文档库 最新最全的文档下载
当前位置:文档库 › AAO脱氮除磷工艺课程设计

AAO脱氮除磷工艺课程设计

AAO脱氮除磷工艺课程设计
AAO脱氮除磷工艺课程设计

课程设计

课程名称水污染控制工程

题目名称A/A/O脱氮除磷工艺课程设计学生学院环境科学与工程学院

专业班级 07环境工程(1)班

学号

学生姓名

指导教师

20010 年7 月 6 日

一.基本原理

厌氧-缺氧-好氧(Anaerobic-Anoxic-Oxic,简称A/A/O或A2/O)工艺由厌

氧池、缺氧池、好氧池串联而成,是A

1/O与A

2

/O流程的结合。是20世纪70年

代由美国专家在厌氧-好氧除磷工艺基础上开发出来的。该工艺在厌氧-好氧除磷工艺中加入缺氧池,将好氧池流出的一部分混合液流至缺氧池的前端,以达到反硝化脱氮的目的。工艺流程图如下:

污水出水

回流污泥剩余污泥

污水进入厌氧反应区,同时进入的还有从二沉池回流的活性污泥,聚磷菌在厌氧环境下释磷,同时转化易降解COD、VFA为PHB,部分氨氮因细胞的合成而去除。

污水经过第一厌氧反应器以后进入缺氧反应器,本反应器的首要功能是进行脱氮。硝态氮通过混合液内循环由好氧反应器传输过来,通畅内回流量为2至4倍原污水量,部分有机物在反硝化菌的作用下利用硝酸盐作为电子受体而得到降解去除,磷基本无变化。

混合液从缺氧反应区进入好氧反应区,混合液中的COD浓度已基本接近排放标准,在好氧反应区除进一步降解有机物外,主要进行氨氮的硝化和磷的吸收,混合液中的硝态氮回流至缺氧区,污泥中过量吸收的磷通过剩余污泥排除。

厌氧-缺氧-好氧工艺可以同时完成有机物的去除、反硝化脱氮、除磷的功能,脱氮的前提是氨氮应完全硝化,好氧池能完成这一功能,缺氧池能完成脱氮的功能,厌氧池和好氧池联合完成除磷功能。

二.工艺特点

(1)厌氧、缺氧、好氧三种不同的环境条件和不同类型的微生物菌群的有机结合,能同时具有去除有机物、脱氮除磷的功能。

厌氧池缺氧池好氧池沉淀池

(2)工艺简单,水力停留时间较短。 (3)SVI 一般小于100,不会发生污泥膨胀。 (4)污泥中含磷量高,一般在2.5%以上。

(5)脱氮效果受混合液回流比大小的影响。除磷效果则受回流污泥中挟带溶解氧DO 和硝酸态氧的影响。

三.设计参数

污水处理量Q :20000m 3/d

BOD5污泥负荷Us :0.13kgBOD 5/(kgMLSS·d) 回流污泥浓度Xr :6000mg/L 污泥回流比R :80% 混合液回流比Ri :400%

四.设计计算 (1)反应池设计计算

① 混合液固体浓度

2667mg/l 60000.810.8Xr R 1R X =???

?

??+=??? ??+=

② 反应池容积

0QS 10000100

V 2884.3NX 0.132667

?=

==?m 3 ③ 水力停留时间

进水 出水 COD (mg/L ) 180 40 TN (mg/L ) 40 15 TP (mg/L ) 4 1 BOD (mg/L ) 100 20 氨氮(mg/L ) 35

10

V 2884.3t 0.29d 7h Q 10000

=

=== ④ 各段水力停留时间和容积

厌氧∶缺氧∶好氧 = 1∶1∶3

t 厌氧=1.4h V 厌氧=1153.7m 3

t 缺氧=1.4h V 缺氧=1153.7m 3 t 好氧=4.2h V 好氧=3661.1m 3

⑤ 反应池的主要尺寸

设反应池有2组,则V Vd 1442.132

==m 3

设有效水深h = 4 m ,则d d V 1442.13S 360.5h 4

===m3 拟采用廊道式推流反应池,廊宽b = 5 m ,廊道数n = 4个 m 05.364

5721

bn S L d =?==

3 取L = 40m 校核:

25

.145

h b == 满足1~2的范围,

85

40b L == 满足5~10的范围 取超高为1m ,则反应池总高H = 5m (3)反应池进、出水系统设计计算

① 进水管设计

单池进水流量0.1163600

242200002Q

Q1=??==m 3/s

设流速v=0.8m/s 过水面积145.08

.0116.0v Q1A ===

m 2 管径0.43π

4A

d ==

m = 430 mm 取进水管管径为DN450 mm ② 回流污泥管设计 流量09.03600

24220000

8.02

Q

R Qr =???=

?=m 3/s

设流速v = 0.8m/s 面积0.120.8

0.09v Qr A ===

m 2 管径391mm 0.391m π

4A

d ===

取回流污泥管管径为DN400mm ③ 进水井设计

进水孔流量()()0.2083600

242200000.812Q R 1Q 2=???+=+=m 3/s 设流速v = 0.5m/s 面积0.420.5

0.208

v Q A 2==

=m 2

孔口尺寸取700mm ×600mm

进水井平面尺寸取3000mm ×3000mm

④ 出水堰及出水井设计

出水堰量Q 3等于出水孔流量Q 4

()

()0.683600

2422000020.812Q Ri R 1Q3=???++=++= m3/s 2

323

3bH

86.1bH

2g 0.42Q =

=

设出水堰宽度b = 7m 求得堰上水头H = 0.105m 设出水孔孔口流速v = 0.5m/s 孔口面积 1.360.5

0.68v Q A 4===

m 2 取A = 1.5m 2

则孔口尺寸为2000mm ×750mm

出水井平面尺寸取3000mm ×3000mm

⑤ 出水管设计

出水管流量Q5等于出水流量Q3 设管内流速v=0.8m/s 过水面积0.850.8

0.68v Q A 5===

m2 管径 1.04m π

4A

d ==

取出水管管径为DN1100mm 校核流速0.72m/s 1.14

π0.68

A'Q5v'2

=?==

(4)曝气系统设计计算

污泥产率系数Y 取0.6kgMLVSS/kgBOD 5 内源代谢系数Kd 取0.08d -1 污泥泥龄取10d 可求剩余污泥量△Xv

()()533.3k g /d 1010

0.08120100200000.6θc

K 1Se S YQ ΔXv 3

d 0=??+-??=?+-=

-

曝气需氧量

()()1595.6k g /d

533.31.420.6820-10020000 1.42Δ.0.68

S S Q O v

e 02=?-?=--=

考虑到氨氮氧化时还需要一定的需氧量,故最终需氧量取2000kg/d 本设计采用鼓风曝气,有效水深4m ,曝气扩散器安装距池底0.2m , 则扩散器上静水压3.8m ,α取0.7,β取0.95,ρ取1,曝气设备堵塞系数F 取0.8,采用管式微孔扩散器,E A =20%,扩散器压力损失4kPa ,20oC 水中溶解氧饱和度为9.17mg/L 。

扩散器出口处绝对压力P d

Pa

101.39 3.8109.8101.013H

109.8P P 5353d ?=??+?=?+= 空气离开曝气池面时,气泡含氧体积分数

()()()()17.5%

0.2121790.2121E 12179E 121A A 0=-?+-?=-+-=

? 20oC 曝气池混合液中平均氧饱和度

10.11mg/l

4217.5102.026101.399.1742102.026Pd C C 5505

S S =????

??+???=??? ??

+?=?

标准条件下充氧量

[]()179.4kg/h

4306.7kg/d 0.81210.1110.950.79.17

2000F

1.024C Cs(T )ρβαCs O Os 20

T (20)

2==??-????=??-???=

- 好氧池供气量

/h 3203.6m 0.2

0.28179.4

0.28E Os Gs 3A =?==

最大供气量Gmax = 1.4Gs = 4485m 3/h

选择三台风机,两用一备,则单台风机风量为2242.5m 3/h 所需空气压力p=5m 设扩散器个数h 1为600个 校核微孔扩散器服务面积

331好氧0.75m 0.601m 600

360.5

h A f <===

池内4支供气管流量

/s 0.3m /h 1121.3m 4

4485G 41Qs 33max ====

流速取10m/s 管径 0.19m 10

3.140.3

4πv 4Q d s =??==

取管径为DN200mm 鼓风机房出口管管径0.4m 10

3.14360044854πv 4G d'max =??==

取管径为DN400mm

(5)厌氧池、缺氧池设备选择

单个厌氧池、缺氧池设有导流墙和4台水下推进器,所需功率按 5w/m3计算

单池有效容积3

580m 4529h b L V =??=??= 单池总功率为W 29005805=?

(6)污泥回流设备

回流污泥量/h 666.7m /d 16000m

200000.8Q R Q 3

3R ==?=?= 设污泥泵房1座,3台潜污泵,两用一备 单泵流量/h 333.35m Q 2

1

Q 3R R 单== (7)混合液回流设备

① 混合液回流泵设计

回流流量/h 3333.33m /d 80000m 400%20000

Ri Q Qi 3

3==?=?= 设回流泵房2座,每座泵房设3台潜污泵,两用一备 单泵流量/h 833.33m 4

3333.33Qi 41Qi 单3===

② 混合液回流管设计

回流混合液由出水井流至回流泵房,经过潜污泵分别提升至两个缺氧池首段。

设回流管内流速v=0.8m/s

过水面积

21.2m 0.8

36003333.33

v

Qi A === 管径 1.2m π

4A

d ==

取管径为DN1200mm 泵房出水管流量/s 0.463m 2

36003333.33

2

Qi Q 3===

流速v=1m/s 过水面积20.463m 1

0.463V Q A ===

管径0.775m 3.14

0.4634π4A d =?== 取管径为DN800mm

五.调试和运行

调试前对构筑物、设备等进行认真检查是非常重要和必要的,以下问题较普遍:

(1)构筑物、管道内的建筑垃圾未清理干净,造成水泵和曝气系统的堵塞,影响排泥。

(2)预留孔洞、管道伸缩缝、电缆穿孔处密封不好,通水后存在漏水现象,影响调试工作。

(3)出水堰和墙体接缝处渗漏严重,甚至导致堰口不出水,无法达到设计要求。 (4)搅拌器或推进器安置角度不正确或位置不合理,导致能量浪费和局部流速不足,造成局部污泥沉积。

调试过程的工艺参数控制主要涉及溶解氧,活性污泥的生物相,污泥增长率和回流比。该法需要注意的问题是,进入沉淀池的混合液通常需要保持一定的溶解氧浓度,以防止沉淀池中反硝化和污泥厌氧释磷,但这会导致回流污泥和回流混合液中存在一定的溶解氧,回流污泥中存在的硝酸盐对厌氧释磷过程有一定的

影响,同时,系统所排放的剩余污泥中,仅有一部分污泥是经历了完整的厌氧和好氧过程,影响了污泥的充分吸磷。

另外A/A/0工艺运行不当也可出现污泥膨胀问题。这主要是由于负荷分布不均引起的,好氧区一直处于低负荷运行状态造成了丝状菌的大量增殖。单纯提高好氧区的DO浓度只能部分抑制污泥膨胀,应该联合负荷控制来消除A/A/O工艺的污泥膨胀现象。沉淀性能良好的污泥粒径分布范围较广,且以球菌为主;膨胀污泥的粒径大都在10pLm以内,污泥较为细碎,扫描电镜可见大量丝状菌,少量球菌只是被包埋在丝状菌内部。

六.心得体会及总结

A/ A /0 工艺是由厌氧池/缺氧池/好氧池/沉淀池系统所构成,是在A/0除磷工艺基础上,在厌氧反应器之后增设一个缺氧反应器,并使好氧反应器中的混合液回流至缺氧反应器,使之反硝化脱氮。A/ A /0 工艺具有较好的耐冲击负荷能力,出水水质较稳定,可以进行脱氮除磷,但硝化菌、反硝化菌和聚磷菌在有机负荷、泥龄以及碳源需求上存在着矛盾和竞争,很难在同一系统中长期获得氮、磷的高效去除;同时A/A/0工艺存在着碳源不足和回流混合液中硝酸盐进人厌氧区干扰除磷的问题。对于这一工艺的缺点,可以通过将缺氧池前置解决,使污水依次通过缺氧池、厌氧池、好氧池,混合液内回流至缺氧池,即倒置A/A/O工艺。

这次的课程设计主要是针对反应池这一构筑物,对格栅、沉淀池、集水管网和其他附属设施都没有明确的要求,但是在做设计的时候还是会看到相关的资料,可见一个污水处理流程是一个完整的过程,每一个环节都对下一步处理阶段和整个处理效果产生影响,必须具有综合考虑的思维和意识。

通过这次课程设计,我学到了不少东西,最后要感谢老师给与我们的指导和帮助,希望以后还有机会加深学习,更全面的掌握水污染控制工程。

参考文献

1.高廷耀,顾国维,周琪主编. 水污染控制工程下册.北京:高等教育出版社,2007

2.崔玉川,刘振江,张绍怡等编. 城市污水厂处理设施设计计算. 北京:化学工业出版社,2004

3.王志魁编. 化工原理第三版. 北京:化学工业出版社,2004

4.游映玖主编. 新型城市污水处理构筑物图集. 北京:中国建筑工业出版社,2007

5.付忠志,邹利安.深圳罗芳污水厂一期工程试运行简评[J].给水排水,2000,26(1):6—10.

6.方茜,韦朝海,张朝升,等.碳氮磷比例失调城市污水的同步脱氮除磷[J].环境污染治理技术与设备,2005,6(11):46—50.

7.陈际鲜,龙秋明,蒋以元,吴成强,何刚.A/A/0工艺调试运行体会[J].北京水务2007年第3期:32-34.

1.空压机选定

空气扩散装置安装在距曝气池池底0.2m处,因此空压机所需压力

为:P=P0+ gh=101000+1000*9.8*(4-0.2)=138240Pa=138.24KPa

空压机供气量:1519/60=25.3m3/min

根据所需压力及空气量决定采用选择三台LGU75A固定式双螺杆空气压缩风机,两用一备。

2.混合液回流泵选定

由混合液流量为0.24m3/s=3600*0.24=864m3/h

选用QZ型轴流式潜水电泵2台,一用一备,型号为350QZ-100,流量1188m3/h,扬程4.21m,转速1450r/min,轴功率17N/kw,配用轴功率22N/kw,叶轮直径300mm,效率80.5%。

污水处理工艺中如何进行脱氮除磷

污水处理工艺中如何进行脱氮除磷? 氮、磷的主要危害:一是受纳水体富营养化;二是影响水源水质,增加给水处理成本;三是对人和生物有一定的毒害。 生物脱氮分为三步: 1、氨化作用,即水中的有机氮在氨化细菌的作用下转化成氨氮。在普通活性污泥法中,氨化作用进行得很快,无需采取特殊的措施。 2、硝化作用,即在供氧充足的条件下,水中的氨氮首先在亚硝酸钠的作用下被氧化成亚硝酸盐,然再在硝酸菌的作用下进一步氧化成硝酸盐。为防止生长缓慢的亚硝酸细菌和硝酸细菌从活性污泥系统中流失, 要求很长的污泥龄。 3、反硝化作用, 即硝化产生的亚硝酸盐和硝酸盐在反硝化细菌的作用下被还原成氮气。这一步速率也比较快, 但由于反硝化细菌是兼性厌氧菌, 只有在缺氧或厌氧条件下才能进行反硝化, 因此需要为其创造一个缺氧或厌氧的环境( 好氧池的混合液回流到缺氧池) 。 生物除磷原理 所谓生物除磷, 是利用聚磷菌一类的微生物, 在厌氧条件下释放磷。而在好氧条件下, 能够过量地从外部环境摄取磷, 在数量上超过其生理需要, 并将磷以聚合的形态储藏在菌体内, 形成高磷污泥排出系统, 达到从污水中除磷的效果。 可分为三个阶段,,即细菌的压抑放磷、过渡积累和奢量吸收。 首先将活性污泥处于短时间的厌氧状态时,储磷菌把储存的聚磷酸盐进行分解,提供能量,并 大量吸收污水中的BOD、释放磷( 聚磷酸盐水解为正磷酸盐) ,使污水中BOD 下降,磷含量升高。然后在好氧阶段,微生物利用被氧化分解所获得的能量,大量吸收在厌氧阶段释放的磷和原污水中的磷,完成磷的过渡积累和最后的奢量吸收,在细胞体内合成聚磷酸盐而储存起来,从而达到去除BOD 和磷的目的。 脱氮除磷工艺 1、传统A2/O 法即厌氧→缺氧→好氧活性污泥法。污水在流经三个不同功能分区的过程中,在不同微生物菌群作用下,使污水中的有机物、氮和磷得到去除。原污水的碳源物质(BOD)首先进入厌氧池聚磷菌优先利用污水中易生物降解有机物成为优势菌种,为除磷创造了条件,然后污水进入缺氧池,反硝化菌利用其它可利用的碳源将回流到缺氧池的硝态氮还原成氮气排入到大气中, 达到脱氮的目的。 2、氧化沟工艺是一种污水处理工艺形式,因其构造简单、易于维护管理,很快得到广泛应用。主要有Passveer单沟型、Orbal同心圆型、Carrousel循环折流型、D型双沟式和T型三沟式等。传统Passveer单沟型和Carrousel型氧化沟不具备脱氮除磷功能,但是在Carrousel氧化沟前增设厌氧池,在沟体内通过曝气装置的合理设置形成缺氧区和好氧区,形成改良型氧化沟,便具备生物脱氮除磷功能。 3、SBR 法是间歇式活性污泥法,降解有机物,属循环式活性污泥法范围,主要是好氧活性污泥,回流到反应池前部的污泥吸附区,回流污泥中硝酸盐得以反硝化在充分条件下可大量吸附进水中的有机物达到脱氮除磷的效果。 随着对脱氮除磷机理的深入探究,新工艺的不断出现及其可行性, 为水处理工艺提供了新的理论和思路。但社会的可持续发展给污水脱氮除磷处理提出了越来越高的要求,污水处理已不仅限于满足排放标准,更要考虑污水的资源化和能源化的问题,必须朝着最小的COD 氧化、最低的氮磷排放量、最少的剩余污泥排放等可持续污水处理工艺的方向发展。而生物学及其技术的发展,能使生物脱氮除磷工艺得到更大的发展。

AAO脱氮除磷工艺课程设计

课程设计 课程名称水污染控制工程 题目名称A/A/O脱氮除磷工艺课程设计学生学院环境科学与工程学院 专业班级07环境工程(1)班 学号 学生姓名 指导教师 20010 年7 月 6 日

基本原理 厌氧-缺氧-好氧(Anaerobic-Anoxic-Oxic,简称A/A/O或A2/O)工艺由厌氧池、缺氧池、好氧池串联而成,是A1/O与A2/O流程的结合。是20世纪70年代由美国专家在厌氧-好氧除磷工艺基础上开发出来的。该工艺在厌氧-好氧除磷工艺中加入缺氧池,将好氧池流出的一部分混合液流至缺氧池的前端,以达到反硝化脱氮的目的。工艺流程图如下: 污 出水 污水进入厌氧反应区,同时进入的还有从二沉池回流的活性污泥,聚磷菌在厌氧环境下释磷,同时转化易降解COD、VFA为PHB,部分氨氮因细胞的合成而去除。污水经过第一厌氧反应器以后进入缺氧反应器,本反应器的首要功能是进行脱氮。硝态氮通过混合液内循环由好氧反应器传输过来,通畅内回流量为2至4倍原污水量,部分有机物在反硝化菌的作用下利用硝酸盐作为电子受体而得到降解去除,磷基本无变化。 混合液从缺氧反应区进入好氧反应区,混合液中的COD浓度已基本接近排放标准,在好氧反应区除进一步降解有机物外,主要进行氨氮的硝化和磷的吸收,混合液中的硝态氮回流至缺氧区,污泥中过量吸收的磷通过剩余污泥排除。 厌氧-缺氧-好氧工艺可以同时完成有机物的去除、反硝化脱氮、除磷的功能,脱氮的前提是氨氮应完全硝化,好氧池能完成这一功能,缺氧池能完成脱氮的功能,厌氧池和好氧池联合完成除磷功能。 工艺特点 厌氧、缺氧、好氧三种不同的环境条件和不同类型的微生物菌群的有机结合,能同时具有去除有机物、脱氮除磷的功能。 工艺简单,水力停留时间较短。 SVI一般小于100,不会发生污泥膨胀。 污泥中含磷量高,一般在%以上。 脱氮效果受混合液回流比大小的影响。除磷效果则受回流污泥中挟带溶解氧DO 和硝酸态氧的影响。 设计参数 污水处理量Q:20000m3/d

污水处理生物脱氮除磷工艺

污水处理生物脱氮除磷工艺 在城市生活污水处理厂,传统活性污泥工艺能有效去除污水中的BOD5和SS,但不能有效地去除污水中的氮和磷。如果含氮、磷较多的污水排放到湖泊或海湾等相对封闭的水体,则会产生富营养化导致水体水质恶化或湖泊退化,影响其使用功能。因此,在对污水中的BOD5和SS进行有效去除的同时,还应根据需要,考虑污水的脱氮除磷。其中A-A-O(厌氧-缺氧-好氧)为同步生物脱氮除磷工艺的一种。 一、工艺原理及过程 A-A-O生物脱氮除磷工艺是活性污泥工艺,在进行去除BOD、COD、SS的同时可生物脱氮除磷。 在好氧段,硝化细菌将入流污水中的氨氮及由有机氮氨化成的氨氮,通过生物硝化作用,转化成硝酸盐;在缺氧段,反硝化细菌将内回流带入的硝酸盐通过生物反硝化作用,转化成氮气逸入大气中,从而达到脱氮的目的;在厌氧段,聚磷菌释放磷,并吸收低级脂肪酸等易降解的有机物;而在好氧段,聚磷菌超量吸收磷,并通过剩余污泥的排放,将磷去除。以上三类细菌均具有去除BOD5的作用,但BOD5的去除实际上以反硝化细菌为主。污水进入曝气池以后,随着聚磷菌的吸收、反硝化菌的利用及好氧段的好氧生物分解,BOD5浓度逐渐降低。在厌氧段,由于聚磷菌释放磷,TP浓度逐渐升高,至缺氧段升至最高。在缺氧段,一般认为聚磷菌既不吸收磷,也不释放磷,TP保持稳定。在好氧段,由于聚磷菌的吸收,TP迅速降低。在厌氧段和缺氧段,NH3-N浓度稳中有降,至好氧段,随着硝化的进行,NH3-N逐渐降低。在缺氧段,由于内回流带入大量NO3-N,NO3-N瞬间升高,但随着反硝化的进行,NO3-N浓度迅速降低。在好氧段,随着硝化的进行,NO3-N浓度逐渐升高。 二、A-A-O脱氮除磷系统的工艺参数及控制 A-A-O生物脱氮除磷的功能是有机物去除、脱氮、除磷三种功能的综合,因而其工艺参数应同时满足各种功能的要求。如能有效地脱氮或除磷,一般也能同时高效地去除BOD5。但除磷和脱氮往往是相互矛盾的,具体体现的某些参数上,使这些参数只能局限在某一狭窄的范围内,这也是A-A-O系统工艺系统控制较复杂的主要原因。 1.F/M和SRT。完全生物硝化,是高效生物脱氮的前提。因而,F/M(污泥负荷)越低,SRT(污泥龄)越高。脱氮效率越高,而生物除磷则要求高F/M低SRT。A-A-O生物脱氮除磷是运行较灵活的一种工艺,可以以脱氮为重点,也可以以除磷为重点,当然也可以二者兼顾。如果既要求一定的脱氮效果,也要求一定的除磷效果,F/M一般应控制在0.1-0.18㎏ BOD5/(kgMLVSS·d),SRT一般应控制在8-15d。

生物脱氮除磷原理及工艺

生物脱氮除磷原理及工艺 1 引言 氮和磷是生物的重要营养源,随着化肥、洗涤剂和农药普遍使用,天然水体中氮、磷含量急剧增加,水体中蓝藻、绿藻大量繁殖,水体缺氧并产生毒素,使水质恶化,对水生生物和人体健康产生很大的危害。然而, 我国现有的城市污水处理厂主要集中于有机物的去除,污(废)水一级处理只是除去水中的沙砾及悬浮固体;在好氧生物处理中,生活污水经生物 降解,大部分的可溶性含碳有机物被去除。同时产生N NH -3、N NO --3和- 34PO 和-24 SO ,其中25%的氮和19%左右的磷被微生物吸收合成细胞,通过排泥得到去除;二级生物处理则是去除水中的可溶性有机物,能有效地降低污水中的5BOD 和SS , 但对N 、P 等营养物只能去除10%~ 20% , 其结果远不能达到二级排放标准。因此研究开发经济、高效的, 适于现有污水处理厂改造的脱氮除磷工艺显得尤为重要。 2 生物脱氮除磷机理 2.1 生物脱氮机理 污水生物脱氮的基本原理就是在将有机氮转化为氨态氮的基础上,先利用好氧段经硝化作用,由硝化细菌和亚硝化细菌的协同作用,将氨氮通过反硝化作用转化为亚硝态氮、硝 态氮,即,将3NH 转化为N NO --2和N NO --3。在缺氧条件下通过反硝化作用将硝氮转 化为氮气,即,将N NO -- 2(经反亚硝化)和N NO --3(经反硝化)还原为氮气,溢出水面释放到大气,参与自然界氮的循环。水中含氮物质大量减少,降低出水的潜在危险性,达到从废水中脱氮的目的[1]。 ○ 1硝化——短程硝化:O H HNO O NH 22235.1+→+ 硝化——全程硝化(亚硝化+硝化):O H HNO O NH 22235.1+???→?+亚硝酸菌 3225.0HNO HNO O ??→?+硝酸菌 ○ 2反硝化——反硝化脱氮:O H H CO N OH CH CH HNO 2222333][222+++→+ 反硝化——厌氧氨氧化脱氮:O H N HNO NH 22232+→+ ][35.122233H O H N HNO NH ++→+

废水的生物脱氮除磷新工艺的设想

收稿日期:2002—10—03 作者简介:付春平(1975—),女,黑龙江肇州人,重庆大学2001级在读硕士,研究方向为水污染控制理论与技术。 废水的生物脱氮除磷新工艺的设想 付春平1,钟成华2,邓春光2 (1.重庆大学城市建设与环境工程学院,重庆400045;2.重庆市环境科学研究院,重庆400020) 摘 要:结合废水生物脱氮除磷机理和影响因素,在对几种典型脱氮除磷工艺氮、磷去除率进行比较的基础上,解析了一些典型工艺除氮除磷不足之处。根据重庆城市污水水质实际情况和地形的特点,设想一种新的生物脱氮除磷工艺,从而弥补传统工艺的不足。可望提高系统的脱氮和除磷效率,达到更好的脱氮除磷的目的,减少对水体的污染。 关键词:生物脱氮除磷;新工艺;设想 中图分类号:X 522 文献标识码:A 文章编号:1001-2141(2003)-0039-04 随着工业的发展,人民生活水平的提高,城市污水产生量逐日增加,由于城市排水系统的不完善,成分较为复杂的城市综合污水,造成环境污染。重庆地处长江三峡库区,氮磷等营养元素大量入库,将对库区的生态环境造成威胁。因此,探讨和研究适合三峡库区的脱氮除磷实用技术,防止水库富营养化,是十分必要的。 1 水体富营养化状况评价指标 通常水体富营养化指标主要是氮、磷、叶绿素、透 明度、高锰酸钾等指数。一般认为水体中氮、磷为主要控制因素,当总磷浓度高于0.02m g L ,总氮浓度高于0.2~0.5m g L ,即被视为水体富营养化。 2 生物脱氮除磷的基本原理及其影响因素 2.1 生物脱氮的基本原理2.1.1 氨化反应 有机氮化合物在氨化细菌的作用下分解,转化为 氨态氮,这一过程称为“氨化反应”。以氨基酸为例,其反应式为: RCHN H 2COOH +O 2 氨化菌 RCOOH +CO 2+ N H 3 2.1.2 硝化反应 在硝化细菌的作用下,氨态氮进一步分解、氧化, 就此分两个阶段进行。首先,在亚硝化细菌的作用下,使氨(N H +4)转化为亚硝酸氮,反应式为: N H + 4+3 2O 2亚硝化菌 NO -2+2H 2O +2H + -?F (?F =278.42KJ ) 亚硝酸氮在硝酸菌的作用下,进一步转化为硝酸氮,其反应式为: NO -2+1 2O 2硝化菌 NO -3-?F (?F =72.27KJ ) 硝化反应总反应式为: N H + 4+2O 2NO -3+H 2O +2H + -?F (?F =351KJ ) 2.1.3 反应正常进行应保持的环境条件 ①耗氧条件,满足“硝化需氧量”的要求并保持一定的碱度。 ②混合液中有机底物含量不应过高,BOD 5值应在15~20m g l 以下。2.1.4 进行硝化反应应当保持的各项指标 ①溶解氧:在进行硝化反应的曝气池内,溶解氧含量不能低于1m g L 。 ②温度:硝化反应的适宜温度是20~30℃以下,15℃时硝化速度下降,5℃完全停止。 ③pH 值:最佳pH 值为8.0~8.4。④生物固体平衡停留时间:一般对(Ηc )N 的取值,至少为硝化菌世代时间的2倍以上,温度低,(Ηc )N 取值应明显提高。 ⑤重金属及有害物质:重金属,高浓度的N H +4-N ,NO -x N 有机物及络合阳离子等对硝化反应产生抑 制作用。 2.1.5 反硝化 反硝化反应是指硝酸氮(NO -3-N )和亚硝酸氮(NO -2-N )在反硝化菌的作用下,被还原为气态氮(N 2)的过程。 第25卷 第2期 重 庆 环 境 科 学 2003年2月

污水处理工艺脱氮除磷基本原理

污水处理生物脱氮除磷基本原理 国外从六十年代开始系统地进行了脱氮除磷的物理处理方法研究,结果认为物理法的缺点是耗药量大、污泥多、运行费用高等。因此,城市污水处理厂一般不推荐采用。从七十年代以来,国外开始研究并逐步采用活性污泥法生物脱氮除磷。我国从八十年代开始研究生物脱氮除磷技术,在八十年代后期逐步 实现工业化流程。目前,常用的生物脱氮除磷工艺有A2/O法、SBR法、氧化沟法等。 ?生物脱氮原理 生物脱氮是利用自然界氮的循环原理,采用人工方法予以控制,首先,污水中的含氮有机物转化成氨氮,而后在好氧条件下,由硝化菌左右变成硝酸盐氮,这阶段称为好氧硝化。随后在缺氧条件下,由反硝化菌作用,并有外加碳源提供能量,使硝酸盐氮变成氮气逸出,这阶段称为缺氧反硝化。整个生物脱氮过程就是氮的分解还原反应,反应能量从有机物中获取。在硝化和反硝化过程中,影响其脱氮效率的因素是温度、溶解氧、PH值以及碳源,生物脱氮系统中,硝化菌增长速度较缓慢,所以,要有足够的污泥泥龄。反硝化菌的生长主要是在缺氧条件下进行,并且要用充裕的碳源提供能量,才可促使反硝化作用顺利进行。 由此可见,生物脱氮系统中硝化与反硝化反应需要具备如下条件: 硝化阶段:足够的的溶解氧,DO值在2mg/L以上,合适的温度,最好在20℃,不能低于10℃,,足够长的污泥泥龄,合适的PH条件。 反硝化阶段:硝酸盐的存在,缺氧条件DO值在0.2mg/L左右,充足碳源(能源),合适的PH条件。 生物脱氮过程如图5—1所示。 反硝化细菌 +有机物(氨化作用)(硝化作用)(反硝化作用)

?生物除磷原理 磷常以磷酸盐(H 2PO 4 -、HPO 4 2-和H 2 PO 4 3-)、聚磷酸盐和有机磷的形式存在于废水中,生物除 磷就是利用聚磷菌,在厌氧状态释放磷,在好氧状态从外部摄取磷,并将其以聚合形态储藏在体内,形成高磷污泥,排出系统,达到从废水中除磷的效果。 生物除磷主要是通过排出剩余污泥而去除磷的,因此,剩余污泥多少将对除磷效果产生影响,一般污泥龄短的系统产生的剩余污泥量较多,可以取得较高的除磷效果。有报道称,当泥龄为30d时,除磷率为40%,泥龄为17d时,除磷率为50%,而当泥龄降至5d时,除磷率达到87%。 大量的试验观测资料已经完全证实,再说横无除磷工艺中,经过厌氧释放磷酸盐的活性污泥,在好氧状态下有很强的吸磷能力,也就是说,磷的厌氧释放是好氧吸磷和除磷的前提,但并非所有磷的厌氧释放都能增强污泥的好氧吸磷,磷的厌氧释放可以分为两部分:有效释放和无效释放,有效释放是指磷被释放的同时,有机物被吸收到细胞内,并在细胞内储存,即磷的释放是有机物吸收转化这一耗能过程的偶联过程。无效释放则不伴随有机物的吸收和储存,内源损耗,PH变化,毒物作用引起的磷的释放均属无效释放。 在除磷系统的厌氧区中,含聚磷菌的会留污泥与污水混合后,在初始阶段出现磷的有效释放,随着时间的延长,污水中的易降解有机物被耗完以后,虽然吸收和储存有机物的过程基本上已经停止,但微生物为了维持基础生命活动,仍将不断分解聚磷,并把分解产物(磷)释放出来,虽然此时释磷总量不断提高,但单位释磷量所产生吸磷能力随无效释放量的加大而降低。一般来说,污水污泥混合液经过2小时厌氧后,磷的释放已经甚微,在有效释放过程中,磷的释放量与有机物的转化量之间存在着良好的相关性,磷的厌氧释放可使污泥的好氧吸磷能力大大提高,每厌氧释放1mgP,在好氧条件下可吸收2.0~2.24mgP,厌氧时间加长,无效释放逐渐增加,平均厌氧释放1mgP,所产生的好氧吸磷能力降至1mgP以下,甚至达到0.5mgP。因此,生物除磷并非厌氧时间越长越好,同时在运行管理中要尽量避免PH的冲击,否则除磷能

OAO脱氮除磷工艺

OAO脱氮除磷工艺 一、工艺流程图 二、工艺流程说明 OAO工艺是在传统AO工艺之前增加一级预曝气池,改良而成的一种新型脱氮除磷工艺。废水首先进入预曝气池,不仅能够有效去除其中的大量有机物,而且提供的好氧条件还能够降解废水中的有毒有害物质,如硫化物、硫氰酸根、酚等,从而为后续的生物脱氮工艺提供相对良好的条件,保证脱氮过程的顺利进行。经预曝气池和初沉池处理的废水与回流活性污泥相混合进入反应池。活性污泥在厌氧池进行磷的释放,混合液中磷的浓度随废水在厌氧池的停留时间的增长而增加,接着废水流入好氧池,活性污泥进行磷的摄取,混合液中磷的浓度随污水在厌氧池的停留时间的增长而减少。废水最后经二沉池进行固液分离后排放,沉淀的污泥一部分进行回流,剩余的排放。 三、工艺特点 预曝气池的DO浓度和COD去除效果直接影响着后续反应的进行。曝气量过高,一方面,不可避免破坏后续缺氧环境,影响反硝化效果;另一方面,过高的溶解氧使得原水COD 的大量去除,导致后续反硝化过程碳源不足。曝气量过低,则废水中的有毒有害物质难以有效去除,对后续反应造成不理影响。因此,科学合理的控制预曝气池的曝气量,对保证良好的脱氮效果意义重大。 双泥法多点进水OAO工艺在常规的A/O前增设曝气池,可对进水中的COD进行初步降解,为后续O段硝化菌的低负荷培养创造适宜的条件和环境,提高硝化效率进而提高反硝化效率;同时通过科学分配进水点位及进水水量,为反硝化菌及聚磷菌提供充足的碳源,从而提高反硝化和除磷效率;双泥法还可有效缓和单泥法脱氮除磷对碳源的竞争。此外,二沉池可与OAO主体合建,占地面积小,投资低,一体化设置,可实现设备产业化。 四、OAO工艺的研究现状 汤清泉等通过对比,研究了AAO工艺和OAO工艺在不同有机负荷和碳氮比的条件下,对焦化废水的处理效果。试验结果表明:2种工艺处理焦化废水对有机物和含氮物质去除均表现出良好的效果;针对这两种工艺,有机负荷和废水中难降解物质的高低对有机物的去除

生物脱氮除磷原理

生物脱氮原理 (碳源) (碳源)图1 硝化和反硝化过程 图2 A2/O工艺流程

水体中氮的存在形态 生物脱氮原理 1、氨化作用 在好氧或厌氧条件下,有机氮化合物在氨化细菌的作用下,分解产生氨氮的过程,常称为氨化作用。 有机氮 氨氮 2、硝化作用 以A 2/O 工艺为例,硝化作用主要发生在好氧反应器中,污水中的氨氮NH 4+-N 在亚硝酸 细菌的作用下转化为亚硝酸氮NO 2--N ,亚硝酸氮NO 2--N 在硝酸细菌的作用下进一步转化为硝酸氮NO 3 --N 。(见图 1左边) 亚硝酸细菌和硝酸细菌统称为硝化细菌,属于好氧自养型微生物,不需要有机物作为营养物质。 3、反硝化作用 反硝化作用主要发生在缺氧反应器中,好氧反应器中生成的硝酸氮NO 3--N 和亚硝酸氮NO 2--N 通过内循环回流到缺氧池中,在有一定碳源的条件下,由反硝化细菌先将硝酸氮NO 3--N 转化为亚硝酸氮NO 2--N ,亚硝酸氮再进一步转化为氮气N 2,水体中的氮从化合物转化为氮气进入到空气中,才能最终将污水中TN 降低。(见图1右边) 反硝化细菌是异养兼性缺氧型微生物,其反应需要在缺氧环境中才能进行。 氨化菌

生物除磷原理 磷在自然界以2 种状态存在:可溶态(正磷酸盐PO43-)或颗粒态(多聚磷酸盐)。 所谓除磷就是把水中溶解性磷转化为颗粒性磷,达到磷水分离。 厌氧释磷 污水在生物处理中,在厌氧条件下,聚磷菌的生长受到抑制,为了自身的生长便释放出其细胞中的聚磷酸盐,同时产生自身生长所需的所需的能量,称该过程为磷的释放。 好氧吸磷 进入好氧环境后,聚磷菌活力得到充分恢复,在充分利用基质的同时,从废水中摄取大量溶解态的正磷酸盐,从而完成聚磷的过程。 富含磷的污泥通过剩余污泥外排的方式最终使磷得到去除。

生物脱氮除磷工艺

生物脱氮除磷工艺 第一节 概述 一、营养元素的危害 氮素物质对水体环境和人类都具有很大的危害,主要表现在以下几个方面: 氨氮会消耗水体中的溶解氧; 氨氮会与氯反应生成氯胺或氮气,增加氯的用量; 含氮化合物对人和其它生物有毒害作用:① 氨氮对鱼类有毒害作用;② NO 3- 和NO 2-可被转化为亚硝胺——一种“三致”物质;③ 水中NO 3-高,可导致婴儿患变性血色蛋白症——“Bluebaby ”; 加速水体的“富营养化”过程;所谓“富营养化”就是指水中的藻类大量繁殖而引起水质恶化,其主要因子是N 和P (尤其是P );解决的办法主要就是要严格控制污染源,降低排入水环境的废水中的N 、P 含量;对于城市废水来说,利用传统的活性污泥法进行处理,对N 的去除率一般只有40%左右,对磷的去除率一般只有20~30%。 二、脱氮的物化法 1、氨氮的吹脱法: -++?+OH NH O H NH 423 2 O H H Cl NH HOCl NH 224++→+++ +-+++→+H O H Cl N HOCl Cl NH 332222 每mgNH 4+--N 被氧化为氮气,至少需要7.5mg 3、选择性离子交换法去除氨氮: 采用斜发沸石作为除氨的离子交换体。 出水 折点加氯法脱氯工艺流程

三、除磷的物化法(混凝沉淀法) 1、铝盐除磷 4343AlPO PO Al →+++ 一般用Al 2(SO 4)3,聚氯化铝(PAC )和铝酸钠(NaAlO 2) 2、铁盐除磷:FePO 4 Fe(OH)3 一般用FeCl 2、FeSO 4 或 FeCl 3 Fe 2(SO 4)3 3、石灰混凝除磷 O H PO OH Ca HPO OH Ca 23452423))((345+→++--+ 向含磷的废水中投加石灰,由于形成OH -,污水的pH 值上升,磷与Ca 2+反应,生成羟磷灰石。 第二节 生物脱氮工艺与技术 一、活性污泥法脱氮传统工艺 1、Barth 提出的三级活性污泥法流程: 第一级曝气池的功能:① 碳化——去除BOD 5、COD ;② 氨化——使有机氮转化为氨氮; 第二级是硝化曝气池,投碱以维持pH 值; 第三级为反硝化反应器,可投加甲醇作为外加碳源或引入原废水。 该工艺流程的优点是氨化、硝化、反硝化分别在各自的反应器中进行,反应速率较快且较彻底;但七缺点是处理设备多,造价高,运行管理较为复杂。 2、两级活性污泥法脱氮工艺

课程设计(论文)-脱氮除磷工艺设计

宝鸡文理学院2008 级 综合课程(学年)设计说明书 系别:地理科学与环境工程系 专业班级:环境工程2班 指导老师: 设计题目:脱氮除磷工艺 学生姓名: 学号: 学期:2010-2011第二学期 地理科学与环境工程系 2011年6月8日

脱氮除磷工艺设计 中文摘要:污水中的氮磷元素会导致水体的富营养化。生物脱氮过程中,污水中的有机氮及氨氮经过氨化作用、硝化作用、反硝化作用,最后转化为氮气。对应的在活性污泥法处理系统中应设置相应的好氧硝化段和缺氧反硝化段。生物除磷,污水中的磷以正磷酸盐、聚磷酸盐和有机磷等形式存在。生物除磷就是利用微生物对磷的释放和吸收作用,使磷积聚于微生物体内,从污水中去除。从几种常见的污水脱氮除磷工艺和实际水质综合考虑,采用氧化沟污水处理工艺。 关键词:脱氮;除磷;氧化沟

目录 1设计目的 (1) 2脱氮除磷主体构筑物综合课程设计1任务书 (1) 3.主要的脱氮除磷污水处理工艺及其优缺点介绍 (2) 3.1.A2/O工艺 (2) 3.2、SBR工艺 (3) 3.3、氧化沟 (3) 4、处理工艺选择及其流程 (4) 5、主要构筑物的设计计算与说明 (6) 5.1、提升泵的设计计算………………………………………………………… 5.2、细中格栅的设计计算 (6) 5.3、曝气沉砂池的计算 (8) 5.4、氧化沟设计计算 (10) 5.5、二沉池设计计算 (18) 5.6消毒池的设计计算…………………………………………………………. 6、实验总结: (20) 注释和参考文献 (20) 指导教师评语: (21) 工艺流程高程图 (24) 工艺流程平面图 (25) 此污水厂平面布置图 (26)

污水处理中的脱氮除磷工艺

污水处理中的脱氮除磷工艺 摘要:在陈述城市污水生物脱氮除磷机理的基础下,简单分析生物脱氮除磷的处理工艺。 关键词:脱氮除磷;机理;工艺 1 前言 城市污水中的氮、磷主要来自生活污水和部分工业废水。氮、磷的主要危害:一是使受纳水体富营养化;二是影响水源水质, 增加给水处理成本;三是对人和生物产生毒害。上述 危害严重制约了城市水环境正常功能的发挥, 并使城市缺水状况加剧,而且随着人民生 活水体的提高和环境的恶化,对水质的要求也越来越高。为了达到较好的脱氮除磷效果,环境工作者对一些传统工艺进行了改进或设计出新工艺,本文简单介绍一些脱氮除磷工艺。 2 生物脱氮原理【1】 一般来说, 生物脱氮过程可分为三步: 第一步是氨化作用, 即水中的有机氮在氨化细菌的作用下转化成氨氮。在普通活性污泥法中, 氨化作用进行得很快, 无需采取特殊的措施。第二步是硝化作用, 即在供氧充足的条件下, 水中的氨氮首先在亚硝酸菌的作用下被氧化成亚硝酸盐, 然后再在硝酸菌的作用下进一步氧化成硝酸盐。为防止生长缓慢的亚硝酸细菌和硝酸细菌从活性污泥系统中流失, 要求很长的污泥龄。第三步是反硝化作用, 即硝化产生的亚硝酸盐和硝酸盐在反硝化细菌的作用下被还原成氮气。这一步速率也比较快, 但由于反硝化细菌是兼性厌氧菌, 只有在缺氧或厌氧条件下才能进行反硝化, 因此需要为其创造一个缺氧或厌氧的环境( 好氧池的混合液回流到缺氧池) 。反应方程式如下: ( 1) 硝化反应: 硝化反应总反应式为: ( 2) 反硝化反应:

另外, 由荷兰Delft 大学Kluyver 生物技术实验室试验确认了一种新途径, 称为厌氧氨( 氮) 氧化。即在厌氧条件下,以亚硝酸盐作为电子受体,由自养菌直接将氨转化为氮, 因而不必额外投加有机底物。反应式为:NH4+NO2→N2+2H2O 3 生物除磷原理【1】 所谓生物除磷, 是利用聚磷菌一类的微生物, 在厌氧条件下释放磷。而在好氧条件下, 能够过量地从外部环境摄取磷, 在数量上超过其生理需要, 并将磷以聚合的形态储藏在菌体内, 形成高磷污泥排出系统, 达到从污水中除磷的效果。 生物除磷过程可分为3 个阶段,即细菌的压抑放磷、过渡积累和奢量吸收。首先将活性污泥处于短时间的厌氧状态时,储磷菌把储存的聚磷酸盐进行分解,提供能量,并大量吸收污水中的BOD、释放磷( 聚磷酸盐水解为正磷酸盐) ,使污水中BOD 下降,磷含量升高。然后在好氧阶段,微生物利用被氧化分解所获得的能量,大量吸收在厌氧阶段释放的磷和原污水中的磷,完成磷的过渡积累和最后的奢量吸收,在细胞体内合成聚磷酸盐而储存起来,从而达到去除BOD 和磷的目的。反应方程式如下: ( 1) 聚磷菌摄取磷: ADP+H3PO4+能量→ATP+H2O ( 2) 聚磷菌的放磷: ATP+H2O→ADP+H3PO4+能量 4.脱氮除磷工艺 4.1 AB法【2】 AB法污水处理工艺是一种新型两段生物处理工艺,是吸附生物降解法的简称。该工艺将高负荷法和两段活性污泥法充分结合起来,不设初沉池,A、B两段严格分开,形成各自的特征菌群,这样既充分利用了上述两种工艺的优点,同时也克服了两者的缺点。所以

生物脱氮除磷工艺中的矛盾

5,生物脱氮除磷工艺中的矛盾 (1)泥龄问题 作为硝化过程的主休,硝化菌通常都属于自养型专性好氧菌.这类微生物的一个突出特点是繁殖速度慢,世 代时间较长.在冬季,硝化菌繁殖所需世代时间可长达30d以上;即使在夏季,在泥龄小于5d的活性污泥中硝 化作用也十分微弱.聚磷菌多为短世代微生物,为探讨泥龄对生物除磷工艺的影响,Rensink等(1985年)[23]用表2归纳了以往的研究成果,并指出降低泥龄将会提高系统的除磷效率. 泥龄与除磷率关系表2 泥龄/d 30 17 5.3 4.6 磷去除率/% 40 50 87.5 91 由表2可见聚磷微生物所需要泥龄很短.泥龄在3.0d左右时,系统仍能维持较好的除磷效率.此外,生物除磷 的唯一渠道是排除剩余污泥.为了保证系统的除磷效果就不得不维持较高的污泥排放量,系统的泥龄也不得 不相应的降低.显然硝化菌和聚磷菌在泥龄上存在着矛盾.若泥龄太高,不利于磷的去除;泥龄太低,硝化菌 无法存活,且泥量过大也会影响后续污泥处理.针对此矛盾,在污水处理工艺系统设计及运行中,一般所采用 的措施是把系统的泥龄控制在一个较窄范围内,兼顾脱氮与除磷的需要.这种调和,在实践中被证明是可行 的. 为了能够充分发挥脱氮与降磷两类微生物的各自优势,可采取的其它对策大致上有两类. 第一类是设立中间沉淀池,搞两套污泥回流系统使不同泥龄的微生物居于前后两级(见图4),第一级泥龄很短,主要功能是除磷;第二级泥龄较长,主要功能是脱氮.该系统的优点是成功地把两类泥龄不同的微生物分开.但是,这类工艺也是存在局限性.第一,两套污泥回流系统,再加上中间沉淀池和内循环,使该类工艺流程 长且比较复杂.第二,该类工艺把原来常规A2/O(见图5)工艺中同步进行的吸磷和硝化过程分离开来,而各 自所需的反应时间又无法减少,因而导致工艺总的停留时间变长.第三,该工艺的第二级容易发生碳源不足 的情况,致使脱氮效率大受影响.此外,由于吸磷和硝化都需要好氧条件,工艺所需的曝气量也可能有所增加. 第二类方法是在A2/O工艺好氧区的适当位置投放填料.由于硝化菌可栖息于填料表面不参与污泥回流,故 能解决脱氮除磷工艺的泥龄矛盾.这种作法的优点是既达到了分离不同泥龄微生物的目的,又维持了常规 A2/O工艺的简捷特点.但是该工艺也必须解决好以下几个问题:①投放填料后必须给悬浮性活性污泥以优先 的和充分的增殖机会,防止生物膜越来越多而MLSS越来越少的情况发生;②要保证足够的搅拌强度,防止因 填料截留作用致使污泥在填料表面间大量结团;③填料投放量必须适中,投放量太少难以发挥作用,太多则难免出现对污泥的截留.此外,填料的类型和布置方式都应作慎重考虑.

脱氮除磷工艺汇总

脱氮除磷工艺汇总 MBR工艺脱氮除磷 MBR是一种结合膜分离和微生物降解技术的高效污水处理工艺。在反应器内,一方面,膜组件将泥水高效分离,促使出水水质改善;另一方面,污泥停留时间(SRT)与水力停留时(HRT)在反应器内相互独立,可提高污泥浓度;此外,反应器内较长的SRT可使增殖缓慢的某些特殊菌(如自养硝化菌等)在活性污泥中出现,而膜组件又能将这些菌持留,从而使MBR处理效果得以改善。 MBR工艺具有一定局限性,对于生活污水,其仅依靠MBR本身其脱氮除磷能力只能达到40%至60%左右的去除率;对于工业废水,其对难降解有机物的去除率并没有得到太大改善。所以MBR工艺一般和SBR系列/AAO等工艺组合使用。五种常见组合工艺: SBR-MBR工艺 A2O-MBR工艺 3A-MBR工艺 A2O/A-MBR工艺 A(2A)O-MBR工艺 SBR-MBR工艺: 将SBR与MBR相结合形成的SBR-MBR工艺,除了具有一般MBR的优点外,对于膜组件本身和SBR工艺两种程序运行都互有帮助。由于膜组件的截留过滤作用,反应中的微生物能最大限度地增长,利于世代时间较长的硝化及亚硝化细菌的生长繁殖,因此,污泥的生物活性高,吸附和降解有机物的能力较强,同时也具有较好的硝化能力。此外,SBR式的工作方式为除磷菌的生长创造了条件,同时也满足了脱氮的需要,使得单一反应器内实现同时高效去除氮磷及有机物成为可能。与传统SBR系统相比,SBR-MBR在反应阶段利用膜分离排水,可以减少传统SBR的循环时间;同时,序批式的运行方式可以延缓膜污染。

A2O-MBR工艺: 由A2O工艺与MBR膜分离技术结合而成的具有同步脱氮除磷功能的A2O-MBR工艺,可进一步拓展MBR的应用范畴。在该工艺中设置有两段回流,一段是膜池的混合液回流至缺氧池实现反硝化脱氮,另一段是缺氧池的混合液回流至厌氧池,实现厌氧释磷。A2O-MBR工艺中高浓度的MLSS、独立控制的水力停留时间和污泥停留时间、回流比及污泥负荷率等都会产生与传统A2O工艺不同的影响,具有较好的脱氮除磷效率。 3A-MBR工艺: 3A-MBR是依据生物脱氮除磷机理,结合膜生物反应器技术特点而形成的具有高效脱氮除磷性能的新型污水处理工艺。其基本原理是,膜生物反应器内的高浓度硝化液和高浓度活性污泥经过回流系统形成良好的缺氧、厌氧条件,实现系统的高效脱氮除磷。该工艺的内部流程依次是第一缺氧池、厌氧池、第二缺氧池、好氧池和膜池,膜池混合液分别回流至第一缺氧池和第二缺氧池。第一缺氧池利用进水碳源和回流硝化液进行快速反硝化,接着混合液进入厌氧池进行厌氧释磷,减少了硝酸盐对释磷的影响,第二缺氧池再利用污水中剩余的碳源和回流的硝化液进一步反硝化脱氮,好氧池内同步发生有机物降解、好氧释磷和好氧硝化等多种反应,彻底去除污水中的污染物,混合液再a经膜过滤出水,实现了对污水中有机物和氮磷的去除。3A-MBR工艺合理地组合了有机物降解和脱氮除磷等各处理单元,协调了各种生物降解功能的发挥,达到了同步去除各污染指标的目的,具有较高的推广应用价值。 A2O/A-MBR工艺: A2O/A-MBR工艺是一种强化内源反硝化的新型工艺,该工艺利用MBR内高浓度活性污泥和生物多样性来强化脱氮除磷效果,工艺流程依次为厌氧、缺氧、好氧、缺氧和膜池。该工艺在普通A2O工艺后再设一级缺氧池,在利用进水快速碳源完成生物除磷和脱氮后,再利用第二缺氧池进行内源反硝化,进一步去除TN,之后,再利用膜池的好氧曝气作用保障出水。A2O/A-MBR工艺是针对进水碳源不足,而同时又有较高脱氮要求的污水处理项目所开发,也是强化脱氮的MBR脱氮处磷

2019年脱氮除磷工艺发展

2019年脱氮除磷工艺发展 污水脱氮除磷工艺的概述与展望 摘要:近年来,城市污水(以城市生活污水为主)中氮磷营养物的排放使受纳水体中藻类等植物大量繁殖,导致水体富营养化问题越来越严重,对城市污水进行脱氮除磷处理是防止水体富营养化的一种重要措施。目前来看,污水脱氮除磷的主要方法有物理方法、化学方法及生物方法。与物理法、化学法相比,生物法具有适用范围广、投资及运行费用低、效果稳定、综合处理能力强等优点,已成为污水脱氮除磷的最佳选择。本文对现有的生物脱氮除磷工艺进行了系统的介绍和分析,并对今后的发展方向作了展望。 关键词:城市污水,脱氮除磷,工艺技术 1.城市污水脱氮除磷现状 据近年来环境质量公报发布的消息,水体中的主要污染物为含氮磷的有机物。这些污染物进一步加剧了水资源短缺的矛盾,对可持续发展战略的实施带来了严重的负面影响。目前含氮磷污水的处理技术可分为物理法、化学法、物理化学法和生物法。由于化学法与物理化学法成本高,对环境易造成二次污染,所以污水生物脱氮除磷技术是20世纪70年代美国和南非等国的水处理专家们在化学、催化和生物

方法研究的基础上提出的一种经济有效的处理技术,该技术由于处理过程可靠,处理成本低,操作管理方便等优点而被广泛使用。微生物脱氮除磷技术按微生物在系统中的不同状态,可分为活性污泥法和生物膜法,通过设立好氧区、缺氧区和厌氧区来实现硝化、反硝化、释磷和放磷以达到脱氮除磷的目的。具体的生物脱氮除磷工艺主要 有:A2/O法同步脱氮除磷工艺、生物转盘同步脱氮除磷工艺、SBR工艺、氧化沟工艺、亚硝酸盐生物脱氮工艺、AB法及其变型工艺等。污水经二级生化处理后,氮的去除率仅为20%~30%左右,磷的去除率则更低。因此脱氮除磷问题在二级处理普及率较高的工业化国家中受到了高度的重视。我国污水厂大多数以二级生物处理为主。二级生物处理厂去除对象主要是BOD5和SS,仅有极少数厂(如广州犬坦沙污水厂)有脱氮除磷功能。我国水体富营 养化日趋严重,其原因一是城市污水处理率低;二是传统的活性污泥法仅能去除城市污水中20%~40%的氮以及5%~20%的磷。因此,大量兴建城市二级生物处理厂,不但投资大,运行费用高,并且脱氮除磷的效率也并不高。 在实际的工程设计中,根据受纳水体的要求和其他一些实际情况,生物脱氮除磷工艺可以分成以下几个层次

脱氮除磷工艺原理及方法比较

1.水污染现状 自从我们进入和谐社会以来,随着科学和经济的发展,资源严重浪费、环境重度污染等一些问题逐渐突出。由于我国经济发展模式与环境承受能力不相融合,导致现在我国大部分水体造成严重污染。在我国坚持走可持续发展的道路上,水资源的污染和浪费已经成为我国推进现代化建设和可持续发展的绊脚石。防止水资源环境进一步被污染和治理被污染的水资源环境,早就成为我国目前最需要处理的棘手问题之一。水污染的现状也是触目惊心。 2.脱氮除磷工艺原理及方法比较 生物脱氮原理由同化作用、氨化作用、硝化作用、反硝化作用四个步骤组成。在污水生物处理过程中,一部分氮(氮氨或有机氮)被同化成微生物细胞的组分;氨化作用将有机氮化合物在氨化菌的作用下,分解、转化为氨氮;硝化作用实际上是由种类非常有限的自养微生物完成的,该过程分两步:氨氮首先由亚硝化单胞菌氧化为亚硝酸氮,继而亚硝酸氮再由硝化杆菌氧化为硝酸氮;反硝化作用是由一群异养型微生物在缺氧的条件下完成的生物化学过程。生物除磷原理过程中,在好氧条件下细菌吸收大量的磷酸盐,磷酸盐作为能量的储备;在厌氧状态下吸收有机底物并释放磷。 现在,广泛应用的生物脱氮除磷工艺方法有氧化沟法、SBR法、A2/O法等。 ①氧化沟又称连续循环反应器,是20世纪50年代由荷兰的公共卫生所(TNO)开发出来的。氧化沟是常规活性污泥法的一种改型和发展,是延时曝气法的一种特殊形式。其主要功能是供氧;保证其活性污泥呈悬浮状态,是污水、空气、和污泥三者充分混合与接触;推动水流以一定的流速(不低于0.25m/s)沿池长循环流动,这对保持氧化沟的净化功能具有重要的意义。 氧化沟具有出水水质好、抗冲击负荷能力强、除磷脱氮效率高、污泥易稳定、能耗省、便于自动化控制等优点。但是,在实际的运行过程中,仍存在一系列的问题,如污泥膨胀问题、泡沫问题、污泥上浮问题、流速不均及污泥沉积问题。 ②?间歇式活性污泥法简称SBR工艺,一个运行周期可分为五个阶段即:进水、反应、沉淀、排水、闲置。这种一体化工艺的特点是工艺简单,由于只有一个反应池,不需二沉池、回流污泥及设备,一般情况下不设调节池,多数情况下可省去初沉池。 SBR法?工艺流程:?污水?→?一级处理→?曝气池?→?处理水? 特点有:大多数情况下,无设置调节池的心要;SVI值较低,易于沉淀,一般情况下不会产生污泥膨胀;通过对运行方式的调节,进行除磷脱氮反应;自动化程度较高;得当时,处理效果优于连续式;单方投资较少;占地规模较大,处理水量较小。 ③?A2/O法即厌氧一缺氧一好氧活性污泥法。污水在流经厌氧、缺氧、好氧三个不同功能分区的过程中,在不同微生物菌群的作用下,使污水中的有机物、N、P得到去除。A2/O法是最简单的同步除磷脱氮工艺,总水力停留时问短,在厌?氧缺氧、好氧交替运行的条件下,可抑制丝状菌的繁殖,克服污泥膨胀,SVI一般小于100,有利于处理后的污水与污泥分离,

最新城镇污水处理厂工艺设计(生物脱氮除磷工艺

城镇污水处理厂工艺设计(生物脱氮除磷 工艺)

精品好文档,推荐学习交流 目录 1.设计任务书 (3) 2.设计说明书 (4) 2.1 工程概况 (4) 2.2污水处理厂设计规模及污水水质 (5) 2.2.1 设计规模 (5) 2.2.2 污水水质及污水处理程度 (5) 2.3 污水处理厂工艺设计 (5) 2.3.1污水处理工艺设计要求 (5) 2.3.2污水处理工艺选择 (6) 2.3.3污泥处理工艺选择 (10) 2.4 污水处理厂工程设计 (12) 2.4.1污水处理厂总平面设计 (12) 2.4.2污水处理厂总高程设计 (15) 2.5 各主要构筑物及设备说明 (16) 2.5.1粗格栅间 (16) 2.5.2水提升泵房 (17) 2.5.3细格栅间 (18) 2.5.4曝气沉砂池 (18) 2.5.5氧化沟 (19) 2.5.6二沉池 (19) 2.5.7 接触池 (19) 2.5.8加氯间 (20) 2.5.9污泥回流泵房 (21) 2.5.10污泥浓缩池 (21) 2.5.11污泥脱水间 (21) 2.5.12其他建筑物 (22) 3.设计计算书 (22) 3.1 设计依据 (22) 3.2设计流量 (23) 3.3格栅设计 (23) 3.3.1设计参数 (23) 3.3.2设计计算 (23) 3.4曝气沉砂池 (28) 3.4.1设计参数 (28) 3.4.2设计计算 (28) 3.5氧化沟 (30)

精品好文档,推荐学习交流 3.5.1设计参数 (30) 3.5.2设计计算 (30) 3.6辐流式二沉池 (36) 3.6.1设计参数 (36) 3.6.2 设计计算 (36) 3.7消毒池 (38) 3.7.1设计参数 (38) 3.7.2 设计计算 (38) 3.8液氯投配系统 (39) 3.8.1设计参数 (39) 3.8.2设计计算 (39) 3.9计量堰 (39) 3.10泥回流泵房 (40) 3.11浓缩池 (40) 3.12泥脱水间 (41) 4.污水厂成本概算 (41) 4.1 水厂工程造价 (41) 4.1.1 计算依据 (41) 4.1.2 单项构筑物工程造价计算 (41) 4.2 污水处理成本计算 (43) 参考文献 (44)

生物脱氮除磷工艺

生物脱氮除磷工艺

生物脱氮除磷工艺 第一节概述 一、营养元素的危害 氮素物质对水体环境和人类都具有很大的危害,主要表现在以下几个方面: 氨氮会消耗水体中的溶解氧; 氨氮会与氯反应生成氯胺或氮气,增加氯的用量; 含氮化合物对人和其它生物有毒害作用:①氨氮对鱼类有毒害作用;②NO3-和NO2-可被转化为亚硝胺——一种“三致”物质;③水中NO3-高,可导致婴儿患变性血色蛋白症——“Bluebaby”; 加速水体的“富营养化”过程;所谓“富营养化”就是指水中的藻类大量繁殖而引起水质恶化,其主要因子是N和P(尤其是P);解决的办法主要就是要严格控制污染源,降低排入水环境的废水中的N、P含量;对于城市废水来说,利用传统的活性污泥法进行处理,对N的去除率一般只有40%左右,对磷的去除率一般只有20~30%。 二、脱氮的物化法

1、氨氮的吹脱法: - ++?+OH NH O H NH 4 2 3 2、折点加氯法去除氨氮: O H H Cl NH HOCl NH 2 2 4 ++→++ + + - +++→+H O H Cl N HOCl Cl NH 3322 2 2 每mgNH 4+ --N 被氧化为氮气,至少需要7.5mg 的氯。 3、选择性离子交换法去除氨氮: 采用斜发沸石作为除氨的离子交换体。 调节pH 值 沉淀池 吹脱塔 出水 排泥 进水 石灰或石灰乳 吹脱法脱氨处理流程 NaOC 废折点加活性炭 吸附塔出折点加氯法脱 再生再生液 脱氯 废 澄清或沸石离子 交换床 NH 3或 离子交换法脱 出

三、除磷的物化法(混凝沉淀法) 1、铝盐除磷 4 343AlPO PO Al →++ + 一般用Al 2(SO 4)3,聚氯化铝(PAC )和铝酸钠 (NaAlO 2) 2、铁盐除磷:FePO 4 Fe(OH)3 一般用FeCl 2、FeSO 4 或 FeCl 3 Fe 2(SO 4)3 3、石灰混凝除磷 O H PO OH Ca HPO OH Ca 2 3 45 24 23))((345+→++-- + 向含磷的废水中投加石灰,由于形成OH -,污水的 pH 值上升,磷与Ca 2+反应,生成羟磷灰石。 第二节 生物脱氮工艺与技术 一、活性污泥法脱氮传统工艺 1、Barth 提出的三级活性污泥法流程:

相关文档
相关文档 最新文档