文档库 最新最全的文档下载
当前位置:文档库 › 工程光学

工程光学

工程光学
工程光学

工程光学

第二章理想光学系统

1、一个折射率为1.52的双凸薄透镜,其中一个折射面的曲率半径是另

一个折射面的2倍,且其焦距为5cm,则这两个折射面的曲率半径分别是(7.8)cm和(-3.9)cm。

2、一个薄透镜折射率为1.5,光焦度500D。将它浸入某液体,光焦度

变成-1.00D,则此液体的折射率为(1.502)。

3、反远距型光组由(一个负透镜和一个正透镜)组成,其特点是(工作

距大于组合焦距)。

4、远摄型光组由一个(正透镜)和一个(负透镜)组成,其主要特点

是(焦距大于筒长),因此该组合系统常用在(长焦距镜头)的设计中。

第三章平面与平面系统

1、反射棱镜在光学系统中的主要作用有(折叠光路)、(转折光路)和

转像、倒像等,在光路中可等效为平行平板加(平面反射镜)。

2、某种波长的光入射到顶角为60°的折射棱镜,测得最小偏向角为42°

15′,则该种玻璃对于入射波长的折射率为(1.557)。

3、唯一能完善成像的光学元器件是(平面反射镜),利用其旋转特性可

制作光学杠杆进行放大测量;利用双光楔也可以实现(微小角度和微小位移)的测量,主要有(双光楔旋转测微)和(双光楔移动测微)两种形式。

4、用于制作光学元件的光学材料包括光学玻璃,(光学晶体)和(光学

塑料)三类。选用光学玻璃时的两个重要参数是(折射率)和(阿贝常数)。

5、一个右手坐标的虚物,经一个直角屋脊棱镜反射后,成(右手)坐标

的(虚)像。

第四章光学系统中的光束限制

1、限制轴上物点成像光束宽度的光阑是(孔径光阑),而(渐晕光阑)

在其基础上进一步限制轴外物点的成像光束宽度。

2、为减少测量误差,测量仪器一般采用(物方远心)光路。

3、测量显微镜的孔径光阑放置在(物镜后焦平面上),视场光阑放置在

(一次实像面处),如果用1/2″的CCD接收图像并用14″的监视器观察图像,要求系统放大倍率为140倍,则显微镜的放大倍率是(5倍)。

第五章光线的光路计算及像差理论

1、实际像与(理想像)之间的差异称为像差,包括单色像差和色差两大

类。其中,引起单色像差的主要原因是(孔径)和(视场)。

2、在球差、慧差、像散、场曲、畸变、位置色差和倍率色差这七种几何

像差中,只与孔径相关的像差有(球差)和(位置色差),只与视场有关的像差是(畸变),与视场和孔径都有关的像差有(3)种。3、在上述七种几何像差中,不影响成像清晰度的像差有(2)种,使子

午像和弧矢像不重合的像差是(像散),其初级量与视场的二次方成比例的像差有(场曲)和(像散)两种,孔径光阑位于单个折射球面球心时不可能产生的像差有(4)种,对于折射率相同,结构参数相

同二阿贝尔系数不同的单薄透镜,在同样的物距、相同相对孔径下,阿贝尔数小的位置色差(大)。

4、单正透镜产生(负)球差,单负透镜产生(正)球差,因此他们组合

可以矫正球差。单折射面成像时,有三对不产生像差的共轭点,称为(不晕点或齐明点)。

5、单个折射球面的三对齐明点的共轭为哈子分别为(L=L’=0)、L=L’=r、

和(L=(n+n’)r/n,L=(n+n’)r/n’)。

6、球面反射镜有(2)个无球差的共轭点,其共轭点位置为(L=L’=0和

L=L’=r),对应的垂轴放大率为(1和-1)。

7、轴外点单色光以细光束成像时产生的像差有(像散)、(场曲)和(畸

变)。

8、物空间一个平面,与像空间一个曲面共轭,则该成像系统存在(场曲)

像差;物平面上一个正方形,在像平面上成像为桶形,则成像系统存在(负畸变);这两种像差改变了成像的(位置),但对成像的清晰度无影响。

9、(对称式)光学系统,当β=-1时,所有垂轴像差自动校正,此时轴

向像差为(半部像差的2倍)。

10、如果一个光学系统的初级子午彗星等于焦宽λ/(n’u’),则ΣS2应等

于(-2λ/3);如果一个光学系统的初级球差等于焦深λ2/(n’u’),则ΣS1等于(-2λ)。

11、初级位置色差仅决定于(透镜的光焦度)和(制造透镜的光学材料),

对相同的光焦度而言,阿贝常数越大,色差越(小)。

12、望远镜是一种(大孔径)、(小视场)的光学系统,因此要校正的

像差是(球差)、(正弦差)和(位置色差),这些像差是与(孔径)有关的。

13、照相系统属于(大孔径)、(大视场)的光学系统,因此要校正的

像差是(全部七种像差)。

第六章典型光学系统及其像质评价

1、若某先生佩戴200度的近视眼镜时正合适,则该眼镜的焦距为(500)

mm,该先生的远点距为(眼后0.5)m。

2、人眼的物方焦距要比像方焦距(短);若某人的远点距为眼后1m,

则需要佩戴(100)度的老花镜,其焦距是(1000)mm。

3、使用放大镜观察物体时,孔径光阑是(人眼瞳孔),视场光阑是(放

大镜框)。

4、望远系统的光学结构特点是(光学间隔等于0)和(物镜焦距大于目

镜焦距)。使用伽利略望远镜观察物体时,孔径光阑是(人眼瞳孔),视场光阑是(物镜外框)。由于该系统的入窗和物面不重合,所以观察大视场时一般存在(渐晕)现象。

5、采用叉丝对直线的方法对准时,入眼的对准精度为15″,通过放大倍

率10倍的望远镜以同样的方法瞄准时对准精度为(1.5″)。

6、生物显微镜常用的透射照明方式有(临界照明)和柯勒照明两种。柯

勒照明系统主要由(光源)、(柯勒镜)、(聚光镜)和两个光阑组成,它与显微镜系统的光瞳衔接关系为(照明系统的出瞳与显微镜系统的入窗重合、照明系统的出窗与显微镜系统的入瞳重合)。

7、显微镜常用的物镜倍率是4×、10×、(40×)和100×,常用的目镜

倍率是5×、10×和(15×)。因此通常情况下,显微镜最大的放大倍率为(1500×)。为了兼顾显微镜分辨本领,与放大倍率的关系,其数值孔径和视觉放大倍率应满足关系式为(500NA≤ ≤1000NA)。

8、有一浸液物镜,物方为n=1.4的液体,像方为空气。测得像方焦距为

100mm,测其物方焦距为(-140);若物镜数值孔径为0.7,则物方孔径角为(30)度。

9、一个8×开普勒望远镜后加一个倒置的100×显微镜,整个系统的焦距

是(0.3125)mm。

10、摄影物镜的三个重要参数是(焦距f’)、(视场角2ω)和(相对

孔径D/f’)。其中(相对孔径D/f’)影响像面的照度和分辨率。对摄影系统而言,焦距越长,景深越(小);入瞳直径越大,景深也越(小);

拍摄距离越远,景深越(大)。

11、已有一个焦距为150mm的物镜,若想制作一个6×的望远镜,应选

择焦距为(25mm)的目镜,分别采用开普勒和伽利略望远镜结构,对应得到系统的机械筒长为(175mm)和(125mm)。

12、在变焦距光学系统中,对像面移动进行补偿的方法主要有机械补偿

法和(光学补偿法)两种。机械补偿法中,焦距的变化是通过(一个或者多个子系统的轴向移动、改变光组间隔)来实现的,其变倍比为(f’max/f’min)。

13、有一个变焦投影物镜将投影图片成像于投影屏幕上,如要是放大倍

率再大些,焦距应变得更(小)一些,此时如果相对孔径不变,像面照度会变得更(暗)。

14、评价小像差光学系统的成像质量可以选用(瑞利判断)、(中心点

亮度)和光学传递函数方法;评价大像差光学系统的成像质量可以选用(分辨率)、(点阵图)和光学传递函数方法。其中最客观全面的方法是(光学传递函数法)。

几何光学期末考试仿真试卷一

1、照明系统与成像系统之间的衔接关系为:1)(照明系统的拉赫不

变量要大于成像系统的拉赫不变量);2)(保证两个系统的光瞳衔接和成像关系)。

2、转像系统分(棱镜式)和(透镜)两大类,其作用是(使物镜所

成的倒像转变为正像)。

3、一学生带500度近视镜,则该近视镜的焦距是(-0.2m),该学

生裸眼所能看清的最远距离为(眼前0.2m)。

4、在军用望远镜总通常会加入普罗I型转像棱镜,它在系统中所起

的作用是(倒像)、(折叠光路)和(补偿光程)。

5、用于制作光学零件的光学材料包括光学玻璃、(光学晶体)和(光

学塑料)三类。选用光学玻璃时的两个重要参数是(折射率)和(阿贝数)。

几何光学期末考试仿真试卷二

1、完善成像条件可以等价表述为:1)(入射波面为球面波时,出射

波面也为球面波);2)(入射光为同心光束时,出射光也为同心光

束)。

2、唯一能成完善像的光学元件是(平面反射镜)。一个右手坐标系的虚物,经过一个屋脊棱镜的屋脊反射后,成(右手)坐标系的(虚)像。

3、限制轴上物点成像光束宽度的光栅是(孔径光阑),而(渐晕光阑)在其基础上进一步限制轴外物点的成像光束宽度。

4、近视眼将位于无限远的物点成像在(视网膜之前),其远点在(眼前有限距离处)。若一折光度为-2D的近视眼,其调节能力为2D,当佩戴了一副100度的近视镜时,能看清的范围是(-1m~-0.33m)。

5、望远物镜是一种(大孔径)、(小视场)的光学系统,因此要校正的像差是(球差)、(正弦差)和(位置色差),这些像差是与(孔径)有关的。

工程光学设计

摘要 摘要:设计三片库克照相物镜,给出三片镜子的结构参数按照设计要求合理设计。近轴光路追迹求出设计系统的焦距和后焦距。然后利用zemax光学设计软件仿真验证设计结果。 关键词:照相物镜;光学设计 设计要求: 设计要求:采用三片库克(cookie)结构,D/f=1/5,半像面尺寸:18mm 半视场角:20°设计波长:0.486um、0.587um、0.656um,口径D:10mm 计算:系统焦距f,,后焦距(BFL) 第一章绪论 我们设计光学系统采用光线模型方法,即利用几何光学和光学工程中涉及到的基本方法、基本公式设计三片库克照相物镜。利用光线模型设计光学系统是非常重要的方法。曾经有位美国学者在回答有关光线和波动理论应用问题时,睿智的说;“你用光线理论设计照相机镜头,尽管是近视理论,但你用一个星期可以完成;然而你若用衍射理论设计照相机镜头,虽然你用的理论很严格,也去你一辈子才能设计出一个镜头。”可见用几何光学和工程光学中的光线模型设计光学系统是多么的重要。而近轴光线的追迹公式又是利用光线理论设计光学系统的基础。 根据近轴光学公式的性质,它只能适用于近轴区域,但是实际使用的光学仪器,无论是成像物体的大小,或者由一物点发出的成像光束都要超出近轴区域。 这样看来,研究近轴光学似乎没有很大的实际意义。但是事实上近轴光学的应用并不仅限于近轴区域内,对于超出近轴区域的物体,仍然可以使用近轴光学公式来计算平面的位置和像的大小。也就是说把近轴光学公式扩大应用到任意空间。对于近轴区域以外的物体,应用近轴光学公式计算出来的像也是很有意义的: 第一,作为衡量实际光学系统成像质量的标准。根据共轴理想光学系统的成像性质:一个物点对应一个像点;垂直于光轴的共轭面上放大率相同。如果实际共轴球面系统的成像符合理想则该理想像的位置和大小必然和用近轴光学公式计算所得结果相同。因为它们代表了实际近轴光线的像面位置和放大率。如果光学系统成像不符合理想,当然就不会和近轴光学公式计算出的结果一致。二者间的差异显然就是该实际光学系统的成像性质和理想像间的误差。也就是说,可以用它作为衡量该实际光学系统成像质量的指标。因此,通常我们把用近轴光学公式计算出来的像,称为实际光学系统的理想像。 第二,用它近似地表示实际光学系统所成像的位置和大小。在设计光学系统或者分析光学系统的工作原理时,往往首先需要近似地确定像的位置的大小。能够满足实际使用要求的光学系统,它所成的像应该近似地符合理想。也就是说,它所成的像应该是比较清晰的,并且物像大体是相似的。所以,可以用近轴光学公式计算出来的理想像的位置和大小,近似地代表实际光学系统所成像的位置和大小。由此可见近轴光学系统具有重要的实际意义,它在今后的研究光学系统的成像原理时经常用到。

第三版工程光学答案

第一章 3、一物体经针孔相机在屏上成一60mm大小得像,若将屏拉远50mm,则像得大小变为70mm,求屏到针孔得初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点得光线则方向不变,令屏到针孔得初始距离为x,则可以根据三角形相似得出: 所以x=300mm 即屏到针孔得初始距离为300mm。 4、一厚度为200mm得平行平板玻璃(设n=1、5),下面放一直 径为1mm得金属片。若在玻璃板上盖一圆形得纸片,要求在玻璃板上方任何方向上都瞧不到该金属片,问纸片得最小直径应为多少? 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n0sinI1=n2sinI2 (1) 而当光束由光纤芯入射到包层得时候满足全反射,使得光束可以在光纤内传播,则有: (2) 由(1)式与(2)式联立得到n0、

16、一束平行细光束入射到一半径r=30mm、折射率n=1、5得玻璃球上,求其会聚点得位置。 如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中得会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点得虚实。 解:该题可以应用单个折射面得高斯公式来解决, 设凸面为第一面,凹面为第二面。 (1)首先考虑光束射入玻璃球第一面时得状态,使用高斯公 式: 会聚点位于第二面后15mm处。 (2) 将第一面镀膜,就相当于凸面镜 像位于第一面得右侧,只就 是延长线得交点,因此就是虚像。 还可以用β正负判断: (3)光线经过第一面折射:, 虚像 第二面镀膜,则:

得到: (4) 在经过第一面折射 物像相反为虚像。 18、一直径为400mm,折射率为1、5得玻璃球中有两个小气泡,一个位于球心,另一个位于1 /2半径处。沿两气泡连线方向在球两边观察,问瞧到得气泡在何处?如果在水中观察,瞧到得气泡又在何处? 解: 设一个气泡在中心处,另一个在第二面与中心之间。 (1)从第一面向第二面瞧 (2)从第二面向第一面瞧 (3)在水中

工程光学习题解答

第一章习题 1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。 解: 则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n=1.65时,v=1.82 m/s, 当光在加拿大树胶中,n=1.526时,v=1.97 m/s, 当光在金刚石中,n=2.417时,v=1.24 m/s。 2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则 可以根据三角形相似得出: 所以x=300mm 即屏到针孔的初始距离为300mm。 3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少? 解:令纸片最小半径为x, 则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。而全反射临界角求取方法为: (1) 其中n2=1, n1=1.5, 同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为: (2) 联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。 4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n0sinI1=n2sinI2 (1) 而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:

工程光学课程设计

工程光学课程设计 设计名称:工程光学课程设计 院系名称: 专业班级: 学生姓名: 学号: 指导教师: XXX教务处制 20 13 年12 月

工程光学课程设计评分表 最后成绩的以优(90~100)、良(80~89)、中(70~79)、及格(60~69)和不及格(少于60分)五级给出。

第1章引言 1.1 简单介绍 对于实际的光学系统来说,它的成像往往是非完善成像,对于怎样来判断一个光学系统的性能的优劣,是光学设计中遇到的一个重要问题.在当前计算机辅助科研、教学的迅猛发展过程中,计算机辅助光学系统设计已成为光学设计不可缺少的一种重要手段.其中,由美国焦点软件公司所发展出的光学设计ZEMAX,可做光学组件设计与照明系统的照度分析,也可建立反射,折射,绕射等光学模型,并结合优化,公差等分析功能,是可以运算Sequential及Non-Sequential的软件.其主要特色有分析:提供多功能的分析图形,对话窗式的参数选择,方便分析,且可将分析图形存成图文件,例如:*.BMP, *.JPG等,且多种优化方式供使用者使用;公差分析:表栏式Tolerance参数输入和对话窗式预Tolerance参数,方便使用者定义;报表输出:多种图形报表输出,可将结果存成图文件及文字文件。 但是,这里必须强调一点的是,ZEMAX软件只是一个光学设计辅助软件,也就是说,该软件不能教你怎么去进行光学设计,而只是能对你设计的光学系统进行性能的优化以达最佳成像质量所以,在应用本教程进行光学辅助设计之前,您最好先学习一下光学设计的有关知识:首先是几何光学基础,几何光学是光学设计的基础,要做光学设计必须懂得各种光学仪器成像原理,外形尺寸计算方法,了解各种典型光学系统的设计方法和设计过程.实际光学系统大多由球面和平面构成。记住共轴球面系统光轴截面内光路计算的三角公式,了解公式中各参数的几何意义是必要的,具体公式可参考有关光学书籍,在此就不一一介绍了。对于平面零件有平面反射镜和棱镜,它们的主要作用多为改变光路方向,使倒像成为正像,或把白光分解为各种波长的单色光.在光学系统中造成光能损失的原因有三点:透射面的反射损失、反射面的吸收损失和光学材料内部的吸收损失。其次是像差理论知识,对于一个光学系统,一般存在7种几何像差,他们分别是球差、彗差、像散、场曲、畸变和位置色差以及倍率色差.另外,还必须了解一点材料的选择和公差的分配方面的知识,以及一些光学工艺的知识,包括切割,粗磨,精磨,抛光和磨边,最后还有镀膜和胶合等。

(工程光学基础)考试试题库1

1.在单缝衍射中,设缝宽为a ,光源波长为λ,透镜焦距为f ′,则其衍射暗条纹间距e 暗=f a λ ' , 条纹间距同时可称为线宽度。 2.当保持入射光线的方向不变,而使平面镜转15°角,则反射光线将转动 30° 角。 3.光线通过平行平板折射后出射光线方向__不变_ ___ ,但会产生轴向位移量,当平面板厚度为d , 折射率为n ,则在近轴入射时,轴向位移量为1 (1)d n - 。 4.在光的衍射装置中,一般有光源、衍射屏、观察屏,则衍射按照它们距离不同可分为两类,一类为 菲涅耳衍射,另一类为 夫琅禾费衍射 。 5.光轴是晶体中存在的特殊方向,当光在晶体中沿此方向传播时不产生双折射。n e

工程光学第一章知识点

第一章几何光学基本原理 光和人类的生产活动和生活有着十分密切的关系,光学是人类最古老的科学之一。 对光的每一种描述都只是光的真实情况的一种近似。 研究光的科学被称为“光学”(optics),可以分为三个分支: 几何光学物理光学量子光学 第一节光学发展历史 1,公元前300年,欧几里得论述了光的直线传播和反射定律。 2,公元前130年,托勒密列出了几种介质的入射角和反射角。 3,1100年,阿拉伯人发明了玻璃透镜。 4,13世纪,眼镜开始流行。 5,1595年,荷兰著名磨镜师姜森发明了第一个简陋的显微镜。 6,1608年,荷兰人李普赛发明了望远镜;第2年意大利天文学家伽利略做了放大倍数为30×的望远镜。7,1621年,荷兰科学家斯涅耳发现了折射定律;1637年法国科学家笛卡尔给出了折射定律的现代的表述。8,17世纪下半叶开始,英国物理学家牛顿和荷兰物理学家惠更斯等人开始研究光的本质。 9,19世纪初,由英国医生兼物理学家杨氏和法国土木工程师兼物理学家菲涅耳所发展的波动光学体系逐 渐被普遍接受。 10,1865年,英国物理学家麦克斯韦建立了光的电磁理论。 11,1900年,德国柏林大学教授普朗克建立了量子光学。 12, 1905年,德国物理学家爱因斯坦提出光量子(光子)理论。 13,1925年,德国理论物理学家玻恩提出了波粒二象性的几率解释,建立了波动性与微粒性之间的联系。14,1960年,美国物理学家梅曼研制成第一台红宝石激光器,给光学带来了一次革命,大大推动了光学以 及其他科学的发展。 15,激光是20世纪以来,继原子能、计算机、半导体之后,人类的又一重大发明。激光一问世,就获得了 异乎寻常的飞快发展,激光的发展不仅使古老的光学科学和光学技术获得了新生,而且导致整个一门新兴 产业的出现。 ●光学作为一门学科包含的内容非常多,作为在工程上应用的一个分支——工程光学, 内容主要包括几何光学、典型光学系统、光度学等等。 ●随着机械产品的发展,出现越来越多的机、电、光结合的产品。 ●光学手段越来越多用于机电装备的检测、传感、测量。 ●掌握好光学知识,为今后进一步学习机电光结合技术打好基础,也将会有更广阔的 适应面。 第二节光线和光波 1,光的本质 ●光和人类的生产、生活密不可分; ●人类对光的研究分为两个方面:光的本性,以此来研究各种光学现象,称为物理光学;光的传播规律 和传播现象称为几何光学。 ●1666年牛顿提出的“微粒说” ●1678年惠更斯的“波动说” ●1871年麦克斯韦的电磁场提出后,光的电磁波 ●1905年爱因斯坦提出了“光子”说 ●现代物理学认为光具有波、粒二象性:既有波动性,又有粒子性。 ●一般除研究光与物质相互作用,须考虑光的粒子性外,其它情况均可以将光看成是电磁波。 ●可见光的波长范围:380-760nm

工程光学设计A4 C1-C3

波面:某一瞬间光波动传播所到达的曲面 光线:能够传输能量的几何线 光束:和波面对应的法线束 基本定律:光的直线传播定律、光的独立传播定律、光的反射与折射定律 实物(像):实际光线相交形成。可由人眼或接收器所接收。 虚物(像):光线的延长线相交形成,只可以被人眼观察 完善成像条件:入射波面是球面波,出射波面也是球面波;入射光是同心光束,出射光也是同心光束;物点及其像点之间任意两条光路的光程相等 近轴方程:薄透镜: 无焦系统: 垂轴放大率: 轴向放大率: 角放大率 拉赫不变量 典型光线:平行于光轴入射的光线经过系统后过像方焦点;过物方焦点的光线,经过系统后平行于光轴;倾斜于光轴入射的平行光束,经过系统后会交于像方焦平面上的一点;自物方焦平面上一点发出的光束,经系统后成倾斜于光轴的平行光束;过节点的光线相互平行 近轴理论为基础,建立起理想光学系统模型,便于分析光学系统的成像性质和规律。近轴区成完善像, 但成像范围小,光束宽度小,能量小。实际光学系统,对具有一定大小的物(视场)以宽光束(孔径)成像,成像有缺陷 光学设计的概念:根据仪器的技术参数和要求,考虑和拟定光学系统的整体方案,并计算其中各个具有独立功能的组成部分的光学参数——选择并确定各组成部分的结构型式,查取或计算其初始结构参数(半径、厚度、间隔、材料等)——逐次修改结构参数,使像差得到最佳的校正和平衡——对设计结构进行评价 光学系统设计过程:1、外形尺寸计算 2、初始结构的计算和选择 3、像差校正和平衡 4、像质评价 5、绘制光学系统图、部件图和零件图 6、编写设计说明书 进行技术答辩 国内外光学设计软件:SOD88;Zemax,CODE V,OSLO,LightTools,ASAP,TracePro 孔径选择:Entrance Pupil Diameter(EPD): 入瞳直径(物体位于无限远时)Image Space F/#: 像方F 数(f/D,只用于物距无穷远);Object Space Numerical Aperture :物方数值孔径nsin θ(有限物距);Float by Stop Size :由光阑决定入瞳大小;Paraxial working F/#: 近轴F 数,忽略像差;Object Cone Angle:物方锥角(轴上物点发出的边缘光线的半角),最大可以达到90度(物在有限远) 视场类型:Angle: 设定物方视场主光线与光轴的夹角,多用于无限共轭平行光条件下。 Object height:设定被成像物体的尺寸大小,用在有限共轭系统。Paraxial Image height:近轴像高。使用近轴光束定义系统成像的像面大小。用于需要固定像大小的设计中,使用近轴方法计算,忽略系统畸变影响,适用于视场角度较小的系统。 Real image height: 实际像高。使用实际光线计算,考虑畸变大小,适用于大视场广角系统。Zemax 计算慢。 曲率求解: Marginal ray angle :控制边缘光线的角度 Chief ray angle :控制主光线的角度 Marginal ray normal :使光学面与近轴边缘的光线垂直,可产生没有球差或慧差的光学面 Chief ray normal :使光学面与近轴主光线垂直,可产生不具慧差,像散或畸变的光线 Alplanatic :可产生没有球差,慧差,像散的等光程光学面 Pick up :使光学面的曲率随所指定面的曲率而改变Element power :可控制指定镜片的光焦度,也可控制有效焦距,设于第二面 Concentric with surface :控制曲率使曲率中心落于指定面上Concentric with radius :控制曲率使曲率中心与指定面的曲率中心在同一点 F/#:控制曲率,控制有效焦距,设于第二面 厚度求解:Marginal ray height :控制近轴边缘光线在像面上的高度,Pupil zone 在正负1之间 Chief ray height: 控制近轴主光线高度 Edge thickness :控制镜片边缘厚度,以免优化过厚或过薄 Pick up :控制厚度随指定面的厚度变化 Optical path difference :控制厚度使指定光瞳坐标处光程差维持定值 Position :控制面至指定面之间的距离保持一定 Compensator :控制面厚度与参考面厚度之和保持定值 Center of curvature :控制厚度使后光学面的位置在指定面的曲率中心上 玻璃求解:Model :用于玻璃优化 Pick up :随指定面变化 Substitute :指定玻璃库优化 Offset :在折射率及Abbe 数上增加一偏移量,用于公差计算 光学系统特性:光学特性(焦距、放大率、物距、像距等):属于物像几何尺寸共轭关系 成像特性:光学系统所成像的清晰程度以及像与物的相似性。 实际光学系统成像:以一定宽度的光束对一定大小的物体成像,不能成完善像 实际像与理想像之间的差异是像差,是光学系统成像不完善程度的描述 像质评价方法:1、设计阶段----通过计算来评定系统成像质量优劣 2、系统制造完成后-----通过对系统进行实际检验测量来评价成像质量 像差分析方法:几何像差法:以特征光线经过光学系统后出射光线在横向或纵向与理想像的偏差分析像差的方法。以几何光学为基础。优点:计算简单、意义直观 波像差法:以波动光学为基础,以实际波面和理想像的波面的偏差分析像差的方法。波像差是几何像差的综合体现。尤其对于小像差系统,波像差更能反映像质。 球差:轴上物点发出的宽光束经透镜后,不同孔径区域的光束汇聚在光轴的不同位置,在像面上形成弥散斑。轴向球差、垂轴球差、边光球差。 球差是入射高度的函数;球差反映轴上点的像差,与视场无关;球差具有轴对称性。 球差的表示、查看:2D Layout 、点列图、球差曲线、赛德尔像差系数、评价函数操作数、光扇图 球差校正:正负透镜补偿法:实际设计时,常使初级球差与二级球差相补偿,将边缘光的球差校正为零。对边光校正球差时,0.707带光球差最大 非球面校正球差:二次曲面代替球面 无球差的三个位置:L=0,L ’=0; L=L ’=r;L ’=(n+n ’)r/n ’(齐明点、不晕点) 彗差:轴外物点发出的宽光束经系统后失对称,不会聚在一点,而在像面上形成彗星状弥散斑,左右对称,上下失对称 彗差度量:通常用子午面和弧矢面上对称于主光线的各对光线,经系统后的交点相对于主光线的偏离来度量。子午彗差以这对光线与理想像面交点高度的平均值与主光线交点高度之差来表征,弧矢度量以前后光线对与理想像面交点高度的平均值与主光线交点高度之差来表征 彗差的性质:彗差与孔径、视场均有关彗差是轴外点以大孔径成像时的像差,不仅随孔径增大而增大,视场越大,彗差也越大 彗差的校正:1、改变光阑位置2、组合透镜,一般能消除球差的组合,也可以使彗差得到改善3、对称结构光学系统 彗差的表示:2D Layout 、Spot Diagrams 、Ray Fans 、评价函数操作数COMA 、Seidel Aberration 像散:轴外物点发出的锥形光束通过光学系统聚焦后,光斑在像面上子午方向与弧矢方向不一致,子午像点与弧矢像点不重合,即一个物点的成像将被聚焦为子午和弧矢两个焦线,是光学系统在两个方向聚焦能力不同而形成的。子午细光束像点和弧矢细光束像点的轴向距离为像散 像散的校正:调节视场光阑的位置;使用对称结构系统;利用非球面透镜校正 场曲:平面物体通过透镜系统后,所有平面物点聚焦后的像面不与理想像面重合,而是呈现为一个弯曲的像面。每个物点通过系统自身能成一个清晰的像点,但所有像点的集合却是一个曲面 场曲随视场变化,不能用单一视场或某一物点成像光斑来描述,此时光斑图、光扇图等都失去作用 场曲校正:优化光阑位置;对称式光学系统 畸变:实际系统,视场较大时,一对共轭物像平面上的放大率不为常数,将使像相对于物失去相似性,使像变形的缺陷称畸变 畸变是视场的函数,畸变的大小随视场的三次方成正比,视场小的光学系统畸变不显著。正畸变:枕形畸变,垂轴放大率随视场角的增大而增大 负畸变:桶形畸变,垂轴放大率随视场角的增加而减少 畸变的度量:绝对畸变:线畸变 相对畸变:相对于理想像高的绝对畸变,通常用百分率表示 不能用几何光线、也不能通过光斑图或波前图来预测畸变量,只能对所有物点进行光线追迹得到像面高度,作为最终评价畸变量的大小 畸变的校正:全对称系统(结构对称,物像对称)不产生畸变 单色像差:球差:轴上点像差,与孔径有关。彗差:轴外点、宽光束,失对称,光线对与主光线不能会聚。场曲(像面弯曲):无法在平直像平面上获得中心与四周都清晰的像。像散:轴外点、细光束,光线对称,光线对与主光线能够会聚,但子午与弧矢光束会聚点位置不同。畸变:轴外,像、物不相似,但不影响像的清晰度 多种像差共存:物点在主轴上时,其它像差都不出现,只有球差单独出现。光束愈宽,球差愈显著;物点与主轴间距离不大时,除球差仍将出现外,彗差将显著,光束即使不太宽,彗差还可能比球差显著;物点与主轴间距离较大而光束很细窄时,像散将最为显著,因为对于狭窄的光束,球差和彗差都不显著;像面弯曲和畸变,仅在物面特别大时才比较显著,如果光束是细窄的,那么此时像面弯曲和畸变相对说来都将不再重要 色差:对白光成像的光学系统,由于材料对不同色光的折射率不同,使各色光线具有不同的成像位置和倍率。 位置色差(轴向色差):波长不同,折射率不同,焦距不同。像面上呈现彩色弥散斑。 像差曲线:①各单色光的球差随孔径的变化②位置色差随孔径的变化③球差随色光的变化(色球差)④二级光谱 倍率色差(垂轴色差):λ变——n 变——β变——y'变 度量:F 光、C 光主光线在D 光的理想像面上的交点高度之差 缺陷:物体的像有彩色的边缘,破坏了轴外点的清晰度,造成像的模糊,在大视场下尤为严重 色差校正:单透镜本身不能消色差,校正色差必须采用正负透镜组合 色光焦点漂移曲线:双胶合透镜在两波长处焦点位置重合,色差得到校正 波象差:根据光的波动性来描述实际波面和理想波面的偏差 瑞利判据:实际波面与理想波面之间的最大波像差不超过λ/4时, 此实际波面可看作是无缺陷的 缺点:只考虑波像差的最大允许公差,没有考虑缺陷部分在整个波面面积中所占比重(局部气泡、划痕等) 中心点亮度(斯特列尔比):无像差系统:高斯像面上像点中心有最大光强度 存在像差:像点光强度分布发生变化,中心光强降低,光能量向周围扩散 中心点亮度:系统存在像差时成像衍射斑的中心亮度和不存在像差时衍射斑的中心亮度之比,记作斯特列尔比(>=0.8,成像完善) 调制传递函数MTF :一定空间频率下像的对比度与物的对比度之比。能反映物体不同空间频率成分的传递能力。一般来说,高频部分是反映物体的细节传递情况,中频部分是反映物体的层次传递情况,而低频部分则是反映物体的轮廓传递情况。MTF 曲线所围面积越大,表明光学系统所传递的信息量越多,成像质量越好,图像越清晰。 系统制造完成后实测像质:星点检验:类似点列图考察一个点光源(星点)经系统所成的像及像面前、后不同截面衍射图形的光强变化及分布,定性地评价光学系统的成像质量。一般使用带有微孔的星点板 波面测量:波像差。各种干涉系统结构+图像传感技术+计算机技术 光学传递函数测量:光栅法;针孔法 分辨率测量:分辨率:光学系统能够分辨物体细节的能力。如果一个点光源的爱里斑中心刚好和邻近的另一个点光源的爱里斑边缘相重合,则这两个点光源被认为是刚刚可以被分辨——瑞利判据 分辨本领:望远镜: 显微镜: 照相机物镜: ??? ??+='sin 'sin 1'U I r L ''I I U U -+=φh nu u n =-''i i i i d u h h '1-=+11'+=i u h EFL 11'++=i i u h BFL 2121φφφφφd -+=l l '=β()()211C C n --=φ2βα=γ1=J y u n nuy =='''D λ?22.1=θλsin 61.0?=?n y ()D f y /22.1''λ=?

工程光学基础

工程光学基础学习报告 ——典型光学系统之显微镜系统

由于成像理论的逐步完善,构成了许多在科学技术和国民经济中得到广泛应用的光学系统。为了观察近距离的微小物体,要求光学系统有较高的视觉放大率,必须采用复杂的组合光学系统,如显微镜系统。 ●显微镜的介绍 显微镜是由一个透镜或几个透镜的组合构成的一种光学仪器,是人类进入原子时代的标志。主要用于放大微小物体成为人的肉眼所能看到的仪器。光学显微镜是在1590年由荷兰的詹森父子所首创。现在的光学显微镜可把物体放大1600倍,分辨的最小极限达0.1微米,国内显微镜机械筒长度一般是160mm。列文虎克,荷兰显微镜学家、微生物学的开拓者。 显微镜是人类这个时期最伟大的发明物之一。在它发明出来之前,人类关于周围世界的观念局限在用肉眼,或者靠手持透镜帮助肉眼所看到的东西。 显微镜把一个全新的世界展现在人类的视野里。人们第一次看到了数以百计的“新的”微小动物和植物,以及从人体到植物纤维等各种东西的内部构造。显微镜还有助于科学家发现新物种,有助于医生治疗疾病。 ●显微镜的分类 显微镜以显微原理进行分类可分为光学显微镜与电子显微镜,而我们课堂上讲的是光学显微镜。 ●显微镜的结构 普通光学显微镜的构造主要分为三部分:机械部分、照明部分和光学部分。 ◆机械部分 (1)镜座:是显微镜的底座,用以支持整个镜体。 (2)镜柱:是镜座上面直立的部分,用以连接镜座和镜臂。 (3)镜臂:一端连于镜柱,一端连于镜筒,是取放显微镜时手握部位。 (4)镜筒:连在镜臂的前上方,镜筒上端装有目镜,下端装有物镜转换器。 (5)物镜转换器(旋转器)简称“旋转器”:接于棱镜壳的下方,可自由转动,盘上有3-4 个圆孔,是安装物镜部位,转动转换器,可以调换不同倍数的物镜,当听到碰叩声时,方可进行观察,此时物镜光轴恰好对准通光孔中心,光路接通。转换物镜后,不允许使用粗调节器,只能用细调节器,使像清晰。 (6)镜台(载物台):在镜筒下方,形状有方、圆两种,用以放置玻片标本,中央有一通光孔,我们所用的显微镜其镜台上装有玻片标本推进器(推片器),推进器左侧有弹簧夹,用以夹持玻片标本,镜台下有推进器调节轮,可使玻片标本作左右、前后方向的移动。 (7)调节器:是装在镜柱上的大小两种螺旋,调节时使镜台作上下方向的移动。 ①粗调节器(粗准焦螺旋):大螺旋称粗调节器,移动时可使镜台作快速和较大幅度的升降,所以能迅速调节物镜和标本之间的距离使物象呈现于视野中,通常在使用低倍镜时,先用粗调节器迅速找到物象。 ②细调节器(细准焦螺旋):小螺旋称细调节器,移动时可使镜台缓慢地升降,多在运用高倍

工程光学习题解答(第1章)

工程光学习题解答(第1章)

(1)

(2) m/s (3) 光在冕牌玻璃中的速度:v=3×108/1.51=1.99×108 m/s (4) 光在火石玻璃中的速度:v=3×108/1.65=1.82×108 m/s (5) 光在加拿大树胶中的速度:v=3×108/1.526=1.97×108 m/s (6) 光在金刚石中的速度:v=3×108/2.417=1.24×108 m/s *背景资料:最初用于制造镜头的玻璃,就是普通窗户玻璃或酒瓶上的疙瘩,形状类似“冠”,皇冠玻璃或冕牌玻璃的名称由此而来。那时候的玻璃极不均匀,多泡沫。除了冕牌玻璃外还有另一种含铅量较多的燧石玻璃(也称火石玻璃)。 3.一物体经针孔相机在屏上成像的大小为60mm ,若将屏拉远50mm ,则像的大小变为70mm ,求屏到针孔的初始距离。 解: 706050=+l l ? l =300mm 6 57l

4.一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属片。若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少? 解:本题是关于全反射条件的问题。若要在玻璃板上方看不到金属片,则纸片最小尺寸应能够挡住金属片边缘光线达到全反射的位置。 (1) 求α角:nsin α=n ’sin90 ? 1.5sin α=1 α=41.81? (2) 求厚度为h 、α=41.81?所对应的宽度l : l =htg α=200×tg41.81?=179mm (3) 纸片最小直径:d min =d 金属片+2l=1+179×2=359mm 5.试分析当光从光疏介质进入光密介质时,发生全反射的可能性。 6.证明光线通过平行玻璃平板时,出射光线与入射光线平行。 7.如图1-15所示,光线入射到一楔形光学元件上。已知楔角为α,折射率为n ,求光线经过该楔形光学元件后的偏角δ。 α 90h

三片式物镜设计+Zemax文件截图-北交大工程光学设计作业

三片式物镜的设计 小组成员: 执笔人:

1.设计任务的具体指标及其要求 35mm相机胶片50mm焦距F/3.5 玻璃最小中心厚度与边缘厚度4mm,最大中心厚18mm 空气间隔最小2mm 可见光波段光阑位于中间透镜各透镜所用材料SK4---F2----SK4 2.入瞳直径的设定 点击Gen打开General窗口,在General系统通用数据对话框中设置孔径。在孔径类型中选择Image Space F/#,并根据设计要求在Aperture Value中输入3.5.

3.视场的设定 由于使用35mm相机胶片,其规格尺寸为36mm*24mm,Zemax中一般使用圆形像面,因此该矩形像面的外接圆半径经计算为21.7mm,0.707像高的视场高度为15.3mm。 点击Fie打开Field Data窗口,设置三个视场分别为0mm、15.3mm、21.7mm。

4.工作波长的设定 选择可见光波段,点击Wav按钮,设置Select-F,d,C(Visible),自动输入三个特征波长。

5.评价函数的选择 执行命令Editors----Mreit Function打开Mreit Function Editor编辑窗口,在Mreit Function Editor编辑窗口中执行命令Tools---Default Merit Function,打开默认评价函数对话窗口,选择RMS---Spot Radius--Centroid评价方法,并将厚度边界条件设置为玻璃最小中心厚度与边缘厚度4mm,最大中心厚18mm,空气间隔最小2mm。

6.系统的透镜参数设定 在Lens Data Editor中输入部分初始结构,设置中间透镜为光阑,设置各透镜所用玻璃材料类型。 因为此时的焦距为49.7684

《工程光学基础》考试大纲

《工程光学基础》考试大纲 主要参考书目 1.工程光学基础教程,郁道银,谈恒英,机械工业出版社,2008 2.工程光学(第4版),郁道银,谈恒英,机械工业出版社,2016 考试内容和考试要求 一、几何光学基本定律与成像概念 考试内容: 1、几何光学基本定律 2、成像基本概念与完善成像 3、近轴光学系统 考试要求: 1、掌握光学基本定律及几何光学基本概念 2、掌握成像概念与完善成像条件 3、掌握近轴光线及成像特点、掌握光轴光线成像计算 二、理想光学系统 考试内容 1、理想光学系统的基点与基面 2、理想光学系统的物像关系 3、理想光绪系统的放大率 4、理想光学系统的组合 考试要求: 1、掌握理想光学系统的基点与基面概念 2、掌握理想光学系统的求物像关系(作图法与计算法) 3、掌握理想光绪系统的放大率概念与相关计算 4、理解理想光学系统的组合方法及计算 三、平面系统 考试内容 1、平面镜成像

2、平行平板 3、反射棱镜 4、折射棱镜与光楔 考试要求: 1、掌握平面镜成像规律 2、掌握平行平板成像规律 3、掌握反射棱镜成像与成像方向判断 4、了解折射棱镜与光楔传光特性 四、光学系统中的光阑和光束限制 考试内容 1、光阑 2、照相系统中的光阑 3、望远镜系统中成像光束的选择 4、显微镜系统中的光束限制与分析 考试要求: 1、掌握光阑的分类及作用 2、掌握照相系统中光束限制分析 3、掌握望远镜系统中成像光束分析方法 4、掌握显微镜系统中的光束限制与分析 五、光度学 考试内容 1、辐射量与光学量及其单位 2、光传播过程中光学量的变化规律 3、成像系统像面的光照度 考试要求: 1、掌握光学量及其单位 2、理解光传播过程中光学量的变化规律 3、理解成像系统像面的光照度的计算 六、典型光学系统 考试内容 1、眼睛及其光学系统

第三版工程光学答案[1]

第一章 3、一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变, 令屏到针孔的初始距离为x ,则可以根据三角形相似得出: 所以x=300mm 即屏到针孔的初始距离为300mm 。 4、一厚度为200mm 的平行平板玻璃(设n =),下面放一直径为1mm 的金属片。若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少 2211sin sin I n I n = 66666.01 sin 2 2== n I 745356.066666.01cos 22=-=I 88.178745356 .066666 .0* 200*2002===tgI x mm x L 77.35812=+= 1mm I 1=90? n 1 n 2 200mm L I 2 x

8、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数 值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1) 而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有: (2) 由(1)式和(2)式联立得到n 0 . 16、一束平行细光束入射到一半径r=30mm 、折射率n=的玻璃球上,求其会聚点的位置。如 果在凸面镀反射膜,其会聚点应在何处如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处反射光束经前表面折射后,会聚点又在何处说明各会聚点的虚实。 解:该题可以应用单个折射面的高斯公式来解决, 设凸面为第一面,凹面为第二面。 (1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式:

工程光学基础教程-习题答案(完整)

第一章 几何光学基本定律 1. 已知真空中的光速c =38 10?m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。 解: 则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n =1.65时,v=1.82 m/s , 当光在加拿大树胶中,n=1.526时,v=1.97 m/s , 当光在金刚石中,n=2.417时,v=1.24 m/s 。 2. 一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。 解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出: ,所以x=300mm 即屏到针孔的初始距离为300mm 。 3. 一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少? 2211sin sin I n I n = 66666.01 sin 2 2== n I 745356.066666.01cos 22=-=I 1mm I 1=90? n 1 n 2 200mm L I 2 x

88.178745356 .066666 .0* 200*2002===tgI x mm x L 77.35812=+= 4.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。 解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1) 而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有: (2) 由(1)式和(2)式联立得到n 0 . 5. 一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。 解:该题可以应用单个折射面的高斯公式来解决, 设凸面为第一面,凹面为第二面。 (1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式: 会聚点位于第二面后15mm 处。 (2) 将第一面镀膜,就相当于凸面镜

光学课程设计大纲

《光学软件课程设计》教学大纲 适用专业:光电、通信工程、电子信息工程专业 (学分:1学分,学时:20学时) 一、课程的性质和任务 光学软件课程设计是在学习工程光学,光学等基础课程的基础上,基于光学软件进行光学系统的设计,让学生了解光学设计中的主要环节,掌握光学系统的设计、开发的基本方法,以便今后从事光学仪器的设计、研发工作。 通过光学软件课程设计,以求达到如下目的: 1)要求综合运用工程光学课程中所学到的理论知识,独立完成一个设计课题。 2)通过查阅手册和文献资料,培养学生独立分析和解决实际问题的能力。 3)培养学生严肃认真的工作作风和严谨的科学态度。 二、课程的教学内容 题目1:双高斯物镜的优化设计 设计一组双高斯物镜镜头,镜头的技术指标要求如下: 1、焦距:f’=40mm; 2、相对孔径D/f’不小于1/2 ; 3、视场 5、在可见光波段设计(取d、F、C三种色光,d为主波长); 6、成像质量,MTF 轴上>35% @100 lp/mm,轴外0.707 >25%@100 lp/mm。 7、校正球差、色差、场曲、像散。 在满足前面要求的前提下,尽可能减少镜头的片数,在相同的结构情况下,MTF值越高越好。 题目2:摄影物镜的优化设计 镜头的技术指标要求如下 1、焦距:f’=12mm; 2、相对孔径D/f’不小于1/2.8; 3、图像传感器为1/2.5英寸的CCD,成像面大小为4.29mm×5.76mm; 4、后工作距>6mm

5、在可见光波段设计(取d、F、C三种色光,d为主波长); 6、成像质量,MTF 轴上>40% @100 lp/mm,轴外0.707 >35%@100 lp/mm。 7、最大畸变<1% 在满足前面要求的前提下,尽可能减少镜头的片数,在相同的结构情况下,MTF值越高越好。 三、课程的教学基本要求 1)要独立完成设计任务,通过课程设计,锻炼自己综合运用所学知识的能力,并 初步掌握镜头优化设计的方法和步骤。 2)学会查阅资料和手册,根据我们的设计目标,选择合适的初始结构。 3)ZEMAX是一套综合性的光学设计仿真软件,它将实际光学系统的设计概念、优化、 分析、公差以及报表集中在一起,学生可以运用是ZEMAX进行镜头的优化设计,并对设计的镜头系统进行像质评价。 4)学会进行镜头优化设计及像差分析,并得出像质评价报告。 5)能够写出完整的课程设计总结报告。 四、课程的学时分配 教学内容进度 布置任务,仿真软件介绍第一周 学习ZEMAX像差控制和优化方法第一周 查询资料,确定初始结构,并进行优化设计第二周 验收设计结果第三周 验收课程设计报告第四周 五、实践性教学环节(含实验、设计、实习等)的内容安排及要求 (1)设计报告需包含:设计要求、初始结构选择与分析、像差校正、评价函数的设置、优化方法的选择、像差结果分析与评价报告、总结与体会、参考文献和辅助软件。 ①说明设计题目及要求。 ②对题目进行剖析并选择合适的初始结构。 ③对初始结构的像差结果进行分析,与我们设计目标进行比较。 ④根据选择的初始结构,进行像差控制和优化设计 ⑤对设计优化结果给出像质评价报告并与我们的设计目标进行比较。 ⑥写出自己在仿真的过程中遇到的问题、如何排除故障以及仿真结果。

工程光学练习题(英文题加中文题含答案)

English Homework for Chapter 1 1.In ancient times the rectilinear propagation of light was used to measure the height of objects by comparing the length of their shadows with the length of the shadow of an object of known length. A staff 2m long when held erect casts a shadow 3.4m long, while a building’s shadow is 170m long. How tall is the building? Solution. According to the law of rectilinear propagation, we get, x=100 (m) So the building is 100m tall. 2.Light from a water medium with n=1.33 is incident upon a water -glass interface at an angle of 45o. The glass index is 1.50. What angle does the light make with the normal in the glass? Solution. According to the law of refraction, We get, So the light make 38.8o with the normal in the glass. 3. A goldfish swims 10cm from the side of a spherical bowl of water of radius 20cm. Where does the fish appear to be? Does it appear larger or smaller? Solution. According to the equation. and n ’=1 , n=1.33, r=-20 we can get So the fish appears larger. 4.32170= x ' 'sin sin I n I n =626968 .05.145 sin 33.1sin =?= 'ο I ο 8.38='I r n n l n l n -'=-''11416.110 133 .15836.8)(5836.81165.02033.01033.11>-=??-=''= -='∴-=--+-=-'+='l n l n cm l r n n l n l βΘn′=1.50 n=1.33 water 45o I′ A

相关文档
相关文档 最新文档