文档库 最新最全的文档下载
当前位置:文档库 › Matlab实验2_矩阵的基本运算

Matlab实验2_矩阵的基本运算

Matlab实验2_矩阵的基本运算
Matlab实验2_矩阵的基本运算

实验二、矩阵的基本运算

一、 问题

已知矩阵A 、B 、b 如下:

????????

??????????-------------=0319481187638126542

86174116470561091143A ????????

??????????------=503642237253619129113281510551201187851697236421B []1187531=b

应用Matlab 软件进行矩阵输入及各种基本运算。

二、 实验目的:

熟悉Matlab 软件中的关于矩阵运算的各种命令

三、 预备知识

1、线性代数中的矩阵运算。

2、本实验所用的Matlab 命令提示:

(1)、矩阵输入格式:A =[a 11, a 12; a 21, a 22];b =初始值:步长:终值;

(2)、求A 的转置:A';

(3)、求A 加B :A +B ;

(4)、求A 减B :A -B ;

(5)、求数k 乘以A :k*A ;

(6)、求A 乘以B :A*B ;

(7)、求A 的行列式:det (A );

(8)、求A 的秩:rank (A );

(9)、求A 的逆:inv (A )或(A )-1;

(10)、B 右乘A 的逆:B/A ;

(11)、B 左乘A 的逆:A \B ;

(12)、求A 的特征值:eig (A );

(13)、求A 的特征向量矩阵X 及对角阵D :[X ,D ]=eig (A );

(14)、求方阵A 的n 次幂:A ^n ;

(15)、A 与B 的对应元素相乘:A.*B ;

(16)、存储工作空间变量:save '文件名' '变量名';

(17)、列出工作空间的所有变量:whos ;

四、实验内容与要求

1、输入矩阵A,B,b;

>> A=[3,4,-1,1,-9,10;6,5,0,7,4,-16;1,-4,7,-1,6,-8;2,-4,5,-6,12,-8;-3,6,-7,8,-1,1;8,-4,9,1,3,0] B=[1 2 4 6 -3 2;7 9 16 -5 8 -7;8 11 20 1 5 5;10 15 28 13 -1 9;12 19 36 25 -7 23;2 4 6 -3 0 5]

b=[1,3,5,7,8,11]

2、作X21=A'、X22=A+B、X23=A-B、X24=AB;

>> X21=A'

X22=A+B

X23=A-B

X24=A*B

3、作X31=|A|、X32=|B|;

>> X31=det(A)

X32=det(B)

4、作X41=R(A)、X42=R(B);

>> X41=rank(A)

X42=rank(B)

5、作X5=A-1;

>> X5=eye(6)/A

>> inv(A)

6、求满足矩阵方程XA=C的解矩阵X6,其中C为A的第i列乘以列标i

所得矩阵;

>> C=A.*[1,2,3,4,5,6;1,2,3,4,5,6;1,2,3,4,5,6;1,2,3,4,5,6;1,2,3,4,5,6;1,2,3,4,5,6]

X6=C/A

7、求满足方程AX=b的解向量X7;

>> X7=A\b'

8、作X6的特性向量X8、X6的特征向量组X及对角阵D;

>> X8=eig(X6)

>> [X,D]=eig(X6)

9、作X9=B2 (A-1)2;

>> X9=B^2*(inv(A))^2

10、创建从2开始公差为4的等差数列前15项构成的行向量X10。

>> X10=2:4:60

11、将本实验中的矩阵A与B的对应元素相乘X11、对应元素相除X12并

观察分母为零时的结果;

>> X11=A.*B

>> X12=A./B

>> det(B)

12、求b每个元素自身次幂所得的行向量X13。

>> X13=b.^b

13、产生一长度为20的正态分布的随机向量X14

>> X14=randn(1,20)

1.求X14的最大值及其在X14中的位置。

>> [C,I] = max(X14)

2.将X14排序并给出排序后各元素在X14中的位置

>> [B,IX] = sort(X14)

3 将X14变形为5行4列的矩阵X15,再将X15实行左右翻转并逆时针旋转90o。

>> X15=reshape(X14,5,4)

>> X15=rot90(fliplr(X15))

14、列出本实验中的所有变量。

>> whos

矩阵分析实验报告

矩 阵 分 析 实 验 报 告 学院:电气学院 专业:控制工程 姓名:XXXXXXXX 学号:211208010001

矩阵分析实验报告 实验题目 利用幂法求矩阵的谱半径 实验目的与要求 1、 熟悉matlab 矩阵实验室的功能和作用; 2、 利用幂法求矩阵的谱半径; 3、 会用matlab 对矩阵分析运算。 实验原理 理念 谱半径定义:设n n A C ?∈,1λ,2λ,3λ, ,j λ, n λ是A 的n 个特征值,称 ()max ||j j A ρλ= 为关于A 的谱半径。 关于矩阵的谱半径有如下结论: 设n n A C ?∈,则 (1)[]()()k k A A ρρ=; (2)2 2()()()H H A A AA A ρρ==。 由于谱半径就是矩阵的主特征值,所以实验换为求矩阵的主特征值。 算法介绍 定义:如果1λ是矩阵A 的特征值,并且其绝对值比A 的任何其他特征值的绝对值大,则称它为主特征值。相应于主特征值的特征向量1V 称为主特征向量。 定义:如果特征向量中最大值的绝对值等于单位值(例如最大绝对值为1),则称其为是归一化的。

通过形成新的向量' 12=c n V (1/)[v v v ],其中c=v 且1max {},j i n i ≤≤=v v 可将特 征向量 '12n [v v v ]进行归一化。 设矩阵A 有一主特征值λ,而且对应于λ有唯一的归一化特征向量V 。通过下面这个称为幂法(power method )的迭代过程可求出特征对λ,V ,从下列向量开始: []' 0=111X (1) 用下面递归公式递归地生成序列{}k X : k k Y AX = k+11 1 k k X Y c += (2) 其中1k c +是k Y 绝对值最大的分量。序列{}k X 和{}k c 将分别收敛到V 和λ: 1lim k X V =和lim k c λ= (3) 注:如果0X 是一个特征向量且0X V ≠,则必须选择其他的初始向量。 幂法定理:设n ×n 矩阵A 有n 个不同的特征值λ1,λ2,···,,λn ,而且它们按绝对 值大小排列,即: 123n λλλλ≥≥≥???≥ (4) 如果选择适当的X 0,则通过下列递推公式可生成序列{[() ()( ) ]}12k k k k n X x x x '=???和 {}k c : k k Y AX = (5) 和: 11 1k k k X Y c ++= (6) 其中: () 1k k j c x +=且{} ()()1max k k j i i n x x ≤≤= (7) 这两个序列分别收敛到特征向量V 1和特征值λ1。即: 1lim k k X V →∞ =和1lim k k c λ→∞ = (8) 算法收敛性证明 证明:由于A 有n 个特征值,所以有对应的特征向量V j ,j=1,2,···n 。而且它们是

MATLAB中的矩阵与向量运算

4.1 数组运算和矩阵运算 从外观形状和数据结构来看,二维数组和数学中的矩阵没有区别.但是,矩阵作为一种变换或映射算符的体现,矩阵运算有着明确而严格的数学规则.而数组运算是MATLAB软件所定义的规则,其目的是为了数据管理方面,操作简单,指令形式自然和执行计算有效.所以,在使用MATLAB时,特别要明确搞清数组运算和矩阵运算的区别.表 4.1.1 数组运算和矩阵运算指令形式和实质内涵 数组运算矩阵运算 指令含义指令含义 A.'非共轭转置A'共轭转置 A=s把标量s赋给数组A的每个元素 s+B把标量s分别与数组B的每个元素相加s-B, B-s标量s分别与数组B的元素之差 s.*A标量s分别与数组A的元素之积s*A标量s分别与矩阵A的元素之积 s./B, B.\s标量s分别被数组B的元素除s*inv(B)矩阵B的逆乘标量s A.^n数组A的每个元素的n次方A^n A为方阵时,矩阵A的n次方 A+B数组对应元素的相加A+B矩阵相加 A-B数组对应元素的相减A-B矩阵相减 A.*B数组对应元素的相乘A*B内维相同矩阵的乘积 A./B A的元素被B的对应元素除A/B A右除B B.\A一定与上相同B\A A左除B(一般与右除不同) exp(A)以e为底,分别以A的元素为指数,求幂expm(A) A的矩阵指数函数 log(A) 对A的各元素求对数logm(A) A的矩阵对数函数 sqrt(A) 对A的积各元素求平方根sqrtm(A) A的矩阵平方函数 从上面可以看到,数组运算的运算如:乘,除,乘方,转置,要加"点".所以,我们要特别注意在求"乘,除,乘方,三角和指数函数"时,两种运算有着根本的区别.另外,在执行数组与数组运算时,参与运算的数组必须同维,运算所得的结果数组也是总与原数组同维. 4.2 数组的基本运算 在MATLAB中,数组运算是针对多个数执行同样的计算而运用的.MATLAB以一种非常直观的方式来处理数组. 4.2.1 点转置和共轭转置 . ' ——点转置.非共轭转置,相当于conj(A'). >> a=1:5; >> b=a. ' b = 1 2 3 4 5 >> c=b. ' c = 1 2 3 4 5 这表明对行向量的两次转置运算便得到原来的行向量. ' ——共轭转置.对向量进行转置运算并对每个元素取其共轭.如: >> d=a+i*a

实验MATLAB符号运算

实验四 MATLAB 符号运算 一、实验目的 掌握符号变量和符号表达式的创建,掌握MATLAB 的symbol 工具箱的一些基本应用。 二、实验内容 (1) 符号变量、表达式、方程及函数的表示。 (2) 符号微积分运算。 (3) 符号表达式的操作和转换。 (4) 符号微分方程求解。 三、实验步骤 1. 符号运算的引入 在数值运算中如果求x x x πsin lim 0→,则可以不断地让x 接近于0,以求得表达式接近什么数,但是终究不能令0=x ,因为在数值运算中0是不能作除数的。MATLAB 的符号运算能解决这类问题。输入如下命令: >>f=sym('sin(pi*x)/x') >>limit(f,'x',0) >> f=sym('sin(pi*x)/x') f = sin(pi*x)/x >> limit(f,'x',0) ans = Pi 2. 符号常量、符号变量、符号表达式的创建 1) 使用sym( )创建 输入以下命令,观察Workspace 中A 、B 、f 是什么类型的数据,占用多少字节的内存空间。 >> A=sym('1') >> B=sym('x') >> f=sym('2*x^2+3*y-1') >> clear >> f1=sym('1+2') >> f2=sym(1+2) >> f3=sym('2*x+3') >> f4=sym(2*x+3) >> x=1 >> f4=sym(2*x+3) > A=sym('1') A = 1

>> B=sym('x') B = x >> f=sym('2*x^2+3*y-1') f = 2*x^2+3*y-1 >> clear >> f1=sym('1+2') f1 = 1+2 >> f2=sym(1+2) f2 = 3 >> f3=sym('2*x+3') f3 = 2*x+3 >> f4=sym(2*x+3) ??? Undefined function or variable 'x'. >> x=1 x = >> f4=sym(2*x+3) f4 =

矩阵乘法的并行化 实验报告

北京科技大学计算机与通信工程学院 实验报告 实验名称: 学生姓名: 专业: 班级: 学号: 指导教师: 实验成绩:________________________________ 实验地点: 实验时间:2015年05月

一、实验目的与实验要求 1、实验目的 1对比矩阵乘法的串行和并行算法,查看运行时间,得出相应的结论;2观察并行算法不同进程数运行结果,分析得出结论; 2、实验要求 1编写矩阵乘法的串行程序,多次运行得到结果汇总; 2编写基于MPI,分别实现矩阵乘法的并行化。对实现的并行程序进行正确性测试和性能测试,并对测试结果进行分析。 二、实验设备(环境)及要求 《VS2013》C++语言 MPICH2 三、实验内容与步骤 实验1,矩阵乘法的串行实验 (1)实验内容 编写串行程序,运行汇总结果。 (2)主要步骤 按照正常的矩阵乘法计算方法,在《VS2013》上编写矩阵乘法的串行程序,编译后多次运行,得到结果汇总。

实验2矩阵乘法的并行化实验 3个总进程

5个总进程 7个总进程

9个进程 16个进程 四:实验结果与分析(一)矩阵乘法并行化

矩阵并行化算法分析: 并行策略:1间隔行带划分法 算法描述:将C=A*B中的A矩阵按行划分,从进程分得其中的几行后同时进行计算,最后通信将从进程的结果合并的主进程的C矩阵中 对于矩阵A*B 如图:进程1:矩阵A第一行 进程2:矩阵A第二行 进程3:矩阵A第三行 进程1:矩阵A第四行 时间复杂度分析: f(n) =6+2+8+k*n+k*n+k*n+3+10+n+k*n+k*n+n+2 (k为从进程分到的行数) 因此O(n)=(n); 空间复杂度分析: 从进程的存储空间不共用,f(n)=n; 因此O(n)=(n); 2间隔行带划分法 算法描述:将C=A*B中的A矩阵按行划分,从进程分得其中的几行后同时进行计算,最后通信将从进程的结果合并的主进程的C矩阵中 对于矩阵A*B 如图:进程1:矩阵A第一行 进程2:矩阵A第二行 进程3:矩阵A第三行 进程3:矩阵A第四行 时间复杂度分析: f(n) =6+2+8+k*n+k*n+k*n+3+10+n+k*n+k*n+n+2 (k为从进程分到的行数) 因此O(n)=(n); 空间复杂度分析: 从进程的存储空间不共用,f(n)=n; 因此T(n)=O(n);

MATLAB实验二 矩阵基本运算(一)答案

实验一 矩阵基本运算(一) (1)设A 和B 是两个同维同大小的矩阵,问: 1)A*B 和A.*B 的值是否相等? ????? ?? =763514432A ???? ? ??=94 525 313 4B A=[2 3 4;4 1 5;3 6 7]; B=[4 3 1;3 5 2;5 4 9]; A*B, A.*B ans = 37 37 44 44 37 51 65 67 78 ans = 8 9 4 12 5 10 15 24 63 2)A./B 和B.\A 的值是否相等? A=[2 3 4;4 1 5;3 6 7]; B=[4 3 1;3 5 2;5 4 9]; A./B, B./A

ans = 0.5000 1.0000 4.0000 1.3333 0.2000 2.5000 0.6000 1.5000 0.7778 ans = 2.0000 1.0000 0.2500 0.7500 5.0000 0.4000 1.6667 0.6667 1.2857 3)A/B和B\A的值是否相等? A=[2 3 4;4 1 5;3 6 7]; B=[4 3 1;3 5 2;5 4 9]; A/B, B/A ans = -0.3452 0.5119 0.3690 0.7857 -0.7857 0.6429 -0.9762 1.3095 0.5952 ans = 110.0000 -15.0000 -52.0000

92.0000 -13.0000 -43.0000 -22.0000 4.0000 11.0000 4)A/B和B\A所代表的数学含义是什么? 解: A/B是B*A的逆矩阵 B\A是B*A的逆矩阵 (2)写出完成下列操作的命令。 1)将矩阵A第2—5行中第1,3,5列元素赋给矩阵B。 A=[0.9501 0.4565 0.9218 0.4103 0.1389 0.0153 0.2311 0.0185 0.7382 0.8936 0.2028 0.7468 0.6068 0.8214 0.1763 0.0579 0.1987 0.4451 0.4860 0.4447 0.4057 0.3529 0.6038 0.9318 0.8913 0.6154 0.9355 0.8132 0.2722 0.4660 0.7621 0.7919 0.9169 0.0099 0.1988 0.4186] B=A(2:5,[1,3,5]) A = 0.9501 0.4565 0.9218 0.4103 0.1389 0.0153 0.2311 0.0185 0.7382 0.8936 0.2028 0.7468 0.6068 0.8214 0.1763 0.0579 0.1987 0.4451 0.4860 0.4447 0.4057 0.3529 0.6038 0.9318 0.8913 0.6154 0.9355 0.8132 0.2722 0.4660 0.7621 0.7919 0.9169 0.0099 0.1988 0.4186 B = 0.2311 0.7382 0.2028 0.6068 0.1763 0.1987 0.4860 0.4057 0.6038 0.8913 0.9355 0.2722 2)删除矩阵A的第7号元素。 A=rand(6,6); >> A(7)=[inf] A = 0.8385 Inf 0.1730 0.1365 0.2844 0.5155

矩阵连乘实验报告

华北电力大学科技学院 实验报告 实验名称矩阵连乘问题 课程名称计算机算法设计与分析 专业班级:软件12K1 学生姓名:吴旭 学号:121909020124 成绩: 指导老师:刘老师实验日期:2014.11.14

一、实验内容 矩阵连乘问题,给定n个矩阵{A1,A2,…,A n},其中A i与A i+1是可乘的,i=1,2,3…,n-1。考察这n个矩阵的连乘A1,A2,…,A n。 二、主要思想 由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已经完全加括号,则可依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。完全加括号的矩阵连乘积可递归的定义为: (1)单个矩阵是完全加括号的; (2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号 的矩阵连乘积B和C的乘积并加括号,即A=(BC)。 运用动态规划法解矩阵连乘积的最优计算次序问题。按以下几个步骤进行 1、分析最优解的结构 设计求解具体问题的动态规划算法的第1步是刻画该问题的最优解的结构特征。为方便起见,将矩阵连乘积简记为A[i:j]。考察计算A[1:n]的最优计算次序。设这个计算次序矩阵在A k和A k+1之间将矩阵链断开,1n,则其相应的完全加括号方式为((A1…A k)(A k+1…A n))。依此次序,先计算A[1:k]和A[k+1:n],然后将计

算结果相乘得到A[1:n]。 2、建立递归关系 设计动态规划算法的第二步是递归定义最优值。对于矩阵连乘积的最优计算次序问题,设计算A[i:j],1i n,所需的最少数乘次数为m[i][j],原问题的最优值为m[1][n]。 当i=j时,A[i:j]=A i为单一矩阵,无需计算,因此m[i][i]=0,i=1,2,…n。 当i

2-matlab矩阵的代数运算 (1)

乘法运算乘法运算符为”*”,运算规则和现行代数中矩阵乘法运算相同,即放在前面的矩阵的行元素,分别与放在后面的矩阵的各列元素对应相乘并相加。 1、两个矩阵相乘:必须满足前一矩阵的列数等于后一矩阵的行数。 2、矩阵的数乘:返回数与矩阵中每一个元素相乘后的矩阵 3、向量的点乘(内积):维数相同的两个向量的点乘;A.*B表示A与B对应的元素相乘,返回的是一个向量 4、向量点积: (1)C=dot(A,B) %若A、B为向量,A与B长度相同;若为矩阵,则A与B有相同维数 (2)C=dot(A,B,dim) %在dim维数中给出A与B的点积 5、向量叉乘:在数学上,两向量的叉乘是一个过两向量交点且垂直于两向量所在平面的向量。 (1)C=cross(A,B) %若A、B为向量,则返回A与B的叉乘,即C=AXB;若为矩阵,则返回一个3Xn矩阵,其中列是A与B对应列的叉积,A、B都是3Xn矩阵 (2)C=cross(A,B,dim) %在dim维数中给出向量A与B的叉积注:A与B必须具有相同维数,size(A,dim)和size(B,dim)必须是3 6、矩阵卷积和多项式乘法:w=conv(u,v) (反褶积deconv(u,v))长度为m的向量序列u和长度为n的向量序列v的卷积定义为 ∑ = + = k 1 j j) -1 u(j)v(k )k( w,其中w向量序列长度为(m+n-1) 多项式的乘法实际上是多项式系数向量间的卷积运算,举例如下:展开多项式(s2+2s+2)(s+4)(s+1) >>w=conv([1,2,2],conv([1,4],[1,1])) w = 1 7 16 18 8 >>p=poly2str(w,’s’) %将w表示成多项式 p=s^4 +7 s^3 +16 s^2 +18 s + 8 7、张量积 C=kron(A,B) %A为mxn矩阵,B为pxq矩阵,则C为mpxnq矩阵A与B的张量积定义为: 加、减运算加、减运算符为”+”、”--”。运算规则为对应元素相加、减 pow2函数命令:X=pow2(F,E),表示F*2E;命令:X=pow2(E),表示2E 矩阵的代数 运算

数学实验矩阵的运算

数学实验报告 学院: 班级: 学号: 姓名: 完成日期:

实验四矩阵的运算 (一)投入产出分析 一.实验目的 1.理解投入产出分析中的基本概念和模型; 2.从数学和投入产出理论的角度,理解矩阵乘法、逆矩 阵等的含义。 二.问题描述 设国民经济由农业、制造业和服务业三个部门构成,已知某年它们之间的投入产出关系、部需求、初始投入等如表1-1所示 表1-1国民经济三产部门之间的投入产出表 根据表回答下列问题: (1)如果农业、制造业、服务业外部需求为50,150,100,问三个部门总产出分别为多少? (2)如果三个部门的外部需求分别增加一个单位,问

他们的总产出分别为多少? 三.实验过程 1.问题(1)的求解 (1)求直接消耗矩阵A 根据直接消耗的计算公式 a ij=x ij/x j 和各部门中间需求; x n a n 运行如下代码可得直接消耗系数表。 X=[15 20 30;30 10 45;20 60 0]; X_colsum=[100 200 150]; X_rep=repmat(X_colsum,3,1) A=X./ X_rep 运行结果为: A = 0.1500 0.1000 0.2000 0.3000 0.0500 0.3000 0.2000 0.3000 0 (2)求解 根据公式 X=(I-A)-1y 在运行如下代码

y=[50;150;100]; n=size(y,1); W=eye(n)-A; X=W\y 运行结果为 X = 139.2801 267.6056 208.1377 即三个部门的总产出分别为139.2801,267.6056, 208.1377亿元。 2.问题2求解 设外部需求由y增加至y+Δy,则产出x的增量为 Δx=(I-A)-1(y+Δy)- (I-A)-1y=(I-A)-1Δy 利用问题(1)求得的I-A矩阵,再运行如下的MATLAB 代码可得问题的结果: dx=inv(W) 运行结果: dx = 1.3459 0.2504 0.3443 0.5634 1.2676 0.4930 0.4382 0.4304 1.2167

matlab中的矩阵的基本运算命令范文

1.1 矩阵的表示 1.2 矩阵运算 1.2.14 特殊运算 1.矩阵对角线元素的抽取 函数diag 格式X = diag(v,k) %以向量v的元素作为矩阵X的第k条对角线元素,当k=0时,v为X的主对角线;当k>0时,v为上方第k条对角线;当k<0时,v为下方第k条对角线。 X = diag(v) %以v为主对角线元素,其余元素为0构成X。 v = diag(X,k) %抽取X的第k条对角线元素构成向量v。k=0:抽取主对角线元素;k>0:抽取上方第k条对角线元素;k<0抽取下方第k条对角线元素。 v = diag(X) %抽取主对角线元素构成向量v。 2.上三角阵和下三角阵的抽取 函数tril %取下三角部分 格式L = tril(X) %抽取X的主对角线的下三角部分构成矩阵L L = tril(X,k) %抽取X的第k条对角线的下三角部分;k=0为主对角线;k>0为主对角线以上;k<0为主对角线以下。函数triu %取上三角部分 格式U = triu(X) %抽取X的主对角线的上三角部分构成矩阵U U = triu(X,k) %抽取X的第k条对角线的上三角部分;k=0为主对角线;k>0为主对角线以上;k<0为主对角线以下。3.矩阵的变维 矩阵的变维有两种方法,即用“:”和函数“reshape”,前者主要针对2个已知维数矩阵之间的变维操作;而后者是对于一个矩阵的操作。 (1)“:”变维 (2)Reshape函数变维 格式 B = reshape(A,m,n) %返回以矩阵A的元素构成的m×n矩阵B B = reshape(A,m,n,p,…) %将矩阵A变维为m×n×p×… B = reshape(A,[m n p…]) %同上 B = reshape(A,siz) %由siz决定变维的大小,元素个数与A中元素个数 相同。 (5)复制和平铺矩阵 函数repmat 格式 B = repmat(A,m,n) %将矩阵A复制m×n块,即B由m×n块A平铺而成。 B = repmat(A,[m n]) %与上面一致 B = repmat(A,[m n p…]) %B由m×n×p×…个A块平铺而成 repmat(A,m,n) %当A是一个数a时,该命令产生一个全由a组成的m×n矩阵。 1.3 矩阵分解 1.3.1 Cholesky分解 函数chol 格式R = chol(X) %如果X为n阶对称正定矩阵,则存在一个实的非奇异上三角阵R,满足R'*R = X;若X非正定,则产生错误信息。 [R,p] = chol(X) %不产生任何错误信息,若X为正定阵,则p=0,R与上相同;若X非正定,则p为正整数,R是有序的上三角阵。 1.3.2 LU分解

MATLAB矩阵实验报告

MATLAB 程序设计实验 班级:电信1104班 姓名:龙刚 学号:1404110427 实验内容:了解MA TLAB 基本使用方法和矩阵的操作 一.实验目的 1.了解MA TLAB 的基本使用方法。 2.掌握MA TLAB 数据对象的特点和运算规则。 3.掌握MA TLAB 中建立矩阵的方法和矩阵的处理方法。 二.实验内容 1. 浏览MATLAB 的start 菜单,了解所安装的模块和功能。 2. 建立自己的工作目录,使用MA TLAB 将其设置为当前工作目录。使用path 命令和工作区浏览两种方法。 3. 使用Help 帮助功能,查询inv 、plot 、max 、round 等函数的用法和功能。使用help 命令和help 菜单。 4. 建立一组变量,如x=0:pi/10:2*pi ,y=sin(x),在命令窗口显示这些变量;在变量窗口打开这些变量,观察其值并使用绘图菜单绘制y 。 5. 分多行输入一个MA TLAB 命令。 6. 求表达式的值 ()6210.3424510w -=+? ()22tan b c a e abc x b c a ππ++ -+=++,a=3.5,b=5,c=-9.8 ()220.5ln 1t z e t t =++,21350.65i t -??=??-?? 7.已知 1540783617A --????=??????,831253320B -????=????-?? 求 A+6B ,A 2-B+I A*B ,A.*B ,B*A A/B ,B/A [A,B],[A([1,3], :); B^2]

8.已知 23100.7780414565532503269.5454 3.14A -????-??=????-?? 输出A 在[10,25]范围内的全部元素 取出A 的前三行构成矩阵B ,前两列构成矩阵C ,右下角3x2子矩阵构成矩阵D ,B 与C 的乘积构成矩阵E 分别求表达式E

实验MATLAB符号计算

实验四符号计算 符号计算的特点:一,运算以推理解析的方式进行,因此不受计算误差积累问题困扰;二,符号计算,或给出完全正确的封闭解,或给出任意精度的数值解(当封闭解不存在时);三,符号计算指令的调用比较简单,经典教科书公式相近;四,计算所需时间较长,有时难以忍受。 在MATLAB中,符号计算虽以数值计算的补充身份出现,但涉及符号计算的指令使用、运算符操作、计算结果可视化、程序编制以及在线帮助系统都是十分完整、便捷的。 MATLAB的升级和符号计算内核Maple的升级,决定着符号计算工具包的升级。但从用户使用角度看,这些升级所引起的变化相当细微。即使这样,本章还是及时作了相应的更新和说明。如MATLAB 6.5+ 版开始启用Maple VIII的计算引擎,从而克服了Maple V计算“广义Fourier变换”时的错误(详见第5.4.1节)。 5.1符号对象和符号表达式 5.1.1符号对象的生成和使用 【例5.1.1-1】符号常数形成中的差异 a1=[1/3,pi/7,sqrt(5),pi+sqrt(5)] % <1> a2=sym([1/3,pi/7,sqrt(5),pi+sqrt(5)]) % <2> a3=sym([1/3,pi/7,sqrt(5),pi+sqrt(5)],'e') % <3> a4=sym('[1/3,pi/7,sqrt(5),pi+sqrt(5)]') % <4> a24=a2-a4 a1 = 0.3333 0.4488 2.2361 5.3777 a2 = [ 1/3, pi/7, sqrt(5), 6054707603575008*2^(-50)] a3 = [ 1/3-eps/12, pi/7-13*eps/165, sqrt(5)+137*eps/280, 6054707603575008*2^(-50)] a4 = [ 1/3, pi/7, sqrt(5), pi+sqrt(5)] a24 = [ 0, 0, 0, 189209612611719/35184372088832-pi-5^(1/2)] 【例5.1.1-2】演示:几种输入下产生矩阵的异同。 a1=sym([1/3,0.2+sqrt(2),pi]) % <1> a2=sym('[1/3,0.2+sqrt(2),pi]') % <2> a3=sym('[1/3 0.2+sqrt(2) pi]') % <3> a1_a2=a1-a2 % a1 = [ 1/3, 7269771597999872*2^(-52), pi] a2 = [ 1/3, 0.2+sqrt(2), pi] a3 = [ 1/3, 0.2+sqrt(2), pi] a1_a2 = [ 0, 1.4142135623730951010657008737326-2^(1/2), 0]

矩阵运算实验报告

实验报告 --矩阵运算 一.实验目的。 1.通过实践加强对程序设计语言课程知识点的理解和掌握,培养对课程知识综合运用能力、实际分析问题能力及编程能力,养成良好的编程习惯。 2.通过实践进一步领会程序设计的特点和应用,提高运用C++ 语言以及面向对象知识解决实际问题的能力。 3.通过实践掌握用C++ 语言编写面向对象的实用程序的设计方法,对面向对象方法和思想增加感性的认识; 4.学会利用C++程序设计语言编写出一些短小、可靠的Windows实用程序,切实提高面向对象的程序设计能力。为后续的相关课程的学习打下基础。 二.实验要求。 1.学会建立模板类; 2.实现矩阵的“加”、“减”、“乘”、“数乘”、“转置”; 3.动态存分配并用随机数填充; 4.注意“加”、“减”、“乘”要进行条件的判断; 三.设计思路。

3.1算法基本流程 1)获取用户输入的矩阵1的行数和列数,动态生成一个一维数组 2)利用随机数生成数组成员,并利用两个循环输出数组,使其符合矩阵的格式 3)矩阵2同矩阵1的处理方法 4)通过两个矩阵的行数和列数比较来判断能否进行加减乘等运算,如不能,输出相关信息 5)如能够进行计算,则利用数组进行相应运算,并按照正确格式输出 6)通过改变一维数组中元素的顺序来实现转置并输出 3.2算法流程图

四.基本界面。

五.关键代码。 5.1关键类的声明 class CMatrixclass { public: CMatrixclass() { int m_Row = 0; //行 int m_Col = 0; //列 m_pElements = NULL; //一维数组

矩阵乘法的并行化实验报告

科技大学计算机与通信工程学院 实验报告 实验名称: 学生: 专业: 班级: 学号: 指导教师: 实验成绩:________________________________ 实验地点: 实验时间:2015年05月

一、实验目的与实验要求 1、实验目的 1对比矩阵乘法的串行和并行算法,查看运行时间,得出相应的结论;2观察并行算法不同进程数运行结果,分析得出结论; 2、实验要求 1编写矩阵乘法的串行程序,多次运行得到结果汇总; 2编写基于MPI,分别实现矩阵乘法的并行化。对实现的并行程序进行正确性测试和性能测试,并对测试结果进行分析。 二、实验设备(环境)及要求 《VS2013》C++语言 MPICH2 三、实验容与步骤 实验1,矩阵乘法的串行实验 (1)实验容 编写串行程序,运行汇总结果。 (2)主要步骤 按照正常的矩阵乘法计算方法,在《VS2013》上编写矩阵乘法的串行程序,编译后多次运行,得到结果汇总。

实验2矩阵乘法的并行化实验 3个总进程

5个总进程 7个总进程

9个进程 16个进程 四:实验结果与分析(一)矩阵乘法并行化

矩阵并行化算法分析: 并行策略:1间隔行带划分法 算法描述:将C=A*B中的A矩阵按行划分,从进程分得其中的几行后同时进行计算,最后通信将从进程的结果合并的主进程的C矩阵中 对于矩阵A*B 如图:进程1:矩阵A第一行 进程2:矩阵A第二行 进程3:矩阵A第三行 进程1:矩阵A第四行 时间复杂度分析: f(n) =6+2+8+k*n+k*n+k*n+3+10+n+k*n+k*n+n+2 (k为从进程分到的行数) 因此O(n)=(n); 空间复杂度分析: 从进程的存储空间不共用,f(n)=n; 因此O(n)=(n); 2间隔行带划分法 算法描述:将C=A*B中的A矩阵按行划分,从进程分得其中的几行后同时进行计算,最后通信将从进程的结果合并的主进程的C矩阵中 对于矩阵A*B 如图:进程1:矩阵A第一行 进程2:矩阵A第二行 进程3:矩阵A第三行 进程3:矩阵A第四行 时间复杂度分析: f(n) =6+2+8+k*n+k*n+k*n+3+10+n+k*n+k*n+n+2 (k为从进程分到的行数) 因此O(n)=(n); 空间复杂度分析: 从进程的存储空间不共用,f(n)=n; 因此T(n)=O(n);

MATLAB基本矩阵运算

Basic Matrix Operations 一、实验目的 1、掌握向量和矩阵的创建方法; 2、掌握向量和矩阵元素的索引方法; 3、掌握向量和矩阵的基本操作; 4、利用MATLAB编写程序进行矩阵运算。 二、基础知识 1、常见数学函数 函数名数学计算功能函数名数学计算功能 Abs(x) 实数的绝对值或复数的幅值floor(x) 对x朝-∞方向取整 Acos(x) 反余弦arcsin x gcd(m,n)求正整数m和n的最大公约数 acosh(x) 反双曲余弦arccosh x imag(x) 求复数x的虚部 angle(x) 在四象限内求复数 x 的相角lcm(m,n) 求正整数m和n的最小公倍数 asin(x) 反正弦arcsin x log(x) 自然对数(以e为底数) asinh(x) 反双曲正弦arcsinh x log10(x) 常用对数(以10为底数) atan(x) 反正切arctan x real(x) 求复数x的实部 atan2(x,y) 在四象限内求反正切Rem(m,n) 求正整数m和n的m/n之余数 atanh(x) 反双曲正切arctanh x round(x) 对x四舍五入到最接近的整数 ceil(x) 对x朝+∞方向取整sign(x) 符号函数:求出x的符号 conj(x) 求复数x的共轭复数sin(x) 正弦sin x cos(x) 余弦cos x sinh(x) 反双曲正弦sinh x cosh(x) 双曲余弦cosh x sqrt(x) 求实数x的平方根:x exp(x) 指数函数xe tan(x) 正切tan x fix(x) 对x朝原点方向取整tanh(x) 双曲正切tanh x 2、常量与变量 系统的变量命名规则:变量名区分字母大小写;变量名必须以字母打头,其后可以是任意字母,数字,或下划线的组合。此外,系统内部预先定义了几个有特殊意义和用途的变量,见下表: 特殊的变量、常量取值

MATLAB符号计算实验报告

实验六符号计算 学院:数计学院班级:1003班姓名:黄晓丹学号:1051020144 一、实验目的 1、了解富符号对象和数值对象之间的差别,以及它们之间的互相转换 2、了解符号运算和数值运算的特点、区别和优缺点 3、掌握符号对象的基本操作和运算,以及符号运算的基本运用 二、实验内容 1、符号常数形成和使用 (1)符号常数形成中的差异 >> a1=[1/3,pi/7,sqrt(5),pi+sqrt(5)] a1 = 0.3333 0.4488 2.2361 5.3777 >> a2=sym([1/3,pi/7,sqrt(5),pi+sqrt(5)]) a2 = [ 1/3, pi/7, sqrt(5),

6054707603575008*2^(-50)] >> a3=sym('[1/3,pi/7,sqrt(5),pi+sqrt(5)]') a3 = [ 1/3, pi/7, sqrt(5), pi+sqrt(5)] >> a24=a2-a3 a24 = [ 0, 0, 0, 189209612611719/35184372088832-pi-5^(1/2)] (2)把字符表达式转化为符号变量 >> y=sym('2*sin(x)*cos(x)') y = 2*sin(x)*cos(x) >> y=simple(y)

y = sin(2*x) (3)用符号计算验证三角等式 >> syms fai1 fai2;y=simple(sin(fai1)*cos(fai2)-cos(fai1)*sin(fai2)) y = sin(fai1-fai2) (4)求矩阵的行列式值、逆和特征值 >> syms a11 a12 a21 a22;A=[a11,a12;a21,a22] A = [ a11, a12] [ a21, a22] >> DA=det(A),IA=inv(A),EA=eig(A) DA =

Matlab常用函数数组及矩阵的基本运算

实验一 Matlab 常用函数、数组及矩阵的基本运算 一、 实验目的 1. 了解Matlab7.0软件工作界面结构和基本操作; 2. 掌握矩阵的表示方法及Matlab 常用函数; 3. 掌握数组及矩阵的基本运算. 二、 实验内容 1. 了解命令窗口(command widow)和变量空间(workspace)的作用,掌握清 除命令窗口(clc )和变量空间(clear)的方法.掌握查询函数(help)的方法. 2. 掌握保存和加载变量的方法. 加载变量:load 变量名. 3. 掌握掌握矩阵的表示方法: 给a,b,c 赋如下数据: ]6,46,23,4,2,6,3,8,0,1[,356838241248 7,278744125431-=??????????--=??????????=c b a 4. 求a+b,a*b,a.*b,a/b,a./b,a^2,a.^2的结果. 5. 将str1=electronic; str2 = information; str3 = engineering; 三个字符串连接 在一起成str = electronic information engineering. 6. 求矩阵a 的逆矩阵a -1,行列式计算。 (inv(a),det(a)) 三、 实验要求 1.上机操作,熟练掌握清除命令窗口和变量空间的方法、查询变量的方法、加载变量的方法。 2.第2道题请写出步骤。 3.对实验内容中第3-6项,写出指令,上机运行. 记录运行结果(数据)。 4.写出实验报告。 四、 实验结果 2. 用save 函数,可以将工作空间的变量保存成txt 文件或mat 文件等. 比如: save peng.mat p j 就是将工作空间中的p 和j 变量保存在peng.mat 中. 用load 函数,可以将数据读入到matlab 的工作空间中. 比如:load peng.mat 就是将peng.mat 中的所有变量读入matlab 工作空间中。

Matlab实验2-矩阵的基本运算

实验二、矩阵的基本运算 一、 问题 已知矩阵A 、B 、b 如下: ???????? ??????????-------------=0319481187638126542 86174116470561091143A ???????? ??????????------=503642237253619129113281510551201187851697236421B … []1187531=b 应用Matlab 软件进行矩阵输入及各种基本运算。 二、 实验目的: 熟悉Matlab 软件中的关于矩阵运算的各种命令 三、 预备知识 1、 、 2、 线性代数中的矩阵运算。 3、 本实验所用的Matlab 命令提示: (1)、矩阵输入格式:A =[a 11, a 12; a 21, a 22];b =初始值:步长:终值; (2)、求A 的转置:A'; (3)、求A 加B :A +B ; (4)、求A 减B :A -B ; (5)、求数k 乘以A :k*A ; (6)、求A 乘以B :A*B ; (7)、求A 的行列式:det (A ); (8)、求A 的秩:rank (A ); … (9)、求A 的逆:inv (A )或(A )-1; (10)、B 右乘A 的逆:B/A ; (11)、B 左乘A 的逆:A \B ; (12)、求A 的特征值:eig (A ); (13)、求A 的特征向量矩阵X 及对角阵D :[X ,D ]=eig (A ); ( (14)、求方阵A 的n 次幂:A ^n ;

(15)、A与B的对应元素相乘:A.*B; (16)、存储工作空间变量:save '文件名' '变量名'; (17)、列出工作空间的所有变量:whos; 四、《 五、实验内容与要求 1、输入矩阵A,B,b; >> A=[3,4,-1,1,-9,10;6,5,0,7,4,-16;1,-4,7,-1,6,-8;2,-4,5,-6,12,-8;-3,6,-7,8,-1,1;8,-4,9,1,3,0] B=[1 2 4 6 -3 2;7 9 16 -5 8 -7;8 11 20 1 5 5;10 15 28 13 -1 9;12 19 36 25 -7 23;2 4 6 -3 0 5] b=[1,3,5,7,8,11] | A = 3 4 -1 1 -9 10 6 5 0 7 4 -16 1 -4 7 -1 6 -8 2 -4 5 -6 12 -8 ^ -3 6 -7 8 -1 1 8 -4 9 1 3 0 B = 1 2 4 6 -3 2 7 9 16 -5 8 -7 ^ 8 11 20 1 5 5 10 15 28 13 -1 9 12 19 36 25 -7 23 2 4 6 - 3 0 5 b = ) 1 3 5 7 8 11 2、作X21=A'、X22=A+B、X23=A-B、X24=AB; >> X21=A' X22=A+B X23=A-B % X24=A*B X21 = 3 6 1 2 -3 8 4 5 -4 -4 6 -4 -1 0 7 5 -7 9 ; 1 7 -1 -6 8 1 -9 4 6 12 -1 3 10 -16 -8 -8 1 0 X22 = 4 6 3 7 -12 12 (

矩阵连乘实验报告

矩阵连乘实验报告

————————————————————————————————作者: ————————————————————————————————日期: ?

华北电力大学科技学院 实验报告 实验名称矩阵连乘问题 课程名称计算机算法设计与分析 专业班级:?软件12K1??学生姓名:吴旭 学号:121909020124 成绩: 指导老师: 刘老师?实验日期:2014.11.14

一、实验内容 矩阵连乘问题,给定n个矩阵{A1,A2,…,A n},其中A i与A i+1是可乘的,i=1,2,3…,n-1。考察这n个矩阵的连乘A1,A2,…,A n。 二、主要思想 由于矩阵乘法满足结合律,故计算矩阵的连乘积可以有许多不同的计算次序。这种计算次序可以用加括号的方式来确定。若一个矩阵连乘积的计算次序完全确定,也就是说该连乘积已经完全加括号,则可依此次序反复调用2个矩阵相乘的标准算法计算出矩阵连乘积。完全加括号的矩阵连乘积可递归的定义为: (1)单个矩阵是完全加括号的; (2)矩阵连乘积A是完全加括号的,则A可表示为2个完全加括号的 矩阵连乘积B和C的乘积并加括号,即A=(BC)。 运用动态规划法解矩阵连乘积的最优计算次序问题。按以下几个步骤进行 1、分析最优解的结构 设计求解具体问题的动态规划算法的第1步是刻画该问题的最优解的结构特征。为方便起见,将矩阵连乘积简记为A[i:j]。考察计算A[1:n]的最优计算次序。设这个计算次序矩阵在Ak和A k+1之间将矩阵链断开,1≤k≤n,则其相应的完全加括号方式为((A …A k)(Ak+1…A n))。依此次序,先计算A[1:k]和A[k+1:n],然后1

相关文档
相关文档 最新文档