文档库 最新最全的文档下载
当前位置:文档库 › 数学建模短学期(6)

数学建模短学期(6)

数学建模短学期(6)
数学建模短学期(6)

数学建模短学期作业6

1. 设一容积为V (单位:3

m )的大湖受到某种化学废料的污染,污染物均匀地分布在湖

中。若某时刻起污染源被切断,设湖水更新的速率是r (单位是:3m /天)。试建立求污染物的浓度下降至原来的5%所需时间的数学模型。美国密西根湖的容积为4871×

910(3m )

,湖水的流量为3.663959132×1010(3

m /天),求污染中止后,污染物浓度下降到原来湖水污染浓度的3%所需要的时间。

解:

设:大湖的原来污染物浓度为a 经过1天更新大湖的污染浓度为: b=[(V-r )*a]/V

经过2天更新大湖的污染浓度为:

c=[(V-r )*b]/V=[(V-r )2*a]/V 2

n 天更新大湖的污染浓度为:

5%a=[(V-r )n *a]/V n

计算得出n=465D

2.肿瘤大小V 生长的速率与V 的a 次方成正比,其中a 为形状参数,0≤a ≤1;而其比例系数K 随时间减小,减小速率又与当时的K 值成正比,比例系数为环境参数b 。设某肿瘤参数a =1,b =0.1,K 的初始值为2,V 的初始值为1,问

(1)此肿瘤生长不会超过多大? (2)过多长时间肿瘤大小翻一倍?

(3)何时肿瘤生长速率由递增转为递减? (4)若参数a =2/3呢? 解: 数学模型

[V(t+△t)-V(t)]=K(t)*V(t)^a*△t [K(t)-K(t+△t)]= K(t)*b*△t dV/dt=K*V^a dK/dt=-1*b*K code :

function dy = myfun(t,y) dy = zeros(2,1); a=1; b=0.1;

dy(1)=y(2)*(y(1))^a; dy(2)=-1*b*y(2); end

clear;clc;

[T,Y] = ode45(@myfun,[0:0.1:12],[1 2]);

(1) 当令t 从0-1000时:

我们可以看到,这个肿瘤不会超过4.8567*10^8

(2)t从0:0.01:2时

我们可以看到,当时间大概为0.36天的时候,肿瘤大小翻一倍(3)令t从0:0.1:100

求V导数的图像:

Matlab代码如下:

clear;clc;

[T,Y] = ode45(@myfun,[0:1:100],[1 2]);

a=diff(Y(:,1))./diff(T);

T(100)=[];

plot(T,a);

我可们以看到,大约在第29天时,肿瘤生长速率由递增转为递减。

对V求二阶导

clear;clc;

[T,Y] = ode45(@myfun,[0:1:100],[1 2]);

a1=diff(Y(:,1))./diff(T);

T(100)=[];

a2=diff(a1)./diff(T);

T(99)=[];

plot(T,a2);

图像为

将图像放大可以看到

具体是在29.011处肿瘤生长速率由递增转为递减(4)若参数a=2/3

肿瘤最大生长到450.796左右。

第0.40天后肿瘤大小翻倍

具体是在8.6395处肿瘤生长速率由递增转为递减

3.第一次世界大战中,因为战争很少捕杀鲨鱼,按理战后应能捕到很多的鲨鱼才是。可是世界大战后,在地中海却捕不到鲨鱼,因而渔民们大惑不解。

令1x 为鱼饵的数量,2x 是鲨鱼的数量,t 为时间。微分方程为

dt dx 1=1x (1a -21x b )

dt

dx 2

=-2x (2a -12x b )

式中1a 、2a 、1b 、2b 都是正常数。

第一式中鱼饵1x 的增长速度大体上与1x 成正比,即按1a 1x 速率增加,而被鲨鱼吃掉的部分按21x b 1x 的速率减少;第二式中鲨鱼的增长速度由于生存竞争的自然死亡互相咬食按2a 2x 的速率减少,但又根据鱼饵的量的变化按12x b 2x 的速率增加。对1a =3,1b =2,2a =2.5,2b =1,)0(1x =)0(2x =1求解。画出解的曲线图观

察鲨鱼和鱼饵数量的变化。 解:

dt dx 1=1x (3-22x )

dt

dx 2

=-2x (2.5-1x )

)0(1x =)0(2x =1

用求解: 建立m 文件输入

function dx=yu(t,x)

dx=zeros(2,1); a1=3;b1=2;a2=2.5;b2=1; dx(1)=x(1)*(a1-b1*x(2)); dx(2)=-x(2)*(a2-b2*x(1)); end

在窗口输入:

[t,x]=ode45(@yu,[0 20],[1 1]); >> plot(t,x(:,1).'*’) >> hold on

>> plot(t,x(:,2),'-') 得到图形

4、 用具有放射性的14C 测量古生物年代的原理是:宇宙线轰击大气层产生中子,中子与氮结合产生14C 。植物吸收二氧化碳时吸收了14C ,动物食用植物从植物中得到14C 。在活组织中14C 的吸收速率恰好与14C 的衰变速率平衡。但一旦动植物死亡,它就停止吸收14C ,于是14C 的浓度随衰变而降低。由于宇宙线轰击大气层的速度可视为常数,既动物刚死亡时

14C 的衰变速率与现在取的活组织样本(刚死亡)的衰变速率是相同的。若测得古生物标本

现在14C 的衰变速率,由于14C 的衰变系数已知,即可决定古生物的死亡时间。试建立用14C 测古生物年代的模型(14C 的半衰期为5568年)。

解:如果用N (t )表示时间t 时存在的原子数,用dt

dN 表示单位时间内蜕变成其他物质的

原子数,则有

N dt

dN λ-=

常数λ是正的,称为该物质的衰变常数。λ越大,物质蜕变得越快,其量纲是时间的倒数。衡量物质蜕变速度的一个常用尺度是它的半衰期,即给定数量的放射性原子蜕变一半所需要的时间。为了求得半衰期T ,假设N (t 0)=N 0,于是,得到初值问题

因此,如果用N (t )表示时间t 时存在的原子数,用dt

dN 表示单位时间内蜕变成其他物质

的原子数,则有

N dt

dN λ-=

常数λ是正的,称为该物质的衰变常数。λ越大,物质蜕变得越快,其量纲是时间的倒数。衡量物质蜕变速度的一个常用尺度是它的半衰期,即给定数量的放射性原子蜕变一半所需要的时间。为了求得半衰期T ,假设N (t 0)=N 0,于是,得到初值问题

??

?

??=-=00)(N

t N N dt

dN

λ 其解为

0()0()t t N t N e λ--=

如果令

2

10

=

N N ,则有 λ

2

ln 0=

-=t t T

碳14的半衰期为5568年,所以λ=ln2/5568=1.245×10-4

得出模型:

N(t)=N 0exp[-1.245×10-4×(t-t 0)]

5、 试用上题建立的数学模型,确定下述古迹的年代:

(1)1950年从法国Lascaux 古洞中取出的碳测得放射性计数率为0.97计数(min ?g ),而活树木样本测得的计数为6.68计数(min ?g ),试确定该洞中绘画的年代;

解:代入模型: T=t-t 0=15498.6(年)

(2)1950年从某古巴比伦城市的屋梁中取得碳标本测得计数率为4.09计数(min ?g ),活数标本为6.68计数(min ?g ),试估计该建筑的年代。

代入模型:

T=t-t 0=3940.3(年)

毕 6、 用放射性同位素测量大脑局部血流量的方法如下:由受试者吸入含有某种放射性同位素的气体,然后将探测器置于受试者头部某固定处,定时测量该处的放射性记数率(简称记数率)同时测量他呼出气的记数率。

由于动脉血将肺部的放射性同位素输送到大脑,使脑部同位素增加,而脑血流量又将同位素带离,使同位素减少。实验证明脑血流引起局部地区记数率下降的速度与当时该处的记数率成正比。其比例系数反映该处的脑血流量,被称为血流量系数。只要确定该系数即可推算出脑血流量。动脉血从肺部输送同位素至大脑引起脑部记数率上升的速度与当时呼出的记数率成正比。

若某受试者的测试数据如下:

试建立确定血流系数的数学模型并计算上述受试者的脑血流系数。 解:符号设定:

设某时刻0≥t 时,脑部记数率为)(t N ,在t ?时刻后记数率为)(t t N ?+,由题设及基本假设1和2可知,脑部记数率的增量)()(t N t t N N -?+=?只与下面两个因素有关:

⑴动脉血从肺部输送放射性同位素至大脑引起脑部记数率的增量为1N ?; ⑵脑血流将放射性同位素带离使得脑部记数率的减量为2N ?。 综上,由医学实验可得:

)()(21t KN dt

dN t kP dt

dN ==,

)()()(21t N t N t N ?-?=?

所以有:

dt

dN dt

dN dt dN 21-=

)()(t KN t kP dt

dN -=

分析式(1),要确定脑血流系数的模型,必须分析)(t P 和)(t N 的实验数据,观察其变化趋势。首先用Matlab 绘出)(t P 和)(t N 的散点图并观察其变化趋势 画出时间与头部记数率的散点图: Code:

x=1:0.25:9.75

y1=[1534 1528 1468 1378 1272 1162 1052 947 848 757 674 599 531 471 417 369 326 288 255 255 199 175 155 137 121 107 94 83 73 65 57 50 50 39 35 31]

plot(x,y1)

A

时间与呼出气记率散点图:

Code:x=1:0.25:9.75

y=[2231 1534 1054 724 498 342 235 162 111 76 52 36 25 17 12 8 6 4 3 2 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0]

plot(x,y)

B

观察B图大概符合e指数函数,用matlab拟合工具箱进行拟合:

所以a=1000 b=-0.15 得拟合曲线:

比较完美

可建立初值方程:

??

???=-=-0)0()

(10005.1N t KN ke dt

dN t 解此微分方程得到

)(5

.11000)(5.1Kt t e e K k t N ----=

估算N (t )仍然使用matlab 拟合工具箱:

得N (t )=3907*exp (-0.4944t )-3975*exp (-1.543t )

曲线基本拟合

7、海防某部缉私艇上的雷达发现正东方向c 海里处有一艘走私船正以速度a 向正北方向行驶,缉私艇立即以最大速度b(>a)前往拦截。如果用雷达进行跟踪时,可保持缉私艇的速度方向始终指向走私船。 建立任意时刻缉私艇位置及 航线的数学模型,并求解; 求出缉私艇追上走私船的时间。设船速a=20 (海里/小时),艇速b=40 (海里/小时),距离c=15 (海里)。

c

解:建立如图直角坐标系,在t=0时刻,缉私艇的位置在(0,0),走私船的位置在(c,0)

在任意时刻t ,缉私艇位于点P (x,y ),而走私船到达Q (c,at ),直线PQ 与缉私艇航线相切,夹角为α。缉私船在x,y 方向的速度分别为

dx/dt=b*cosα,dy/dt=b*sinα。由已知,a=20,b=40,c=15.有直角三角形关系,可得tanα=(at-y)/(c-x)

得微分方程:dx/dt=b*(c-x)sqrt((c-x)^2+(a*t-y)^2) dy/dt=b*(a*t-y)/ sqrt((c-x)^2+(a*t-y)^2)

初始条件x(0)=0,y(0)=0

所以function dx=chuan(t,x)

dx=zeros(2,1);

a=20;b=40;c=15;

dx(1)=b*(c-x(1))sqrt((c-x(1))^2+(a*t-x(2))^2)

dx(2)=b*(a*t-x(2))sq rt((c-x(1))^2+(a*t-x(2))^2);

end

在窗口下输入:

[T,X]=ode45(@chuan,[0 1],[0 0]);

plot(T,X(:,1),’-‘)

解得t=0.5小时

毕8、某保险公司推出与养老结合的人寿保险计划,其中介绍的例子为:如果40岁的男性投保人每年交保险费1540元,交费期20年至60岁,则在他生存期间,45岁时(投保满5年)可获返还补贴4000元,50岁时(投保满10年)可获返还补贴5000元,其后每隔5年可获增幅为1000元的返还补贴。另外,在投保人去世或残废时,其受益人可获保险金20000元。试建立差分方程模型分析:若该投保人的寿命为76岁,其交保险费所获得的实际年利率是多少?而寿命若为74岁时,实际年利率又是多少?

解答:

年利率=(得到的补贴-总交费)/(时间*总交费)

记Xn为投保人第n年末的投保额与利息之和,x1为第一年末所交保额与利息之和,即40岁时所交的保险费与利息之和,r为年利率,R为60岁前每年所交的保险金额,则依题意可以得到下列递推公式,即差分方程形式为:

X1 =R

Xn+1=Xn*(1+r)+R n=1,2,3

X5 =X4*(1+r)-4000+R

Xn+1=Xn*(1+r)+r n=5,6,7,8

X10 =X9*(1+r)-5000+R

Xn+1=Xn*(1+r)+R n=10,11,12,13

X15 =X14*(1+r)-6000+R

Xn+1=Xn*(1+r)+R n=15,16,17,18

X20 =X19*(1+r)-7000+R

Xn+1=Xn*(1+r)+R n=20,2,22,23

X25 =X24*(1+r)-8000

Xn+1=Xn*(1+r)+R n=25,26,27,28

X30 =X29*(1+r)-9000

Xn+1=Xn*(1+r)+R n=30,31,32,33

X35 =X34*(1+r)-10000

1、X35为投保人在75岁时的投保额与利息之和, X36为投保人在75岁时的投保额与利息之和,从而由题意可得到X36与X35的关系如下:

X36=X35(1+r)-20000

再利用上述模型中的递推公式可得X36与R的关系为:

X36=R((1+r).^36-(1+r).^16)/r-4000(1+r).^31-5000(1+r).^26

-6000(1+r).^21-7000(1+r).^16-8000(1+r).^11-9000(1+r).^6-10000(1+r)-

20000

又由题设条件可知X36=0,则有

R((1+r).^36-(1+r).^16)/r-4000*(1+r).^31-5000*(1+r).^26-6000*(1+r).^21

-7000*(1+r).^16-8000*(1+r).^11-9000*(1+r).^6-10000*(1+r)-20000=0 令1+r=x,并代入R的值,上述方程为:

1540*(x.^36-x.^16)/r-4000*x.^31-5000*x.^26-6000*x.^21-7000*x.^16-8000 *x.^11-9000*x.^6-10000*x-20000=0

利用Matlab作图功能,画出上述函数的图像,如下所示:

其中上述图形的画图命令如下:

先作一个名为fun1.m文件:

function y1=fun1(x)

y1=1540*(x.^36-x.^16)/r-4000*x.^31-5000*x.^26-6000*x.^21-

7000*x.^16-8000*x.^11-9000*x.^6-10000*x-20000=0

再使用下述命令画出图像:

x=0:0.2:2;

plot(x,fun1(x),’r’)

hold on

plot(x,zeros(size(x)))

hold off

grid

接着使用牛顿迭代法求出方程的根,使用的程序如下:

function [y,k]=newton1(x0,n,derta)

k=1;

y(1)=x0;

t=x0-fun0(x0)./dfun0(x0);

while abs(t-x0)>=derta

x0=t;k=k+1;

y(k)=t;

t=x0-fun0(x0)./dfun0(x0)

if (k-1)>n error(‘n is full’),end

end

k=k-1;

其中输入变量为初始值x0,允许迭代次数n ,及精度derta,输出次数k和迭代

值数组y1(最后一个值为近似根),程序中调用的函数fun0和dfun0分别是f(x)

的函数和导函数。

经分析知方程的根为:

x=1.0026

即实际年利率

r=0.0026

2、当投保人74岁时,他每年交保险费1540元,投保每满5年,就可获相关数目的返还

补贴,而且,当投保人去世或残疾时,其受益人可获20000元的保险金,根据上面的题的假设条件可知,X34为投保人在74岁时的投保额与利息之和,从而由上述模型中的递推公式可得X34与R的关系:

X34=R[(1+r).^34-(1+r).^14]/r-4000(1+r).^29-5000(1+r).^24- 6000(1+r).^19-7000(1+r).^14-8000(1+r).^9-9000(1+r).^4-20000

又由题的假设条件知X34=0,令1+r=x,并代入R的值,上述方程为:

1540*(x.^34-x.^14)/r-4000*x.^29-5000*x.^24-6000*x.^19-7000*x.^14-800

0*x.^9-9000*x.^4-20000=0

上图即为利用Matlab的作图功能,画出的函数的图像。

其中上述图形的画图命令如下:

先作一个名为fun1.m文件:

function y1=fun1(x)

y1=1540*(x.^34-x.^14]/r-4000*x.^29-5000*x.^24-

6000*x.^19-7000*x.^14-8000*x.^9-9000*x.^4-20000

再使用下述命令画出图像:

x=0:0.2:2;

plot(x,fun1(x),’r’)

hold on

plot(x,zeros(size(x)))

hold off

grid

接着使用牛顿迭代法求出方程的根,使用的程序如下:

function [y,k]=newton1(x0,n,derta)

k=1;

y(1)=x0;

t=x0-fun0(x0)./dfun0(x0);

while abs(t-x0)>=derta

x0=t;k=k+1;

y(k)=t;

t=x0-fun0(x0)./dfun0(x0)

if (k-1)>n error(‘n is full’),end

end

k=k-1;

其中输入变量为初始值x0,允许迭代次数n ,及精度derta,输出次数k和迭代值数组y1(最后一个值为近似根),程序中调用的函数fun0和dfun0分别是(x)的函数和导函数。

经分析知方程的根为:

x=2.0024

即实际年利率

r=1.0024

六自由度平台力学仿真研究

六自由度运动平台动力学仿真研究 陈勇军 (华中光电技术研究所—武汉光电国家实验室,武汉430223) 摘要:针对六自由度运动平台设计过程中遇到的问题,文中运用ADAMS软件对六自由度运动平台运动过程进行仿真研究,并进行可平台的逆运动学和正运动学仿真。仿真结果表明:通过仿真可以检测该机构运动过程中的干涉情况,也可直观再现平台的运动过程。还可求出平台的位置反解和位置正解,大大减少了工作量,缩短了产品的研制周期。 关键字:六自由度运动平台;动力学分析;仿真;正解;反解 Research on Simulation of Dynamic Analysis on Six-DOF Motion Platform CHEN Yongjun (Huazhong Institute of Electro-optics—Wuhan National Laboratory for Optoelectronics,Wuhan 430223,China) Abstract:Due to Keywords: Six-DOF motion platform ; dynamic analysis ; simulation; positive solutions; anti-positive solutions 1 引言 六自由度运动平台通过模拟物体在三个方向的平动和转动,即前后平移、左右平移、上下垂直运动、俯仰、滚转和偏航及复合运动,进而可模拟出各种空间运动姿态。六自由度平台作为一种重要的仿真实验设备,已广泛应用于导弹、飞机、舰船和车辆等领域的模拟训练,还可用来模拟地震的情景,在动感电影、娱乐设备等领域也有应用。六自由度运动平台主要由上下两个平台和六个并联的、可独立自由伸缩的缸组成,其中伸缩缸与平台通过球铰联接,通过改变伸缩缸的长度就可实现上平台的各种空间运动[1]。要准确的控制上平台的运动姿态就需要精确的控制六个缸的运动,这样就要求我们了解六自由平台的位置反解和位置正解的算法。杨永立运用欧拉角、旋转变换的方法推导出位置反解方程,并介绍了数值迭代法进行位置正解的过程[2]。李维嘉提出了采用虚拟连杆对结构进行简化,进而求解六自由度并联运动机构正向解的方法[3]。但到目前位置还没有一种非常高效的求六自由度平台位置正解的算法。近年来,随着计算机的快速发展,仿真软件已经成为设计产品过程中的一种重要工具,在运动学仿真方面也出现了许多仿真软件,这其中的杰出代表是ADAMS软件。本文提出了采用ADAMS软件对六自由度运动平台的运动过程进行仿真研究,使平台运动的位置反

2011数学建模A题优秀论文

承诺书 我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3. 指导教师或指导教师组负责人(打印并签名): 日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):

编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):

基于系统综合评价的城市表层土壤重金属污染分析 摘要 本文针对城市表层土壤重金属污染问题,首先对各重金属元素进行分析,然后对各种重金属元素的基本数据进行统计分析及无量纲化处理,再对各金属元素进行相关性分析,最后针对各个问题建立模型并求解。 针对问题一,我们首先利用EXCEL 和 SPSS 统计软件对各金属元素的数据进行处理,再利用Matlab 软件绘制出该城区内8种重金属元素的空间分布图最后通过内梅罗污染 模型:2 /12 max 22?? ? ? ??+=P P P 平均综,其中平均P 为所有单项污染指数的平均值,max P 为土壤环境中 针对问题二,我们首先利用EXCELL 软件画出8种元素在各个区内相对含量的柱状图,由图可以明显地看出各个区内各种元素的污染情况,然后再根据重金属元素污染来源及传播特征进行分析,可以得出工业区及生活区重金属的堆积和迁移是造成污染的主要原因,Cu 、Hg 、Zn 主要在工业区和交通区如公路、铁路等交通设施的两侧富集,随时间的推移,工业区、交通区的土壤重金属具有很强的叠加性,受人类活动的影响较大。同时城市人口密度,土地利用率,机动车密度也是造成重金属污染的原因。 针对问题三,我们从两个方面考虑建模即以点为传染源和以线为传染源。针对以点为传染源我们建立了两个模型:无约束优化模型()[]()[]() 22y i y x i x m D -+-=,得到污染源的位置坐标()6782,5567;有衰减的扩散过程模型得位置坐标(8500,5500),模型为: u k z u c y u b x u a h u 222 2222222-??+??+??=??, 针对以线为传染源我们建立了l c be u Y ?-+=0模型,并通过线性拟合分析线性污染源的位置。 针对问题四,我们在已有信息的基础上,还应收集不同时间内的样点对应的浓度以及各污染源重金属的产生率。根据高斯浓度模型建立高斯修正模型,得到浓度关于时间和空间的表达式ut e C C -?=0。 在本题求解过程中,我们所建立的模型与实际紧密联系,有很好的通用性和推广性。但在求点污染源时,我们假设只有一个污染源,而实际上可能有多个点污染源,从而使得误差增大,或者使污染源的位置够不准确。 关键词 内梅罗污染模型 无量纲化 相关性 回归模型 高斯浓度模型

六自由度摇摆平台

大黄蜂机器人六自由度摇摆台 大黄蜂机器人有限公司的六自由度平台系统由采用Stewart机构的六自由度运动平台、计算机控制系统、驱动系统等组成。六自由度运动平台(如下图)的下平台安装在地面上,上 平台为运动平台,它由六只电动缸支承,运动平台与电动缸采用六个虎克铰连接,电动缸与固定基座采用六个虎克铰连接,六只电动缸采用伺服电机驱动的电动缸。计算机控制系统通过协调控制电动缸的行程,实现运动平台的六个自由度的运动,即笛卡尔坐标系内的三个平移运动和绕三个坐标轴的转动。

各主要部分简述如下: 本设备主要由以下部分组成:运动上平台、下平台(基座)、电动缸及伺服 电机、驱动器系统、综合控制及监测系统。 各自功能如下: 上平台:是有效载荷的安装基面,提供六自由度的摇摆运动。 下平台:是六自由度摇摆台的安装基面,需要承受足够大的冲击力。 电动缸及伺服电机:通过控制电动缸活塞杆的行程,实现运动平台台体的六自由度运动,共6套。 驱动器系统:接收用户控制指令,通过控制伺服电机的输入,对伺服电机的输出转速和转角进行控制,达到控制电动缸活塞杆出速度和行程的目的,共6套。 综合控制监测系统:硬件为用户计算机,软件为研制方配合开发;同时,它 还对平台的运动过程进行监测,预防和处理系统的异常情况。

平台总体运动能力指标如上表,具体表述如下: a.平台定位精度及重复定位精度为0.5mm及0.1mm; b.平台转动精度及重复转动精度为0.1°及0.05°; c.行程回差小于0.2mm; d.平台X方向运动速度可从0mm/s到250mm/s连续变化;YZ方向运动 速度可从0mm/s到250mm/s连续变化; e.单支杆可承受轴向力不小于700N; f.单支杆的运动速度可从0m/s到250mm/s连续变化; g.平台中位位置固有频率:不小于40Hz; h.机械组件需具有开放性,可拆卸组装; i.机械设计安全系数不小于 2.0,驱动裕度不小于 3.0; j.额定载荷下,全行程往复工作寿命不小于1×104次,存储寿命不小于48月;

并联六自由度运动平台

并联六自由度运动平台 1.概述 并联六自由度运动平台通过六个驱动缸(伺服缸或电动缸)的协调伸缩来实现平台在空间六个自由度的运动,即平台沿x、y、z向的平移和绕x、y、z轴的旋转运动(包括垂直、水平、横向、俯仰、侧倾和旋转六个自由度的运动),以及这些自由度的复合运动。并联六自由度运动平台可用于机器人、飞行模拟器、车辆驾驶模拟器、新型加工机床、及卫星、导弹等飞行器、娱乐业的运动模拟(动感电影摇摆台)、多自由度振动摇摆台的精确运动仿真等。 图0-1:六自由度及其坐标系定义图 我公司通过自行设计、安装调试,并开发控制软件,同时采用进口关键件对并联六自由度运动平台进行研究开发,目前已完成多套六自由度运动平台应用,典型应用有列车风档液压仿真试验台、F1国际赛车运动仿真台、汽车驾驶模拟器、飞机和飞碟运动模拟器、振动谱试验、海浪模拟试验等。 六自由度运动平台的研制,涉及机械、液压、电气、控制、计算机、传感器,空间运动数学模型、实时信号传输处理、图形显示、动态仿真等一系列高科技领域,是液压及控制技术领域的顶级产品。 2.系统组成 2.1液压伺服类 典型的液压式并联六自由度运动平台主要由机械系统、液压系统、控制系统硬件和控制系统软件四部分组成。

机械系统主要包括:承载平台、上下连接铰链、固定座。 液压系统主要包括:泵站系统、伺服阀、驱动器、伺服油缸和阀块管路。 控制系统硬件主要包括:实时处理器、伺服控制单元、信号调理单元、监控单元和泵站控制单元。 控制系统软件包括:实时信号处理单元、实时运算单元、伺服控制和特殊要求处理单元。 2.2 电动伺服类 电动式并联六自由度运动平台则将伺服油缸用电动缸代替,而伺服阀、泵站系统及阀块管路等则相应取消,增 加运动控制单元。具有系统简洁、响应速度快等优点,是多自由度平台今后重点发展的方向。 3.主要技术参数 以下参数为液压类平台典型值,具体可按用户要求设计制造。 3.1平台主要参数 平台最大负载:静态≥2000KG,动态≥3000KG。 上平台球铰分布园直径1400mm,相邻球心距离157mm; 下平台球铰分布园直径1600mm,相邻球心距离167mm; 伺服缸最小球铰球心距离800mm,最大长度1200mm;(采用Φ63/45~400缸体)。 平台初始高度约700mm。 3.2 泵站技术指标 额定流量:90L/min 最大系统压力:12Mpa; 泵站电机功率:22KW; 空间尺寸:1400×1200×1320 3.3 运动参数 伺服缸运动速度≥200mm/S;有效行程≥400mm。 主要运动参数如下表:

数学建模国家一等奖优秀论文

2014高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写):B 我们的报名参赛队号为(8位数字组成的编号): 所属学校(请填写完整的全名): 参赛队员(打印并签名) :1. 2. 3.

指导教师或指导教师组负责人(打印并签名): ?(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 日期: 2014 年 9 月15日 赛区评阅编号(由赛区组委会评阅前进行编号):

2014高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号):赛区评阅记录(可供赛区评阅时使用):

数学建模实验报告

在下面的题目中选做100分的题目,给出详略得当的答案。 一.通过举例简要说明数学建模的一般过程或步骤。(15分) 答:建立数学模型的方法大致有两种,一种是实验归纳的方法,即根据测试或计算数据,按照一定的数据,按照一定的数学方法,归纳出系统的数学模型;另一种是理论分析的方法,具体步骤有五步(以人口模型 为例): 1、明确问题,提出合理简化的假设:首先要了解问题的实际背景,明确题目的要求,收集各种必要的信息 2、建立模型:据所做的假设以及事物之间的联系,构造各种量之间的关系。(查资料得出数学式子或算法)。 3、模型求解:利用数学方法来求解上一步所得到的数学问题,此时往往还要做出进一步的简化或假设。注意要尽量采用简单的数学公具。例如:马尔萨斯模型,洛杰斯蒂克模型 4、模型检验:根据预测与这些年来人口的调查得到的数目进行对比检验 5、模型的修正和最后应用:所建立的模型必须在实际应用中才能产生效益,根据预测模型,制定方针政策,以实现资源的合理利用和环境的保护。 二.把一张四条腿等长的正方形桌子放在稍微有些起伏的地面上,通常只有三只脚着地,然而 只需稍为转动一定角度,就可以使四只脚同时着地,即放稳了。(1) 请用数学模型来描述和证明这个实际问题; (2)讨论当桌子是长方形时,又该如何描述和证明?(15分) 答: 模型假设: 1.椅子四条腿一样长,椅脚与地面的接触部分相对椅子所占的地面面积可视为一个点。 2.地面凹突破面世连续变化的,沿任何方向都不会出现间断(没有向台阶那样的情况),即地面可看作数学上的连续曲面。 3.相对椅脚的间距和椅子腿的长度而言,地面是相对平坦的,即使椅子在任何位置至少有三条腿同时着地。4.椅子四脚连线所构成的四边形是圆内接四边形,即椅子四脚共圆。 5.挪动仅只是旋转。 我们将椅子这两对腿的交点作为坐标原点,建立坐标系,开始时AC、BD这两对腿都在坐标轴上。将AC和BD这两条腿逆时针旋转角度θ。记AC到地面的距离之和为f(θ)。记BD到 地面的距离之和为g(θ)。易得f(θ),g(θ)至少有一个为零。

数学建模典型例题(二)

6 小行星的轨道模型 问题 一天文学家要确定一颗小行星绕太阳运行的轨道,他在轨道平面内建立以太阳为原点的直角坐标系,在两坐标轴上取天文测量单位(一天文单位为地球到太阳的平均距离:1.4959787×1011m ).在5个不同的时间对小行星作了5次观察,测得轨道上5个点的坐标数据如表6.1. 表6.1 坐标数据 由Kepler (开普勒)第一定律知,小行星轨道为一椭圆.现需要建立椭圆的方程以供研究(注:椭圆的一般方程可表示为 012225423221=+++++y a x a y a xy a x a . 问题分析与建立模型 天文学家确定小行星运动的轨道时,他的依据是轨道上五个点的坐标数据: (x 1, y 1), (x 2, y 2), (x 3, y 3), (x 4, y 4), (x 5, y 5). 由Kepler 第一定律知,小行星轨道为一椭圆.而椭圆属于二次曲线,二次曲线的一般方程为012225423221=+++++y a x a y a xy a x a .为了确定方程中的五个待定 系数,将五个点的坐标分别代入上面的方程,得 ???? ?????-=++++-=++++-=++++-=++++-=++++.122212221222122212225554253552251454424344224 135342 3333223125242 232222211514213112211y a x a y a y x a x a , y a x a y a y x a x a ,y a x a y a y x a x a ,y a x a y a y x a x a ,y a x a y a y x a x a 这是一个包含五个未知数的线性方程组,写成矩阵

六自由度运动平台方案设计报告

编号 密级内部阶段标记 C 会签 校对 审核 批准六自由度运动平台 方案设计 名称

内容摘要: 针对YYPT项目在原理样机出现的问题,对YYPT原理样机从结构设计、伺服系统等方面进行优化设计,以满足设计及使用要求。 主 YYPT 优化 题 词 更改单号更改日期更改人更改办法 更 改 栏

1概述 YYPT原理样机用原库房留存的345厂的直流电机作为动力源,直流驱动器及工控机作为控制系统元件,采用VB软件进行控制软件的编制,因设计及器件选型的原因,导致YYPT原理样机,在速度、精度、运动规律上等几个技术指标无法满足原规定的指标要求,现在此基础上进行优化方案的设计。 2 原理样机技术状态 2.1 原理样机方案 2.1.1 组成 原理样机采用工控机作为系统的控制单元,工控机内配有研华PCI1716和PCI1723作为A/D和D/A模拟量卡,驱动器采用AMC公司的型号为12A8的伺服驱动器,并配有直流可调电源其输出电流可达到150A,采用KH08XX(3)电动缸作为运动平台的六条支腿,电动缸上安装有电阻尺作为位置反馈器件,上平台与电动缸连接采用球笼联轴器,下平台与电动缸连接采用虎克铰链方式。具体产品组成表见表2.1。 序号产品名称型号厂家数量备注 1 电动缸KH08XX(3)西安方元明 6 安装345厂电机 2 电阻尺LTS-V1-375 上海徳测 6 3 驱动器50A8 AMC 6 3 A/D卡PCI1716 研华 1 4 D/A卡PCI1723 研华 1 5 工控机610H 研华 1 6 直流电源 1 2.1.2 结构方案 六自由度运动平台是由六条电动缸通过虎克铰链和球笼万向节联轴器将上、下两个平台连接而成,下平台固定在基础上,借助六条电动缸的伸缩运动,完成上平台在三维空间六个自由度(X,Y,Z,α,β,γ)的运动,从而可以模拟出各种空间运动姿态。

数学建模练习小论文1

中国省、自治区城市规模结构分类 一、省、自治区的规模结构综合评价分类: (1)建立综合评价指标体系 省、自治区的综合城市规模结构是取决于多个相关因数综合评估的,综合因数特征主要体现在的相关方面.遵循可比性原则,从省、自治区的城市的多方面中选取5项评价指标,具体如图1. 图一、城市规模结构特征数据 (2)数据资料 指标的原始数据取自《中国统计年鉴,1999》到五项指标值见表1.其中:1x 为城市规模;2x 为城市首位度;3x 为城市指数;4x 为基尼系数;5x 为城市规模中位值 . (3)R 型聚类分析 定性考察反映省、自治区城市规模结构五项评价指标,可以看出,某些指标之间

可能存在较强的相关性.比如城市首位度与城市指数,城市规模和城市规模中位值.为了验证这种想法,运用MATLAB 软件计算五个指标之间的相关系数,相关系数矩阵如表3所示. 计算的MATLAB 程序如下: load gi.txt %把原始数据保存在纯文本文件gi.txt 中 r=corrcoef(gi)%计算相关系数矩阵 d=1-r; %进行数据变换,把相关系数转化为距离 d=tril(d); %取出矩阵d 的下三角元素 d=nonzeros(d); %取出非零元素 d=d'; %化成行向量 z=linkage(d,'average'); %按类平均法聚类 dendrogram(z); %画聚类图 T=cluster(z,'maxclust',4) %把变量划分成4类 for i=1:4 tm=find(T==i); %求第i 类的对象 tm=reshape(tm,1,length(tm)); %变成行向量 fprintf('第%d 类的有%s\n',i,int2str(tm)); %显示分类结果 end 2 3 4 1 5 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 图二 指标聚类树型图 图三 相关系数矩阵 1x 2x 3x 4x 5x 1x 1.0000 0.0239 0.3398 0.3654 0.4037 2x 0.0329 0.7038 1.0000 0.2127 -0.2261

数学建模与数学实验习题

数学建模与数学实验课程总结与练习内容总结 第一章 1.简述数学建模的一般步骤。 2.简述数学建模的分类方法。 3.简述数学模型与建模过程的特点。 第二章 4.抢渡长江模型的前3问。 5.补充的输油管道优化设计。 6.非线性方程(组)求近似根方法。 第三章 7.层次结构模型的构造。 8.成对比较矩阵的一致性分析。 第五章 9.曲线拟合法与最小二乘法。 10 分段插值法。 第六章 11 指数模型及LOGISTIC模型的求解与性质。 12.VOLTERRA模型在相平面上求解及周期平均值。 13 差分方程(组)的平衡点及稳定性。 14 一阶差分方程求解。 15 养老保险模型。

16 金融公司支付基金的流动。 17 LESLLIE 模型。 18 泛函极值的欧拉方法。 19 最短路问题的邻接矩阵。 20 最优化问题的一般数学描述。 21 马尔科夫过程的平衡点。 22 零件的预防性更换。 练习集锦 1. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是成对比较矩阵 31/52a b P c d e f ?? ??=?????? ,(1)确定矩阵P 的未知元素。 (2)求 P 模最大特征值。 (3)分析矩阵P 的一致性是否可以接受(随机一致性指标RI取0.58)。 2. 在层次分析法建模中,我们介绍了成对比较矩阵概念,已知矩阵P 是三阶成对比较矩阵 322P ? ???=?????? ,(1)将矩阵P 元素补全。 (2)求P 模最 大特征值。 (3)分析矩阵P 的一致性是否可以接受。 3.考虑下表数据

(1)用曲改直的思想确定经验公式形式。 (2)用最小二乘法确定经验公式系数。 4.. 考虑微分方程 (0.2)0.0001(0.4)0.00001dx x xy dt dy y xy dt εε?=--????=-++?? (1)在像平面上解此微分方程组。(2)计算0ε=时的周期平均值。(3)计算0.1ε=时,y 的周期平均值占总量的周期平均值的比例增加了多少? 5考虑种群增长模型 '()(1/1000),(0)200x t kx x x =-= (1)求种群量增长最快的时刻。(2)根据下表数据估计参数k 值。 6. 布均匀,若环保部门及时发现并从某时刻起切断污染源,并更新湖水(此处更新指用新鲜水替换污染水),设湖水更新速率是 3 (m r s 单位:)。 (1) 试建立湖中污染物浓度随时间下降的数学模型? 求出污染物浓度降为控制前的5%所需要的时间。 7. 假如保险公司请你帮他们设计一个险种:35岁起保,每月交费400元,60岁开始领取养老金,每月养老金标准为3600元,请估算该保险费月利率为多少(保留到小数点后5位)? 8. 某校共有学生40000人,平时均在学生食堂就餐。该校共有,,A B C 3 个学生食堂。经过近一年的统计观测发现:A 食堂分别有10%,25%的学生经常去B ,C 食堂就餐,B 食堂经常分别有15%,25%的同学去

全国数学建模大赛B题

2014高教社杯全国大学生数学建模竞赛 承诺书 我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。 我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名): 参赛队员(打印并签名):1. 2. 指导教师或指导教师组负责人(打印并签名): (论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。以上内容请仔细核对,提交后将不再允许做任何修改。如填写错误,论文可能被取消评奖资格。) 赛区评阅编号(由赛区组委会评阅前进行编号):

2014高教社杯全国大学生数学建模竞赛 编号专用页 赛区评阅编号(由赛区组委会评阅前进行编号): 全国评阅编号(由全国组委会评阅前进行编号): 创意平板折叠桌 摘要 折叠与伸展也已成为家具设计行业普遍应用的一个基本设计理念,占用空间面积小而且家具的功能又更加多样化自然会受到人们的欢迎,着看创意桌子把一整块板分成若干木条,组合在一起,也可以变成很有创意的桌子,就像是变魔术一样,真的是创意无法想象。这样的一个有创意的家具给我们的生活带来了无限的乐趣, 问题一: 问题二:运用几何模型,对折叠桌平铺和完全展开后两个状态进行分析,得到各个变量之间的几何关系,因为折叠桌的设计要考虑产品的稳固性、加工方便、用材最少等方面的因素,但产品稳固性的权重选大于其它方面,所以优先满足产品的稳固性最好的情况,在已知折叠桌高度和圆形桌面直径的条件下,经过实际分析得到,当折叠桌完全展开后,四个最外侧着地的桌腿构成的正方形与桌面圆形外切时,稳固性最大,由此可以通过几何关系求得最外侧桌腿的长度l,进而得到平板的最有尺寸的长度x,再通过考虑对折叠桌进行受力分析,得到钢筋的位置,距离桌脚的距离M, L,问题二通过Matlab和C语言进行编程,得到每根桌腿到中心的距离r和每根桌腿的开槽长度 得以解决,结果见表1。 问题三: 关键字:几何模型 一、问题重述 某公司生产一种可折叠的桌子,桌面呈圆形,桌腿随着铰链的活动可以平摊成一张平板(如图1-2所示)。桌腿由若干根木条组成,分成两组,每组各用一根钢筋将木条连接,钢筋两端分别固定在桌腿各组最外侧的两根木条上,并且沿木条有空槽以保证滑动的自由度(见图3)。桌子外形由直纹曲面构成,造型美观。附件视频展示了折叠桌的动态变化过程。 试建立数学模型讨论下列问题: 1.给定长方形平板尺寸为120cm×50cm×3cm,每根木条宽 2.5cm,连接桌腿木条的钢筋固定在桌腿最外侧木条的中心位置,折叠后桌子的高度为53cm。试建立模型描述此折叠桌的动态变化过程,在此基础上给出此折叠桌的设计加工参数(例如,桌腿木条开槽的长度等)和桌脚边缘线(图4中红色曲线)的数学描述。

六自由度运动平台的仿真研究

六自由度运动平台的仿真研究 天津工程机械研究院 杨永立 摘要:本文分析了六自由度运动平台分别采用球铰链和万向节铰链进行连接时的自由度,运用欧拉角、旋转变换的方法推导出位置反解方程,介绍了数值迭代法进行位置正解的过程。 关键词:并联,局部自由度,位置反解,位置正解。 1. 简介 运动平台按结构形式可分为串联和并联两大类。与串联形式相比,并联形式具有刚度大、承载能力强、结构简单、运动负荷小、能实现包括横移、纵移、升沉等多个自由度运动等特点。同时,串联形式的优点也很明显,其具有运动空间大,测量精度高,运动、受力分析相对简单、控制、测量的实现相对容易,且每个自由度都能独立运动等特点。 六自由度运动平台(如图1所示)是由六条油缸通过万向节铰链(或球铰链)将上、下两个平台连接而成,下平台固定在基础上,借助六条油缸的伸缩运动,完成上平台在三维空间六个自由度(X, Y,Z,α,β,γ)的运动,从而可以 模拟出各种空间运动姿态。 2. 自由度的确定 若在三维空间有n个完全不受约束 的物体,任选其中一个作为固定参照物, 因每个物体相对参照物都有6个运动自 由度,则n个物体相对参照物共有6(n-1) 个运动自由度。若在所有物体之间用运 动副联接起来组成机构,设第i个运动副 的约束为u i(1到5之间的整数),如果 运动副的总数为g,则机构的自由度M为:

∑=--=g i i u n M 1)1(6 利用上述公式计算一下如图1所示运动平台(采用球铰链)的自由度数。将油缸分解为缸筒和活塞杆,则总的构件数n=14,油缸与上下平台之间的连接为12个球铰链(约束为3),缸筒和活塞杆构成6个既可以相对移动,又可以相对转动的运动副(约束为4),则平台的自由度M 为: ∑=--=g i i u n M 1)1(6=6 (14-1)-(3×12+4×6)=18 计算结果出人意料,平台似乎无法只通过六条油缸进行驱动。但是,如果保持上平台和缸筒固定不动,由球铰链的特性可知,活塞杆仍然可以相对其轴线转动;同理,缸筒也具有同样的效应。实践证明,这种转动并不影响上平台的空间运动姿态,因此属于局部自由度。 在六自由度运动平台的实际设计中,由于球铰链 的刚度差,结构不稳定,所以一般采用万向节铰链(如 图2所示,约束为4)来代替图1中的球铰链,则自由 度M 为: ∑=--=g i i u n M 1)1(6=6 (14-1)-(4×12+4×6)=6 3. 六自由度运动平台空间姿态的解算 要实现对平台空间姿态的控制和测量,必须掌握它两个方向上的解算方法,即位置反解和位置正解。 3.1 位置反解(逆向解): 已知输出件的位置和姿态,求解输入件的位置称为机构的位置反解。在运动平台的实际应用当中,用户所给定的一般都是平台的六个空间姿态参数X ,Y ,Z ,α,β,γ,然而要实现对平台的控制,需要的是六条油缸的长度L 1、L 2…L 6,这正好是已知输出求输入,属于位置反解。也就是说,要实现对平台空间姿态的控制,就必需推导出平台的位置反解方程。 如图1所示,在上平台建立动坐标系o-xyz ,在下平台建立静坐标系O-XYZ , 图2 万向节铰链

数学建模小论文

阶梯电价的设置 摘要 本文讨论的阶梯电价的设置问题,在解决过程中,需要将实际问题进行合理化的假设,从而简化。 本文在问题一处理的过程中利用matlab中,分别统计出两个小区居民用电量处于第一档和第二档的百分比,并进行比较,从而得出A,B两个小区用电量均属于第一档水平,为基本用电水平。然后,可以利用excel进行排序,然后根据第一档80%,第二档95%的百分比进行划线,从而确定两个小区各自的阶梯电价实施标准。 本文在问题二处理的过程中,可以根据A,B两个小区居民用水、电量的统计表,利用excel处理,绘制出A、B两个小区每个季度关于用水量-用电量关系的散点图,拟合出用水量与用电量之间存在基本的线性关系。 本文在问题三处理的过程中,结合问题一,二的结论,建立模型,考虑并比较该节水设备节省下的水费和设备花费的开销总和。 关键词:excel matlab

一.问题重述 由于历史的原因,我国长期实行工业电价补贴居民电价的交叉补贴制度。从我国居民电力消费结构看,5%的高收入家庭消费了约24%的电量,这就意味着低电价政策的福利更多地由高收入群体享受。这既不利于社会公平,无形中也助长了电力资源的浪费。 2012年7月1日“阶梯电价”在全国范围内实施。阶梯式电价是阶梯式递增电价或阶梯式累进电价的简称,也称为阶梯电价,是指把户均用电量设置为若干个阶梯分段或分档次定价计算费用。 根据此前发改委公布的方案征求意见稿,阶梯电价拟分为三档,把居民每个月的用电分成基本用电、正常用电、高质量用电三档。在落实用电量层面,第一档基本用电,电量按照覆盖80%居民的用电量来确定,第二档正常用电量则按照覆盖至95%的居民用电量。通过划分一、二、三档电量,较大幅提高第三档电量电价水平,在促进社会公平的同时,也可以培养全民节约资源、保护环境的意识,逐步养成节能减排的习惯。 阶梯电费收取方法为: 1、当实际用电量在第一级电量基数范围内时,阶梯电费=基本电价×实际用电量; 2、当实际用电量在第二级电量基数范围之间时,阶梯电费=基本电价×第一级电量+二档电价×(实际用电量-第二级电量基数下限); 3、当实际用电量超过第二级电量基数上限时,阶梯电费=基本电价×第一级电量+二档电价×第二级电量基数区间范围+三档电价×(实际用电量-第二级电量基数上限)。 例如: 山东省阶梯电价标准如下: 第一档:电量每户每月210度及以下,执行现行电价,每度0.5469元; 第二档:电量每户每月210-400度之间,在现行电价基础上,每度加价0.05元,即每度0.5969元; 第三档:电量每户每月400度以上,在现行电价基础上,每度加价0.3元,即每度0.8469元。 附件1中是济南市两个小区居民用水、电量的统计表,请分析数据并建模回答下列问题: 问题一针对现行的阶梯电价标准,判断该小区用电量属于何种水平。从该小区用电量水平出发,请制定合适的阶梯电价实施标准。 问题二试分析居民用水与用电量之间是否有关系。 问题三现有一家用节水设备,能达到节水10%的目的。请从设备的安装成本、耗电量、维护费用及使用寿命几个角度出发,结合居民用水电量数据, 建立数学模型,给出该设备是否能够降低居民水电费的判别方法。

六自由度

物体在空间具有六个自由度,即沿X、Y、Z三个直角坐标轴方向的移动自由度和绕这三个坐标轴的转动自由度。因此,要完全确定物体的位置,就必须清楚这六个自由度。 六自由度运动平台是由六支作动筒,上、下各六只万向铰链和上、下两个平台组成,下平台固定在基础上,借助六支作动筒的伸缩运动,完成上平台在空间六个自由度(X,Y,Z,α,β,γ)的运动,从而可以模拟出各种空间运动姿态。可广泛应用到各种训练模拟器如飞行模拟器、舰艇模拟器、海军直升机起降模拟平台、坦克模拟器、汽车驾驶模拟器、火车驾驶模拟器、地震模拟器以及动感电影、娱乐设备等领域,甚至可用到空间宇宙飞船的对接,空中加油机的加油对接中。在加工业可制成六轴联动机床、灵巧机器人等。由于六自由度运动平台的研制,涉及机械、液压、电气、控制、计算机、传感器,空间运动数学模型、实时信号传输处理、图形显示、动态仿真等等一系列高科技领域,因而六自由度运动平台的研制变成了高等院校、研究院所在液压和控制领域水平的标志性象征。 空间运动的目标是实现平台在空间运动的三个姿态角度和三个平动位移,即俯仰、滚转、偏航、上下垂直运动、前后平移和左右平移,及六个姿态的复合运动姿态。而空间目标是通过六个液压缸的行程实现的,这就需要一个空间的运动模型完成空间运动的转换,假设空间运动的目标俯仰、滚转、偏航、上下垂直位移、前后平移和左右平移用α,β,γ,X,Y,Z表示,六个油缸的行程用 L(i), (i=1、2、3、4、5、6)表示。整个运动模型如下: L(i)=TT(α,β,γ,X,Y,Z) 其中,TT是一个空间转换矩阵模型。由此实时算出每一运动时刻液压油缸的行程。液压油缸的理论行程再通过D/A接口的转换,给出实际行程值。 多自由度运动控制 多自由度控制系统中,自由度最多为六自由度,并且六自由度运动控制难度最大,设备及系统最复杂,下面主要介绍我公司设计、生产的六自由度运动台。 六自由度运动平台是由六支直线伺服电动缸,上、下各六只万向铰链和上、下两个平台组成,下平台固定在基础上,借助六只伺服电动缸)执行器)的伸缩运动,完成上平台在空间六个自由度(X,Y,Z,α,β,γ)的运动,从而可以模拟出

简单的数学建模小论文七年级

简单的数学建模小论文 七年级 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

合理分配 ---------数学建模论文 大千世界,无奇不有,在我们数学王国里也有许多有趣的事情,生活中有许多地方都要用到数学来解决问题。“合理分配”系列的问题更是值得思考又有趣。合理分配包括:合理分配时间、钱及市场上购买不同种类如何分配等。我们现在来讨论一下这种问题,举些例子。 假如你是一名医生,你有三个病人甲乙丙。甲打针需要十分钟,乙配药要五分钟,丙要包扎纱布有需要八分钟,而这时,医务室里只有你这么一个医生,你该如何安排他们的治病次序,才能使三人留在医务室的时间总和最短?这个问题相对简单。 可以想象,最后一位病人用的时间一定是10+8+5=23分钟。如果要让时间尽可能短,就要把治疗用时较长的病人排在后面治,让较大数出现的次数尽量少,也就是让甲排在最后。以此类推,第二个是丙,需要5+8=13分钟;第一个是乙,用五分钟。最后算出的便是最短时间:41分钟。 再举一个复杂写的合理分配的例子。 假设你又是一个超市的老板,你的超市准备用一万元来买甲、乙鲜奶,甲为16元一箱,乙为20元一箱。有假设购进甲x箱、乙y箱。据市场调查,甲乙鲜奶保质期内销售量不能超过280箱,超市有多种进货方案。然后你又计划将甲乙分别加价百分之二十和百分之二十五销售,那么哪种进货方案可获最大利润。

首先用含x的代数式表示一下y:16x+20y=10000,y=(10000-16x)/20,y 就等于。那么x大于等于275.而后写出所有进货方案,因为x、y都为整数,所以: 当x=275时,y=280; 当x=276时,y=279; 当x=277时,y=278; 当x=278时,y=277; 1 当x=279时,y=276; 当x=280时,y=275. 而提价后,甲卖每箱元,乙卖每箱25元。甲每箱赚元,乙每箱赚5元。乙赚得较多,因此乙买的最多的方案就有最大利润,即乙买280箱,甲买275箱。这个时候有的同学会把所有方案的所得利润都算出来,在比较。 但其实没有这个必要,只要看谁赚得多,就多买谁就行了。 这个问题就比较复杂了,不运用数学知识解决不了。当然,生活中还有更多更复杂的合理分配等实际问题。由此可见,数学可以解决生活中各种各样的实际问题,帮助我们。因此我们要好好学习数学,并把学到的知识用到实际生活当中。

数学建模综合实验

交通流量问题 一、问题 如图给出了某城市单行街道的交通流量(每小时过车数) x2 300 300 300x3 x1 x4 x5 x6 x7 x8 x9 x10 500 100 400 200 600 200 400 600 700 500

假设:1、全部流入网络的流量等于全部流出网络的流量; 2、全部流入一个节点的流量等于全部流出此节点的 流量。 试建立数学模型确定该交通网络未知部分的具体流量。二、实验目的: 学会应用线性代数中线性方程组的有关知识建立交通流量问题的数学模型,并用数学软件求其问题的全部解。 三、建模及使用MATLAB软件求解

动物繁殖问题 一、问题 某农场饲养的某种动物所能达到的最大年龄为15岁,将其分成三个年龄组:第一组,0~5岁;第二组,6~10岁;第三组,11~15岁。动物从第二年龄组开始繁殖后代,经过长期统计,第二年龄组的动物在其年龄段平均繁殖4个后代,第三年龄组的动物在其年龄段平均繁殖3个后代。第一年龄组和第二年龄组的动物能顺利进入下一个年龄组的存活率分别为1/2和1/4。假设农场现有三个年龄段的动物各1000头,问15年后农场三个年龄段的动物各有多少头? 二、实验目的: 巩固线性代数的有关知识,培养学生用矩阵知识解决实际问题的能力。

三、问题分析与模型建立 因年龄组为5岁一段,故将时间周期也取为5。15年后就 经过了3个周期。设)(k i x 表示第k 个时间周期第 i 组年龄阶段的动物数量(3,2,1;3,2,1==i k ) 因为某一时间周期第二年龄组和第三年龄组动物的数量是由上一时间周期上一年龄组存活的动物的数量,所以有: )3,2,1(4 1,21)1(2)(3)1(1)(2===--k x x x x k k k k 有因为某一时间周期第一年龄组动物的数量是由上一时间周期各年龄组出生的动物的数量,所以有:

数学建模作业

一、摘要 本文根据所给出的数据,运用excel软件并采用数据分析法,制定了一个具体可行的调整方案(其可靠性为95%)。首先,本文对题中的12组数据,进行相关性分析,求出各观测站所测的年平均降雨 γ>的观测站组合。其次,对这量间的相关系数γj i,,找出满足,0.381 i j 些组合进行一元线性回归,得到一元回归模型,并作F检验。经过检验进行优化选择,可先去掉5,9,11三个观测站。通过对一元线性回归模型分析知,观测站8的年平均降雨量可由观测站6预测得到。因此在满足足够大的信息量下,本模型可减少5,8,9,11四个观测站,而他们的信息均可由6观测站来预测,可靠性为95%。由于降雨量具有随机性,为更精确预测该地区未来十年的年平均降雨量,本文利用精简后的数据建立时间序列模型。对原数据列进行一阶差分处理,得到稳定的新时间序列。分析新时间序列的自相关函数与偏自相关函数图像,然后采用自相关函数和偏相关函数检验法对模型进行识别,确定使用ARMA(1,1)模型。借助于SPSS软件对数据进行处理,并对理论结果进行白噪声检验,结果表明ARMA(1,1)具有可靠性与实用性。 关键字:相关性分析数据分析一元线性回归时间序列自相关函数 arma(1,1)模型白噪声检验

二、问题重述 问题一:某地区内有12个气象观测站,根据27年来各观测站测得的年降雨量(见附表1),由于经费问题, 有关单位拟减少气象站数目以节约开支, 但又希望还能够尽量多地获取该地区的降水量信息。现要求设计一个方案:尽量减少观测站,而所得到的年降水量的信息量仍足够大。 问题二:为研究该地区的降雨量特点,需要对该地区未来十年的降雨量进行预测分析。 三、模型假设 1.该地区的地理特征具有一定的均匀性,而不是表现为复杂多变的地理特征。 2.不考虑其它区域及天气对本地区降雨量的影响 3.该市的气候特征较稳定,不出现较大的自然灾害,27年的统计数据能够全面地反映该市的气候特征; 4.该市的气候不会因环境的变化而发生较大的变化; 四、符号说明 γ j i,为任意两个观测站间的相关系数 )1(t --p n α为自由度n-p-1的t 分布双侧临界值 y 为欲预测值 p 为p 元回归数 p x x x y s .....21为剩余标准差 X t (,,,... 12X X X n )为平稳时间序列

数学建模优秀论文模板(全国一等奖模板)

Haozl觉得数学建模论文格式这么样设置 版权归郝竹林所有,材料仅学习参考 版权:郝竹林 备注☆ ※§等等字符都可以作为问题重述左边的。。。。。一级标题 所有段落一级标题设置成段落前后间距13磅 图和表的标题采用插入题注方式题注样式在样式表中设置居中五号字体 Excel中画出的折线表字体采用默认格式宋体正文10号 图标题在图上方段落间距前0.25行后0行 表标题在表下方段落间距前0行后0.25行 行距均使用单倍行距 所有段落均把4个勾去掉 注意Excel表格插入到word的方式在Excel中复制后,粘贴,word2010粘贴选用使用目标主题嵌入当前 Dsffaf 所有软件名字第一个字母大写比如E xcel 所有公式和字母均使用MathType编写 公式编号采用MathType编号格式自己定义

农业化肥公司的生产与销售优化方案 摘 要 要求总分总 本文针对储油罐的变位识别与罐容表标定的计算方法问题,运用二重积分法和最小二乘法建立了储油罐的变位识别与罐容表标定的计算模型,分别对三种不同变位情况推导出的油位计所测油位高度与实际罐容量的数学模型,运用matlab 软件编程得出合理的结论,最终对模型的结果做出了误差分析。 针对问题一要求依据图4及附表1建立积分数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1cm 的罐容表标定值。我们作图分析出实验储油罐出现纵向倾斜 14.时存在三种不同的可能情况,即储油罐中储油量较少、储油量一般、储油量较多的情况。针对于每种情况我们都利用了高等数学求容积的知识,以倾斜变位后油位计所测实际油位高度为积分变量,进行两次积分运算,运用MATLAB 软件推导出了所测油位高度与实际罐容量的关系式。并且给出了罐体倾斜变位后油位高度间隔为1cm 的罐容标定值(见表1),最后我们对倾斜变位前后的罐容标定值残差进行分析,得到样本方差为4103878.2-?,这充分说明残差波动不大。我们得出结论:罐体倾斜变位后,在同一油位条件下倾斜变位后罐容量比变位前罐容量少L 243。 表 1.1 针对问题二要求对于图1所示的实际储油罐,试建立罐体变位后标定罐容表的数学模型,即罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β)之间的一般关系。利用罐体变位后在进/出油过程中的实际检测数据(附件2),根据所建立的数学模型确定变位参数,并给出罐体变位后油位高度间隔为10cm 的罐容表标定值。进一步利用附件2中的实际检测数据来分析检验你们模型的正确性与方法的可靠性。我们根据实际储油罐的特殊构造将实际储油罐分为三部分,左、右球冠状体与中间的圆柱体。运用积分的知识,按照实际储油罐的纵向变位后油位的三种不同情况。利用MATLAB 编程进行两次积分求得仅纵向变位时油量与油位、倾斜角α的容积表达式。然后我们通过作图分析油罐体的变位情况,将双向变位后的油位h 与仅纵向变位时的油位0h 建立关系表达式01.5(1.5)cos h h β=--,从而得到双向变位油量与油位、倾斜角α、偏转角β的容积表达式。利用附件二的数据,采用最小二乘法来确定倾斜角α、偏转角β的值,用matlab 软件求出03.3=α、04=β α=3.30,β=时总的平均相对误差达到最小,其最小值为0.0594。由此得到双向变位后油量与油位的容积表达式V ,从而确定了双向变位后的罐容表(见表2)。 本文主要应用MATLAB 软件对相关的模型进行编程求解,计算方便、快捷、准确,整篇文章采取图文并茂的效果。文章最后根据所建立的模型用附件2中的实际检测数据进行了误差分析,结果可靠,使得模型具有现实意义。 关键词:罐容表标定;积分求解;最小二乘法;MATLAB ;误差分

相关文档