文档库 最新最全的文档下载
当前位置:文档库 › 1.3.1 单调性与最大(小)值(2)(教案)

1.3.1 单调性与最大(小)值(2)(教案)

1.3.1  单调性与最大(小)值(2)(教案)
1.3.1  单调性与最大(小)值(2)(教案)

§1.3 函数的基本性质

§1.3.1 单调性与最大(小)值(2)

【教学目标】

l.知识与技能

理解函数的最大(小)值及其几何意义;学会运用函数图象理解和研究函数的性质。

2. 过程与方法

通过实例,使学生体会到函数的最大(小)值,实际上是函数图象的最高(低)点的纵坐标,因而借助函数图象的直观性可得出函数的最值,有利于培养以形识数的解题意识。

3. 情感态度与价值观

利用函数的单调性和图象求函数的最大(小)值,解决日常生活中的实际问题,激发学生学习的积极性。

【教学重点】

函数的最大(小)值及其几何意义。

【教学难点】

利用函数的单调性求函数的最大(小)值。

【教学方法】

学生通过画图、观察、思考、讨论,从而归纳出求函数的最大(小)值的方法和步骤。

【教学过程】

【导入新课】

思路:画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什么特征? ①()3f x x =-+; ②()3

[1,2]f x x x =-+∈-;

③2

()21f x x x =++; ④2

()21[2,2]f x x x x =++∈-。

【推进新课】

【新知探究】

【知识点1】

1、函数的最大(小)值的定义:

一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: (1)存在0x I ∈,使得()0f x M =;

(2)对于任意的x I ∈,都有()f x M ≤(或()f x M ≤)。 那么称M 是函数()y f x =的最大(小)值。 【注意】

(1)函数的最大(小)值首先应该是该函数的函数值,即存在0x I ∈,使得()0f x M =;

(2)函数的最大(小)值应该是所有函数值中最大(小)的,即对任意的x I ∈,都有()f x M ≤(或

()f

x M ≤

)。

【知识点2】

2、求函数最值的方法: (1)图像法;(2)配方法;(3)换元法;(4)分离常数法;(5)判别式法; (6)单调性法。

结论:最大值:已知函数()y f x =的定义域为[],a b ,a c b <<,当[],x a c ∈时,()f x 是单调增函数;

当[],x c b ∈时,()f x 是单调减函数,则当x c =时()f x 取得最大值()()m ax f x f c =。

最小值:已知函数()y f x =的定义域为[],a b ,a c b <<,当[],x a c ∈时,()f x 是单调减函数;

当[],x c b ∈时,()f x 是单调增函数,则当x c =时()f x 取得最小值()()min f x f c =。

【例1】课本30P 例3

【变式1】(1)将进货单价40元的商品按50元一个售出时,能卖出500个,若此商品每个涨价1元,其

销售量减少10个,为了赚到最大利润,售价应定为多少?

(2)求函数|3||1|y x x =--+的最大值和最小值。

【例2】(1)课本30P 例2

(2)求函数y x =+的最小值;

(3)求函数y x =+的最大值。

【变式2】(1)课本32P 练习5 (2)求函数()12

x f x x +=-在区间[]3,6上的最值。

(3)求函数11,2y x x ?

???=∈

- ????

???的最值。

【例3】已知不等式2

20x x a +-≤在区间[]2,1-上恒成立,求实数a 的取值范围。

【变式3】已知不等式1

0x a x +-≥在区间1,32??

????

上恒成立,求实数a 的取值范围。

【例4】已知函数()f x 的定义域为()0,+∞,且对一切0,0a b >>都有()()a f f a f b b ??

=-

???

,当1x > 时,有()0f x >。

(1)求()1f 的值;(2)判断()f x 的单调性并加以证明。 (3)若()42f =,求()f x 在[]1,16上的值域。

【例5】已知二次函数()2

23f x x x =-+。

(1)当[]2,0x ∈-时,求()f x 的最值;(2)当[]2,3x ∈-时,求()f x 的最值; (3)当[],1x t t ∈+时,求()f x 的最小值()g t 。

【变式4】求函数2

21y x ax =--在[]0,2上的最值。

【总结】二次函数在闭区间上的最值问题,如二次函数()()()2

0f x a x h k a =-+>在区间[],m n 上的讨

【知能训练】

1、课本习题1.3A 组5 B 组2;

2、点金训练 1.3.1 单调性与最大(小)值 点金测评 创新训练。

3、补充练习: 一、选择题

1

.函数y =-x +1在区间????

12,2上的最大值是( )

A .-12

B .-1 C. 1

2 D .3

2.函数y =x +2x -1( )

A .有最小值12,无最大值

B .有最大值1

2

,无最小值

(1)(2)(4)(3)

C .有最小值1

2

,最大值2 D .无最大值,也无最小值

3.函数f (x )=?

????

2x +6, x ∈[1,2]

x +7, x ∈[-1,1],则f (x )的最大值、最小值为( )

A .10,6

B .10,8

C .8,6

D .以上都不对 4.函数y =|x -3|-|x +1|的( )

A .最小值是0,最大值是4

B .最小值是-4,最大值是0

C .最小值是-4,最大值是4

D .没有最大值也没有最小值 5.函数f (x )=1

1-x (1-x )

的最大值是( )

A.45

B.54

C.34

D.43

6.函数f (x )=x 2-4x +5在区间[0,m ]上的最大值为5,最小值为1,则m 的取值范围是( )

A .[2,+∞)

B .[2,4]

C .(-∞,2]

D .[0,2] 二、填空题

7.函数y =2|x |+1

的值域是________.

8.函数y =-x 2+6x +9在区间[a ,b ](a

x +2在区间[2,4]上的最大值为________,最小值为________.

三、解答题

10.已知函数f (x )=x 2-2x +2.(1)求f (x )在区间[1

2

,3]上的最大值和最小值;

(2)若g (x )=f (x )-mx 在[2,4]上是单调函数,求m 的取值范围.

11.若二次函数满足f (x +1)-f (x )=2x 且f (0)=1.

(1)求f (x )的解析式;(2)若在区间[-1,1]上不等式f (x )>2x +m 恒成立,求实数m 的取值范围.

函数的基本性质——单调性与最大(小)值

函数的基本性质——单调性与最大(小)值 【教学目标】 1.知识与技能:了解单调函数、单调区间的概念:能说出单调函数、单调区间这两个概念的大致意思 2.过程与方法:理解函数单调性的概念:能用自已的语言表述概念;并能根据函数的图象指出单调性、写出单调区间 3.情感、态度与价值观:掌握运用函数的单调性定义解决一类具体问题:能运用函数的单调性定义证明简单函数的单调性 【教学重难点】 教学重点:函数的单调性的概念。 教学难点:利用函数单调的定义证明具体函数的单调性 【教学过程】 一、复习引入。 1 分别画函数2x y =和3x y =的图象。2 x y =的图象如图1,3x y =的图象如图2. 2.引入:从函数2x y = 的图象(图1)看到: 图象在y 轴的右侧部分是上升的,也就是说,当x 在区间[0,+∞)上取值时,随着x 的增大,相应的y 值也随着增大,即如果取21,x x ∈[0,+∞),得到1y =)(1x f ,2y =)(2x f ,那么当 1x <2x 时,有1y <2y 。 这时我们就说函数y =)(x f =2x 在[0,+∞)上是增函数。图象在y 侧部分是下降的,也就是说,当x 在区间(-∞,0)上取值时,随着x 的增大,相应的y 值反而随着减小,即如果取21,x x ∈(-∞,0),得到1y =)(1x f , 2y =)(2x f ,那么当1x <2x 时,有1y >2y 。

这时我们就说函数y =)(x f =2x 在(-∞,0)上是减函数。函数的这两个性质,就是今天我们要学习讨论的。 二、讲解新课。 1.增函数与减函数。 定义:对于函数)(x f 的定义域I 内某个区间上的任意两个自变量的值 21,x x ,(1)若当1x <2x 时,都有)(1x f <)(2x f ,则说)(x f 在这个区间上是 增函数(如图3);(2)若当1x <2x 时,都有)(1x f >)(2x f ,则说)(x f 在这个区间上是减函数(如图4)。 说明:函数是增函数还是减函数,是对定义域内某个区间而言的。有的函数在一些区间上是增函数,而在另一些区间上不是增函数。例如函数2 x y =(图1),当x ∈[0,+∞)时是增 函数,当x ∈(-∞,0)时是减函数。 2.单调性与单调区间。 若函数y=f (x )在某个区间是增函数或减函数,则就说函数)(x f 在这一区间具有(严格的)单调性,这一区间叫做函数)(x f 的单调区间。此时也说函数是这一区间上的单调函数。 在单调区间上,增函数的图象是上升的,减函数的图象是下降的。 说明:(1)函数的单调区间是其定义域的子集; (2)应是该区间内任意的两个实数,忽略需要任意取值这个条件,就不能保证函数是增函数(或减函数),例如,图5中,在21,x x 那样的特定位置上,虽然使得)(1x f >)(2x f , (3)除了严格单调函数外,还有不严格单调函数,它的定义类似上述的定义,只要将上述定义中的“)(1x f <)(2x f 或)(1x f >)(2x f ,”改为“)(1x f )(2x f 或) (1x f ≥ )(2x f ,”即可; (4)定义的内涵与外延: 内涵是用自变量的大小变化来刻划函数值的变化情况; 外延①一般规律:自变量的变化与函数值的变化一致时是单调递增,自变量的变化与函数值的变化相对时是单调递减。 ②几何特征:在自变量取值区间上,若单调函数的图象上升,则为增函数,图象下降则为减函数。 三、讲解例题。

《函数的最大(小)值与导数》教案完美版

《函数的最大(小)值与导数》教案 §1.3.3 函数的最大(小)值与导数(1) 【教学目标】 1.使学生理解函数的最大值和最小值的概念,掌握可导函数)(x f 在闭区间[]b a ,上所有点(包括端点b a ,)处的函数中的最大(或最小)值必有的充分条件; 2.使学生掌握用导数求函数的极值及最值的方法和步骤. 【教学重点】利用导数求函数的最大值和最小值的方法. 【教学难点】函数的最大值、最小值与函数的极大值和极小值的区别与联系. 【教学过程】 一、复习引入: 1.极大值: 一般地,设函数f (x )在点x 0附近有定义,如果对x 0附近的所有的点,都有f (x )<f (x 0),就说f (x 0)是函数f (x )的一个极大值,记作y 极大值=f (x 0),x 0是极大值点. 2.极小值:一般地,设函数f (x )在x 0附近有定义,如果对x 0附近的所有的点,都有f (x )>f (x 0).就说f (x 0)是函数f (x )的一个极小值,记作y 极小值=f (x 0),x 0是极小值点. 3.极大值与极小值统称为极值 注意以下几点: (ⅰ)极值是一个局部概念.由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小.并不意味着它在函数的整个的定义域内最大或最小. (ⅱ)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个. (ⅲ)极大值与极小值之间无确定的大小关系.即一个函数的极大值未必大于极小值,如下图所示,1x 是极大值点,4x 是极小值点,而)(4x f >)(1x f . (ⅳ)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点. 而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点. 4. 判别f (x 0)是极大、极小值的方法: 若0x 满足0)(0='x f ,且在0x 的两侧)(x f 的导数异号,则0x 是)(x f 的极值点,)(0x f 是极值,并且如果)(x f '在0x 两侧满足“左正右负”,则0x 是)(x f 的极大值点,)(0x f 是极大值;如果)(x f '在0x 两侧满足“左负右正”,则0x 是)(x f 的极小值点,)(0x f 是极小值. 5. 求可导函数f (x )的极值的步骤: (1)确定函数的定义区间,求导数f ′(x ); (2)求方程f ′(x )=0的根; (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f ′(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不改变符号即都为正或都为负,那么f (x ) 在这个根处无极值. 二、讲解新课: 1.函数的最大值和最小值

高中数学:单调性 函数的最大值、最小值 (5)

第2课时 函数的最大值、最小值 知识点 函数的最大值与最小值 最大(小)值必须是一个函数值,是值域中的一个元素,如函数y =x 2(x ∈R )的最大值是0,有f(0)=0. [小试身手] 1.判断(正确的打“√”,错误的打“×”) (1)任何函数都有最大值或最小值.( ) (2)函数的最小值一定比最大值小.( ) 答案:(1)× (2)× 2.函数f (x )=1 x 在[1,+∞)上( ) A .有最大值无最小值 B .有最小值无最大值 C .有最大值也有最小值 D .无最大值也无最小值 解析:函数f (x )=1 x 是反比例函数,当x ∈(0,+∞)时,函数图象下降,所以在[1,+∞)上f (x )为减函数,f (1)为f (x )在[1,+∞)上的最大值,函数在[1,+∞)上没有最小值.故选A. 答案:A 3.函数f (x )=-2x +1(x ∈[-2,2])的最小、最大值分别为( ) A .3,5 B .-3,5 C .1,5 D .-5,3 解析:因为f (x )=-2x +1(x ∈[-2,2])是单调递减函数,所以当x =2时,函数的最小值为-3.当x =-2时,函数的最大值为5.

答案:B 4.函数f(x)在[-2,2]上的图象如图所示,则此函数的最小值、最大值分别是() A.f(-2),0 B.0,2 C.f(-2),2 D.f(2),2 解析:由图象知点(1,2)是最高点,故y max=2.点(-2,f(-2))是最低点,故y min=f(-2). 答案:C 类型一图象法求函数的最值 例1如图所示为函数y=f(x),x∈[-4,7]的图象,指出它的最大值、最小值及单调区间. 【解析】观察函数图象可以知道,图象上位置最高的点是(3,3),最低的点是(-1.5,-2), 所以函数y=f(x)当x=3时取得最大值,最大值是3. 当x=-1.5时取得最小值,最小值是-2. 函数的单调递增区间为[-1.5,3),[5,6), 单调递减区间为[-4,-1.5),[3,5),[6,7]. 观察函数图象,最高点坐标(3,3),最低点(-1.5,-2). 方法归纳 图象法求最值的一般步骤

总复习教案:函数的单调性与最值(学生版)

第三节 函数的单调性与最值 [知识能否忆起] 一、函数的单调性 1.单调函数的定义 增函数 减函数 定义 设函数f (x )的定义域为I .如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1, x 2 当x 1f (x 2) ,那么就说函 数f (x )在区间D 上是减函数 图象描述 自左向右看图象逐渐上升 自左向右看图象逐渐下降 2.单调区间的定义 若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 二、函数的最值 前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件 ①对于任意x ∈I ,都有f (x )≤M ; ②存在x 0∈I ,使得f (x 0)=M ①对于任意x ∈I ,都有f (x )≥M ; ②存在x 0∈I ,使得f (x 0)=M 结论 M 为最大值 M 为最小值 [小题能否全取] 1.(2012·陕西高考)下列函数中,既是奇函数又是增函数的为( ) A .y =x +1 B .y =-x 3 C .y =1x D .y =x |x | 2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >12 B .k <12 C .k >-1 2 D .k <-1 2

3.(教材习题改编)函数f (x )=1 1-x (1-x )的最大值是( ) A.45 B.54 C.34 D.43 4.(教材习题改编)f (x )=x 2-2x (x ∈[-2,4])的单调增区间为________;f (x )max =________. 5.已知函数f (x )为R 上的减函数,若m

人教版数学必修一函数的单调性与最大值

一、函数的单调性 1.增函数和减函数 一般地,设函数f(x)的定义域为I 如果对于定义域I内某个区间D上的任意两个自变量的值,,当时,都有f()f(),那么就说函数f(x)在区间D上是减函数 2.函数的单调性与单调区间 如果函数y=f(x)在区间D上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有单调性,区间D叫做y=f(x)的单调区间 (1)在某个区间具有单调性:①这个区间可以是整个定义域.如:y=x 在整个定义域R上是增函数,②这个区间也可以是定义域的真子集,如:y=x2在定义域(-∞,+∞)上不具有单调性,但在(-∞,0 ] 上是减函数,在 [ 0,+∞)上是增函数

(2)单调性是函数在某一区间上的“整体”性质,因此定义中的,有以下几个特征:一是任意性,,即“任意取,”,“任意”两字不能丢;二是有大小,通常规定;三是属于同一单调区间(3)单调性能使自变量取值之间的不等关系和函数值得不等关系正逆互推,即由f(x)是增函数且f()< (4)有的函数不具有单调性,如函数y=,它的定义域为R,但不具有单调性,函数y=x+1,x∈Z它的定义域不是区间,也不能说它在其定义域上具有单调性 (5)如果函数f(x)在其定义域内的两个区间A,B 上都是增(减)函数,一般不能认为f(x)在A∪B上是增(减)函数,例如f(x)=在(-∞,0)上是减函数,在(0,+∞)上是减函数,但是不能说其在(-∞,0)∪(0,+∞)上是减函数,在这里,正确的写法应为:“(-∞,0),(0,+∞)”或“(-∞,0)和(0,+∞)” (6)图像特征:在某区间上,单调递增的函数f(x),从左向右看,其图像时上升的,单调递减的函数f(x),从左向右看,其图像时下降的 (7)函数在某一点处的单调性无意义

《函数的单调性和最大(小)值》教学设计【高中数学人教A版必修1(新课标)】

《函数的单调性与最大(小)值》教学设计 第一课时函数的单调性 通过观察一些函数图像的特征,形成增(减)函数的直观认识。再通过具体函数值的大小比较,认识函数值随自变量的增大(减小)的规律,由此得出增(减)函数单调性的定义。掌握用定义证明函数单调性的步骤。函数单调性的研究经历了从直观到抽象,以图识数的过程,在这个过程中,让学生通过自主探究活动,体验数学概念的形成过程的真谛。 【知识与能力目标】 1、结合具体函数,了解函数的单调性及其几何意义; 2、学会运用函数图像理解和研究函数的性质; 3、能够应用定义判断函数在某区间上的单调性。 【过程与方法目标】 借助二次函数体验单调性概念的形成过程,领会数形结合的思想,运用定义进行判断推理,养成细心观察,严谨论证的良好的思维习惯。 【情感态度价值观目标】 通过直观的图像体会抽象的概念,通过交流合作培养学生善于思考的习惯。 【教学重点】 函数单调性的概念。 【教学难点】 判断、证明函数单调性。 从观察具体函数图像引入,直观认识增减函数,利用这定义证明函数单调性。通过练习、交流反馈,巩固从而完成本节课的教学目标。

(一)创设情景,揭示课题 德国有一位著名的心理学家艾宾浩斯,对人类的记忆牢固程度进行了有关研究。他经过测试,得到了以下一些数据: 以上数据表明,记忆量y 是时间间隔t 的函数。艾宾浩斯根据这些数据描绘出了著名的“艾宾浩斯遗忘曲线”, 如图: 思考1:当时间间隔t 逐渐增大你能看出对应的函数值y 有什么变化趋势?通过这个 试验,你打算以后如何对待刚学过的知识? 思考2:“艾宾浩斯遗忘曲线”从左至右是逐渐下降的,对此,我们如何用数学观点进行解释? (二)研探新知 观察下列各个函数的图像,并说说它们分别反映了相应函数的哪些变化规律:

高中一年级函数单调性完整版

函数的单调性 学习目标(1)掌握函数的基本性质(单调性、最大值或最小值、奇偶性),能应 用函数的基本性质解决一些问题。 (2)从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和 单调性定义判断、证明函数单调性的方法. (3)了解奇偶性的概念,回 会利用定义判断简单函数的奇偶性。 重点与难点 (1)判断或证明函数的单调性; (2)奇偶性概念的形成与函数奇偶性的判断。 学习过程 【学习导航】 知识网络 学习要求 1. 从特殊到一般,掌握增函数、减函数、单调区间的概念; 2. 会根据图像说出函数的单调区间,并能指出其增减性; 3. 会用定义证明一些简单函数的单调性. 自学评价 观察函数x x f =)(,2 )(x x f =的图象 从左至右看函数图象的变化规律: (1). x x f =)(的图象是_________的, 2)(x x f =的图象在y 轴左侧是______的,2)(x x f =的图象在y 轴右侧是_______的. (2). x x f =)(在),(+∞-∞上,f (x )随着x 的增大而___________;2 )(x x f =在]0,(-∞ 上,f (x )随着x 的增大而_______;2 )(x x f =在),0(+∞上,f (x )随着x 的增大而________. 一、 函数的单调性 1.单调函数的定义 (1)增函数:一般地,设函数()f x 的定义域为I :如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时都有12()()f x f x <,那么就说()f x 在这个区间上是增函数。 (2)减函数:如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时 函数的单调性 单调性的定义 定义法证明函数的单调性 增函数 减函数 单调区间 x y 0 x y 0 x x f =)( 2)(x x f =

《单调性与最大(小)值》教案 (2)

《单调性与最大(小)值》教案 教学目标 1、理解增函数、减函数、单调区间、单调性等概念. 2、掌握增(减)函数的证明和判别. 3、学会运用函数图像进行理解和研究函数的性质. 教学重难点 重点:判断函数单调性,找出单调区间,熟练求函数的最大(小)值. 难点:理解函数的最大(小)值,能利用单调性求函数的最大(小)值. 教学过程 在教法学法方面,采用启发式、探讨式的教学方法,引导学生自主探究,合作交流。通过学生身边熟悉的事物,教师创造疑问,学生想办法解决疑问,通过教师的启发点拨,学生以自己的努力找到了解决问题的方法。 一、情景导入 问题: 1、观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律: (1)随x 的增大,y 的值有什么变化? (2)能否看出函数的最大、最小值? 二、新课教学 (一)函数单调性定义 1.增函数 一般地,设函数y =f(x)的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1

函数的单调性与最值(讲义)

函数的单调性与最值 【知识要点】 1.函数的单调性 (1)单调函数的定义 (2)单调区间的定义 如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做函数y = f (x )的单调区间. (3)判断函数单调性的方法 ①根据定义;②根据图象;③利用已知函数的增减性;④利用导数;⑤复合函数单调性判定方法。 2.函数的最值 求函数最值的方法: ①若函数是二次函数或可化为二次函数型的函数,常用配方法;

②利用函数的单调性求最值:先判断函数在给定区间上的单调性,然后利用单调性求最值; ③基本不等式法:当函数是分式形式且分子、分母不同次时常用此法。 【复习回顾】 一次函数(0)y kx b k =+≠具有下列性质: (1)当0k >时,函数y 随x 的增大而增大 (2)当0k <时,函数y 随x 的增大而减小 二次函数y =ax 2+bx +c (a ≠0)具有下列性质: (1)当a >0时,函数y =ax 2+bx +c 图象开口向上,对称轴为直线x =-2b a ;当x <2b a -时, y 随着x 的增大而减小;当x >2b a - 时,y 随着x 的增大而增大; (2)当a <0时,函数y =ax 2+bx +c 图象开口向下,对称轴为直线x =-2b a ;当x <2b a -时, y 随着x 的增大而增大;当x >2b a -时,y 随着x 的增大而减小; 提出问题: ①如图所示为一次函数y=x ,二次函数y=x 2和y=-x 2的图象,它们的图象有什么变化规律?这反映了相应的函数值的哪些变化规律? ①这些函数走势是什么?在什么范围上升,在什么区间下降? ②如何理解图象是上升的?如何用自变量的大小关系与函数值的大小关系表示函数的增减性? ③定义:一般地,设函数f(x)的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1、x 2,当x 1f(x 2),那么就说函数f(x)在区间D 上是减函数.简称为:步调不一致减函数. 几何意义:减函数的从左向右看,图象是的. 例如图是定义在区间[-5,5]上的函数y=f(x),根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数? 解:函数y=f(x)的单调区间是[-5,2),[-2,1),[1,3),[3,5].其中函数y=f(x)在区间[-5,2),[1,3)上是减函数,在区间[-2,1),[3,5]上是增函数. 点评:图象法求函数单调区间的步骤是第一步:画函数的图象;第二步:观察图象,利用函数单调性的几何意义写出单调区间.

最大值与最小值教案

班级:高二( )班 姓名:____________ 教学目标: 1.使学生理解函数的最大值和最小值的概念,掌握可导函数f (x )在闭区间上所有点(包括端点a ,b )处的函数中的最大(或最小)值必有的充分条件; 2.使学生掌握用导数求函数的极值及最值的方法和步骤. 教学重点: 利用导数求函数的最大值和最小值的方法. 教学过程: 一、问题情境 1.问题情境.函数极值的定义是什么? 2.探究活动.求函数f (x )的极值的步骤. 二、建构数学 1.函数的最大值和最小值. 观察图中一个定义在闭区间[]b a ,上的函数)(x f 的图象. 图中)(1x f ,35(),()f x f x 是极小值,24(),()f x f x 是极大值. 函数)(x f 在[]b a ,上的最大值是)(b f ,最小值是3()f x . 一般地,在闭区间[]b a ,上连续的函数)(x f 在[]b a ,上必有最大值与最小值. 说明: (1)在开区间(,)a b 内连续的函数)(x f 不一定有最大值与最小值. 如函数x x f 1)(=在),0(+∞内连续,但没有最大值与最小值; (2)函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的; (3)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个. 2.利用导数求函数的最值步骤: 由上面函数)(x f 的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了. 设函数)(x f 在[]b a ,上连续,在(,)a b 内可导,则求)(x f 在[]b a ,上的最大值与最小值的步骤如下:

函数的单调性 知识点与题型归纳

1.理解函数的单调性、最大值、最小值及其几何意义. 2.会运用基本初等函数的图象分析函数的性质. ★备考知考情 1.函数的单调性是函数的一个重要性质,是高考的热点,常见问题有:求单调区间,判断函数的单调性,求参数的取值,利用函数单调性比较数的大小,以及解不等式等.客观题主要考查函数的单调性,最值的确定与简单应用. 2.题型多以选择题、填空题的形式出现,若与导数交汇命题,则以解答题的形式出现. 一、知识梳理《名师一号》P15 注意: 研究函数单调性必须先求函数的定义域, 函数的单调区间是定义域的子集 单调区间不能并! 知识点一函数的单调性 1.单调函数的定义 1

2 2.单调性、单调区间的定义 若函数f (x )在区间D 上是增函数或减函数,则称函数f (x )在这一区间上具有(严格的)单调性,区间D 叫做f (x )的单调区间. 注意: 1、《名师一号》P16 问题探究 问题1 关于函数单调性的定义应注意哪些问题? (1)定义中x 1,x 2具有任意性,不能是规定的特定值. (2)函数的单调区间必须是定义域的子集; (3)定义的两种变式: 设任意x 1,x 2∈[a ,b ]且x 1-f x f x x x ? f (x )在[a ,b ]上是增函数;

3 1212 ()() 0-<-f x f x x x ? f (x )在[a ,b ]上是减函数. ②(x 1-x 2)[f (x 1)-f (x 2)]>0?f (x )在[a ,b ]上是增函数; (x 1-x 2)[f (x 1)-f (x 2)]<0?f (x )在[a ,b ]上是减函数. 2、《名师一号》P16 问题探究 问题2 单调区间的表示注意哪些问题? 单调区间只能用区间表示,不能用集合或不等式表示; 如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结. 知识点二 单调性的证明方法:定义法及导数法 《名师一号》P16 高频考点 例1 规律方法 (1) 定义法: 利用定义证明函数单调性的一般步骤是: ①任取x 1、x 2∈D ,且x 10,则f (x )在区间D 内为增函数;如果f ′(x )<0,则f (x )在区间D 内为减函数. 注意:(补充) (1)若使得f ′(x )=0的x 的值只有有限个,

高中数学单调性与最大(小)值教案(第一课时)新课标 人教版 必修1(A)

单调性与最大(小)值(第一课时) 教学目标:1.使学生理解增函数、减函数的概念; 2.使学生掌握判断某些函数增减性的方法; 3.培养学生利用数学概念进行判断推理的能力; 4.培养学生数形结合、辩证思维的能力; 5.养成细心观察、认真分析、严谨论证的良好思维习惯。 教学重点:函数单调性的概念 教学难点:函数单调性的判断和证明 教学方法:讲授法 教学过程: (I)复习回顾 1.函数有哪几个要素? 2.函数的定义域怎样确定?怎样表示? 3.函数的表示方法常见的有哪几种?各有什么优点? 4.区间的表示方法. 前面我们学习了函数的概念、表示方法以及区间的概念,现在我们来研究一下函数的性质(导入课题,板书课题)。 (II)讲授新课 1.引例:观察y=x2的图象,回答下列问题(投影1) 问题1:函数y=x2的图象在y轴右侧的部分是上升的,说明什么? ?随着x的增加,y值在增加。 问题2:怎样用数学语言表示呢? ?设x1、x2∈[0,+∞],得y1=f(x1), y2=f(x2).当x1f(x2).那么就是f(x)在这个区间上是减函数(decreasing function)。 如果函数y=f(x)在某个区间是增函数或减函数,那么就说函说y=f(x)在这一区间具有(严格的)单调性,这一区间叫做y=f(x)的单调区间,在单调区间上增函数的图象是 上升的,减函数的图象是下降的。 注意:(1)函数的单调性也叫函数的增减性; (2)注意区间上所取两点x1,x2的任意性; (3)函数的单调性是对某个区间而言的,它是一个局部概念。 (III)例题分析 例1.下图是定义在闭区间[]5,5-上的函数y=f(x)的图象,根据图象说出函数的单调区间,以及在每一个区间上的单调性(课本P34例1)。

函数的最大值和最小值教案

函数的最大值和最小值教案 1.本节教材的地位与作用 本节主要研究闭区间上的持续函数最大值和最小值的求法和实际应用,分两课时,这里是第一课时,它是在学生已经会求某些函数的最值,并且已经掌握了性质:“如果f是闭区间[a,b]上的持续函数,那么f在闭区间[a,b]上有最大值和最小值”,以及会求可导函数的极值之后进行学习的,学好这一节,学生将会求更多的函数的最值,运用本节知识可以解决科技、经济、社会中的一些如何使成本最低、产量最高、效益最大等实际问题.这节课集中体现了数形结合、理论联系实际等严重的数学思想方法,学好本节,对于进一步完善学生的知识结构,培养学生用数学的意识都具有极为严重的意义. 2.教学重点 会求闭区间上持续开区间上可导的函数的最值. 3.教学难点 高三年级学生虽然已经具有一定的知识基础,但由于对求函数极值还不烂熟,特别是对优化解题过程依据的理解会有较大的困难,所以这节课的难点是理解确定函数最值的方法. 4.教学关键 本节课突破难点的关键是:理解方程f′=0的解,包含有指定区间内全部可能的极值点. 【教学目标】 根据本节教材在高中数学知识体系中的地位和作用,结合学生已有的认知水平,制定本节如下的教学目标: .知识和技能目标 理解函数的最值与极值的区别和联系.

进一步明确闭区间[a,b]上的持续函数f,在[a,b]上必有最大、最小值. 掌握用导数法求上述函数的最大值与最小值的方法和步骤. 2.过程和方法目标 了解开区间内的持续函数或闭区间上的不持续函数不一定有最大、最小值. 理解闭区间上的持续函数最值存在的可能位置:极值点处或区间端点处. 会求闭区间上持续,开区间内可导的函数的最大、最小值. 3.情感和价值目标 认识事物之间的的区别和联系. 培养学生观察事物的能力,能够自己发现问题,分析问题并最终解决问题. 提高学生的数学能力,培养学生的创新精神、实践能力和理性精神. 【教法选择】 根据皮亚杰的建构主义认识论,知识是个体在与环境相互作用的过程中逐渐建构的结果,而认识则是起源于主客体之间的相互作用. 本节课在帮助学生回顾肯定了闭区间上的持续函数一定存在最大值和最小值之后,引导学生通过观察闭区间内的持续函数的几个图象,自己归纳、总结出函数最大值、最小值存在的可能位置,进而探索出函数最大值、最小值求解的方法与步骤,并优化解题过程,让学生主动地获得知识,老师只是进行合适的引导,而不进行全部的灌输.为突出重点,突破难点,这节课主要选择以合作探究式教学法组织教学. 【学法指导】 对于求函数的最值,高三学生已经具备了优良的知识基础,剩下的问题就是有没有一种更大凡的方法,能运用于更多更繁复函数的求最值问题?教学设计中注意激发起学生剧烈的求知欲望,使得他们能积极主动地观察、分析、归纳,以形成认识,参与到课堂活动中,充分发挥他们作为认知主体的作用.

高考总复习:函数的单调性与最值

第三节函数的单调性与最值 [知识能否忆起] 一、函数的单调性 1.单调函数的定义

图象描述 自左向右看图象逐渐上升 自左向右看图象逐渐下降 2.单调区间的定义 若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 二、函数的最值 前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件 ①对于任意x ∈I ,都有f (x )≤M ; ②存在x 0∈I ,使得f (x 0)=M ①对于任意x ∈I ,都有f (x )≥M ; ②存在x 0∈I ,使得f (x 0)=M 结论 M 为最大值 M 为最小值 [小题能否全取] 1.(2012·陕西高考)下列函数中,既是奇函数又是增函数的为( ) A .y =x +1 B .y =-x 3 C .y =1 x D .y =x |x | 解析:选D 由函数的奇偶性排除A ,由函数的单调性排除B 、C ,由y =x |x |的图象可知此函数为增函数,又该函数为奇函数,故选D. 2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >12 B .k <12 C .k >-1 2 D .k <-1 2 解析:选D 函数y =(2k +1)x +b 是减函数, 则2k +1<0,即k <-1 2 .

3.(教材习题改编)函数f (x )=1 1-x 1-x 的最大值是( ) A.4 5 B.54 C.3 4 D.43 解析:选D ∵1-x (1-x )=x 2 -x +1=? ????x -122+34≥34 ,∴0<11-x 1-x ≤43. 4.(教材习题改编)f (x )=x 2 -2x (x ∈[-2,4])的单调增区间为________;f (x )max =________. 解析:函数f (x )的对称轴x =1,单调增区间为[1,4],f (x )max =f (-2)=f (4)=8. 答案:[1,4] 8 5.已知函数f (x )为R 上的减函数,若m f (n ); ???? ??1x >1,即|x |<1,且x ≠0. 故-1 (-1,0)∪(0,1) 1.函数的单调性是局部性质 从定义上看,函数的单调性是指函数在定义域的某个子区间上的性质,是局部的特征.在某个区间上单调,在整个定义域上不一定单调. 2.函数的单调区间的求法 函数的单调区间是函数定义域的子区间,所以求解函数的单调区间,必须先求出函数的定义域.对于基本初等函数的单调区间可以直接利用已知结论求解,如二次函数、对数函数、指数函数等;如果是复合函数,应根据复合函数的单调性的判断方法,首先判断两个简单函数的单调性,再根据“同则增,异则减”的法则求解函数的单调区间. [注意] 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.

函数的单调性与最大(小)值

《函数的单调性与最大(小)值》教学设计 ⑴通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义; ⑵学会运用函数图象理解和研究函数的性质; ⑶够熟练应用定义判断数在某区间上的的单调性. ⑷理解函数的最大(小)值及其几何意义; 函数的单调性及其几何意义.函数的最大(小)值及其几何意义. 利用函数的单调性定义判断、证明函数的单调性.利用函数的单 并说说它们分别反映了相应函数的哪些变化规律: ①随x 的增大,y 的值有什么变化?②能否看出函数的最大(小)值?③函数图象是否具有某种对称性? ⑵画出下列函数的图象,观察其变化规律: ①f(x) = x ○ 1 从左至右图象上升还是下降 ○ 2 在区间 ____________ 上,随着x 大,f(x)的值随着 ________ . ②f(x) = -2x+1 ○ 1 从左至右图象上升还是下降 ○ 2 在区间 ____________ 上,随着x 的增 大,f(x)的值随着 ________ . ③f(x) = x 2 ○ 1在区间 ____________ 上,f(x)的值随 着x 的增大而 ________ . ○ 2 在区间 ____________ 上,f(x)的值随

着x 的增大而 ________ . ⑴设函数)(x f y =的定义域是I,区间I D ?,D x x ∈21,,当21x x <时,都有)()(21x f x f < 成立,则称)(x f 在区间D 上是增函数...,如图⑴ ⑵设函数)(x f y =的定义域是I,区间I D ?,D x x ∈21,,当21x x <时,都有)()(21x f x f >成立,则称)(x f 在区间D 上是减函数... ,如图⑵ ①函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ②必须是对于区间D 内的任意..两个自变量x 1,x 2;当x 1

示范教案(单调性与最大(小)值第课时)

示范教案(1.3.1 单调性与最大(小)值 第2课时) 导入新课 思路1.某工厂为了扩大生产规模,计划重新建造一个面积为10 000 m 2的矩形新厂址,新厂址的长为x m ,则宽为x 10000m ,所建围墙ym ,假如你是这个工厂的厂长,你会选择一个长和宽各为多少米的矩形土地,使得新厂址的围墙y 最短? 学生先思考或讨论,教师指出此题意在求函数y=2(x+ x 10000),x>0的最小值.引出本节课题:在生产和生活中,我们非常关心花费最少、用料最省、用时最省等最值问题,这些最值对我们的生产和生活是很有帮助的.那么什么是函数的最值呢?这就是我们今天学习的课题.用函数知识解决实际问题,将实际问题转化为求函数的最值,这就是函数的思想,用函数解决问题. 思路 2.画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什么特征? ①f(x)=-x+3;②f(x)=-x+3,x ∈[-1,2]; ③f(x)=x 2+2x+1;④f(x)=x 2+2x+1,x ∈[-2,2]. 学生回答后,教师引出课题:函数的最值. 推进新课 新知探究 提出问题 ①如图1-3-1-11所示,是函数y=-x 2-2x 、y=-2x+1,x ∈[-1,+∞)、y=f(x)的图象.观察这三个图象的共同特征. 图1-3-1-11 ②函数图象上任意点P(x,y)的坐标与函数有什么关系? ③你是怎样理解函数图象最高点的? ④问题1中,在函数y=f(x)的图象上任取一点A(x,y),如图1-3-1-12所示,设点C 的坐标为(x 0,y 0),谁能用数学符号解释:函数y=f(x)的图象有最高点C ? 图1-3-1-12 ⑤在数学中,形如问题1中函数y=f(x)的图象上最高点C 的纵坐标就称为函数y=f(x)的最大值.谁能给出函数最大值的定义? ⑥函数最大值的定义中f(x)≤M 即f(x)≤f(x 0),这个不等式反映了函数y=f(x)的函数值具有什么特点?其图象又具有什么特征? ⑦函数最大值的几何意义是什么?

第05讲-函数的单调性与最值(讲义版)

第05讲-函数的单调性与最值 一、考情分析 借助函数图象,会用符号语言表达函数的单调性、最大值、最小值,理解它们的作用和实际意义. 二、知识梳理 1.函数的单调性 (1)单调函数的定义 增函数减函数 定义设函数y=f(x)的定义域为A,区间M?A,如果取区间M中任意两个值x1,x2,改变量Δx=x2-x1>0,则当 Δy=f(x2)-f(x1)>0时,就称 函数y=f(x)在区间M上是增 函数 Δy=f(x2)-f(x1)<0时,就称函数y =f(x)在区间M上是减函数 图象 描述 自左向右看图象是上升的自左向右看图象是下降的 (2)上是增函数或是减函数, 性,区间M称为单调区间. 2.函数的最值 前提设函数y=f(x)的定义域为I,如果存在实数M满足 条件(1)对于任意x∈I,都有f(x)≤M; (2)存在x0∈I,使得f(x0)=M (3)对于任意x∈I,都有f(x)≥M; (4)存在x0∈I,使得f(x0)=M 结论M为最大值M为最小值 [方法技巧] 1.(1)闭区间上的连续函数一定存在最大值和最小值,当函数在闭区间上单调时最值一定在端点处取到. (2)开区间上的“单峰”函数一定存在最大值(或最小值).

2.函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1 f (x ) 的单调性相反. 3.“对勾函数”y =x +a x (a >0)的增区间为(-∞,-a ),(a ,+∞);单调减区间是[-a ,0),(0,a ]. 三、 经典例题 考点一 确定函数的单调性(区间) 【例1-1】(2019·安徽省泗县第一中学高二开学考试(理))如果函数f(x)在[a ,b]上是增函数,对于任意的x 1,x 2∈[a ,b](x 1≠x 2),下列结论不正确的是( ) A . ()()1212 f x f x x x -->0 B .f(a)0 D .()() 2121x x f x f x -->0 【答案】B 【解析】 试题分析:函数在[a ,b]上是增函数则满足对于该区间上的12,x x ,当12x x <时有()()12f x f x <,因此 ()()1212 0f x f x x x ->-,(x 1-x 2) [f(x 1)-f(x 2)]>0, ()() 21 210x x f x f x ->-均成立,因为不能确定12,x x 的 大小,因此f(a)

相关文档
相关文档 最新文档