为极值点的 A.充分条件 B.必要条件 C.充要条件 D.既不充分又不必要条件 8.下列函数中, 0=x 是极值点的函数是( ) A.3 x y -= B.x y 2 cos = C.x x y -=tan D.x y 1= 9.下列说法正确的是( ) A. 函数在闭区间上的极大值一定比极小值大; B. 函数在闭区间上的最大值一定是极大值; C. 对于12)(2 3+++=x px x x f ,若6||< p ,则)(x f 无极值; D.函数)(x f 在区间),(b a 上一定存在最值. 10.函数2 2 3 )(a bx ax x x f +--=在1=x 处有极值10, 则点),(b a 为( ) A.)3,3(- B.)11,4(- C. )3,3(-或)11,4(- D.不存在 11.函数|6|)(2--=x x x f 的极值点的个数是( ) A. 0个 B. 1个 C. 2个 D.3个 12.函数x x x f ln )(= ( ) A.没有极值 B.有极小值 C. 有极大值 D.有极大值和极小值 二.填空题: 13.函数x x x f ln )(2 =的极小值是 14.定义在]2,0[π上的函数4cos 2)(2-+=x e x f x 的极值情况是 15.函数)0(3)(3 >+-=a b ax x x f 的极大值为6,极小值为2,则)(x f 的减区间是 16.下列函数①3 2x y =,②x y tan =,③|1|3++=x x y ,④x xe y =,其中在其定义区间上存在极值点的函 数序号是 17.函数f (x )=x 3-3x 2+7的极大值为___________. 18.曲线y =3x 5-5x 3共有___________个极值. 19.函数y =-x 3+48x -3的极大值为___________;极小值为___________. 20.若函数y =x 3+ax 2+bx +27在x =-1时有极大值,在x =3时有极小值,则a =___________,b =___________. 三.解答题 21.已知函数f (x )=x 3+ax 2+bx +c ,当x =-1时,取得极大值7;当x =3时,取得极小值.求这个极小值及a 、b 、c 的值. 22.函数f (x )=x +x a +b 有极小值2,求a 、b 应满足的条件. 23.已知函数f(x)=x 3+ax 2+bx+c 在x =2处有极值,其图象在x =1处的切线垂直于直线y =3 1x -2 (1)设f(x)的极大值为p ,极小值为q ,求p-q 的值; (2)若c 为正常数,且不等式f(x)>mx 2在区间(0,2)内恒成立,求实数m 的取值范围。

函数极值与导数练习(基础)

函数极值与导数(基础) 1.下列说法正确的是 A.当f ′(x 0)=0时,则f (x 0)为f (x )的极大值 B.当f ′(x 0)=0时,则f (x 0)为f (x )的极小值 C.当f ′(x 0)=0时,则f (x 0)为f (x )的极值 D.当f (x 0)为函数f (x )的极值且f ′(x 0)存在时,则有f ′(x 0)=0 2、函数()f x 的定义域为开区间()a b ,,导函数()f x '在()a b ,内的图象如图所示,则函数()f x 在开区间()a b ,内有极小值点( ) A .1个 B .2个 C .3个 D .4个 3、函数3()13f x x x =+-有( ) A .极小值-1,极大值1 B .极小值-2,极大值3 C .极小值-2,极大值2 D .极小值-1,极大值3 4、如果函数()y f x =的导函数的图象如图所示,给出下列判断: ①函数()y f x =在区间13,2?? -- ?? ?内单调递增; ②函数()y f x =在区间1,32?? - ??? 内单调递减; ③函数()y f x =在区间(4,5)内单调递增; ④当4x =时,函数()y f x =有极小值; ⑤当12 x =-时,函数()y f x =有极大值; 则上述判断中正确的是___________. 5、函数3223y x x a =-+的极大值是6,那么实数a 等于_______ 6、函数x x x f ln 1 )(+= 的极小值等于_______. 7、求下列函数的极值: (1).x x x f 12)(3-=;(2).2()x f x x e =;(3)..21 2)(2-+= x x x f 8、已知)0()(23≠++=a cx bx ax x f 在1±=x 时取得极值,且1)1(-=f . (1).试求常数a 、b 、c 的值; (2).试判断1±=x 是函数的极小值还是极大值,并说明理由. 9、已知函数()()3220f x x ax x a =+++>的极大值点和极小值点都在区间()1,1-内, 则实数a 的取值范围是.

导数与函数的极值、最值

导数与函数的极值、最值 最新考纲了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次). 知识梳理 1.函数的极值与导数 (1)判断f(x0)是极值的方法 一般地,当函数f(x)在点x0处连续且f′(x0)=0, ①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值; ②如果在x0附近的左侧f′(x)≤0,右侧f′(x)≥0,那么f(x0)是极小值. (2)求可导函数极值的步骤: ①求f′(x); ②求方程f′(x)=0的根; ③检查f′(x)在方程f′(x)=0的根的左右两侧的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值. 2.函数的最值与导数 (1)函数f(x)在[a,b]上有最值的条件 如果在区间[a,b]上函数y=f(x)的图象是连续不断的曲线,那么它必有最大值和最小值.

(2)设函数f(x)在[a,b]上连续且在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下: ①求f(x)在(a,b)内的极值; ②将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值. 诊断自测 1.判断正误(在括号内打“√”或“×”) 精彩PPT展示 (1)函数在某区间上或定义域内极大值是唯一的.(×) (2)函数的极大值不一定比极小值大.(√) (3)对可导函数f(x),f′(x0)=0是x0点为极值点的充要条件.(×) (4)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.(√) 2.函数f(x)=-x3+3x+1有() A.极小值-1,极大值1 B.极小值-2,极大值3 C.极小值-2,极大值2 D.极小值-1,极大值3 解析因为f(x)=-x3+3x+1,故有y′=-3x2+3,令y′=-3x2+3=0,解得x =±1,于是,当x变化时,f′(x),f(x)的变化情况如下表:

《函数的极值与导数》教学设计

3.3.2 函数的极值与导数教学设计 一、教学目标 1 知识与技能 〈1〉结合函数图象,了解可导函数在某点取得极值的必要条件和充分条件 〈2〉理解函数极值的概念,会用导数求函数的极大值与极小值 2过程与方法 结合实例,借助函数图形直观感知,并探索函数的极值与导数的关系。 3情感与价值 感受导数在研究函数性质中一般性和有效性,通过学习让学生体会极值是函数的局部性质,增强学生数形结合的思维意识。 二、重点:利用导数求函数的极值 难点:函数在某点取得极值的必要条件与充分条件 三、教学基本流程 四、教学过程 〈一〉、创设情景,导入新课 1、通过上节课的学习,导数和函数单 调性的关系是什么? (提问学生回答)

2.观察图1.3.8 表示高台跳水运动员的高度h 随时间t 变化的函数()h t =-4.9t 2+6.5t+10的图象,回答以下问题 (1)当t=a 时,高台跳水运动员距水面的高度最大,那么函数()h t 在t=a 处的导数是多少呢? (2)在点t=a 附近的图象有什么特点? (3)点t=a 附近的导数符号有什么变化规律? 共同归纳: 函数h(t)在a 点处h /(a)=0,在t=a 的附近,当t <a 时,函数()h t 单调递增, ()'h t >0;当t >a 时,函数()h t 单调递减, ()'h t <0,即当t 在a 的附近从小到大经过a 时, ()'h t 先正后负,且()'h t 连续变化,于是h /(a)=0. 3、对于这一事例是这样,对其他的连续函数是不是也有这种性质呢? <二>、探索研讨 1、观察1.3.9图所表示的y=f(x)的图象,回答以下问题: (1)函数y=f(x)在a.b 点的函数值与这些点附近的函数值有什么关系? (2) 函数y=f(x)在a.b.点的导数值是多少? (3)在a.b 点附近, y=f(x)的导数的符号分别是什么,并且有什么关系呢? a o h t

导数与函数的极值、最值练习含答案

第2课时 导数与函数的极值、最值 一、选择题 1.下列函数中,既是奇函数又存在极值的是 ( ) A .y =x 3 B .y =ln(-x ) C .y =x e -x D .y =x +2 x 解析 由题可知,B ,C 选项中的函数不是奇函数,A 选项中,函数y =x 3单调递增(无极值),D 选项中的函数既为奇函数又存在极值. 答案 D 2.(2017·石家庄质检)若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,若t =ab ,则t 的最大值为 ( ) A .2 B .3 C .6 D .9 解析 f ′(x )=12x 2-2ax -2b ,则f ′(1)=12-2a -2b =0,则a +b =6, 又a >0,b >0,则t =ab ≤? ????a +b 22 =9,当且仅当a =b =3时取等号. 答案 D 3.已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax ? ???? a >12,当x ∈(-2,0)时, f (x )的最小值为1,则a 的值等于 ( ) A.14 B.13 C.1 2 D .1 解析 由题意知,当x ∈(0,2)时,f (x )的最大值为-1. 令f ′(x )=1x -a =0,得x =1 a , 当00;当x >1 a 时,f ′(x )<0.

∴f (x )max =f ? ???? 1a =-ln a -1=-1,解得a =1. 答案 D 4.已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是 ( ) A .(-1,2) B .(-∞,-3)∪(6,+∞) C .(-3,6) D .(-∞,-1)∪(2,+∞) 解析 ∵f ′(x )=3x 2+2ax +(a +6), 由已知可得f ′(x )=0有两个不相等的实根, ∴Δ=4a 2-4×3×(a +6)>0,即a 2-3a -18>0, ∴a >6或a <-3. 答案 B 5.设函数f (x )=ax 2+bx +c (a ,b ,c ∈R ),若x =-1为函数f (x )e x 的一个极值点,则下列图像不可能为y =f (x )图像的是 ( ) 解析 因为[f (x )e x ]′=f ′(x )e x +f (x )(e x )′=[f (x )+f ′(x )]e x ,且x =-1为函数f (x )e x 的一个极值点,所以f (-1)+f ′(-1)=0;选项D 中,f (-1)>0,f ′(-1)>0,不满足f ′(-1)+f (-1)=0. 答案 D 二、填空题 6.(2017·咸阳模拟)已知函数f (x )=x 3+ax 2+3x -9,若x =-3是函数f (x )的一个极值点,则实数a =________.

人教版 高中数学 选修2-2 1.3.2函数的极值与导数练习

人教版高中数学精品资料 高中数学 1.3.2函数的极值与导数练习 新人 教A 版选修2-2 一、选择题 1.(2015·吉林实验中学高二期中)已知函数y =f (x )在定义域内可导,则函数y =f (x )在某点处的导数值为0是函数y =f (x )在这点处取得极值的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .非充分非必要条件 [答案] B [解析] 根据导数的性质可知,若函数y =f (x )在这点处取得极值,则f ′(x )=0,即必要性成立;反之不一定成立,如函数f (x )=x 3 在R 上是增函数,f ′(x )=3x 2 ,则f ′(0)=0,但在x =0处函数不是极值,即充分性不成立. 故函数y =f (x )在某点处的导数值为0是函数y =f (x )在这点处取得极值的必要不充分条件,故选B. 2.函数y =14x 4-13x 3 的极值点的个数为( ) A .0 B .1 C .2 D .3 [答案] B [解析] y ′=x 3 -x 2 =x 2 (x -1),由y ′=0得x 1=0,x 2=1. 当x 变化时,y ′、y 的变化情况如下表 3.已知实数a 、b 、c 、d 成等比数列,且曲线y =3x -x 3 的极大值点坐标为(b ,c ),则 ad 等于( ) A .2 B .1 C .-1 D .-2 [答案] A

[解析] ∵a 、b 、c 、d 成等比数列,∴ad =bc , 又(b ,c )为函数y =3x -x 3 的极大值点, ∴c =3b -b 3 ,且0=3-3b 2, ∴? ?? ?? b =1, c =2,或? ?? ?? b =-1, c =-2.∴a d =2. 4.已知f (x )=x 3 +ax 2 +(a +6)x +1有极大值和极小值,则a 的取值范围是( ) A .-16 D .a <-1或a >2 [答案] C [解析] f ′(x )=3x 2 +2ax +a +6, ∵f (x )有极大值与极小值, ∴f ′(x )=0有两不等实根, ∴Δ=4a 2 -12(a +6)>0,∴a <-3或a >6. 5.已知函数f (x )=x 3 -px 2 -qx 的图象与x 轴切于(1,0)点,则f (x )的极大值、极小值分别为( ) A.4 27 ,0 B .0,4 27 C .-4 27,0 D .0,-4 27 [答案] A [解析] f ′(x )=3x 2 -2px -q , 由f ′(1)=0,f (1)=0得, ? ?? ?? 3-2p -q =0,1-p -q =0,解得? ?? ?? p =2, q =-1,∴f (x )=x 3-2x 2 +x . 由f ′(x )=3x 2 -4x +1=0得x =13或x =1, 易得当x =13时f (x )取极大值4 27. 当x =1时f (x )取极小值0. 6.函数f (x )=-x e x (a f (b ) D .f (a ),f (b )的大小关系不能确定

导数--函数的极值练习题

司老师在这节课上将抽象的知识通俗化、枯燥的内容生动化,是一节成功的公开课。司老师语言简练,言简意赅,教学思路清晰,教学过程设计合理,由浅入深,循序渐进,符合学生的认知规律。 教学中突出了“零点的概念”这个重点内容。教师能够围绕函数零点的本质,设置了一系列的问题串,不断启发学生发现问题,引导学生参与学习过程,最终得出函数零点的概念,很好的解决了本节课的学习重难点。 本节课容量大,内容丰富,对问题的发生和对典型例题的评讲,十分重视渗透“由特殊到一般”,“数形结合”等数学思想方法,取得了很好的教学效果。如,将方程有实根这个代数问题,转化为对应函数的图像与x 轴的交点问题,函数图像与x 轴的交点的判定又通过计算函数值来实现。这样就将方程、函数、图像三者融为一体。 高三第三章导数--函数的极值练习题 一、选择题(本大题共6小题,每小题3分,共18分) 1.下列说法正确的是 A.当f ′(x 0)=0时,则f (x 0)为f (x )的极大值 B.当f ′(x 0)=0时,则f (x 0)为f (x )的极小值 C.当f ′(x 0)=0时,则f (x 0)为f (x )的极值 D.当f (x 0)为函数f (x )的极值且f ′(x 0)存在时,则有f ′(x 0)=0 2.下列四个函数,在x =0处取得极值的函数是 ①y =x 3 ②y =x 2+1 ③y =|x | ④y =2x A.①② B.②③ C.③④ D.①③ 3.函数y =216x x 的极大值为 A.3 B.4 C.2 D.5 4.函数y =x 3-3x 的极大值为m ,极小值为n ,则m +n 为 A.0 B.1 C.2 D.4 5.y =ln 2x +2ln x +2的极小值为 A.e -1 B.0 C.-1 D.1 6.y =2x 3-3x 2+a 的极大值为6,那么a 等于

相关文档 最新文档