文档库 最新最全的文档下载
当前位置:文档库 › 压敏电阻保护电路设计

压敏电阻保护电路设计

压敏电阻保护电路设计
压敏电阻保护电路设计

??AUMOV????LV UltraMOV???

儎????????????

????

????????

????

2

https://www.wendangku.net/doc/9815893996.html, 3 AUMOV?系列压敏电阻介绍5 LV UltraMOV?压敏电阻系列介绍6 压敏电阻基础

8

汽车MOV 背景信息和应用例举

11 LV UltraMOV?背景信息和应用例举13 低压直流 MOV 选型16 瞬态浪潮抑制技术

18 金属氧化物压敏电阻(MOV )介绍18 压敏电阻串、并联

21 附件:技术规格和零件号相互参照

本文件的技术规格说明和说明性材料为出版时所知的最准确的描述,如有变更,恕不另行通知。

更多信息,请访问https://www.wendangku.net/doc/9815893996.html, 。

https://www.wendangku.net/doc/9815893996.html, 3

AUMOV TM 系列压敏电阻介绍

以上器件有以下规格:

? 磁盘大小: 5mm, 7mm, 10mm, 14mm, 20mm ? 额定工作电压:16–50VDC

额定浪涌电流:400-5000A (8/20ps )? ? 额定助推起动功率:6-100焦耳? 额定负载突降: 25–35 V

AUMOV TM 系列特点

? 符合AEC-Q200(表10)的规定? 强劲的负载突降和助推起动功率? 通过UL 认证(可选环氧树脂涂层)

? 较高的工作温度:最高达125°C (可选酚醛树脂涂层)? 较高的额定峰值浪涌电流和能量吸收能力

AUMOV TM 系列的优点

? 符合汽车行业要求? 符合ISO 7637-2的规定

? 有助于电路设计员符合UL1449标准? 适合高温环境和应用

? 卓越的浪涌保护和能量吸收能力,提高了产品的安全性? 具有通过TS16949认证的生产器件

AUMOV?系列压敏电阻是专为保护低压(12VDC 、24VDC 和42VDC )汽车系统的电路而设计的。该系列压敏电阻有5种磁盘规格,径向引线可选择环氧树脂涂层或酚醛树脂涂层。汽车MOV 压敏电阻符合AEC-Q200(表10)的规定,能够提供强劲的负载突降、实现助推起动、产生额定峰值浪涌电流以及具有高能量吸收能力。

https://www.wendangku.net/doc/9815893996.html, 4

AUMOV TM 系列应用

AUMOV TM 系列零件编号体系

其他非标准选择

包装:纸盒B: 散装

T:

磁带和卷盘A: 弹药Ammo包

引脚样式 : L1:直L2:曲L3:串联

L4:修剪/卷曲(仅供散装)

涂层:E = 环氧树脂P = 酚醛树脂V M(AC)RMS:14V - 42V

磁盘大小:5 - 20mm 力特“压敏电阻”:

V 05E 14L1B AUTO 汽车系列:符合无铅、RoHS和无卤条件

XXXXX

纸盒AUMOV TM 系列压敏电阻非常适用于保护各种汽车电子应用软件的电路,包括专为安全系统、车体电子元件、动力传达系统、加热/通风/空调控制、导航、中央控制台和信息娱乐系统设计的电子模件。

https://www.wendangku.net/doc/9815893996.html, 5

LV ULtraMOV?压敏电阻系列

以上器件的尺寸和额定电压如下:

? 磁盘直径: 5mm, 7mm, 10mm, 14mm and 20mm ? 最大连续电压(VDC): 14V - 56V

? 1mA 时压敏电阻的电阻(正常电压): 18V - 68V

LV UltraMOV ?系列特点

? 突破性设计使低压压敏电阻具有较高的额定峰值浪涌电流? 具备浪涌保护所需的较少的印迹和体积? 具有较高的能量吸收能力? 具有较高的抗温度周期变化性? 可选用酚醛树脂涂层

? 符合无铅、无卤和RoHS 规定。

LV UltraMOV ?系列的优点

? 由于能够在整个使用寿命内都能处理较高的浪涌,所以具有长期的可靠性? 电路板有更多的空间,供高价值功能元件使用。? 使用较小的磁盘,降低制成品的重量和成本

? 临界浪涌保护装置模块解决方案提供较高的浪涌处理密度? 较高的工作温度范围——高达125°C ? 环保产品

LV UltraM OV?低压高浪涌电流压敏电阻系列以较小的磁盘尺寸提供较大的额定浪涌,是小型直流电压应用软件最理想的电路保护解决方案。最大额定峰值电流可达8KA (8/20μs 浪涌),高峰值浪涌保护,包括雷击干扰、电线内电快速瞬态浪涌及工业应用中的感应尖峰

6

提高的保护等级——较高的浪涌耐受性和较长的使用寿命

零件尺寸更小——设计更紧凑

更高的工作温度范围

压敏电阻基础

https://www.wendangku.net/doc/9815893996.html, 与同规格的标准力特系列产品相比,LV UltraMOV?压敏电阻能够抵抗更高的浪涌电压/电压以及更多的浪涌冲击。例如,新型10mm LV UltraMOV?压敏电阻可额定抵抗最大2000A 的浪涌电流,是标准压敏电阻的4倍。较高的额定浪涌功率也能够延伸使用寿命,拉高可靠性,因为在使用期限内,MOV 的退化作用很小。

LV UltraMOV?压敏电阻比标准力特变阻器的尺寸小,但浪涌承受能力相同。这既减少了对PCB 空间的要求,也降低了零件的高度。例如,可以用额定承受浪涌能力为500A 的新型5mm LV UltraMOV?压敏电阻取代最高能承受500A 浪涌电流的普通10mm MOV。MOV 的大小从100mm 缩小到5mm ,安装高度由14mm 降到10mm 。

酚醛树脂涂层LV UltraM OV?压敏电阻可在温度高达125℃的环境内工作,所以适合在恶劣条件下使用,比如工业应用。

压敏电阻是压敏非线性器件,其电气性能和反向齐纳二极管类似。其对称瞬时击穿特性可使压敏电阻展现出卓越的瞬时抑制性能。当遇到高压瞬态浪涌时,压敏电阻压敏情况会发生数个数量级的改变——从近似开路到高导电水平——从而将瞬态浪涌电压抑制在安全水平。输入瞬态浪涌脉冲所具有的潜在破坏性能量被压敏电阻吸收,从而保护易损电路元件。

压敏电阻技术规格说明书所用的术语

https://www.wendangku.net/doc/9815893996.html,7

汽车MOV背景信息和应用例举

低压线路的威胁

120V甩负荷

85V 噪音

24V 助推起动

标称14V

6V 曲柄

反向电池

ISO 7637关于汽车EMC瞬态浪涌的要求

https://www.wendangku.net/doc/9815893996.html,8

负载突降是指负荷移除后车辆供电电压发生的情况。

如果负荷突然迅速移走(如发动机正运转时断开电池连接),电压在变平稳前会突然上升,从而损坏电气子元件。在一般的12V 电路中,负载突降可升高到120V ,持续时间长达400毫秒,之后才会衰减——这个时间,造成严重伤害已绰绰有余。

https://www.wendangku.net/doc/9815893996.html, 9

负载突降

V B = 14V T= 40ms to 400ms

R = 0.5Ω to 4ΩLoad Dump T ransient

负载突降波形(ISO 7637规定)

https://www.wendangku.net/doc/9815893996.html, 10

汽车应用

防交流发电机瞬态浪涌系统保护

System Protection against Alternator Transients

车辆子系统模块瞬态浪涌保护

安全气囊电机

信息娱乐等

汽车继电器浪涌保护

Automotive Relay Surge Protection

超动指示灯扬声器等

交流发电机为电子元件供电时,可能会损伤车辆

子系统,如ECU 、安全气囊等。

力特汽车MOV 可用作

直流电源线瞬态浪涌的分流器。

一般情况下,在切换继电器触点期间,继电器会产生电弧放电,从而损伤IC和其他感应电子

器件。力特汽车MOV能够吸收继电器磁场释放的电弧放电能量。

有许多应用都采用12VDC-48VDC 电路,包括通讯电源、传感、自动化、控制和安全系统。这些线路会因雷电、功率切换产生的电感尖峰以及感应电源线波动产生的快速瞬态浪涌而出现瞬态浪涌。例如,继电器开/关会导致线圈电感磁场瞬态浪涌,因而产生较高的电压尖峰。

与电压抑制所用的其他限制技术和电撬技术,压敏电阻技术仍然是保护12VDC-48VDC 线路不受高能量浪涌损坏的最具成本效益的方式之一。

https://www.wendangku.net/doc/9815893996.html, 11

LV UltraMOV ?背景信息和应用实例

典型应用

LV UltraMOV ? 压敏电阻广泛应用在以下领域:雷电感应瞬态浪涌

感应负载切换

多数因附近闪电而引起的

瞬态浪涌会对电子器件的电气和

通讯电线产生电磁干扰。

切换变压器、发电机、电机和继电器产生的感应负载会导致高达数百伏和数百安的瞬态浪涌,

并且持续时间长达400毫秒

https://www.wendangku.net/doc/9815893996.html, 12

一般应用

通讯/SPD 应用

Telecom/SPD Application

室外低压应用

安全系统/LED 保护

Load

AC/DC

12V/24V/48V DC 输出

12V/24V AC/DC 输入

通讯电压装置(PSU )的电压范围一般为36VDC—72VDC 。LV UltraMOV?可用于电压低于56VDC 的场合。低电压浪涌保护装置(SPD )模块用以工业应用,为整个系统提供模块化

浪涌保护。

12VAC/DC 和24VAC/VDC 是安全系统部件最常用的电压,如运动传感器、IP 摄像机和DVR 。

由于社会的节能需求,多采用LED 照明。24V 的LED 灯广泛用于家庭

和商业领域。输入电路使用UltraMOV?压敏电阻可以提高抗浪涌能力,进而延长LED 灯的寿命

用于48VDC 通讯电源SPD 时,LV UltraMOV?压敏电阻与GDT 串联。每个SPD 模块需要7-9个UltraMOV?压敏电阻。UltraMOV?压敏电阻与GDT 串联,提供浪涌保护。

对于工业应用,继电器线圈一

般用于开关控制液/气的阀门。由于继电器的开关作用,继电器线圈内的电流才得以持续流通,导致较高的电压尖峰。利用LV UltraMOV?压敏电阻与继电器开关并联,可延长继电器的使用寿命,防止切换继

电器触点时电弧放电。

UltraMOV?压敏电阻能够吸收继电器磁场释放的电弧能量。

https://www.wendangku.net/doc/9815893996.html, 13

工业/过程控制应用

感应浪涌保护

C C L R C = 杂散电容

= 继电器线圈电感= 继电器线圈电阻

Industrial/Process Control Application (LV MOV Applied in parallel with the Relay Circuit as shown)

如何选定低压直流MOV

浪涌保护用MOV 选择过程示例:

电路条件和要求

? 24VDC 直流电路。

? ? 浪涌期间峰值电流1000A 。? 要求能经受40次浪涌。

? 其他元件(控制IC 等)最高耐受300V 电压。

找到解决方法的途径:

要想查明MOV 的额定电压,应留出20%的余额,用以电压浪涌和电源公差。

? 24V DC × 1.2 = 28.8V DC ? 因此,MOV 额定值为31V 直流。

? 选用MOV 磁盘尺寸——选用那些最低符合1000A 浪涌要求的产品。

–使用LV UltraMOV?系列数据表中脉冲定值曲线来确定在1000A 的条件下

每40脉冲时各系列产品的脉冲承受能力。

浪涌电流波形8x20ps ,电压1.2x50μs 。

https://www.wendangku.net/doc/9815893996.html, 14

–使用选定MOV 数据表内V-1曲线来确定峰值电压低于上限1000V 。

脉冲定值曲线:

14mm 脉冲定值曲线

V14x11P - V14x40P

20mm 脉冲定值曲线

1

10

100

1000

10000

浪涌电流(A )

脉冲持续时间 (μs)

10100100010000

1x 2x 15x 102x 103x 104x 105x 106x

通过确定值定脉冲来确定所需LV UltraMOV?压敏电阻的磁盘尺寸符合使用要求。在下表中,我们选用14mm 、最大额定持续电压为31V 直流的MOV 来满足我们的需要。然后,我们使用脉冲定值曲线和V-1曲线来验证所选MOV p/n 是否能够满足需要。

https://www.wendangku.net/doc/9815893996.html, 15

确定14mm LV UltraMOV 额定浪涌是否能够满足要求:

1. 2. 3. 确定20mm LV UltraMOV?是否能够满足抑制要求:

1. 2. 3. 结论:

在130V 的限制电压下,V20E25P 能够满足24V 直流、1000A 、40次8x20μs 浪涌的要求。

使用LV UltraMOV?数据表重复浪涌承受能力(额定浪涌)曲线,确定X轴上20μs 内的脉冲(见图1-14mm MOV 和图2-20mmMOV ),这意味着 8x20μs 的波形。

由此可以看到,LV UltraMOV?14mm MOV 只能维持10次脉冲左右。然而,20mm 的MOV 可维持100次脉冲。因此,我们选用比较保守选型,即20mmMOV (p/n V20E25P )。

找到垂直线与1000A (40次脉冲所需的额定浪涌)相交的位置。

找到LV UltraMOV? V-I 曲线中

X 轴(1000A )峰值电流的位置。

找到与V20E25P 产品曲线的交叉点。

此时,最大限制电压为130V ,低于电路中敏感元件的损伤阈值300V 。所以,我们选用的UltraMOV?可以提供标准水平的保护。

https://www.wendangku.net/doc/9815893996.html, 16

瞬态浪涌抑制技术

通常使用嵌压和开关放电来转移瞬态浪涌。

? ? 过电压抑制比较

有两种方法可能抑制瞬态浪涌:衰减和引流。衰减技术以瞬态浪涌过滤为基础,防止瞬态浪涌扩散到敏感电路;引流技术将瞬态浪涌引离敏感负荷,从而限制残留电压。如何选用最合适的瞬态浪涌抑制器取决于其预期用途。另外,有些应用既需要使用主要端保护器件,也需要使用次要端保护器件。瞬态浪涌抑制器的功能是限制保护负荷以不同方式产生的最大瞬时电压。该器件的选用取决多种因素,但最终会归结为其成本和所需保护等级之间的平衡。

选用瞬态浪涌抑制器对敏感电路进行保护时,其开始工作时所需的时间极为重要。如果抑制器动作迟缓,系统出现迅速升高的瞬态浪涌尖峰,保护负荷的电压会在抑制消失前升高到造成损伤的程度。对于电力线路,金属氧化物压敏电阻是最佳的抑制器件,有时也会采用TVS 二极管和气体放电管。

电橇主要是充气管或保护性晶闸管,广泛用于电力线持续电流问题比电力线路较少的通讯

领域。这种器件采用开关功能转移瞬态浪涌,并以使电力线路缺电的方式把电压降至线路电压以下。这种器件会自动复位。

嵌压器件是随接线端电压而变化的变阻式部件。这种器件具有非线性阻抗特性。阻抗可持

续变化。嵌压器件是专为维持“正常”的线路情况而设计的,通常在体内散发部分能量。

线路瞬变

V 线路

V 线路

散失的能量限制电压

线路

金属氧化物

地面

https://www.wendangku.net/doc/9815893996.html, 17

MOV 一般应用

? ? ? 金属氧化物压敏电阻(MOV )在很多应用中一般用于抑制瞬态浪涌,例如浪涌保护

装置(SPD )、不间断电源(UPS )、AC 功率花鼓、AC 功率表或其他产品。

在正常工作条件下,MOV 上的AC线路电压不能超过MOV 最大ACRMS 电压限额或最

大持续工作电压(MCOV )。

有时,过电压瞬态浪涌会超过限度。如果瞬态浪涌能量没有超过MOV 最大限额,利用MOV 可将其限制在合适的电压水平。

雷电、感应负载开关或电容器组开关是过电压瞬态浪涌的主要来源。

https://www.wendangku.net/doc/9815893996.html, 18

金属氧化物压敏电阻(MOV )介绍

如何连接力特压敏电阻

瞬态浪涌抑制器能在短时间内承受较高的电流(从毫微秒到毫秒之间)。

直流应用

压敏电阻的串联和并联操作

一般性瞬态浪涌

错误

正确

力特压敏电阻可与负荷并联,因此压敏电阻导线内的任何压降都会消弱其功效。利用较短的导线来降低感应电压可收到最好的效果。

直流应用需要正负极或正极对地连接以及负极对地连接。例如,如果三相都有对地瞬态浪涌(一般性瞬态浪涌),只有相对地瞬态浪涌抑制器能够吸收能量,相对相瞬态浪涌变抑制器不会发挥功效。

在大多数情况下,一个设计者可以在目录中的标准型号里选择一个满足所需的电压等级的压敏电阻。然而有时候由于电压等级或能量/额定等级在标准目录的型号不能符合应用的需求,。这时有两种选择:压敏电阻串联或并联组成所需的等级或可以要求工厂“特制”型号来满足应用的独特的需求。

压敏电阻串联

压敏电阻串联有两个原因,其一是:提供高于可用电压的额定电压或提供标准电压之间的

额定电压。作为附带优势,压敏电阻在类似单个器件上串联可以得到较高的定值能量。例

如,假如应用时,需要使用VDC定值为75VDC、ITM峰值电流为4000A的径向引线压敏

电阻,设计人员会把压敏电阻的尺寸定为14mm。我们在检验磁盘尺寸为14mm的LV

UltraMOV?压敏电阻的串联电压定值时,p/n V14E35P的最大电压为45VDC。为了满足

对于75VDC的要求,我们需要串联两个MOV。在这个例子中,两个压敏电阻的累加效

应是总计45V + 45V = 90VDC的关态电压。因此,我们不仅得到了75VDC的额定电压,还

有超过20%的容差净高,这种解决方案符合要求。现在,限制电压(VC)是单个压敏

电阻限制电压的总和或10A时220V,而峰值电流依然是4000A,因为浪涌电流会因两

个压敏电阻串联感应而生。

压敏电阻并联

出于应用要求,可能会需要比压敏电阻串联时单独供应的高能量还要高的峰值电流和

能耗。此时,全乎逻辑的选择是检查电阻并联的可能性。幸运的是,力特压敏电阻具

有在较高的电流强度下实现并联的特性。这种性质就是压敏电阻的串联电阻,在V-I特

性“上升区”中比较明显。这种上升是缘于压敏电阻特性中的固有线性电阻元件。它

充当串联平衡(或镇流)电阻,迫使在较低电流下无法实现的一定程度的均流。

例如,在限制电压为600V时,最大指定样本和假定低20%的目标样本之间的电流差

别会超过20:1。因此,几乎没有分流情况,只有一个压敏电阻承载了电流。当然,

在较低的电流水平下——10A—100A之间,以上情况也可以接受。

https://www.wendangku.net/doc/9815893996.html,19

Figure 22. 压敏电阻并联图解

利用这种技术,电流均流可以较大程度地从上图假定示例的最坏情况中得以改善。

总之,压敏电阻可以并联,但只有在器件适用于电压电流特性的整个范围时,才能实

现良好的电流均流。

在需要并联的应用中,力特可提供咨询。下表是关于压敏电阻串、并联操作的指南。

https://www.wendangku.net/doc/9815893996.html,20

防反接保护电路

防反接保护电路 防反接保护电路 1,通常情况下直流电源输入防反接保护电路是利用二极管的单向导电性来实现防反接保护。如下图1示: 这种接法简单可靠,但当输入大电流的情况下功耗影响是非常大的。以输入电流额定值达到2A,如选用Onsemi的快速恢复二极管MUR3020PT,额定管压降为0.7V,那么功耗至少也要达到:Pd=2A×0.7V=1.4W,这样效率低,发热量大,要加散热器。 2,另外还可以用二极管桥对输入做整流,这样电路就永远有正确的极性(图2)。这些方案的缺点是,二极管上的压降会消耗能量。输入电流为2A时,图1中的电路功耗为1.4W,图2中电路的功耗为2.8W。 图1,一只串联二极管保护系统不受反向极性影响,二极管有0.7V的压降 图2 是一个桥式整流器,不论什么极性都可以正常工作,但是有两个二极管导通,功耗是图1的两倍MOS管型防反接保护电路 图3利用了MOS管的开关特性,控制电路的导通和断开来设计防反接保护电路,由于功率MOS管的内阻很小,现在MOSFET Rds(on)已经能够做到毫欧级,解决了现有采用二极管电源防反接方案存在的压降和功耗过大的问题。 极性反接保护将保护用场效应管与被保护电路串联连接。保护用场效应管为PMOS场效应管或NMOS场效应管。若为PMOS,其栅极和源极分别连接被保护电路的接地端和电源端,其漏极连接被保护电路中PMOS元件的衬底。若是NMOS,其栅极和源极分别连接被保护电路的电源端和接地端,其漏极连接被保护电路中NMOS元件的衬底。一旦被保护电路的电源极性反接,保护用场效应管会形成断路,防止电流烧毁电路中的场效应管元件,保护整体电路。 具体N沟道MOS管防反接保护电路电路如图3示

压敏电阻保护电路设计讲解

??AUMOV????LV UltraMOV??? 儎???????????? ???? ???????? ????

2 https://www.wendangku.net/doc/9815893996.html, 3 AUMOV?系列压敏电阻介绍5 LV UltraMOV?压敏电阻系列介绍6 压敏电阻基础 8 汽车MOV 背景信息和应用例举 11 LV UltraMOV?背景信息和应用例举13 低压直流 MOV 选型16 瞬态浪潮抑制技术 18 金属氧化物压敏电阻(MOV )介绍18 压敏电阻串、并联 21 附件:技术规格和零件号相互参照 本文件的技术规格说明和说明性材料为出版时所知的最准确的描述,如有变更,恕不另行通知。 更多信息,请访问https://www.wendangku.net/doc/9815893996.html, 。

https://www.wendangku.net/doc/9815893996.html, 3 AUMOV TM 系列压敏电阻介绍 以上器件有以下规格: ? 磁盘大小: 5mm, 7mm, 10mm, 14mm, 20mm ? 额定工作电压:16–50VDC 额定浪涌电流:400-5000A (8/20ps )? ? 额定助推起动功率:6-100焦耳? 额定负载突降: 25–35 V AUMOV TM 系列特点 ? 符合AEC-Q200(表10)的规定? 强劲的负载突降和助推起动功率? 通过UL 认证(可选环氧树脂涂层) ? 较高的工作温度:最高达125°C (可选酚醛树脂涂层)? 较高的额定峰值浪涌电流和能量吸收能力 AUMOV TM 系列的优点 ? 符合汽车行业要求? 符合ISO 7637-2的规定 ? 有助于电路设计员符合UL1449标准? 适合高温环境和应用 ? 卓越的浪涌保护和能量吸收能力,提高了产品的安全性? 具有通过TS16949认证的生产器件 AUMOV?系列压敏电阻是专为保护低压(12VDC 、24VDC 和42VDC )汽车系统的电路而设计的。该系列压敏电阻有5种磁盘规格,径向引线可选择环氧树脂涂层或酚醛树脂涂层。汽车MOV 压敏电阻符合AEC-Q200(表10)的规定,能够提供强劲的负载突降、实现助推起动、产生额定峰值浪涌电流以及具有高能量吸收能力。

完整版信号口浪涌防护电路设计

信号口浪涌防护电路设计 通讯设备的外连线和接口线都有可能遭受雷击(直接雷击或感应雷击),比如交流供电线、用户线、ISDN接口线、中继线、天馈线等,所以这些外连线和接口线均应采取雷击保护措施。 设计信号口防雷电路应注意以下几点: 1、防雷电路的输出残压值必须比被防护电路自身能够耐受的过电压峰值低,并有一定裕量。 2、防雷电路应有足够的冲击通流能力和响应速度。 3、信号防雷电路应满足相应接口信号传输速率及带宽的需求,且接口与被保护设备兼容。 4、信号防雷电路要考虑阻抗匹配的问题。 5、信号防雷电路的插损应满足通信系统的要求。 6、对于信号回路的峰值电压防护电路不应动作,通常在信号回路中,防护电路的动作电压是信号回路的峰值电压的1.3~1.6倍。 1.1网口防雷电路 网口的防雷可以采用两种思路:一种思路是要给雷电电流以泄放通路,把高压在变压器之前泄放掉,尽可能减少对变压器影响,同时注意减少共模过电压转为差模过电压的可能性。另一种思路是利用变压器的绝缘耐压,通过良好的器件选型与PCB设计将高压隔离在变压器的初级,从而实现对接口的隔离保护。下面的室外走线网口防雷电路和室内走线网口防雷电路就分别采用的是这两种思路。 1.1.1室外走线网口防雷电路 设计。1当有可能室外走线时,端口的防护等级要求较高,防护电路可以按图 R1TX组合式G1PE,低节电容TVS R2 R3组合式RXG2PE,低节电容TVS R4a 变/22.23R097CXTXUNUSESLVU2.8-UNUSE10/10TXTXENTERNERX PH RXUNUSETXUNUSERX RJ47777RXVCVCCGND b 1 室外走线网口防护电路图从图中可以看出该电路的结构与室给出的是室外走线网口防护电路的基本原理图,图1aTVS口防雷电路类似。共模防护通过气体放电管实现,差模防护通过气体放电管和外走线E1它可以同时是三极气体放电管,,型号是3R097CXAG1管组成的二级防护电路实现。图中和G2使电阻,/2W起到两信号线间的差模保护和两线对地的共模保护效果。中间的退耦选用2.2Ω防雷性能电阻值在保证信号传输的前提下尽可能往大选取,前后级防护电路能够相互配合,因为网口传输速率高,在网口防雷TVS后级防护用的管,Ω。会更好,但电阻值不能小于2.21b图。SLVU2.8-4这里推荐的器件型号为管需要具有更低的结电容,TVS电路中应用的组合式 就是采用上述器件网口部分的详细原理图。 三极气体放电管的中间一极接保护地PGND,要保证设备的工作地GND和保护地PGND通过PCB走线在母板或通过电缆在结构体上汇合(不能通过0Ω电阻或电容),这样才能减小GND和PGND的电位差,使防雷电路发挥保护作用。 电路设计需要注意RJ45接头到三极气体放电管的PCB走线加粗到40mil,走线布在TOP层或BOTTOM层。若单层不能布这么粗的线,可采取两层或三层走线的方式来满足走线的宽度。退耦

过电压保护电路汇总

新疆大学 课程设计报告 所属院系:科学技术学院 专业:电气工程及其自动化 课程名称:电子技术基础上 设计题目:过电压保护电路设计 班级:电气14-1 学生姓名:庞浩 学生学号:20142450007 指导老师: 常翠宁 完成日期:2016. 6. 30

1.双向二极管限幅电路

图2 经典过电压保护电路 经典过电压保护电路虽然有许多优点,但是由于Multisim 12.0中无法找到元件 MAX6495,无法进行仿真,所以不选用该方案。 3.智能家电过电压保护电路 电路原理:该装置工作原理见图,电容器C1将220V 交流市电降压限流后,由二极管1D V 、 2D V 整流,电容器2C 担任滤波,得到12V 左右的直流电压。当电网电压正常时, 稳压二极管VDW 不能被击穿导通,此时三极管VT 处于截止状态,双向可控硅VS 受到电压触发面导通,插在插座XS 中的家电通电工作。(图3) 图3 智能家电过压保护电路 如果电网电压突然升高,超过250V ,此时在RP 中点的电压就导致VDW 击穿导通,VDW 导通后,又使得三极管VT 导通,VT 导通后,其集电极—发射极的压降很小,不足以触发VS ,又导致VS 截止,因此插座XS 中的家电断电停止工作,因而起到了保护的目的。一旦电网电压下降,VT 又截止,VT 的集电极电位升高,又触发VS 导通,家电得电继续工作。 R 电阻5.1K1,RP 电位器15K 选用多圈精密电位器1,C1金属化纸介电容0.47uF 耐压≥400V1,C2电解电容100uF/25V1,1D V 、 2D V 整流二极管IN40072,VDW 稳压二极管 12V 的2CW121,VT 晶体三极管3DA87C 、3DG12等1,VS 双向可控硅6—10A 耐压≥600V1,CZ 电源插座10A 250V1 该装置的调试十分简单,当电网电压为220V 时,调整RP ,使VDW 不击穿,当电压升高至250V ,VT 饱和导通即可,调试时用一调压变压器来模拟市电的变化更方便。 优点:能够保护家用电器避免高电压的冲击带来的伤害,、 缺点:需要购买二极管,NPN 型BJT 以及双向可控硅VS ,不太经济。

过流保护电路设计

过流保护电路如上图所示。此电路是过流保护电路,其中100kΩ电阻用来限流,通过比较器LM311 对电流互感器采样转化的电压进行比较,LM311的3脚接一10kΩ电位器来调比较基准电压,输出后接一100Ω的电阻限流它与后面的220μF的电容形成保护时间控制。当电流过流时比较器输出是高电平产生保护,使SPWM不输出,控制场效应管关闭,等故障消除,比较器输出低电平,逆变器又自动恢复工作。 1.第一个部分是电阻取样...负载和R1串联...大家都知道.串联的电流相等...R2上的电压随着负载的电流变化而变化...电流大,R2两端电压也高...R3 D1组成运放保护电路...防止过高的电压进入运放导致运放损坏...C1是防止干扰用的... 2.第二部分是一个大家相当熟悉的同相放大器...由于前级的电阻取样的信号很小...所以得要用放大电 路放大.才能用...放大倍数由VR1 R4决定... 3.第三部分是一个比较器电路...放大器把取样的信号放大...然后经过这级比较...从而去控制后级的动作...是否切断电源或别的操作...比较器是开路输出.所以要加上上位电阻...不然无法输出高电平... 4.第四部分是一个驱动继电器的电路...这个电路和一般所不同的是...这个是一个自锁电路... 一段保护 信号过来后...这个电路就会一直工作...直到断掉电源再开机...这个自锁电路结构和单向可控硅差不多. 1 采用电流传感器进行电流检测过流检测传感器的工作原理如图1所示。通过变流器所获得的变流器次级电流经I/V转换成电压,该电压直流化后,由电压比较器与设定值相比较,若直流电压大于设定值,则发出辨别信号。但是这种检测传感器一般多用于监视感应电源的负载电流,为此需采取如下措施。由于感应电源启动时,启动电流为额定值的数倍,与启动结束时的电流相比大得多,所以在单纯监视电流电瓶的情况下,感应电源启动时应得到必要的输出信号,必须用定时器设定禁止时间,使感应电源启动结束前不输出不必要的信号,定时结束后,转入预定的监视状态。 2 启动浪涌电流限制电路开关电源在加电时,会产生较高的浪涌电流,因此必须在电源的输入端安装防止浪涌电流的软启动装置,才能有效地将浪涌电流减小到允许的范围内。浪涌电流主要是由滤波电容充电引起,在开关管开始导通的瞬间,电容对交流呈现出较低的阻抗。如果不采取任何保护措施,浪涌电流可接近数百A。 开关电源的输入一般采用电容整流滤波电路如图2所示,滤波电容C可选用低频或高频电容器,若用低频电容器则需并联同容量高频电容器来承担充放电电流。图中在整流和滤波之间串入的限流电阻Rsc是为了防止浪涌电流的冲击。合闸时Rsc限制了电容C的充电电流,经过一段时间,C上的电压达到预置值或电容C1上电压达到继电器T动作电压时,Rsc被短路完成了启动。同时还可以采用可控硅等电路来短接Rsc。当合闸时,由于可控硅截止,通过Rsc对电容C进行充电,经一段时间后,触发可控硅导通,从而短接了限流电阻Rsc。 3 采用基极驱动电路的限流电路在一般情况下,利用基极驱动电路将电源的控制电路和开关晶体管隔离开。控制电路与输出电路共地,限流电路可以直接与输出电路连接,工作原理如图3所示,当输出过载或者短路时,V1导通,R3两端电压增大,并与比较器反相端的基准电压比较。控制PWM信号通断。 4 通过检测IGBT的Vce 当电源输出过载或者短路时,IGBT的Vce值则变大,根据此原理可以对电路采取保护措施。对此通常使用专用的驱动器EXB841,其内部电路能够很好地完成降栅以及软关断,并具有内部延迟功能,可以消除干扰产生的误动作。其工作原理如图4所示,含有IGBT过流信息的Vce不直接发送到EXB841 的集电极电压监视脚6,而是经快速恢复二极管VD1,通过比较器IC1输出接到EXB841的脚6,从而消除正向压降随电流不同而异的情况,采用阈值比较器,提高电流检测的准确性。假如发生了过流,驱动器:EXB841的低速切断电路会缓慢关断IGBT,从而避免集电极电流尖峰脉冲损坏IGBT器件。 为避免在使用中因非正常原因造成输出短路或过载,致使调整管流过很大的电流,使之损坏。故需有快速保护措施。过流保护电路有限流型和截流型两种。 限流型:当调整管的电流超过额定值时,对调整管的基极电流进行分流,使发射极电流不至于过大。图4-2为其简要电路图。图中R为一小电阻,用于检测负载电流。当IL不超过额定值时,T1、截止;当IL 超过额定值时,T'1导通,其集电极从T1的基极分流。从而实现对T1管的保护

直流电源过电压过流保护电路

直流电源过电压、欠电压及过流保护电路 该保护电路在直流电源输入电压大于30V或小于18V或负载电 流超过35A时,晶闸管都将被触发导 通,致使断路器QF跳闸。图中,YR 为断路器QF的脱扣线圈;KI为过电 流继电器。 带过流保护的电动自行车无级调速电路

图中,RC为补偿网络,以改善电动机的力矩特性。具体数值由实验决定。 电路如图16-91所示。它适用于电动自行车或电动三轮车。调节电位器RP,可改变由555 时基集成电路A组成的方波发生器的方波占空比,达到调速的目的。Rs是过电流取样电 阻,当电动机过载时,Rs上的压降增大,使三极管VTz导通,触发双向晶闸管V导通,分 流了部分负载,从而保护了功率管VTi。 过流保护用电子保险的制作电路图 本电路适用于直流供电过流保护,如各种电池供电的场合。 如果负载电流超过预设值,该电子保险将断开直流负载。重置电路时,只需把电源关掉,然后再接通。该电路有两个联接点(A、B标记),可以连接在负载的任意一边。 负载电流流过三极管T4、电阻R10和R11。A、B端的电压与负载电流成正比,大多数的电压分配在电阻上。当电源刚刚接通时,全部电源电压加在保险上。三极管T2由R4的电流导通,其集电极的电流值由下式确定:VD4=VR7+0.6。因为D4上的电压(VD4)和R7上的电压(VR7)是恒定的,所以T2的集电极电流也是恒定。该三极管提供稳定的基极电流给T3,因而使其导通,接着又提供稳定的基极电流给T4。保险导电,负载有电流流过。当电源刚接通时,电容器C1提供一段延时,从而避免T1导电和保持T2断开。

保险上的电压(VAB)通常小于2V,具体值取决于负载电流。当负载电流增大时,该电压升高,并且在二极管D4导通时,达到分流部分T2的基极电流,T2的集电极电流因而受到限制。由此,保险上的电压进一步增大,直到大约4.5V,齐纳二极管D1击穿,使T1导通,T2便截止,这使得T3和T4也截止,此时保险上的电压增大,并且产生正反馈,使这些三极管保持截止状态。 C1的作用是给出一段短时延迟,以便保险可以控制短时过载,如象白炽灯的开关电流,或直流电机的启动电流。因此,改变C1的值可以改变延迟时间的长短。该电路的电压范围是10~36V的直流电,延迟时间大约0.1秒。对于电路中给出的元件值,负载电流限制为1A。通过改变元件值,负载电流可以达到10mA~40A。选择合适额定值的元件,电路的工作电压可以达到6~500V。通过利用一个整流电桥(如下面的电源电路),该保险也可以用于交流电路。电容器C2提供保险端的瞬时电压保护。二极管D2避免当保险上的电压很低时,C1经过负载放电。 过压过流保护器电路图 当电源供给电压或负载吸取的电流太大时,下图电路可断开负载给出故障指示。 正常工作时,Tr1和Tr2均截止,555复位,555中的放电晶体管导通,它从Tr3基极吸取电流,使Tr3处开饱和,电源5~12V便直接送主负载。当负载吸取电流超过规定值时,Rsc上压降增加,使Tr1导通,555被触发,于是内部放电晶体管截止,跟着Tr3也截止,将电源与负载隔离,这时555处于单稳状态,单稳时间一到,只要负载过流现象不排除,555又重新触发,Tr3继续将负载隔离。

USB电路保护图..

车载ECU的安全性能要求很高,在电气、物理、化学等各方面,各大汽车厂商通常都有自己严格的标准。一般情况下,车载ECU的外部接口都要有各种故障保护电路,其中最重要的莫过于对车载12V电源或对地发生短路时的保护电路。由于USB接口可以直接输出5伏电源,所以短路保护显得尤为重要。本文设计的保护电路可以实现对USB电源输出线的有效保护,无论USB电源输出线VBUS发生对12V电源还是对地短路,均不影响车载ECU内部电路的正常工作,实现了本质安全级的短路保护。 1、前言 为了保证行车安全,车载ECU的安全性能要求很高,在设计时便要保证故障发生率尽量低。作为目前应用最为广泛的移动外设与主机间通讯接口,USB(Universal Serial Bus)具有成本低、使用简单、支持即插即用、易于扩展等特点,在车载娱乐和存储设备上获得了广泛的应用。因为USB接口提供了内置电源,可提供 500mA以上的电流,对于一些功率较大的设备,如移动硬盘等,其瞬时驱动电流则可达到1A以上。如果车载ECU上带有像USB总线这种可以直接输出电源的接口,为防止接口电路发生对电源或对地短路时损坏机体,其接口部分通常都应具有保护电路,以便执行故障自诊断和保护功能。当系统产生故障时,它能在存储体中自动记录故障代码并采用保护措施,防止系统损坏,避免引起安全事故。 2、电路设计 利用比较器并结合外围电路,本文设计了一种可以自动探测USB电源输出线是否发了对12V电源或地短路,并且可以在短路故障发生时自动切断电源供应的保护电路。另外,如果探测到联接设备不在支持的USB设备之列,系统也可以借助本电路主动断开电源供应,并自动根据设备的连接状态实现对电源供应的控制。具体电路如图1所示。 图1 USB VBUS短路保护电路 图中MN1和MN2是USB电源通道上的两个MOSFET,用于控制5伏电源的输出,它们的G端都连接到比较器的输出端上。比较器的正端电位值受 3.3伏和VBUS共同影响,负端电位值由Umid通过电阻分压来决定,Umid的值总是与VCC5V和VBUS中的大者相同。本充分发挥二极管的正向导通和反向截止的作用,并对MOS管中快恢复二极管加以利用,利用一个比较器便可以构成一个窗口比较器。如果VBUS上的电压落在窗口之外(例如12V供电电压或地电平),那么比较器输出低电平,关断供电线的MOS管。这样既使12V电压无法进入系统内部,也防止了系统5V供电因为对地短路而发生过流,起到了保护系统不受短路侵扰的作用。 3、功能论证

防护电路设计(SMBJ、肖特基二极管)

防护电路设计 1.防护电路中的元器件 1.1过压防护器件 1.1.1钳位型过压防护器件 ①压敏电阻 MOV电路符号 压敏电阻英文varistor或MOV,它以氧化锌为基料,加入多种添加剂,经过混料造粒, 压制成坯体,高温烧结,两面印烧银电极,焊接引出端,最后包封等工序而制成。 优点是价格便宜,通流量大,响应速度快,缺点是寄生电容大,不适合用在高频电路中。 压敏电阻器广泛应用于家用电器及其它电子产品中,起过电压保护、防雷、抑制浪涌电 流、吸收尖峰脉冲、限幅、高压灭弧、消噪、保护半导体元器件等作用。 压敏电压的选择:交流电路其最小值一般选择被保护设备电压2-3倍,直流电路选取为 工作电压的1.8-2倍。 由于压敏制作时可能存在微小缺陷,或者当承受不同电流冲击,造成管芯的压敏电阻体 分布不均,一些部位电阻会降低,导致漏电流增加,最终导致薄弱点微融化,最终导致 老化。所以一般串接热熔点来避免。 压敏可串并联使用。 ②TVS TVS电路符号 TVS是一种限压型的过压保护器,它将过高的电压钳制至一个安全范围,藉以保护后 面的电路,有着比其它保护元件更快的反应时间,这使TVS可用在防护lighting、 switching、ESD等快速破坏性瞬态电压。 特点:可分为单双向,响应时间快、漏电流低、击穿电压误差小、箝位电压较易控制、 并且经过多次瞬变电压后,性能不下降,可靠性高,体积小、易于安装。缺点是能承受 的浪涌电流较小,且功率大的寄生电容也大,低电容的功率较小。适用于细保护或者二 级保护。

选型注意,单双向,电压,功率,电容都要考虑到。 单向TVS伏安特性双向TVS伏安特性 1.1.2开关型过压防护器具 ①气体放电管 GDT电路符号 气体放电管是一种陶瓷或玻璃封装的、内充低压惰性气体的短路型保护器件,一般分两电极和三电极两种结构。其基本的工作原理是气体放电。当极间的电场强度超过气体的击穿强度时,就引起间隙放电,从而限制了极间的电压,使与气体放电管并联的其它器件得到保护。可分为二极和三极两种。 陶瓷气体放电管具有通流量大(KA级),漏电流小,寄生电容小等优点,缺点是其响应速度慢(μs级),动作电压精度低,有续流现象。适用于粗保护或者初级保护。 选型方法:min(UDC)≥1.25*1.15Up 1.25是安全余量,1.15是电源波动系数。 特性曲线

压敏电阻的使用注意事项

压敏电阻的使用注意事项 压敏电阻的使用原则是在其接入被保护设备后,不能影响设备的正常运行,又能有效地对设备实施瞬时过压保护。为此,除了压敏电阻的技术参数外,在实际选择时还要考虑以下几个问题: ⑴压敏电压选择 考虑到压敏电阻实际的压敏电压与标称电压之间的偏差(应考虑为标称电压的1.1~1.2倍)、交流电路中电源电压可能的波动范围(应考虑为额定电压的 1.4~1.5倍)、交流电压峰值和有效值之间的关系(应考虑1.4倍),所以,应选用压敏电压为额定电压2.2~2.5倍的压敏电阻。在直流电路中,常选用压敏电压为直流电压额定值1.8~2倍的压敏电阻。 ⑵通流容量选择 原则上应按可能遭受的最大暂态浪涌电流来选择,但要做到这一点是困难的。实用中无非是按照使用场合,或是按照产品试验标准上规定的试验等级来选择压敏电阻。 按前者,1kA(8/20μs电流波)的压敏电阻可用在可控硅整流器的保护上;3kA的用在电器设备的浪涌吸收上;5kA的用在对雷击及电子设备的过电压吸收上;10kA的用在对雷击的保护上。按后者,常用综合波(发生器开路输出时产生1.2/50μs的电压波;短路输出时产生8/20μs的电流波;发生器的内阻为2Ω)来在线考核设备对抗雷击浪涌干扰的能力。在4kV 试验时,保护器吸收的最大电流可达2kA;对6kV的试验,吸收电流的最大值为3kA。但在实际选择时,还应当适当加大所选压敏电阻的通流容量。因为通流能力大的压敏电阻,在吸收同样大小的浪涌电流时,应当有相对较小的残余压降;同时,对选用的压敏电阻来说,也有较大的保护裕度。 ⑶固有寄生电容 压敏电阻有一个固有电容问题,根据外形尺寸和标称电压的不同,其值在数百至数千pF 之间。压敏电阻的固有电容决定了它不适合在高频场合下使用,否则会影响系统的正常运行;适合在工频系统里使用,如用作电源进线的保护、可控硅整流器的保护等。 压敏电阻的瞬时功率比较大,但平均持续功率却很小,故不能长时间工作于导通状态。

逆变器保护电路设计

安阳师范学院本科学生毕业设计报告逆变器保护电路设计 作者秦文 系(院)物理与电气工程学院 专业电气工程及其自动化 年级 2008级专升本 学号 081852080 指导教师潘三博 日期 2010.06.02 成绩

学生承诺书 本人郑重承诺:所呈交的论文是我个人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标注和致谢的地方外,论文中不包含其他人已经发表或撰写的研究成果,也不包含为获得安阳师范学院或其他教育机构的学位或证书所使用过的材料。与我一同工作的同志对本研究所做的任何贡献均以在论文中作了明确的说明并表示了谢意。 签名:日期: 论文使用授权说明 本人完全了解安阳师范学院有关保留、使用学位论文的规定,即:学校有权保留送交论文的复印件,允许论文被查阅和借阅;学校可以公布论文的全部或部分内容,可以采用影印、缩印或其他复制手段保存论文。 签名: 导师签名: 日期:

逆变器保护电路设计 秦文 (安阳师范学院物理与电气工程学院,河南安阳 455002) 摘要:本文针对SPWM逆变器工作中的安全性问题,阐述了如何利用电路实现保护复位和死区调节。在PWM三相逆变器中,由于开关管存在一定的开通和关断时间,为防止同一桥臂上两个开关器件的直通现象,控制信号中必须设定几个微秒的死区时间。尽管死区时间非常短暂,引起的输出电压误差较小,但由于开关频率较高,死区引起误差的叠加值将会引起电机负载电流的波形畸变,使电磁力矩产生较大的脉动现象,从而使动静态性能下降,降低了开关器件的实际应用效果,但是却对逆变器的安全运行意义重大。 关键词:保护电路;复位电路;死区调节 1 引言 在现在的系统中电力器件的应用也越来越广而与此同时对器件的保护也被认识了其重要性。电子器件很易被损坏,保护电路的要求也很苛刻。在工程应用中,为了使SPWM 逆变器安全地工作,需要有可靠的保护系统。一个功能完善的保护系统既要保证逆变器本身的安全运行,同时又要对负载提供可靠的保护。 随着电力电子技术的发展,功率器件如IGBT、MOSFET等广泛应用于PWM变流电路中。对于任何固态的功率开关器件来讲,都具有一定的固有开通和关断时间,对于确定的开关器件,固有开通和关断时间内输入的信号是不可控的,称为开关死区时间,它引起开关死区效应,简称为死区效应。在电压型PWM逆变电路中,为避免同一桥臂上的开关器件直通,必须插入死区时间,这势必导致输出电压的误差。该误差是谐波的重要来源,它不但增加了系统的损耗,甚至还可能造成系统失稳。 随着电力电子技术的发展,逆变器主电路、控制电路发生了较大变化,其性能不断改善,当然,保护电路也应随之作相应完善。逆变器保护电路主要包括过压保护、过载(过流) 保护、过热保护等几个方面。 本文仅就保护复位电路与死区控制电路与的实现进行了分析和研究。 2 保护电路设计 较之电工产品,电力电子器件承受过电压、过电流的能力要弱得多,极短时间的过电压和过电流就会导致器件永久性的损坏。因此电力电子电路中过电压和过电流的保护装置是必不可少的,有时还要采取多重的保护措施。 2.1 死区控制电路的结构设计 死区控制电路的电路拓扑结构如图所示,其主要功能是确保主电路中的开关管S 1、S 2 不能同时导通。死区电路的波形图如图1所示,从图中可以明显地看出开关管S 1和S 2 的驱 动信号没有使S 1与 S 2 同时导通的重叠部分,这就是两个主开关管之间存在所谓的“死区”。 而通过改变HEF4528芯片的输出信号脉宽,就可以调节驱动信号的脉宽。(具体的方式是 通过改变HEF4528芯片的外接RC电路的参数值实现的,如图2所示)如图3所示R t 、C t 的值与输出脉宽的关系在本文中,选择电位器P2的阻值为10kΩ,电容C237的容值为103pF,因此由图3可知,输出信号的脉宽大约为10μs 。

保护电路设计方法 - 过电压保护

保护电路设计方法- 过电压保护 2.过电压 保护 ⑴过电 压的产生 及抑制方 法 ①过电压产生的原因 对于IGBT开关速度较高,IGBT关断时及FWD逆向恢复时,产生很高的di/dt,由于模块周围的接线的电感,就产生了L di/dt电压(关断浪涌电压)。 这里,以IGBT关断时的电压波形为例,介绍产生原因和抑制方法,以具体电路(均适用IGBT/FWD)为例加以说明。 为了能观测关断浪涌电压的简单电路的图6中,以斩波电路为例,在图7中示出了IGBT关断时的动作波形。 关断浪涌电压,因IGBT关断时,主电路电流急剧变化,在主电路分布电感上,就会产生较高的电压。关断浪涌电压的峰值可用下式求出: V CESP=E d+(-L dI c/dt) 式中dl c/dt为关断时的集电极电流变化率的最大值;V CESP为超过IGBT的C-E间耐压(V CES)以至损坏时的电压值。 ②过电压抑制方法 作为过电压产生主要因素的关断浪涌电压的抑制方法有如下几种: 1.在IGBT中装有保护电路(=缓冲电路)可吸浪涌电压。缓冲电路的电容,采用薄膜电容,并靠近IGBT 配置,可使高频浪涌电压旁路。

2.调整IGBT的驱动电路的V CE或R C,使di/dt最小。 3.尽量将电件电容靠近IGBT安装,以减小分布电感,采用低阻抗型的电容效果更佳。 4.为降低主电路及缓冲电路的分布电感,接线越短越粗越好,用铜片作接线效果更佳。 ⑵缓冲电路的种类和特 缓冲电路中有全部器件紧凑安装的单独缓冲电路与直流母线间整块安装缓冲电路二类。 ①个别缓冲电路 为个别缓冲电路的代表例子,可有如下的缓冲电路 1.RC缓冲电路 2.充放电形RCD缓冲电路 3.放电阻止形RCD缓冲电路 表3中列出了每个缓冲电路的接线图。特点及主要用途。 表3 单块缓冲电路的接线圈特点及主电用途

压敏电阻特性及选用

压敏电阻的原理、选型及设计实例分析压敏电阻的设计 与选型 2013/4/11 16:44:30 关键词:传感技术过电压压敏电阻器保护器 目前压敏电阻绝大多数为氧化锌压敏电阻,本文就不要以氧化锌压敏电阻来介绍原理、选型以及应用实例。 压敏电阻的原理 ZnO压敏电阻实际上是一种伏安特性呈非线性的敏感元件,在正常电压条件下,这相当于一只小电容器,而当电路出现过电压时,它的内阻急剧下降并迅速导通,其工作电流增加几个数量级,从而有效地保护了电路中的其它元器件不致过压而损坏。 它的伏安特性是对称的,如图(1)a 所示。这种元件是利用陶瓷工艺制成的,它的内部微观结构如图(1)b 所示。微观结构中包括氧化锌晶粒以及晶粒周围的晶界层。氧化锌晶粒的电阻率很低,而晶界层的电阻率却很高,相接触的两个晶粒之间形成了一个相当于齐纳二极管的势垒,这就是一压敏电阻单元,每个单元击穿电压大约为3.5V,如果将许多的这种单元加以串联和并联就构成了压敏电阻的基体。串联的单元越多,其击穿电压就超高,基片的横截面积越大,其通流容量也越大。压敏电阻在工作时,每个压敏电阻单元都在承受浪涌电能量,而不象齐纳二极管那样只是结区承受电功率,这就是压敏电阻为什么比齐纳二极管能承受大得多的电能量的原因。 图1 压敏电阻伏安特性 压敏电阻在电路中通常并接在被保护电器的输入端,如图(2)所示。

图2 压敏电阻在电路中通常并接在被保护电器的输入端 压敏电阻的Zv与电路总阻抗(包括浪涌源阻抗Zs)构成分压器,因此压敏电阻的限制电压为 V=VsZv/(Zs+Zv)。Zv的阻值可以从正常时的兆欧级降到几欧,甚至小于1Ω。由此可见Zv在瞬间流过很大的电流,过电压大部分降落在Zs上,而用电器的输入电压比较稳定,因而能起到的保护作用。图(3)所示特性曲线可以说明其保护原理。直线段是总阻抗Zs,曲线是压敏电阻的特性曲线,两者相交于点Q,即保护工作点,对应的限制电压为V,它是使用了压敏电阻后加在用电器上的工作电压。Vs为浪涌电压,它已超过了用电器的耐压值VL,加上压敏电阻后,用电器的工作电压V小于耐压值VL,从而有效地保护了用电器。不同的线路阻抗具有不同的保护特性,从保护效果来看,Zs越大,其保护效果就越好,若Zs=0,即电路阻抗为零,压敏电阻就不起保护作用了。图(4)所描述的曲线可以说明Zs与保护特性之间的关系。 图3 压敏电阻特性曲线

浪涌保护器工作原理

以下是电源系统SPD选择的要点: 欧阳学文 1、根据被保护线路制式,例如:单相220V、三相 220/380V TNC/TNS/TT等,选择合适制式SPD 2、根据被保护设备的耐冲击电压水平,选择SPD的电压保护水平Up。一般终端设备的耐冲击电压1.5kV,具体可参照GB 503435.4。Up值小于其耐冲击电压即可。 3、根据线路引入方式,有无因直击雷击中而传到雷电流的风险,选择一级或者二级SPD。一级SPD是有雷电流泄放参数的10/350波形的。 4、根据GB 500576.3.4里的分流计算,计算线路所需的泄放电流强度,选择合适放电能力的SPD,需要SPD标称放电电流参数大于线路的分流电涌电流即可。 至于型号,不同厂家型号不一,没什么参考价值。建议选择知名品牌,现在防雷市场鱼龙混杂,不要贪图便宜而使用劣质产品。 浪涌保护器设计原理、特性、运用范畴 设计原理

在最常见的浪涌保护器中,都有一个称为金属氧化物变阻器(Metal Oxide Varistor,MOV)的元件,用来转移多余的电压。如下图所示,MOV将火线和地线连接在一起。MOV由三部分组成:中间是一根金属氧化物材料,由两个半导体连接着电源和地线。 这些半导体具有随着电压变化而改变的可变电阻。当电压低于某个特定值时,半导体中的电子运动将产生极高的电阻。反之,当电压超过该特定值时,电子运动会发生变化,半导体电阻会大幅降低。如果电压正常,MOV会闲在一旁。而当电压过高时,MOV可以传导大量电流,消除多余的电压。随着多余的电流经MOV转移到地线,火线电压会恢复正常,从而导致MOV的电阻再次迅速增大。按照这种方式,MOV仅转移电涌电流,同时允许标准电流继续为与浪涌保护器连接的设备供电。打个比方说,MOV的作用就类似一个压敏阀门,只有在压力过高时才会打开。 另一种常见的浪涌保护装置是气体放电管。这些气体放电管的作用与MOV相同——它们将多余的电流从火线转移到地线,通过在两根电线之间使用惰性气体作为导体实现

防护电路设计规范 华为

DKBA 华为技术有限公司企业技术规范 DKBA1268-2003.08 代替DKBA3613-2001.11防护电路设计规范 2003-11-10发布2003-11-10实施 华为技术有限公司发布

目次 前言 (6) 1范围和简介 (7) 1.1范围 (7) 1.2简介 (7) 1.3关键词 (7) 2规范性引用文件 (7) 3术语和定义 (8) 4防雷电路中的元器件 (8) 4.1气体放电管 (8) 4.2压敏电阻 (9) 4.3电压钳位型瞬态抑制二极管(TVS) (10) 4.4电压开关型瞬态抑制二极管(TSS) (11) 4.5正温度系数热敏电阻(PTC) (11) 4.6保险管、熔断器、空气开关 (12) 4.7电感、电阻、导线 (13) 4.8变压器、光耦、继电器 (14) 5端口防护概述 (15) 5.1电源防雷器的安装 (16) 5.1.1串联式防雷器 (16) 5.1.2并联式防雷器 (16) 5.2信号防雷器的接地 (18)

5.3天馈防雷器的接地 (19) 5.4防雷器正确安装的例子 (19) 6电源口防雷电路设计 (20) 6.1交流电源口防雷电路设计 (20) 6.1.1交流电源口防雷电路 (20) 6.1.2交流电源口防雷电路变型 (22) 6.2直流电源口防雷电路设计 (23) 6.2.1直流电源口防雷电路 (23) 6.2.2直流电源口防雷电路变型 (24) 7信号口防雷电路设计 (25) 7.1E1口防雷电路 (26) 7.1.1室外走线E1口防雷电路 (26) 7.1.2室内走线E1口防雷电路 (27) 7.2网口防雷电路 (31) 7.2.1室外走线网口防雷电路 (31) 7.2.2室内走线网口防雷电路 (32) 7.3E3/T3口防雷电路 (36) 7.4串行通信口防雷电路 (36) 7.4.1RS232口防雷电路 (36) 7.4.2RS422&RS485口防雷电路 (37) 7.4.3V.35接口防雷电路 (39) 7.5用户口防雷电路 (39)

MOSFECT的驱动保护电路的设计与应用

MOSFET的驱动保护电路的设计与应用 时间:2012-05-30 10:12:34 来源:电子设计工程作者:郭毅军,苏小维,李章勇,陈丽 摘要:率场效应晶体管由于具有诸多优点而得到广泛的应用;但它承受短时过载的能力较弱,使其应用受到一定的限制。分析了MOSFET器件驱动与保护电路的设计要求;计算了MOSFET驱动器的功耗及MOSFET驱动器与MOSFET的匹配;设计了基于IR2130驱动模块的MOSFET驱动保护电路。该电路具有结构简单,实用性强,响应速度快等特点。在驱动无刷直流电机的应用中证明,该电路驱动能力及保护功能效果良好。 关键词:功率场效应晶体管;功耗和匹配;驱动电路;保护电路 功率场效应晶体管(Power MOSFET)是一种多数载流子导电的单极型电压控制器件,具有开关速度快、高频性能好、输入阻抗高、噪声小、驱动功率小、动态范围大、无二次击穿现象和安全工作区域(SOA)宽等优点,因此,在高性能的开关电源、斩波电源及电机控制的各种交流变频电源中获得越来越多的应用。但相比于绝缘栅双极型晶体管IGBT或大功率双极型晶体管GTR等,MOSFET管具有较弱的承受短时过载能力,因而其实际使用受到一定的限制。如何设计出可靠和合理的驱动与保护电路,对于充分发挥MOSFET功率管的优点,起着至关重要的作用,也是有效利用MOSFET管的前提和关键。文中用IR2130驱动模块为核心,设计了功率MOSFET驱动保护电路应用与无刷直流电机控制系统中,同时也阐述了本电路各个部分的设计要求。该设计使系统功率驱动部分的可靠性大大的提高。 1 功率MOSFET保护电路设计 功率场效应管自身拥有众多优点,但是MOSFET管具有较脆弱的承受短时过载能力,特别是在高频的应用场合,所以在应用功率MOSFET对必须为其设计合理的保护电路来提高器件的可靠性。功率MOSFET保护电路主要有以下几个方面: 1)防止栅极 di/dt过高:由于采用驱动芯片,其输出阻抗较低,直接驱动功率管会引起驱动的功率管快速的开通和关断,有可能造成功率管漏源极间的电压震荡,或者有可能造成功率管遭受过高的di/dt而引起误导通。为避免上述现象的发生,通常在MOS驱动器的输出与MOS管的栅极之间串联一个电阻,电阻的大小一般选取几十欧姆。 2)防止栅源极间过电压由于栅极与源极的阻抗很高,漏极与源极间的电压突变会通过极间电容耦合到栅极而产生相当高的栅源尖峰电压,此电压会使很薄的栅源氧化层击穿,同时栅极很容易积累电荷也会使栅源氧化层击穿,所以要在MOS管栅极并联稳压管以限制栅极电压在稳压管稳压值以下,保护MOS管不被击穿,MOS管栅极并联电阻是为了释放栅极电荷,不让电荷积累。 3)防护漏源极之间过电压虽然漏源击穿电压VDS一般都很大,但如果漏源极不加保护电路,同样有可能因为器件开关瞬间电流的突变而产生漏极尖峰电压,进而损坏MOS管,功率管开关速度越快,产生的过电压也就越高。为了防止器件损坏,通常采用齐纳二极管钳位和RC缓冲电路等保护措施。 当电流过大或者发生短路时,功率MOSFET漏极与源极之间的电流会迅速增加并超过额定值,必须在过流极限值所规定的时间内关断功率MOSFET,否则器件将被烧坏,因此在主回路增加电流采样保护电路,当电流到达一定值,通过保护电路关闭驱动电路来保护MOSFET 管。图1是MOSFET管的保护电路,由此可以清楚的看出保护电路的功能。

压敏电阻参数知识大全

压敏电阻参数知识大全 片式压敏电阻的应用行业 压敏电阻主要是用来保护那些易受静电和高压等破坏环境的一种电阻,在一些集成化较高,应用功能复杂的环境中应用较多,其中片式压敏电阻体积小,适应于高度集成化的电子环境。据了解,手持式电子产品的广泛应用,使得手机、手提电脑、PDA、数码相机和医疗仪器等产品对电路系统的速度和工作电压提出更为严格的要求。片式压敏电阻虽因其响应速度快、无极性、成本低以及和SMT工艺兼容等优点而被推到了市场前沿。 在手机中的应用中,由于增加了多种新功能,如彩屏、可拍照、MMS,手机中的IC集成度也越来越高,与此同时,半导体器件和IC的工作电压越来越低,当芯片变得越来越薄时,遭受过电压和静电放电(ESD)危害的几率大大增加了。由于过电压和静电放电对集成电路和半导体器件会造成损坏,因而需要大量的过电压保护元件来对昂贵的半导体器件提供保护。 片式压敏电阻行情看好,但同时却面临了一个尴尬,片式压敏电阻由于价格坚挺,一般而言,同种类型的片式压敏电阻要比DIP型的价格高出3-5倍。以致扩大市场份额的过程中和贴片LED同显步履蹒跚。元件市场片式压敏电阻的实际情形是,供应市场不大,需求市场也不大。目前压敏电阻市场DIP直插产品是主流,SMT产品则是发展趋势。片式压敏电阻虽有更大的发展空间,但尚未找到合适的契机。目前,正规渠道的片式压敏电阻不少是来自台湾生产的,但现货市场却流通着不少非台湾产的不知名水货产品。由于水货的价格和正品相比有一倍之差,也有客户乐意买水货产品。 压敏电阻型号压敏电阻的选用方法上网时间 : 2010-10-13压敏电阻型号压敏电阻的选用方法 压敏电阻型号 SJ1152-82部颁标准中压敏电阻器的型号命名分为四部分,各部分的含义见表1。 表1 压敏电阻器的型号命名及含义 一部分:主称第二部分:类别第三部分:用途或特征第四部分:序号 字母含义字母含义字母含义 M敏感 电阻器Y压敏 电阻器无普通型用数字表示序号,有的在序号的后面还标有标称电压通流容量或电阻体直径、标称电压、电压误差等。 D通用 B补偿用 C消磁用 E消噪用 G过压保护用 H灭弧用 K高可靠用 L防雷用 M防静电用 N高能型 P高频用 S元器件保护用 T特殊型

浪涌保护器工作原理

以下是电源系统SPD选择的要点: 1、根据被保护线路制式,例如:单相220V、三相220/380VTNC/TNS/TT等,选择合适制式SPD 2、根据被保护设备的耐冲击电压水平,选择SPD的电压保护水平Up。一般终端设备的耐冲击电压1.5kV,具体可参照GB50343-5.4。Up值小于其耐冲击电压即可。 3、根据线路引入方式,有无因直击雷击中而传到雷电流的风险,选择一级或者二级SPD。一级SPD是有雷电流泄放参数的10/350波形的。 4、根据GB50057-6.3.4里的分流计算,计算线路所需的泄放电流强度,选择合适放电能力的SPD,需要SPD标称放电电流参数大于线路的分流电涌电流即可。 至于型号,不同厂家型号不一,没什么参考价值。建议选择知名品牌,现在防雷市场鱼龙混杂,不 ? 的元件,MOV 作响应快的优点,特别适合用作多级保护电路中的最末几级保护元件。抑制二极管在击穿区内的伏安特性可用下式表示:I=CUα,上式中α为非线性系数,对于齐纳二极管α=7~9,在雪崩二极管α=5~7. ?抑制二极管的技术参数主要有: (1)额定击穿电压,它是指在指定反向击穿电流(常为lma)下的击穿电压,这于齐纳二极管额定击穿电压一般在2.9V~4.7V范围内,而雪崩二极管的额定击穿电压常在5.6V~200V范围内。(2)最大箝位电压:它是指管子在通过规定波形的大电流时,其两端出现的最高电压。 (3)脉冲功率:它是指在规定的电流波形(如10/1000μs)下,管子两端的最大箝位电压与管子中电流等值之积。

(4)反向变位电压:它是指管子在反向泄漏区,其两端所能施加的最大电压,在此电压下管子不应击穿。此反向变位电压应明显高于被保护电子系统的最高运行电压峰值,也即不能在系统正常运行时处于弱导通状态。 (5)最大泄漏电流:它是指在反向变位电压作用下,管子中流过的最大反向电流。 (6)响应时间:10-11us 作为辅助元件,有些浪涌保护器还配有内置保险丝。保险丝是一种电阻器,当电流低于某个标准时,它的导电性能非常好。反之,当电流超过了可接受的标准,电阻产生的热量会烧断保险丝,从而切断电路。如果MOV不能抑制电涌,过高的电流将烧断保险丝,保护连接的设备。该保险丝只能使用一次,一旦烧断就需要更换。 ?SPD前端熔断器应根据避雷器厂家的参数安装。 如厂家没有规定,一般选用原则: 当:B>A 当:B=A 当:B

相关文档