文档库 最新最全的文档下载
当前位置:文档库 › 矩阵分析习题课

矩阵分析习题课

矩阵分析习题课
矩阵分析习题课

矩阵分析习题课

第一部份内容

第一章线性空间与线性换

1、概念与性质

(1)线性空间、线性子空间、向量有关概念(线性相关、线性无关、线性表出,向量组的秩、基、维数、坐标)、过渡矩阵、基坐标关系

(2)子空间:和、交、直和、维数公式

(3)线性空间同构,同构性质

(4)线性变换、线性变换空间、线性变换的表示矩阵、不同基下线性变换表示矩阵关系、线性变换的特征值与特征向量

(5)不变子空间、不变子空间与线性变换的联系

2、计算

(1)求向量组的秩、空间的基、维数、向量在基下的坐标

(2)求过渡矩阵、基坐标关系求坐标

(3)求线性变换的表示矩阵

(4)求矩阵的特征值与特征向量、线性变换的特征值与特征向量

第二章内积空间

1、概念与性质

(1)实内积空间、复内积空间、欧氏空间、酉空间,Cauchy-Schwartz不等式、常见线性空间的内积

(2)正交向量、标准正交向量、正交基、标准正交基、Gram-Schmidit直交化、子空间直交、直交补空间及性质

(3)内积空间同构

(4)正交变换、酉变换及等价命题、正交矩阵、酉矩阵

(5)点到子空间距离、最小二乘法

(6)正规矩阵、特殊的正规矩阵:Hermite矩阵、正交矩阵、酉矩阵

(7)Hermite二次型、标准型及标准化、正定、负定

2、计算

(1)Gram-Schmidit直交化求正交向量组、标准正交向量组

(2)法方程解最小二乘问题

(3)化Hermite二次型为标准型

第三章矩阵的标准形

1、概念与性质

(1)多项式矩阵、Smith标准形、行列式因子、不变因子、初等因子及关系

(2)矩阵相似对角化、酉对角化、Jordan标准形

(3)Hilmilton-Cayley定理、最小多项式

(4)Schur定理、QR分解、奇异值分解、满值分解

2、计算

(1)求多项式矩阵的Smith标准形、行列式因子、不变因子、初等因子(2)求矩阵的Jordan标准形、最小多项式,化矩阵的Jordan标准形

(3)利用Hilmilton-Cayley定理、最小多项式做多项式的简化计算

(4)求矩阵的QR分解、奇异值分解、满值分解

第四章矩阵函数及应用

1、概念与性质

(1)向量范数(三种常见的向量范数)、矩阵范数(Frobenius范数、列和范数、行和范数、谱范数)、谱半径

(2)向量的极限、矩阵的极限、收敛与发散

(3)矩阵级数的收敛、绝对收敛与发散、矩阵幂级数

(4)矩阵函数

(5)函数矩阵的微分、积分

(6)常见矩阵函数性质

(7)常系数线性微分方程解与矩阵函数关系

2、计算

(1)求向量、矩阵的常见几种范数

(2)求矩阵的极限

(3)求矩阵函数

(4)求函数矩阵的微分与积分

(5)解微分方程

第二部份 习题

1、 设4[]R x 是所有次数小于4的实系数多项式组成的线性空间,求多项式

3

()12p x x

=+在基231,1,(1),(1)x x x ---下的坐标。

2、 在3[]R x 中,设线性变换T 在基21,,x x 下的表示矩阵为

1022131

2

0A ??

??=??????

(1) 求T 在基2,1,x x 下的表示矩阵; (2) 求2g x =+在该线性变换T 下的像。

3、 在3R 中,设123(,,)x ξξξ=,线性变换12233(,2,)Tx ξξξξξ=+-,求(1)T 在标

准基下的表示矩阵,(2)T 在一组基下的最简形式的矩阵为什么矩阵?试求

一组基,使T 在其下的表示矩为最简形式的矩阵。

4、 证明n 维线性空间V 的一个有n 个不同特征值的线性变换T 共有2n 个不同

的不变子空间。

5、 设32526101

2

3A -??

??

=-????-??

,(1)求矩阵A 的smith 标准形,行列式因子、不变因子、初等因子、最小多项式,(2)求8752A A A E -+-。

6、 试判断如下矩阵是否相似:(1) 100

100

a

a a ???

???????与30030

a a a ??

???

?????

(2) 100

10

a

a a ??????????与1001,00

a

a a εε

??

??

≠?

?????

7、 求矩阵的满秩分解:1

4156200461244191

2

1

1

16-??

??????

----??----??

8、 求矩阵的QR 分解:1

101

110

2??

??-??????

9、 求矩阵的奇异值分解:2

011

2

0A ??=?

???

10、 设2100231

2

0A -????=??????,123x ??

??

=??

????

,求12||||,||||,||||,||||F A A A A ∞,

12||||,||||,||||Ax Ax Ax ∞

11、

设1

35

5315

5A ??

??=?

???????

,矩阵幂级数21k k k A ∞=∑是否收敛?如收敛求21k

k k A ∞

=∑。 12、

已知10010

110

01101

1A -??

??-?

?=??-??-??

,求sin A t 13、 解微分方程:

1

14223

1234323

114,(0)1,(0)0,(0)0,(0)1dx x x dt dx x x

dt

x x x x dx x x

dt dx

x x dt

?=-??

?=-?====-?

?=-+???=-+? 14、设011

000

0i A i

-??

?

?

=??????

,证明A 为正规矩阵并求酉矩阵Q 使H Q AQ 为对角阵。

矩阵分析第3章习题答案

第三章 1、 已知()ij A a =是n 阶正定Hermite 矩阵,在n 维线性空间n C 中向量 1212(,,,),(,, ,)n n x x x y y y αβ==定义内积为(,)H A αβαβ= (1) 证明在上述定义下,n C 是酉空间; (2) 写出n C 中的Canchy-Schwarz 不等式。 2、 已知2111311101A --?? =? ? -?? ,求()N A 的标准正交基。 提示:即求方程0AX =的基础解系再正交化单位化。 3、 已知 308126(1)316,(2)103205114A A --?? ?? ????=-=-?? ?? ????----?? ?? 试求酉矩阵U ,使得H U AU 是上三角矩阵。 提示:参见教材上的例子 4、 试证:在n C 上的任何一个正交投影矩阵P 是半正定的Hermite 矩阵。 5、 验证下列矩阵是正规矩阵,并求酉矩阵U ,使H U AU 为对角矩阵,已知 1 31(1)612A ????? =????????? ? 01(2)10000i A i -????=??????,434621(3)44326962260i i i A i i i i i +--????=----? ???+--?? 11(4)11A -?? =?? ?? 6、 试求正交矩阵Q ,使T Q AQ 为对角矩阵,已知

220(1)212020A -????=--????-?? ,11011110(2)01111011A -?? ??-? ?=?? -??-?? 7、 试求矩阵P ,使H P AP E =(或T P AP E =),已知 11(1)01112i i A i i +????=-????-??,222(2)254245A -?? ??=-?? ??--?? 8、 设n 阶酉矩阵U 的特征根不等于1-,试证:矩阵E U +满秩,且1 ()() H i E U E U -=-+是Hermite 矩阵。反之,若H 是Hermite 矩阵,则E iH +满秩,且1 ()()U E iH E iH -=+-是酉矩阵。 证明:若||0+=E U ,观察0-=E U λ知1-为U 的特征值,矛盾,所以矩阵E U +满 秩。()()1 1()()()--=-+=-+-H H H H H i E U E U i E U E U ,要H H H =,只要 ()()1 1()()()()()()---+-=-+?--+=+-?-=-H H H H H H i E U E U i E U E U E U E U E U E U U U U U 故H H H = 由()0+=--=E iH i iE H 知i 为H 的特征值。由Hermite 矩阵只能有实数特征值可得 0+≠E iH ,即E iH +满秩。 111111()()()()()()()()()()()()------=+-+-=+-+-=++--=H H H U U E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E 9、 若,S T 分别是实对称和实反对称矩阵,且det()0E T iS --≠,试证: 1()()E T iS E T iS -++--是酉矩阵。 证明: 1111 [()()]()()()()()()----++--++--=++--++--H E T iS E T iS E T iS E T iS E T iS E T iS E T iS E T iS 11()()()()--=++++----=E T iS E T iS E T iS E T iS E

研究生矩阵试题B2

北京交通大学 2005-2006学年第一学期硕士研究生矩阵分析考试试卷(B) 专业 班级 学号 姓名 一. (12分)设3R 的两个基为T T T I )1,0,1( ,)1,0,1( ,)1,1,1( :321=-==ααα和T T T II )5,4,3( ,)4,3,2( ,)1,2,1( :321===βββ, (1) 求基I 到基II 的过度矩阵;(2) 求T )1,1,1(=α在基I 下的坐 标。 二. (14分)设线性影射34:R R T →满足,对任意44321),,,(R x x x x T ∈, T T x x x x x x x x x x x x x x x T )3,2,(),,,(432142143214321-++-+++-=, 求T 的核()N T 及值域()R T 的基和维数。 三. (12分)设???? ? ??-=120520i i i A , (1)计算1A 和∞A ;(2)如果T x )1,1,1(=, 计算1Ax 和∞Ax 。 四.(10分)求矩阵???? ? ??=131321*********A 的满秩分解。 五. (12分)求矩阵???? ? ??=230111140A 的正交三角分解UR A =,其中U 是

酉矩阵,R 是正线上三角矩阵。 六. (20分)证明题: 1. 设A 是反Hermite 矩阵,证明A E -是可逆的。 2.设A 是正规矩阵, 如果A 满足0432=--E A A ,证明:A 是Hermite 矩阵。 3.证明:n 维欧氏空间V 的线性变换T 是对称变换,即对任何,x y V ∈, ),(),(Ty x y Tx = 的充要条件是T 在标准正交基下的矩阵表示是对称拒阵。 七. (20分) 设???? ? ??=100100011A 。 (1)求E A λ-的Smith 标准形;(2)写出A 的最小多项式, A 的初等因子和Jordan 标准形; (3)求矩阵函数()f A ,并计算tA e 。

矩阵分析 习题

114试证1-1412k k m n n m ××试证:tr tr ()(), ,,1,2,AB BA A C B C k =∈∈= 证: m n ?n m tr 11()ik ki i k AB a b ==?=????∑∑=tr 11 () jl lj j l b a BA ==?? =????∑∑() tr tr ()())k AB ABAB A B = ()=tr tr ()() k B ABAB A BA =

证明22设,证明:阶矩阵 0ε≠n ?2-2 1a ??? a ε?? ?? 1a A ??=??? a B ε??=??? 与a ???a ?? ?相似。 121()()()1, n D D D λλλ?=== ()() n n D a λλ=?

n 阶矩阵 2-3 1a ?? 1a ??a A ??? ?=? 与a B ????=? 1??? 1? ?? a ??a ε ??不相似。 === n =?0ε≠121:()()()1,n A D D D λλλ?()() n D a λλ()() n n D a λλ≠?121:()()()1,n B D D D λλλ?===

27(4)求方阵308?? ??2-7(4) 316205A =????????? 的Jordan 标准形及其相似变换矩阵。P 解:首先用初等变换法求其Jordan 标准形: 3 08100λλλ?????????2 316010205001()I A λλλ?=+?+???? ????++????

A 故的初等因子为 2 1,(1)λλ++从而的Jordan 标准形为 A () 100??? ???011001J =??????? 再求相似变换矩阵: 则?设所求矩阵为,则,按列分块记为 P 1 P AP J =P =[] 123,,P X X X

北京理工大学2017级硕士研究生矩阵分析考试题

北京理工大学2017-2018学年第一学期 2017级硕士研究生〈矩阵分析〉终考试题 一、(10分)设线性变换f 在基123[1,1,1],[1,0,1],[0,1,1] ααα=-=-=下的矩阵表示为101110123A -????=????-?? (1)求f 在基123[1,0,0],[0,1,0],[0,0,1]εεε===下的矩阵表示。 (2)求f 的核与值域。 二、(10分)求矩阵20000i A ????=?????? 的奇异值分解。 三、(10分)求矩阵111222111A -????=-????--?? 的谱分解。 四、(15分)已知(1)n u R n ∈>为一个单位列向量,令T A I uu =-,证明 (1)21A =; (2)对任意的X R ∈,如果有AX X ≠,那么22AX X <。 五、(15分)已知矩阵1212a A a ??-??=????-???? , (1)问当a 满足什么条件时,矩阵幂级数121()k k k A ∞ =+∑绝对收敛? (2)取a = 0,求上述矩阵幂级数的和。

七、(20分)求下列矩阵的矩阵函数2,sin ,cos tA e A A π π 300030021 01300103123001013000301 00013()()()A A A ??????????? ???===?????? ???????????? 八、(5分)已知 sin 53sin 2sin 52sin sin 5sin sin sin 5sin 2sin 52sin sin 5sin sin 5sin 2sin 52sin sin 53sin t t t t t t tA t t t t t t t t t t t t +--????=-+-????--+?? 求矩阵A 。 九、(5分)已知不相容线性方程组 141223341 10 x x x x x x x x +=??+=??+=??+=? 求其最佳最小二乘解。 十、(10分)已知Hermite 二次型 12312132131(,,)f x x x ix x x x ix x x x =+-+ 求酉变换X UY =将123(,,)f x x x 化为标准型。

矩阵分析模拟试题及答案

矩阵分析模拟试题及答案 一.填空题(每空3分,共15分) 1. 设A 为3阶方阵, 数2-=λ, 3=A , 则A λ= -24. 2. 设向量组T )4,3,2,1(1=α,T )5,4,3,2(2=α,T )6,5,4,3(3=α,T )7,6,5,4(4=α,则 ),,,(4321ααααR =2. 3. 已知??? ?? ??---=11332 223a A ,B 是3阶非零矩阵,且0=AB ,则=a 1/3. 4.设矩阵????? ??------=12422 421x A 与??? ? ? ??-=Λ40000005y 相似,则y x -=-1. 5. 若二次型()32212 3222132122, ,x ax x x x x x x x x f ++++=是正定二次型,则a 的取值 范围是22< <-a . 二.单项选择题(每小题3分,共15分) 1. 设A 是3阶矩阵,将的第二列加到第一列得矩阵,再交换的第二行与第三行得单位矩阵, 记????? ??=1000110011P ,??? ?? ??=010*******P ,在则=A ( D ) 21)(P P A 211)(P P B - 12)(P P C 112)(-P P D 2. 设A 是4阶矩阵,且A 的行列式0=A ,则A 中( C ) )(A 必有一列元素全为0 )(B 必有两列元素成比例 )(C 必有一列向量是其余列向量的线性组合 )(D 任意列向量是其余列向量的线性组合 3. 设A 与B 均为3阶方阵, 且A 与B 相似, A 的特征值为1, 2, 3, 则1 )2(-B 的特 征值为(B ) )(A 2, 1, 32 )(B 12, 14, 16 )(C 1, 2, 3 )(D 2, 1, 2 3

矩阵分析 - 北京理工大学研究生院

课程名称:矩阵分析 一、课程编码:1700002 课内学时: 32 学分: 2 二、适用学科专业:计算机、通信、软件、宇航、光电、生命科学等工科研究生专业 三、先修课程:线性代数,高等数学 四、教学目标 通过本课程的学习,要使学生掌握线性空间、线性变换、Jordan标准形,及各种矩阵分解如QR分解、奇异值分解等,正规矩阵的结构、向量范数和矩阵范数、矩阵函数,广义逆矩阵、Kronecker积等概念和理论方法,提升研究生的数学基础,更好地掌握矩阵理论,在今后的专业研究或工作领域中熟练应用相关的矩阵分析技巧与方法,让科研结果有严格的数学理论依据。 五、教学方式 教师授课 六、主要内容及学时分配 1、线性空间和线性变换(5学时) 1.1线性空间的概念、基、维数、基变换与坐标变换 1.2子空间、线性变换 1.3线性变换的矩阵、特征值与特征向量、矩阵的可对角化条件 2、λ-矩阵与矩阵的Jordan标准形(4学时) 2.1 λ-矩阵及Smith标准形 2.2 初等因子与相似条件 2.3 Jordan标准形及应用; 3、内积空间、正规矩阵、Hermite 矩阵(6学时) 3.1 欧式空间、酉空间 3.2标准正交基、Schmidt方法 3.3酉变换、正交变换 3.4幂等矩阵、正交投影 3.5正规矩阵、Schur 引理 3.6 Hermite 矩阵、Hermite 二次齐式 3.7.正定二次齐式、正定Hermite 矩阵 3.8 Hermite 矩阵偶在复相合下的标准形

4、矩阵分解(4学时) 4.1矩阵的满秩分解 4.2矩阵的正交三角分解(UR、QR分解) 4.3矩阵的奇异值分解 4.4矩阵的极分解 4.5矩阵的谱分解 5、范数、序列、级数(4学时) 5.1向量范数 5.2矩阵范数 5.3诱导范数(算子范数) 5.4矩阵序列与极限 5.5矩阵幂级数 6、矩阵函数(4学时) 6.1矩阵多项式、最小多项式 6.2矩阵函数及其Jordan表示 6.3矩阵函数的多项式表示 6.4矩阵函数的幂级数表示 6.5矩阵指数函数与矩阵三角函数 7、函数矩阵与矩阵微分方程(2学时) 7.1 函数矩阵对纯量的导数与积分 7.2 函数向量的线性相关性 7.3 矩阵微分方程 (t) ()() dX A t X t dt = 7.4 线性向量微分方程 (t) ()()() dx A t x t f t dt =+ 8、矩阵的广义逆(3学时) 8.1 广义逆矩阵 8.2 伪逆矩阵 8.3 广义逆与线性方程组 课时分配说明:第一章的课时根据学生的数学基础情况可以调整,最多5学时,如学生线

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后知识题目解析

第1章 线性空间和线性变换(详解) 1-1 证:用ii E 表示n 阶矩阵中除第i 行,第i 列的元素为1外,其余元素全为0的矩阵.用 ij E (,1,2, ,1)i j i n <=-表示n 阶矩阵中除第i 行,第j 列元素与第j 行第i 列元素 为1外,其余元素全为0的矩阵. 显然,ii E ,ij E 都是对称矩阵,ii E 有(1) 2 n n -个.不难证明ii E ,ij E 是线性无关的,且任何一个对称矩阵都可用这n+(1)2n n -=(1) 2 n n +个矩阵线性表示,此即对称矩阵组成 (1) 2 n n +维线性空间. 同样可证所有n 阶反对称矩阵组成的线性空间的维数为(1) 2 n n -. 评注:欲证一个集合在加法与数乘两种运算下是一个(1) 2 n n +维线性空间,只需找出 (1)2n n +个向量线性无关,并且集合中任何一个向量都可以用这(1) 2 n n +个向量线性表示即可. 1-2解: 11223344x x x x ααααα=+++令 解出1234,,,x x x x 即可. 1-3 解:方法一 设11223344x x x x =+++A E E E E 即 123412111111100311100000x x x x ??????????=+++???????????????????? 故 1234 1231211203x x x x x x x x x x +++++?? ??=??? ?+???? 于是 12341231,2x x x x x x x +++=++=

1210,3x x x +== 解之得 12343,3,2,1x x x x ==-==- 即A 在1234,,,E E E E 下的坐标为(3,3,2,1)T --. 方法二 应用同构的概念,22R ?是一个四维空间,并且可将矩阵A 看做(1,2,0,3)T , 1234,,,E E E E 可看做(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)T T T T .于是有 111111 000 31110201003110000 01021000300011???? ????-??? ?→???? ??? ? -???? 因此A 在1234,,,E E E E 下的坐标为(3,3,2,1)T --. 1-4 解:证:设112233440k k k k αααα+++= 即 12341234123134 12411111110110110110 k k k k k k k k k k k k k k k k k ????????+++???????????????? +++++??==??++++?? 于是 12341230,0k k k k k k k +++=++= 1341240,0k k k k k k ++=++= 解之得 12340k k k k ==== 故1234,,,αααα线性无关. 设

北京交通大学研究生矩阵分析期末考试试卷(7份)

2004-2005学年第一学期硕士研究生矩阵分析考试试卷(A) 专业 班级 学号 姓名 一. (12分)3[]R x 表示由次数小于3的多项式组成的线性空间。在 3[]R x 中取两个基:21231,1,(1)x x ααα==-=-; 21232,2,(2)x x βββ==-=-。(1)求123,,βββ到123,,ααα的过度矩阵,(2) 求21x x ++ 在123,,ααα下的坐标。 二. (14分)设T 是n R 的线性映射,对任意12(,, ,)T n n x x x x R =∈满足 11(0,, ,)n Tx x x -=。(1)证明0n T =; (2)求T 的核()N T 及值域 ()R T 的 基和维数。 三. (12分)设1023510224i A i i i -?? ?=++ ? ?-??,120x i -?? ? ?= ? ? ?-?? ,i = 。 计算11, , , Ax Ax A A ∞∞。 四.(10分)求矩阵1123101032160113A -?? ?-- ? = ?- ? ?-? ? 的满秩分解。 五. (12分)求矩阵011110101A ?? ? = ? ??? 的正交三角分解A UR =,其中U

是酉矩阵,R 是正线上三角矩阵。 六. (16分,1、2小题各5分, 3小题6分)证明题: 1. 设A 是n 阶正规矩阵,且满足2320A A E -+=。证明A 是Hermite 矩阵,并写出A 的Jordan 标准形的形式。 2.设A 是正定Hermite 矩阵,且A 是酉矩阵,证明A E =。 3.证明:若A 是Hermite 矩阵,则iA e 是酉矩阵。 七. (24分) 设100011101A ?? ? =- ? ?-?? 。(1)求E A λ-的Smith 标准形; (2)写出A 的最小多项式, A 的初等因子和Jordan 标准形; (3)求相似变换矩阵P 使得1P AP J -=;(4)求1P -矩阵函数()f A ,并计算tA e 。 2004-2005学年第一学期硕士研究生矩阵分析考试试卷(B) 专业 班级 学号 姓名 一. (12分)设3R 两个:123(1,0,1),(1,0,0),(0,1,1)T T T ααα==-=; 123(0,1,1),(1,1,0),(1,0,1)T T T βββ=-=-=。(1)求123,,ααα到 123,,βββ的过度矩阵,(2) 求子空间V ,其中V 中的向量在两个基下的坐标相同。 二. (14分)设线性映射43:T R R →满足:对任意41234(,,,)T x x x x R ∈, 求的核()N T 及值域()R T 的基和维数。

矩阵分析习题

研究生矩阵分析习题 第一部份内容 第一章线性空间与线性换 1、概念与性质 (1)线性空间、线性子空间、向量有关概念(线性相关、线性无关、线性表出,向量组的秩、基、维数、坐标)、过渡矩阵、基坐标关系 (2)子空间:和、交、直和、维数公式 (3)线性空间同构,同构性质 (4)线性变换、线性变换空间、线性变换的表示矩阵、不同基下线性变换表示矩阵关系、线性变换的特征值与特征向量 (5)不变子空间、不变子空间与线性变换的联系 2、计算 (1)求向量组的秩、空间的基、维数、向量在基下的坐标 (2)求过渡矩阵、基坐标关系求坐标 (3)求线性变换的表示矩阵 (4)求矩阵的特征值与特征向量、线性变换的特征值与特征向量 第二章内积空间 1、概念与性质 (1)实内积空间、复内积空间、欧氏空间、酉空间,Cauchy-Schwartz不等式、常见线性空间的内积 (2)正交向量、标准正交向量、正交基、标准正交基、Gram-Schmidit直交化、子空间直交、直交补空间及性质 (3)内积空间同构 (4)正交变换、酉变换及等价命题、正交矩阵、酉矩阵 (5)点到子空间距离、最小二乘法 (6)正规矩阵、特殊的正规矩阵:Hermite矩阵、正交矩阵、酉矩阵 (7)Hermite二次型、标准型及标准化、正定、负定

2、计算 (1)Gram-Schmidit直交化求正交向量组、标准正交向量组 (2)法方程解最小二乘问题 (3)化Hermite二次型为标准型 第三章矩阵的标准形 1、概念与性质 (1)多项式矩阵、Smith标准形、行列式因子、不变因子、初等因子及关系 (2)矩阵相似对角化、酉对角化、Jordan标准形 (3)Hilmilton-Cayley定理、最小多项式 (4)Schur定理、QR分解、奇异值分解、满值分解 2、计算 (1)求多项式矩阵的Smith标准形、行列式因子、不变因子、初等因子(2)求矩阵的Jordan标准形、最小多项式,化矩阵的Jordan标准形 (3)利用Hilmilton-Cayley定理、最小多项式做多项式的简化计算 (4)求矩阵的QR分解、奇异值分解、满值分解 第四章矩阵函数及应用 1、概念与性质 (1)向量范数(三种常见的向量范数)、矩阵范数(Frobenius范数、列和范数、行和范数、谱范数)、谱半径 (2)向量的极限、矩阵的极限、收敛与发散 (3)矩阵级数的收敛、绝对收敛与发散、矩阵幂级数 (4)矩阵函数 (5)函数矩阵的微分、积分 (6)常见矩阵函数性质 (7)常系数线性微分方程解与矩阵函数关系 2、计算 (1)求向量、矩阵的常见几种范数 (2)求矩阵的极限 (3)求矩阵函数 (4)求函数矩阵的微分与积分 (5)解微分方程

矩阵分析期末考试2012

2012-2013学年第一学期硕士研究生矩阵分析考试试卷(A) 专业 学号 姓名 一、(共30分,每小题6分)完成下列各题: (1)设4 R 空间中的向量????????????=23121α,????????????--=32232α,????????????=78013α,???? ?? ??????--=43234α, ????? ? ??????--=30475α Span V =1{}321,,ααα,Span V =2{}54,αα,分别求21V V +和21V V I 的 维数. 解:=A { }54321,,,,ααααα? ? ??? ? ??? ???--→000004100030110 202 01 21V V +和21V V I 的维数为 3和1 (2) 设() T i i 11-=α,() T i i 11-=β是酉空间中两向量,求 内积()βα, 及它们的长度(i = . (0, 2, 2); (3)求矩阵?? ?? ? ?????----=137723521111A 的满秩分解.

解:?? ?? ? ?????----=137723521111A ??????? ? ??? ????? -- --→0000747510737201 ??????????----=137723521111A ??????????--=775211??????? ??? ??? ?? ? ----747 510737201* (4)设-λ矩阵???? ? ??++=2)1(000000 )1()(λλλλλA ,求)(λA 的标准形及其 行列式因子. 解:????? ??++=2)1(000000)1()(λλλλλA ()()??? ? ? ??++→2111λλλλ (5)设*A 是矩阵范数,给定一个非零向量α,定义 *H x x α=, 验证x 是向量范数. 二、(10分)设3R 中的线性变换T 在基321,,εεε下的矩阵表示为 ?? ?? ? ?????-=021110111A , (1)(5分)求T 的值域)(T R 的维数及一组基; (2)(5分)求T 的核)(T N 的维数及一组基. 解:(1)由题意知 T [ε1,ε2,ε3]=[]?? ?? ? ?????-021110111,,321εεε

北京交通大学研究生课程矩阵分析期末考试2011-12-16

北京交通大学 2011-2012学年第一学期硕士研究生矩阵分析考试试卷(A) 专业 班级 学号 姓名 一、(共12分,每小题3分)试对下列概念给出定义: (1)线性映射的值域和核;(2)线性变换的特征值和特征向量; (3)矩阵的最小多项式; (4)矩阵的诱导范数. 二、(共24分,每小题8分)设5R 空间中的向量 110212α????????=????????,201221α????????=????????,312012α?? ? ? ?= ? ? ???,413233α????????=????????,512013α????????=????????,623445α?? ???? ??=?? ?? ???? , Span V =1()1234,,,αααα,Span V =2()56,αα, (1)求矩阵()123456,,,,,A αααααα=的满秩分解; (2)求21V V +的维数及基; (3)求21V V 的维数及基. 三、(10分)求矩阵2000 0224400 2A ????? ?=?????? 的正交三角分解UR A =,其中U 是次酉矩阵,R 是正线上三角矩阵. 四、(10分)设13021i i A i i ??= ?---??24 C ?∈,计算12, , , F A A A A ∞. (这里12-=i ).

2 五、(共28分,每题7分)证明题: (1)设A 是正定Hermite 矩阵,B 是反Hermite 矩阵,证明:AB 的特征值的实部为0. (2)设A 为正规矩阵,证明:)(2A A ρ=. 这里)(A ρ为A 的谱半径. (3)设n n C B ?∈且1

#研究生矩阵论第1讲 线性空间

矩阵论 1、意义 随着科学技术的发展,古典的线性代数知识己不能满足现代科技的需要,矩阵的理论和方法业巳成为现代科技领域必不可少的工具.有人认为:“科学计算实质就是矩阵的计算”.这句话概括了矩阵理论和方法的重要性及其使用的广泛性.因此,学习和掌握矩阵的基本理论和方法,对于理、工科研究生来说是必不可少的数学工具.2、内容 《矩阵论》和工科《线性代数》课程在研究矩阵的内容上有较大的差异: 线性代数:研究行列式、矩阵的四则运算(加、减、乘、求逆 ) 以及第一类初等变换 (非正交的)、对角标准形 (含二次型) 以及n阶线性方程组的解等基本内容. 矩阵论:研究矩阵的几何理论(线性空间、线性算子、内积空间等)、第二和第三类初等变换(正交的)、分析运算(矩阵微积分和级数)、矩阵的范数和条件数、广义逆和分解、若尔当标准形以及几类特殊矩阵和特殊运算等,内容十分丰富. 3、方法 在研究的方法上,矩阵论和线性代数也有很大的不同: 线性代数:引入概念直观,着重计算. 矩阵论:着重从几何理论的角度引入矩阵的许多概念和运算,把矩阵看成是线性空间上线性算子的一种数量表示.深刻理解它们对将

来正确处理实际问题有很大的作用. 第1讲 线性空间 内容: 1.线性空间的概念; 2.基变换和坐标变换; 3.子空间和维数定理; 4.线性空间的同构 线性空间和线性变换是矩阵分析中经常用到的两个极其重要的概念,也是通常几何空间概念的推广和抽象,线性空间是某类客观事物从量的方面的一个抽象. §1 线性空间的概念 1. 群,环,域 代数学是用符号代替数(或其它)来研究数(或其它)的运算性质和规律的学科,简称代数. 代数运算:假定对于集A 中的任意元素a 和集B 中的任意元素b ,按某一法则和集C 中唯一确定的元素c 对应,则称这个对应为A 、B 的一个(二元)代数运算. 代数系统:指一个集A 满足某些代数运算的系统. 1.1群 定义1.1 设V 是一个非空集合,在集合V 的元素之间定义了一种代数运算,叫做加法,记为“+”.即,对V 中给定的一个法则,对于V 中任意元素βα,,在V 中都有惟一的一个元ν和他们对应,称ν为βα,的和,记为βαν+=.若在“+”下,满足下列四个条件,则称V 为一个群. 1)V 在“+”下是封闭的.即,若,,V ∈βα有 V ∈+βα; 2) V 在“+”下是可结合的.即,)()(γβαγβα++=++ ,V ∈γ;

矩阵分析课后习题解答版

第一章 线性空间与线性变换 (以下题目序号与课后习题序号不一定对应,但题目顺序是一致的,答案为个人整理,不一定正确,仅供参考,另外,此答案未经允许不得擅自上传) (此处注意线性变换的核空间与矩阵核空间的区别) 1.9.利用子空间定义,)(A R 是m C 的非空子集,即验证)(A R 对m C 满足加法和数乘的封闭性。 1.10.证明同1.9。 1.11.rankA n A N rankA A R -==)(dim ,)(dim (解空间的维数) 1.13.提示:设),)(- ?==n j i a A n n ij (,分别令T i X X ),0,0,1,0,0(K K ==(其中1位于i X 的第i 行),代入0=AX X T ,得0=ii a ;令T ij X X )0,0,10,0,1,0,0(K K K ==(其中1位于ij X 的第i 行和第j 行) ,代入0=AX X T ,得0=+++jj ji ij ii a a a a ,由于0==jj ii a a ,则0=+ji ij a a ,故 A A T -=,即A 为反对称阵。若X 是n 维复列向量,同样有0=ii a , 0=+ji ij a a , 再令T ij i X X ),0,1,0,0,,0,0(K K K ='=(其中i 位于ij X 的第i 行,1位于ij X 的第j 行),代入0=AX X H ,得0)(=-++ij ji jj ii a a i a a ,由于 0==jj ii a a ,ij ji a a -=,则0==ji ij a a ,故0=A 1.14.AB 是Hermite 矩阵,则AB BA A B AB H H H ===)( 1.15.存在性:令2 ,2H H A A C A A B -=+=,C B A +=,其中A 为任意复矩阵,可验证C C B B H H -==, 唯一性:假设11C B A +=,1111,C C B B H H -==,且C C B B ≠≠11,,由

南京理工大学硕士研究生矩阵分析与计算试题答案

20XX 年南京理工大学硕士研究生 《矩阵分析与计算》考试(A 卷)参考答案 注意:所有试题答案都写在答题纸上,写在试卷上无效 一、(12分)设矩阵0.60.50.10.3A ??=????,计算21,,F A A A A ∞。 解:10.8, 1.1,F A A A ∞=== …………. 9 分 0.370.330.330.34T A A ??=???? m a x ()0.6853T A A λ≈, …………. 2 分 从而20.8278A == …………. 1 分 二、(15分)求矩阵141130001A -????=--?????? 的初等因子及Jordan 标准形。 解:初等因子 21,(1)λλ-+ …………. 10 分 Jordan 矩阵1111J ????=-????-?? …………. 5 分 三、(20分)已知1011011,11121A b ????????==???????????? (1)求A 的满秩分解;(2)求A +;(3)用广义逆矩阵方法判断线性方程组Ax b =是否有解;(4)求Ax b =的极小范数解或极小范数最小二乘解,并指出所求的是哪种解. 解:(1)101010101111A FG ??????==?????????? …………. 6 分

(2) 54114519112A +-????=-?????? …………. 6 分 (3) []21123 T b A b A += ≠,方程组无解; …………. 4 分 (4)极小范数最小二乘解为[]021129 T b x A +== …………. 4 分 四、(10分)利用盖尔圆隔离定理证明205141011210A i ????=?????? 有三互异特征值。 解:取(1,1,3)D diag =,则1B DAD -=的三个行盖尔园隔离,因此矩阵有3个互异特征值. ………….10 分 五、(10分)用LU 分解求解方程组 1234102040101312431301035x x x x ??????????????????=???????????????? ?? 解: 1020110200101011011243121210 10301012??????????????????=?????????????????? …………. 5 分 求解得到(2,2,1,1)T x = …………. 5分 六、(10分)利用幂法计算矩阵 1319????-?? 的按模最大特征值及对应特征向量。(取初始向量(1,1)T ,结果保留4位有效数字) 解: max 8.6055λ≈, 特征向量(0.3945,1)T ………… 10分

矩阵分析习题

一,设311202113A -?? ?=- ? ?--?? (1)求矩阵e At . (2)求()At d e dt . 二,(15分)设矩阵1001200-1A ??????=?????? , (1)求矩阵A 的奇异值。 (2)求矩阵A 的奇异值分解。 三、证明对任何方阵A 和B ,有 A B A B B A e =e e =e e ⊕??,其中A B=A I+I B ⊕??。 四、已知102011121A -?? ?= ? ?--?? (1) 写出A 的若当标准型 (2) 写出A 的最小多项式()A m λ (3)计算矩阵函数At e 五、设矩阵方程为AX XB D +=,其中111020,,02011A B D λ--??????=== ? ? ??????? (1) 当λ为何值时, 矩阵方阵有唯一解 (2) 当=1λ 时,求矩阵的解X 六、设 110021001A ?? ?= ? ??? ,求一个次数不超过3 的矩阵多项式 ()g x , 将矩阵函数 ()cos A 用矩阵多项式 ()g A 表示出来 七、对给定的矩阵5010,1253A B -????== ? ????? , 矩阵空间22 R ?上的线性变换 T 被定义为 : ()22 ,T X AX XB X R ?=+?∈ (a) 求变换 T 在空间 22 R ?的基 {}11211222,,, E E E E 下的变换矩阵P .

(b) 求矩阵P 的特征值 , 讨论P 是否可逆 八、叙述奇异值分解定理(即酉相抵标准形定理)并用其证明方阵的极分解定理: 九、设A 是n 阶不可约非负矩阵,证明:若A 恰有d 个对角元非零,则21n d A O --> . 十、证明分块上三角矩阵为酉矩阵当且仅当其为对角块均为酉矩阵的分块对角阵 十一、试证:如果A 是n 阶正规矩阵,则A 相应于不同特征值的特征向量复正交 十二、设矩阵U 是酉矩阵,()12diag ,, ,n A a a a = 证明UA 的所有特征值λ满足 不等式 {}{}min max i i i i a a λ≤≤ 十三、设A 是正定Hermite 矩阵,B 是斜Hermite 矩阵,证明A B +是可逆矩阵. 十四、证明若A 是Hermite 矩阵,则i A e 为酉矩阵 十五、设A 是正规矩阵,证明A 是酉矩阵的充要条件是A 的特征值的绝对值等于1。 十六、设,A B 均为n 阶半正定阵,证明A B 也是半正定阵. 十七、设,m m n n A C B C ??∈∈ 及m n F C ?∈ ,且,A B 无公共特征值, 证明: B O F A ?? ??? 与B O O A ?? ??? 相似 十八、设A 是n 阶复方阵,(){}12,,,n Spec A λλλ=,证明: ()(){} 1211k k i i i k Spec C A i i n λλλ=≤<<≤ 十九、陈述Perron-Frobenius 系列定理。 二十、陈述关于Hermite 方阵特征值的min-max 原理

数值分析习题集及答案

数值分析习题集 (适合课程《数值方法A》和《数值方法B》) 长沙理工大学 第一章绪论 1.设x>0,x的相对误差为δ,求的误差. 2.设x的相对误差为2%,求的相对误差. 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: 4.利用公式求下列各近似值的误差限: 其中均为第3题所给的数. 5.计算球体积要使相对误差限为1%,问度量半径R时允许的相对误差限是多少? 6.设按递推公式 ( n=1,2,…) 计算到.若取≈(五位有效数字),试问计算将有多大误差? 7.求方程的两个根,使它至少具有四位有效数字(≈. 8.当N充分大时,怎样求? 9.正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝? 10.设假定g是准确的,而对t的测量有±秒的误差,证明当t增加时S的绝对误差增加,而 相对误差却减小. 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大?这个计算过程 稳定吗? 12.计算,取,利用下列等式计算,哪一个得到的结果最好? 13.,求f(30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 计算,求对数时误差有多大? 14.试用消元法解方程组假定只用三位数计算,问结果是否可靠? 15.已知三角形面积其中c为弧度,,且测量a ,b ,c的误差分别为证明面积的误差满足 第二章插值法 1.根据定义的范德蒙行列式,令 证明是n次多项式,它的根是,且 .

2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)的二次插值多项式. 3. 4.给出cos x,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数 字,研究用线性插值求cos x 近似值时的总误差界. 5.设,k=0,1,2,3,求. 6.设为互异节点(j=0,1,…,n),求证: i) ii) 7.设且,求证 8.在上给出的等距节点函数表,若用二次插值求的近似值,要使截断误差不超过,问使用函 数表的步长应取多少? 9.若,求及. 10.如果是次多项式,记,证明的阶差分是次多项式,并且为正整数). 11.证明. 12.证明 13.证明 14.若有个不同实根,证明 15.证明阶均差有下列性质: i)若,则; ii)若,则. 16.,求及. 17.证明两点三次埃尔米特插值余项是 并由此求出分段三次埃尔米特插值的误差限. 18.求一个次数不高于4次的多项式,使它满足并由此求出分段三次埃尔米特插值的误差限. 19.试求出一个最高次数不高于4次的函数多项式,以便使它能够满足以下边界条件,,. 20.设,把分为等分,试构造一个台阶形的零次分段插值函数并证明当时,在上一致收敛到. 21.设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处的与的值,并估计误 差. 22.求在上的分段线性插值函数,并估计误差. 23.求在上的分段埃尔米特插值,并估计误差. i) ii) 25.若,是三次样条函数,证明 i); ii)若,式中为插值节点,且,则. 26.编出计算三次样条函数系数及其在插值节点中点的值的程序框图(可用式的表达式). 第三章函数逼近与计算 1.(a)利用区间变换推出区间为的伯恩斯坦多项式. (b)对在上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误

矩阵分析 2018年期末试题

一、填空题 1、4[]R x 表示实数域R 上所有次数小于或等于3的多项式构成的向量空间,则微分算子 D 在4[]R x 的基 321234(),(),(),()1p x x p x x p x x p x ====下的矩阵表示______________。 2、λ-矩阵 322(1)()(1)A λλλλλλ??- ?=- ? ??? 的初等因子组为______________________ _______________, Smith 标准形是___________________________ 3、已知矩阵210024120A -??? ?=??????,则 1____,A =____,A ∞= _____F A = 其中1,∞??分别是由向量的1-范数和∞-范数诱导出来的矩阵范数(也称算子范数), F ?是矩阵的Frobenius 范数。 4. 已知函数矩阵222()2x A x x ??= ???,则22()d A x dx =___________, 5、已知n 阶单位矩阵I , 则 sin _______,2I π= 2______,i I e π=cos _______.I π= 6、设()m J a 表示主对角元均为 a 的m 阶Jordan 块。则 ()k m J a 的Jordan 标准形为________ _______, ()k m J a 的最小多项式为___________,这里0,a ≠ ,m k 是整数且 1,1m k >≥. 二、 已知 220260114A -????=?????? , (1)求矩阵的Jordan 标准形和最小多项式; (2)求矩阵函数 sin ,.t A A e 30(())_______.t A x dx '=?

相关文档