文档库 最新最全的文档下载
当前位置:文档库 › 水平位移几种监测方法

水平位移几种监测方法

水平位移几种监测方法
水平位移几种监测方法

水平位移几种监测方法 The manuscript was revised on the evening of 2021

水平位移几种监测方法的分析和比较

【摘要:】本文对常用的几种水平位移的观测方法进行了比较系统的分析和比较,列出了这几种方法的原理,精度分析,优点以及不足,他们适用的场合等内容,对于在生产实践中进行水平位移观测时进行方法的选取具有一定的指导价值。

【关键字:】水平位移,视准线法,测小角法,前方交会法,极坐标法,反演小角法

当要观测某一特定方向(譬如垂直于基坑维护体方向)的位移时,经常采用视准线法、小角度法等观测方法。但当变形体附近难以找到合适的工作基点或需同时观测变形体两个方向位移时,则一般采用前方交会法。水平位移观测观测实践中利用较多的前方交会法主要有两种:测边前方交会法和测角前方交会法。另外还有极坐标法以及一些困难条件下的水平位移观测方法。

视准线法:

当需要测定变形体某一特定方向(譬如垂直于基坑维护体方向)的位移时,常使用视准线法或测小角法。

原理:如下图所示,点A、B是视准线的两个基准点(端点),1、2、3为水平位移观测点。观测时将经纬仪置于A点,将仪器照准B点,将水平制动装置制动。竖直转动经纬仪,分别转至1、2、3 三个点附近,用钢尺等工具测得水准观测点至A—B这条视准线的距离。根据前后两次的测量距离,得出这段时间内水平位移量。

精度分析:

由基准线的设置过程可知,观测误差主要包括仪器测站点仪器对中误差,视准线照准误差,读数照准误差,其中,影响最大的无疑是读数照准误差。

可知,当即准线太长时,目标模糊,读数照准精度太差;且后视点与测点距离相差太远,望远镜调焦误差较大,无疑对观测成果有较大影响。

另外此方法还受到大气折光等因素的影响。

优点:

视准线观测方法因其原理简单、方法实用、实施简便、投资较少的特点, 在水平位移观测中得到了广泛应用,并且派生出了多种多样的观测方法,如分段视准线,终点设站视准线等。

不足:

对较长的视准线而言, 由于视线长, 使照准误差增大, 甚至可能造成照准困难。当即准线太长时,目标模糊,照准精度太差且后视点与测点距离相差太远,望远镜调焦误差较大,无疑对观测成果有较大影响。精度低,不易实现自动观测,受外界条件影响较大,而且变形值(位移标点的位移量)不能超出该系统的最大偏距值,否则无法进行观测。

测小角法:

当需要测定变形体某一特定方向(譬如垂直于基坑维护体方向)的位移时,常使用视准线法或小角度法

原理:如下图所示,如需观测某方向上的水平位移PP′,在监测区域一定距离以外选定工作基点A,水平位移监测点的布设应尽量与工作基点在一条直线上。沿监测点与基准点连线方向在一定远处(100~200m)选定一个控制点B,作为零方向。在B点安置觇牌,用测回法观测水平角BAP,测定一段时间内观测点与基准点连线与零方向间角度变化值,根据δ=△β*D/ρ(式中D为观测点P至工作基点A的距离,ρ=206265)计算水平位移。

精度分析:

由小角法的观测原理可知,距离D和水平角β是两个相互独立的观测值,所以由上式根据误差传播定律可得水平位移的观测误差:

水平位移观测中误差的公式,表明:

①距离观测误差对水平位移观测误差影响甚微,一般情况下此部分误差可以忽略不计,采用钢尺等一般方法量取即可满足要求;

②影响水平位移观测精度的主要因素是水平角观测精度,应尽量使用高精度仪器或适当增加测回数来提高观测度;

③经纬仪的选用应根据建筑物的观测精度等级确定,在满足观测精度要求的前提下,可以使用精度较低的仪器,以降低观测成本。

优点:此方法简单易行,便于实地操作,精度较高。

不足:须场地较为开阔,基准点应该离开监测区域一定的距离之外,设在不受施工影响的地方。

前方交会(测边前方交会,测角前方交会):

如果变形观测点散布在变形体上或者在变形体附近无合适的基准点可供选择时,人们常用前方交会法来进行观测,这时,基准点选择在面对变形体的远处。

测角前方交会:

原理:

如图所示:

用经纬仪在已知点A,B上测出α和β角,计算待定点P的坐标。

精度分析:其前方交会点P的点位中误差的公式为:

式中m

β

为测角中误差,ρ〞=206265,S为A,B间距离。对该式的进一步分析表明:当γ=90°时,点位中误差不随α,β的变化而变化;当γ>90°时,对称交会时的点位中误差最小,精度最高;当γ<90°时,对称交会时点位中误差最大,对精度不利。

测边交会:

原理:

如图所示,

P表示位移点,A1,A2表示工作基点。设A1坐标为(X1,Y1),A2坐标为(X2,Y2),P坐标为(X P,Y P)。观测S1,S2边,求交会点P的坐标。用测距仪在A1点测得A1到P点的平距为

S

1,在A2点测得A1到P点的平距为S

2

。基线平距S

3

在首次观测后即可以将其固定。由上图

可得:

X P =X

1

+AD*cosω-h*sinω

Y P =Y

1

+AD*sinω+h*cosω

式中,AD=(s12+s32-s22)/2s3,h=√(s12-AD2)

设P点的位移为△X P,△Y P,相应的水平距离变化为△S1,△S2,

△X

P

△Y P≈

精度分析:

设边长S1,S2的测距中误差为m s1,m s2,则测边交会的点位精度可用下式表示:

设交会边长S1,S2的观测误差为m s1,m s2,则m△s1=√2m s1, m△s2=√2m s2,可得位移中误差公式如下:

m

△Yp=

m

△Yp=

位移点P的位移误差m△p=±√(m△Yp+ m△Yp)=

优点:

前方交会法相对于其他水平位移观测的方法如视准线法、小角度法等具有以下优点:①基点布置有较大灵活性。前方交会法的工作基点一般位于面向测点并可以适当远离变形体,而视准线法等方法的工作基点必须设置在位于变形体附近并且必须基本与测点在同一轴线上,所以前方交会法工作基点的选择更具灵活性。特别是当变形体附近难以找到合适的工作基点时,前方交会法更能显出其优点。②前方交会法能同时观测2个方向的位移。③观测耗时少。当测点较多,并分布在多条直线上时,前方交会法的耗时较视准线等方法少。

不足:

前方交会法由于受测角误差、测边误差、交会角及图形结构、基线长度、外界条件的变化等因素影响,精度较低。另外,其观测工作量较大,计算过程较复杂,故不单独使用,而是常作为备用手段或配合其他方法使用。

特别的,对于边长交会法,由于测距仪的测距精度包含固定误差和比例误差,当距离增加时其误差也会增大。在选择工作基点时,除要满足通视和工作基点的稳定性外,还必须考虑工作基点与测点间的视距不要过长。

极坐标法

极坐标法属于边角交会,使边角交会的最常见的方法。

原理:

如图所示:在已知点A安置仪器,后视点为另一已知点B,通过测得A B—AP的角度以及A点至P点的距离,计算得出P点坐标。设A点坐标为A(X A,Y A),A—B的方位角为αA-B,则P点坐标P(X P,Y P)的计算公式为:

X P =X

A

+S*cos(α

A-B

+β)

Y P =X

A

+S*sin(α

A-B

+β)

由微分公式可得:

△Xp= cos(α

A-B +β)*△S- sin(α

A-B

+β)*S*△β/ρ

△Yp= sin(α

A-B +β)*△S+ cos(α

A-B

+β)*S*△β/ρ

精度分析:

设测边中误差为m

s ,测角中误差为m

βα

则待定点的点位中误差为:

两个方向的水平位移中误差为:

M △Xp =√2*√(m

s

2*cos2(α

A-B

+β)+sin2(α

A-B

+β)*S2*m

β

2/ρ2)

M △Yp =√2*√(m

s

2*sin2(α

A-B

+β)+cos2(α

A-B

+β)*S2*m

β

2/ρ2)

其中,m

s 为测距中误差,m

β

为测角中误差,α

A-B

为A-B便的方位角,ρ=206265。

优点:使用方便,尤其是利用全站仪进行测量可以直接测得坐标,简单快速。

不足:精度较低,适用于精度不是很高的水平位移监测工作。

反演小角法:

原理:

如上图所示,C′为工作基点(工作基点位移后C变为C′),A,B为选定的点,A、B、C基本上在一条直线上。在进行初始测量时,测定水平距离AC,CB,在施工监测时,如需监测工作基点是否发生水平位移时,只需测出∠AC′B即可。若∠AC′B不等于上次测得的∠ACB,则说明工作基点发生了位移,根据公式:

可以计算出其偏移量。在实际工作中,为了减少误差,通常使AC与BC的距离近似相等。

精度分析:

由于距离测量的误差对水平位移测量精度的影响相对于测角误差带来的误差影响十分微小,故偏移量中误差的公式可以近似的表示为:

m e ≈±√2**m

β

在这里可以看出,可以近似的认为偏移量的精度与测角的精度成正比。因此,为了提高偏移量测量的精度,就要使用精度更好的仪器或者增测回数。

优点:当施工条件限制时,特别是由于场地狭小限制基准控制网建立时,可以利用反演的小角法在可动的工作基点上观测自身的位移。特别是在一些不能建立稳定的基准点的场地,可以利用其中的一个观测点作为不稳定基准,再用上述方法测得该点的位移之后,再利用该点对其他的观测点进行观测,最后加上该点的位移变化就可以得出其他点的偏移状况。

不足:架设一次仪器仅能测得一个点的位移情况,即使以该点作为不稳定基准观察其他点的位移情况,在精度上会有所损失。

结论:综上所述,对于上面的每一种方法,都有自己的特点,我们在选用水平位移测量方法的时候,既要考虑到精度,可行性,也要考虑到经济等方面的问题。在满足精度要求的前提下,尽量使用简单实用经济的方法。对于不同的现场,有不同的特点,不一定采用一种方法,可以采用两种或者两种以上方法结合来进行水平位移的监测。希望本文对当前使用较多的方法进行的分析比较和总结会对今后的水平位移监测工作起到一定的作用。

基坑水平位移监测报告

基坑变形 监测报告 工程名称:

建设项目 一期基坑工程基坑变形监测报告现场监测人员: jjjjjj 二OO九年三月十八日 j

目录 一、工程概况 (4) 二、监测依据 (4) 三、监测项目与点位布置 (4) 5 5 5 6 8 9 17 25 26 5、测斜曲线图 (52) 6、侧向变形累计最大位移点位移~时间关系曲线图 (61) 7、地下水水位测试结果汇总表 (62) 8、总部经济区水位随时间变化图 (73)

9、监测点位平面布置图 (74) 一、工程概况 位于开创大道西南侧、揽月路以西一带,地处科学城中心区东部,西面毗邻初具规模的综合研发孵化中心,总建筑面积约34万平方米。该项目基坑安全等级为二级,按设计及规范要求并结合本项目的具体情况,本项目设置如下监测项目: 5、科学城总部经济区工程基坑支护监测点布置图。 三、监测项目与点位布置 1、基坑支护结构水平位移观测: 按设计要求,共布设31个监测点,编号为W1~W31,详见观基坑监测点布置图。

2、支护结构及土体侧向变形监测: 按设计要求,共布设27个监测点,编号为K1~K27,其中K2、K10、K15和K22为土体侧向变形监测点,详见基坑监测点布置图。 3、地下水位监测: 按设计要求,共布设19个监测点,编号为SW1~SW19,详见基坑监测点布置图。 3、地下水位监测采用钢尺水位计测得地下水位与管顶的距离,根据管顶高程即可计算地下水位的高程。将到开挖过程中地下水位与基坑开挖前地下水位高程进行比较,得到开挖过程中基坑周边地下水位的变化情况。 五、允许值及报警值 根据基坑支护设计要求,并结合工程实践经验,对该工程监测项目提出以下警戒

基坑变形监测水平位移测量的几种方法

基坑变形监测水平位移测量的几种方法 摘要:随着城市经济建设的快速发展,城市用地越来越紧张,使得城市发展不得不向上或向下发展,基坑开挖的深度越来越深。为了确保基坑支护的安全,不论是一、二、三级基坑,根据《建筑基坑工程监测技术规范》GB50497-2009的要求对基坑坡顶的水平位移都要求进行监测,现就当前基坑监测水平位移监测的几种方法进行探讨。 关键词:水平位移测量;视准线法;小角法;前方交会;后方交会;极坐标 Abstract: With the rapid development of the city’s economic construction, urban land is more and more tense, which makes the urban development had to go upward or downward, such as the deeper and deeper excavation of foundation pit. In order to ensure the safety of the excavation support system, no matter the primary, secondary, or third pit, according to the requirements of Building Foundation Pit Project Monitoring Technical Regulation GB50497-2009, the horizontal displacement of the pit top are required to be monitored. Hereby, this paper will expounds the several methods for the current horizontal displacement monitoring. Key words: horizontal displacement measurement; collimation line measurement; small-angle measurement; forward intersection; resection; polar coordinates 视准线法 视准线法,主要应用在场地比较开阔,基坑比较规整的长方形或正方形基坑。 (1)基准点的布设:在基坑的四个边上分别布设一对基准点。基准点应离开基坑的距离不小于开挖深度的3倍。一对基准点应与被监测点基本在一条直线上,误差不大于5cm。见附图: (2)观测方法:在一个基准点架设仪器,另一个基准点定向。利用经纬仪或激光准直仪直接观测一个强制对中装置的觇牌上的标尺读数。根据精度要求观测多个测回,求平均数计算位移增量,计算基坑坡顶监测点的本次位移量及累计位移量。 视准线法的优点和缺点:优点是观测数据直观,对仪器精度要求不高,方法简便。缺点是受场地影响较大,只适用于规则的基坑,幷且距离不宜太远。 2.小角度法:

沉降位移观测方案

沉降位移观测方案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

沉降位移观测方案 一、工程概况 本工程利用与京杭运河相连的陆窖灌溉引水渠,在其两侧建设4个2000吨级泊位,6个1000吨级泊位和2个1000吨级多用途泊位,泊位岸线总长856m,拓宽水渠作为港池靠船,码头采用现浇扶壁式结构,码头基础采用抛石基床,后方回填土方形成码头堆场。该工程沉降位移观测的关键是在码头胸墙后方回填土过程中对码头的沉降位移观测。 二、技术标准和规范 1、宿迁中心港果园作业区二期工程《施工图设计说明》 2、《国家一、二等水准测量规范》(GB/T12897-2006) 3、《建筑变形测量规范》(JGJ8-2007) 4、《工程测量规范》(GB50026-2007) 5、《水工工程测量规范》(JTJ203-2001) 三、沉降位移观测目的 沉降、位移观测是码头结构不可忽视的工作之一,特别是该工程在土方回填过程中,通过沉降、位移观测,可以监测码头胸墙的沉降位移情况,便于及时发现异常情况,采取措施,同时也为优化填土方案及填土速率,提供直接的数据参考,确保工程的安全施工及后期运行。 四、测量精度指标与观测仪器的选择 1.根据设计要求和现行国家规范中对建筑物沉降、位移观测的各项规定,结合本工程具体的特点,建筑变形测量规范的三级标准满足本工程的需要,用来作为本工程的变形观测工作的精度指标。建筑变形测量规范标准为沉降观测点测站高差中的中误差为± m,位移观测点坐标中误差为±10m m。

2.在沉降观测工作中选用DSZ2精密自动安平水准仪上加装测微器,配合精密铝合金水准尺进行作业,读数精度可以达到。位移观测选用徕卡TCRP1201+全站仪,其测距精度为1mm+*D,测角精度为″。 3.为观测工作提供技术保证,监测所用的观测仪器等设备定期经过校核,定期计量监督检测院等鉴定。 五、沉降位移控制点的布设及联测 在码头上下游离开施工区域30至50米各设一个固定测站点,测站点处下挖米深,1米见方的基坑用浆砌块石填筑后在其中间浇筑混凝土观测墩,观测墩尺寸为上口30cm,下口40cm,高。观测墩顶部预埋强制对中基座及水准点。观测墩周围用涂有红白相间的钢管围栏进行保护,并设立警示牌。观测墩稳定后与码头平面高程控制网进行联测平差。 六、沉降位移观测点布设 观测点设置在胸墙顶部护轮坎的中间位置,每道伸缩缝旁的同一侧设置一个观测点。埋设钉预埋的时候顶部不超过护轮的顶高程,但是不低于1cm,埋设钉外露4cm,用5cm长,直径10cm的PVC管套在其周围与混凝土分离。埋设的观测钉如下图所示,埋设时要牢固并且保持垂直。 埋设钉反射棱镜埋设钉和反射棱镜的连接 七、沉降位移观测的方法、频率 1、平面位移观测方法。在观测墩上利用连接螺栓架设全站仪,后视另一个观测墩,测量每一个预埋钉的平面角度和距离,角度测量两个测回,距离正倒

水平位移监测方案

水平位移监测方案 一、精度选择 按照设计要求,对照《工程测量规范》(GB 50026-2007),选用三等水平位移监测网进行检测,可以满足精度要求。 表1-2 水平角方向观测法的技术指标 (1)观测原理:如下图所示,如需观测某方向上的水平位移PP′,在监测区域一定距离以外选定工作基点A,水平位移监测点的布设应尽量与工作基点在一条直线上。沿监测点与基准点连线方向在一定远处(100~200m)选定一个控制

(2)精度分析: 由小角法的观测原理可知,距离D和水平角β是两个相互独立的观测值,所以由上式根据误差传播定律可得水平位移的观测误差: 水平位移观测中误差的公式,表明: ①距离观测误差对水平位移观测误差影响甚微,一般情况下此部分误 差可以忽略不计,采用钢尺等一般方法量取即可满足要求; ②影响水平位移观测精度的主要因素是水平角观测精度,应尽量使用 高精度仪器或适当增加测回数来提高观测度; ③经纬仪的选用应根据建筑物的观测精度等级确定,在满足观测精度 要求的前提下,可以使用精度较低的仪器,以降低观测成本。 优点:此方法简单易行,便于实地操作,精度较高。 不足:须场地较为开阔,基准点应该离开监测区域一定的距离之外,设在不受施工影响的地方。 由此可知,对仪器测角精度的要求,取决于监测点距离站点的远近。距离越远,则要求测角精度越高。根据现场踏勘布点,最远监测点距离站点不超过50m,对照《工程测量规范》,选用三等或四等水平位移监测网进行检测,可以满足精度要求。本次实习采用测小角法测量三等水平位移监测网进行检测。 二、作业流程 1.选点选取两个监测点P1,P2、一个测站点(工作基点)A、一个后视点B。 2.观测按照测回法水平角观测水平夹角。在A点安置全站仪,在B点和P1,P2点设置瞄准标志,按下列步骤进行测回法水平角观测。 (1)在全站仪盘左位置瞄准目标B,将度盘置零,读得水平度盘读数并记录。(2)瞄准目标P1,读得水平度盘读数并记录。盘左位置测得半测回水平角。(3)倒转望远镜成盘右位置,瞄准目标B,将度盘置零,读得水平度盘读数并记录。 (4)瞄准目标P1,读得水平度盘读数并记录。盘右位置测得半测回水平角。(5)用盘左、盘右两个位置观测水平角取平均值作为一测回水平角观测的结果。

沉降位移监测方案

沉 降 位 移 监 测 方 案 目录 一、工程概况 (2) 二、沉降、位移观测控制依据及参考标准 (2) 三、沉降、位移观测的类型、任务及目的 (3) 3.1变形观测产生的原因 (3) 3.2变形观测的类型及任务 (3) 3.3变形观测的目的 (3) 四、施测程序 (4) 五、护岸工程沉降、变形观测内容 (5) 六、沉降、变形观测要求及基准点设置 (6) 6.1沉降、变形观测的要求 (7) 6.2沉降、变形观测基准点设置 (8)

七、观测准备及实施计划 (8) 7.1组织准备 (8) 7.2技术准备 (8) 7.3总体布置方案 (9) 八、变形观测成果资料的整理 (12) 九、变形观测注意事项 (13) 十、沉降位移观测点布点表 (14) 京杭运河浙江段三级航道整治工程嘉兴段土建施工第TJ01标段沉降位移监测方案 一、工程概况 京杭运河嘉兴段采用限制性Ⅲ级航道标准,“鸭子坝~丰登村(桩号K17+516)”段航道长约17.52Km,按Ⅲ级三线通航要求建设;其余航段(桩K41+749~K42+757)长约1.01Km,按Ⅲ级双向航道建设,总长度约42.76Km。本施工标段为京杭运河浙江段三级航道整治工程嘉兴段土建施工第TJ01标段,项目部设于吴江市桃园镇铜锣街道开阳村。紧临205县道,交通便利。京杭运河浙江段三级航道整治工程嘉兴段土建施工第TJ01标段主要内容包括航道土方开挖约38.18万方、航道水下土方疏浚57.68万方、A-2.3(Ⅰ)型2461.53米、A-1.0(Ⅰ)型282.19米、A-1.0(Ⅱ)型37.2米、Y-2.3型1081.34米、C型2663.07米、E1型808.2米、E2A型403.83米、E2B型268.29米、E3型707.17米、钱码头村综合服务区、思古大桥,以及踏步等附属设施工程。 二、沉降、位移观测控制依据及参考标准 1、工程设计文件和技术资料;

基坑水平位移监测

深基坑水平位移监测 测量深基坑水平位移可采用视准线法、小角度法、 投点法、 前方交会法、自由设站法、极坐标法等。本节简要叙述常用的小角度法、极坐标法及前方交汇法。 监测控制值: 项目预警值报警控制值 水平位移>3mm/d 或24mm 30mm 项目变化 量>3mm/d 开挖前开挖后报警后及突发 状况 监测频率(1-2)次/d 1 次/3d 1次/d 加大监测频率监测基准点应在基坑开挖影响范围之外设立强制对中观测墩,且尽量通视 各测点,观测墩使用混凝土浇筑地下1.4M地面1.2M,顶面长宽20CM*20CM, 顶部嵌入焊接中心螺旋的钢板,螺旋与钢板垂直且均做防腐处理。监测基准点观测按三级平面控制要求 施测,且每个月与高等级控制网联测一次。为防止观测墩被破坏,顶部应加钢保护盖。埋 设示意图如下: 图B.0.1 水平位移观测墩〔单位:mm) 岩层点观测墩;(b) 土层点现测墩 350 地面 主筋9! 2 箍筋07

点。 在混凝土支撑、连续墙顶等混凝土结构上安装水平位移桩,可直接在结构上用冲击钻成孔插入水平位移桩,垂直放置,缝隙使用锚固剂填充,容易受施工破坏的地方应加保护装置。在土体等松软结构埋设水平位移测点应采用混凝土桩顶插入水平位移桩的形式,混凝土桩采用直径10CM地下50C M地面10CM,中心用钢筋加固。如有需要应加保护装置,并设置醒目标志。实物图如下: 仪器架设: 到达测量现场后打开仪器箱一段时间,使仪器温度与周围环境温度相适应,消除由环境 温度带来的误差。检查设备是否完整,配件是否齐全,电源电力是否充足等。仪器架设时应 注意仪器安全,在光滑的地面上架设全站仪时须在脚架上套绳索,防止脚架滑落损坏仪器。 全站仪脚架高度与观测者肩高齐平,拧紧脚架螺旋,将脚架均匀架设在基准点上。取出仪器 一手提全站仪手提柄,一手拧紧中心螺旋,将全站仪平稳架设在脚架上。 对中整平: 在有强制对中装置的观测墩上架设全站仪时,应一手提全站仪手提柄,另一只手旋转基座使仪器牢固地固定在观测墩上。调节基座脚螺旋使圆水准气泡居中,旋转仪器使管水准平行于两脚螺旋的连线,调节脚螺旋使管水准气泡居中,再将仪器旋转90°调节脚螺旋使管

水平位移监测方案

水平位移监测方案 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

水平位移监测方案 一、精度选择 按照设计要求,对照《工程测量规范》(GB 50026-2007),选用三等水平位移监测网进行检测,可以满足精度要求。 表1-1 水平位移基准网的主要技术指标 表1-2 水平角方向观测法的技术指标

(1)观测原理:如下图所示,如需观测某方向上的水平位移PP′,在监测区域一定距离以外选定工作基点A,水平位移监测点的布设应尽量与工作基点在一条直线上。沿监测点与基准点连线方向在一定远处(100~200m)选定一个控制点B,作为零方向。在B点安置觇牌,用测回法观测水平角BAP,测定一段时间内观测点与基准点连线与零方向间角度变化值,根据δ=△β*D/ρ(式中D为观测点P至工作基点A的距离,ρ=206265)计算水平位移。 (2)精度分析: 由小角法的观测原理可知,距离D和水平角β是两个相互独立的观测值,所以由上式根据误差传播定律可得水平位移的观测误差: 水平位移观测中误差的公式,表明: ①距离观测误差对水平位移观测误差影响甚微,一般情况下此部分误差可以忽 略不计,采用钢尺等一般方法量取即可满足要求; ②影响水平位移观测精度的主要因素是水平角观测精度,应尽量使用高精度仪 器或适当增加测回数来提高观测度; ③经纬仪的选用应根据建筑物的观测精度等级确定,在满足观测精度要求的前 提下,可以使用精度较低的仪器,以降低观测成本。 优点:此方法简单易行,便于实地操作,精度较高。 不足:须场地较为开阔,基准点应该离开监测区域一定的距离之外,设在不受施工影响的地方。 由此可知,对仪器测角精度的要求,取决于监测点距离站点的远近。距离越远,则要求测角精度越高。根据现场踏勘布点,最远监测点距离站点不超过50m,对照《工程测量规范》,选用三等或四等水平位移监测网进行检测,可以满足精度要求。本次实习采用测小角法测量三等水平位移监测网进行检测。

位移观测方案

xxx船闸位移观测专项技术方案 1、工程概况 xxx港疏港航道北接xxx港,南连灌河、通榆河,西接京杭大运河;既是长三角高等级航道网和江苏省规划建设的“两纵四横”内河干线航道网的主要干线—连申线的重要组成部分,也是xxx港集疏运系统中重要的内河水运通道,规划航道等级为三级。 xxx船闸工程位于江苏省xxx市灌云县伊芦乡三川村西侧,位于盐河与善后河交汇处,是xxx港疏港航道工程的组成部分。工程所在地通过三川村村级道路与204国道相连。 航道规划为III级航道标准,底宽45m,设计水深3.2m,最小转弯半径480m。 xxx船闸为III级,建设规模为23m×230m×4m(口门宽×闸室长×门槛水深),设计船型为1顶2*1000t级驳船队。 闸首采用钢筋混凝土实体底板和箱型边墩构成的整体坞式结构。闸门门型采用三角门,闸首采用大门库的空箱边墩型式。船闸采用门缝输水,闸首不设输水廊道。 闸室采用C25钢筋混凝土整体式结构,沿长度方向设沉降-伸缩缝,间距布置为(10+14×15+10)m。闸室墙口宽为23.2m,净宽23m,迎水面布置100mm厚钢护木。 2、编制依据 (1) xxx船闸工程《施工图设计说明》 (2)《水运工程水工建筑物原型观测技术规范》(JTJ 218-2005) (3)《工程测量规范》(GB50026-2007) (4)《水运工程测量规范》(JTJ203-2001)

(5) 《xxx港疏港航道善后河枢纽工程测量技术报告》(中交水运规划设计院有限公司,2008年3月) (6)《xxx港疏港航道整治工程测量控制实施细则》(连疏航指办工…2008?40号) 3、位移观测目的和内容 (1)、位移观测目的 建筑物安全监测的基本出发点是掌握建筑物的实际状况,为水工建筑物安全使用提供科学依据。通过位移观测,可以监测建筑物的变位情况,更好的为今后船闸底板内力计算提供有效数据。通过对船闸主体的闸室墙和闸首边墩、上下游引航道的导航墙和靠船墩的水平位移观测,可以有效掌握船闸主体两侧水位升降、船闸两侧回填土施工等外在因素作用下闸室墙固定方向上的横向水平位移累计量、位移速率,通过数据分析和处理,把握建筑物在水平方向上的稳定性,指导施工,及时发现不安全趋势,从而采取措施,防患于未然。 (2)、位移观测的主要内容和方法 通过布设控制网,按规范精度要求,根据施工分级加载实况,定期定点对船闸主体的闸首、闸室墙在封铰前后的水平位移情况进行观测;对下游引航道的导航墙和靠船墩在回填土前后的水平位移情况进行观测。 平面水平位移有平行于建筑物轴线的纵向水平位移和垂直于建筑物轴线的横向水平位移, 根据船闸结构特点,采用横向水平位移。采取的横向水平位移监测方案是:基点采用混凝土制作的带有强制归心装置观测墩,观测墩选在地基稳固、便于监测且不受影响的地方。监测网采用独立坐标系,监测网的测量采用三等导线网的方法测量;观测的仪器采用全站仪,测量各位移观测点的平面坐标X、Y,分析观测数据,绘制位移变化曲线。观测时间直至工程完工验收,移交管理单位。

水平位移观测法、垂直位移观测法的种类_特点和适用条件(仅供参考版)

水平位移观测法、垂直位移观测法的种类,特点和适用条件 水平位移监测:对水工建筑物的顺水流方向或顺轴线方向的水平位移变化进行监测常用观测方法分两大类。一类是基准线法,基准线法是通过一条固定的基准线来测定监测点的位移,常见的有视准线法、引张线法、激光准直法、垂线法。 另一类是大地测量方法,大地测量方法主要是以外部变形监测控制网点为基准,以大地测量方法测定被监测点的大地坐标,进而计算被监测点的水平位移,常见的有交会法、精密导线法、三角测量法、GPS观测法等。 一、视准线法:通过视准线或经纬仪建立一个平行或通过坝轴线的铅直平面作为基准面,定期观测坝上测点与基准面之间偏离值的大小即为该点的水平位移。 适用于直线形混凝土闸坝顶部和土石坝坝面的水平位移观测。当采用这一方法时,主要的是要求它们的端点稳定,所以必须要作适当的布置,只能是定期地测定端点的位移值,而将观测值加以改正。视准线观测方法特点是速度快,精度较高,原理简单、方法实用、实施简便、投资较少的特点, 在水平位移观测中得到了广泛应用。不足是对较长的视准线而言, 由于视线长, 使照准误差增大, 甚至可能造成照困难。当即准线太长时,目标模糊,照准精度太差且后视点与测点距离相差太远,望远镜调焦误差较大,无疑对观测成果有较大影响。 小角法:是水平位移监测中常用的方法,该方法最早应用于水库大坝的变形监测,其基本原理是一通过大坝轴线的固定不变的铅直平面为基准面,通过测定基准线方向之间的微小角度从而计算观测点相对予基准线的偏离值,根据偏离值在各观测周期中的变化确定位移量。由于所需测定的位移通常很细微,因此对位移的观测精度要求很高,需要采取各种提高观测精度的措施,观测过程中需要对各作业环节严格把握,哪怕仅仅是一个小环节的失误,都可能导致最终监测精度不能满足要求。 二、引张线法:利用张紧在两工作基点之间的不锈钢丝作为基准线,测量沿线测点和钢丝之间的相对位移,以确定该点的水平位移。 适用于大型直线形混凝土的廊道内测点的水平位移观测。主要用于测定混凝土建筑物垂直于轴线方向的(顺水流方向)水平位移。 活动觇牌法: 主要用于短距离视准线观测中,活动觇牌多用于水工建筑物、桥梁、码头和滑坡等水平位移观测,可满足坝内精密导线测量的近坝区水平位移监测网等各种场合的测量需要,活动觇标是被安置在位移标点上,供经纬仪照准,从而在觇标的游标尺上读出位移标点的偏离值。主要特点传动灵活、隙动差小,可精确到0.1mm .

浅谈水平位移的几种方法

浅谈几种水平位移的方法 【摘要:】本文对常用的几种水平位移的观测方法进行了比较系统的分析和比较,列出了这几种方法的原理,精度分析,优点以及不足,他们适用的场合等内容,对于在生产实践中进行水平位移观测时进行方法的选取具有一定的指导价值。 【关键字:】水平位移,视准线法,测小角法,前方交会法,极坐标法,反演小角法 当要观测某一特定方向(譬如垂直于基坑维护体方向)的位移时,经常采用视准线法、小角度法等观测方法。但当变形体附近难以找到合适的工作基点或需同时观测变形体两个方向位移时,则一般采用前方交会法。水平位移观测观测实践中利用较多的前方交会法主要有两种:测边前方交会法和测角前方交会法。另外还有极坐标法以及一些困难条件下的水平位移观测方法。 视准线法: 当需要测定变形体某一特定方向(譬如垂直于基坑维护体方向)的位移时,常使用视准线法或测小角法。

另外此方法还受到大气折光等因素的影响。 优点: 视准线观测方法因其原理简单、方法实用、实施简便、投资较少的特点, 在水平位移观测中得到了广泛应用,并且派生出了多种多样的观测方法,如分段视准线,终点设站视准线等。 不足: 对较长的视准线而言, 由于视线长, 使照准误差增大, 甚至可能造成照准困难。当即准线太长时,目标模糊,照准精度太差且后视点与测点距离相差太远,望远镜调焦误差较大,无疑对观测成果有较大影响。精度低,不易实现自动观测,受外界条件影响较大,而且变形值(位移标点的位移量)不能超出该系统的最大偏距值,否则无法进行观测。 测小角法: 当需要测定变形体某一特定方向(譬如垂直于基坑维护体方向)的位移时,常使用视准线法或小角度法 原理:如下图所示,如需观测某方向上的水平位移PP′,在监测区域一定距离以外选定工作基点A,水平位移监测点的布设应尽量与工作基点在一条直线上。沿监测点与基准点连线方向在一定远处(100~200m)选定一个控制点B,作为零方向。在B

边坡支护工程监测方案

五矿·哈施塔特项目 边坡支护工程位移监测方案 编写:刘忠忠 审核:赖善煌 审定:张传会 河南省地矿建设工程(集团)有限公司 2011年6月

目录 一、工程概况 (2) 二、监测目的 (2) 三、安全预警值 (2) 四、位移观测技术依据 (3) 五、位移观测方法 (3) 六、安全生产 (5) 七、质量保证 (5) 八、信息反馈 (6) 九、附图 (6) 十、附表 (7) 十一、位移观测费用预算 (8)

博罗县五矿·哈施塔特项目边坡支护工程 位移监测方案 一、工程概况 拟建边坡位于惠州市博罗县上小岭村东南侧,五矿·哈施塔特项目优展区内,根据相对位置分为西侧边坡与南侧边坡。边坡顶部为规划的健身会馆,西侧边坡坡脚为规划主干道路,标高为47.5~50.0m,拟建建筑从北向南依次为奥地利主题体验馆、商业二区,商业三区,标高为42.3~43.0m;南侧边坡坡脚拟建建筑为2栋别墅,标高为54.2~55.7m。 受博罗县碧华房地产开发有限公司委托,河南省地矿建设工程(集团)有限公司根据实地的情况,特编写本位移监测方案。 二、监测目的 为了全面了解边坡支护工程施工过程中及使用过程中边坡的实际变形程度和变形趋势,预防在施工过程中出现不均匀位移,及时反馈信息为设计施工部门提供详尽的第一手测量资料,有效监视边坡支护工程在施工期间的安全以确保施工顺利进行。做到信息化施工。 三、安全预警值 根据《设计总说明》边坡按照二级精度进行监测,依据《建筑边坡工程技术规范》GB50330-2002,安全预警值设置为:35mm,,最大允许值:40mm。

四、位移观测技术依据 1、《工程测量规范》(GB50026-2007); 2、《建筑变形测量规程》(JGJ 8-2007); 3、《建筑边坡工程技术规范》(GB50330-2002)。 五、位移观测方法: 1、位移观测的点位布设 (1)位移观测点: 根据甲方要求及实地情况,观测点拟布设在能全面反映边坡变形特征的西、南侧边坡坡顶上,布设沉降观测点22点,间距25~30米。观测点要埋设结实稳固。具体的埋设方法如附图2。 (2)位移观测工作点的布设 位移观测工作点根据实地的地形情况设立,一般地在地基稳固、不易破坏的位置布设三个或三个以上位移观测工作点,按坐标法可只布设三点,此三点要按城市一级点精度进行单三角形观测并整体平差,求得三点的坐标。其详细点位依现场情况而定,具体埋设的规格如附图1。 2、位移观测方法: 位移观测拟采用边角坐标法,观测时以外部不少于两个固定方向定向,水平角观测的精度和测回数如下表,距离采用全站仪量取,读取至0.1mm,量取精度为≥1/20000。 位移观测按《工程测量规范》中二等精度要求进行。具体执行的各项规定和限差如下:

水平位移几种监测方法

水平位移几种监测方法的分析和比较 【摘要:】本文对常用的几种水平位移的观测方法进行了比较系统的分析和比较,列出了这几种方法的原理,精度分析,优点以及不足,他们适用的场合等内容,对于在生产实践中进行水平位移观测时进行方法的选取具有一定的指导价值。 【关键字:】水平位移,视准线法,测小角法,前方交会法,极坐标法,反演小角法 当要观测某一特定方向(譬如垂直于基坑维护体方向)的位移时,经常采用视准线法、小角度法等观测方法。但当变形体附近难以找到合适的工作基点或需同时观测变形体两个方向位移时,则一般采用前方交会法。水平位移观测观测实践中利用较多的前方交会法主要有两种:测边前方交会法和测角前方交会法。另外还有极坐标法以及一些困难条件下的水平位移观测方法。 视准线法: 当需要测定变形体某一特定方向(譬如垂直于基坑维护体方向)的位移时,常使用视准线法或测小角法。 原理:如下图所示,点A、B是视准线的两个基准点(端点),1、2、3为水平位移观测点。观测时将经纬仪置于A点,将仪器照准B点,将水平制动装置制动。竖直转动经纬仪,分别转至1、2、3 三个点附近,用钢尺等工具测得水准观测点至A—B这条视准线的距离。根据前后两次的测量距离,得出这段时间内水平位移量。 精度分析: 由基准线的设置过程可知,观测误差主要包括仪器测站点仪器对中误差,视准线照准误差,读数照准误差,其中,影响最大的无疑是读数照准误差。 可知,当即准线太长时,目标模糊,读数照准精度太差;且后视点与测点距离相差太远,望远镜调焦误差较大,无疑对观测成果有较大影响。 另外此方法还受到大气折光等因素的影响。 优点: 视准线观测方法因其原理简单、方法实用、实施简便、投资较少的特点, 在水平位移观测中得到了广泛应用,并且派生出了多种多样的观测方法,如分段视准线,终点设站视准线等。

第一章深层水平位移监测

第一章深层水平位移监测 概述 土体和围护结构的深层水平位移通常采用钻孔测斜仪测定,当被测土体变形时,测斜管轴线产生挠度,用测斜仪测量测斜管轴线与铅垂线之间夹角的变化量,从而获取土体内部各点的水平位移。 一、实验目的 深层水平位移监测可以连续地、逐段测出产生位移后的测斜管轴线与铅垂线或水平线的夹角,再分段求出水平位移(测斜管垂直埋设)或垂 直位移(测斜管水平埋设时),累计得出总的位移量及沿管轴线整个孔位 的变化情况,可以在总体上检测测斜管埋设处的岩体或土体的位移情况, 为工程提供可靠地参数。 二、实验地点 试验场地位于防灾科技学院北校区地下结构与工程地质试验 场深层水平位移监测孔。 三、实验设备 NJX2型系列数字式活动测斜仪(南京南瑞集团)、NDA151俊送器信号指示仪(南京南瑞集团)、NCXG-A测斜管。 四、实验步骤 1、测量前准备工作 首先检查测斜仪的导轮是否转动灵活、扭簧是否有力、密封圈是否完好。将测杆上航空插座与电缆航空插头插好,并用扳手拧紧连接螺 母,确保测杆和电缆连接头的连接密封性。将电缆从电缆绕线盘上放出 穿过整个测斜管所需要的长度,再将指示仪的测量线拧在电缆绕盘上放出 穿过整个测斜管所需要的长度,再将指示仪的测量线拧在电缆绕线盘的插

座上。打开指示仪,进入主菜单界面按“测 量”键,打开指示仪,选用-2.500~2.500V档进行测量。NJX2-V型 活动测斜仪探头专用于垂直测空的测量。 2、将测斜仪测头大致保持垂直,检查指示仪指示是否 稳定,示值应“ +”向增大。当测斜仪后导轮相对前导轮右偏时, 示值应“一一”向增大 3、在墩台上设置有测绘标的测斜管口处作为基点开始 进行测量。按照以下步骤完成: (1)将测头导轮卡在侧斜管的导槽内,轻轻将测头放入测斜管内,慢慢放松电缆,使测头下到孔底。快到孔底时, 为避免与测头造成大的冲击,应减慢放电缆的速度。使测头在 孔底停止5分钟以上,以便传感器及电缆温度稳定。 (2)将测头拉起至设定的测量深度为测读起点,每 0.5米测量一个数据。一直测读到测量管顶位置。测读时注意 对好电缆标记,以防测头定位不准确。 (3)将测头调转180度,重新放入测斜管中,重复上述步骤。 4、NDA151变送器信号指示仪的使用步骤 (1)按下电源开关之后,显示开机界面,约2秒钟后,自动进入测斜指示仪表的主菜单操作界面。 (2)参数设置:首次使用测斜仪时,根据测斜仪标定检验数据记录表设置传感器转换系数a0,a1,a2,a3 以后可以 忽略本步骤; (3)选择“管孔设置”功能进入管孔设置。包括新建、删除、编辑管孔。可以对管孔名称,测量深度,测量间距 依次进行设置。

水塔水平位移的计算

支架式水塔水平位移的实用简化计算 资讯类型:技术资料加入时间:2008年6月4日14:18 摘要对水塔进行动力分析时,可简化为单自由度体系。其基本周期可据在水塔水箱重心处单位水平力作用下该处的水平位移δ,按“顶点位移法”来计算。然而δ的计算至今缺少便于设计者应用的手算简化方法,为此本文提出了一种确定支架式水塔δ的简化计算模型及相应公式。公式形式简单,物理意义明确,便于计算。通过具体算例,采用本文方法与用su-persap程序作三维有限元计算对比,两者结果十分接近。 关键词支架式水塔水平位移基本周期简化计算 引言 笔者曾受委托对某建筑工地施工振动对邻近一座支架式水塔的影响进行安全性评估,需要及 时确定该水塔的自振周期,而我国抗震规范[1][2]及有关文献[3]尚未提供类似于筒壁式水塔或烟囱基本周期的计算公式。因此,深感即使在计算机十分普及的情况下,对于一些广泛应用的典型的建、构筑物,提出便捷而可行的简化计算方法,对工程设计仍具有较大的现实意义。水塔属一种高柔构筑物,其质量主要集中于顶部。在动力分析中,通常可以简化为单自由度系统,其基本周期则是一关键特征值。基本周期可由所谓的“顶点位移法”得出:t =2πmeqδ(1) 式中:meq为单自由度体系质量上的等效质量,通常可由下式确定:meq= m0+mt/4(2)m0,mt分别为顶部水箱及塔身的质量;δ为单位力作用下水塔水箱重心处所产生的水平位移。由于支架式塔身为空间格构式结构,且带有一定倾斜度,δ值计算是相当复杂的,至今尚未有便于设计者应用的简化手算方法。为此,本文通过对若干6根支柱水塔进行三维有限元计算,分析了水塔结构内力及位移的本质规律,在此基础上提出一个简便的计算模型,得到了确定δ值精度较高的手算公式,进而解决了基本周期的计算问题。与三维有限元分析结果十分吻合,可供这类水塔结构进行抗震分析,并与现行有关规范配合应用。 一、计算δ的简化模型 1?三维有限元分析主要规律 某典型的6根支柱水塔如图1所示,顶部作用一水平单位力p=1。经过对5个不同尺寸的这类水塔作三维有限元分析,得到如下主要规律: (1)静力分析,x方向作用p=1在各层x方向产生位移,与y方向上作用p=1在各层y方向上产生位移相等。动力分析,前2阶频率相同,分别属x方向及y方向的1阶振型。 (2)各层不同方位柱均存在反弯点,中间各层,反弯点基本上位于中点,而底层反弯点偏上,顶层反弯点偏下,但不及2/3处。 (3)立柱具有一定倾斜度,有效地减小了立柱中的弯矩和剪力,塔身剪力下部小,上部大,沿高度呈线性变化。 (4)各层圈梁中诸横梁受力情况如下: ①p=1沿x方向作用,各横梁主要弯矩位于竖向平面(绕水平轴),侧向弯矩及扭矩均很小,对主要弯矩,各梁都存在反弯点,且基本位于中点。主要弯矩从数值上看,梁中梁端弯矩恰为上述二梁的一半。 ②p=1沿y方向作用,各横梁主要弯矩也是位于竖向平面,侧向弯矩及扭矩较小,约比主要弯矩小一个数量级。梁中反弯点位于中点,而梁,中弯矩为常数,不沿长度变化,即不存在反弯点,且数值仅为上述4根梁梁端弯矩的1/10。 2?δ的简化计算模型 参照上述三维有限元分析所得规律,本文提:eici为i层柱的当量抗弯刚度;ici为各单柱截面绕自身形心轴惯性矩投影到塔身截面计算主轴上的代数和,如p=1沿x方向作用,参照图1,即考虑对y-y轴惯性矩,有对柱1:i1=i-y=bh3/12(b与h 分别为截面的宽度与高度)。对柱2:i2=i-ycos2α+i-xsin2α=bh312cos2α+hb312sin2α对6根柱式支架α=60°,则层间柱当量惯性矩为ic=2i1+4i2=3(i-y+i-x)=bh(h2+b2)/4:ri,r′i分别为第i层圈梁高程处及反弯点高程处相应的半径;hdi,hui分别为第i层反弯点之下、之上到圈梁的距离;ηeib为横梁当量抗弯刚度;ib为实际单根横梁截面惯性矩;η为简化模型中的当量系数。对η本文按如下原则定出:简化模型(图2)中横梁对位移计算的贡献为:δδ′=ri6ηeib(-qi+1hdi+1+-qihui)(hui+hdi+1)

沉降、位移观测方案

2010年4月27日 电话:0755-/ 传真:0755- 联系人:赵中良 一、工程概况 洪桥头好利万、米诺厂边坡位于。该人工边坡为岩土混合边坡,岩坡坡面裂隙发育。边坡所在区地形地貌为丘陵斜坡,自然斜坡坡度15~200,原始植被发育茂密。边坡底边周长约190m,为折线形展布,整体呈南北走向。 原有边坡分为2级,上级边坡及下级边坡,边坡中部有一宽平台。坡底标高11.50~15.0m,中间大平台标高23.0~35.4m,坡顶标高33.0~66.9m,下级边坡坡度500~700,上级边坡坡度600~800。边坡高度22m~52m。 边坡坡面岩土裸露,局部发育有少量的爬藤类植物,覆盖率极低;坡面没有进行任何的支护处理,坡顶坡脚没有任何截排水措施,边坡坡底分布有好利万、米诺厂以及1栋在建厂房。 1.1工程地质条件 根据钻探揭露及地质调查资料,边坡周围出露的地层有:第四系人工填土层(Qml)及侏罗系下统桥源组石英砂岩(Jq)。现将各地层的主要岩性特征自上而下分述如下: ⑴第四系人工填土层(Qml) 杂填土:褐黄色、褐灰色,主要由粘性土及少量块石组成,并含少量建筑垃圾,松散,湿,可塑,合金钻进易,主要分布在坡脚建筑场地。 (2)侏罗系下统桥源组石英砂岩(Jq) 场地下伏基岩为侏罗系下统桥源组石英砂岩,主要矿物成份为石英、长石、黏土矿物及少量暗色矿物等。按其风化程度划分为全、强、中、微风化四个风化带,本次勘查仅揭露其强、中、微风化带: 强风化石英砂岩:褐黄、褐灰,棕红色,主要矿物为石英、长石等,风化裂

隙发育,局部夹杂中风化岩,岩石呈砾砂状、碎块状,岩块可折断,合金钻进易。主要分布在坡体的上部,揭露层厚2.60~22.30m。 中风化石英砂岩:青灰、褐灰色,风化裂隙较发育,上部夹杂薄层强风化石英砂岩,岩芯较破碎,呈短柱、长柱状,局部呈碎块状,岩块坚硬,锤击反弹,合金钻进较易。主要分布在坡体的中、下部,揭露层厚3.30~49.30m。 微风化石英砂岩:青灰色,岩芯较完整,呈长柱状,岩块坚硬,锤击反弹,合金钻进困难,需金刚石钻进。揭露层厚2.80~5.70m。 1.2水文地质条件 场地水文地质条件比较简单,场地内无常年性地表水,雨季有大气降水形成的临时性地面片流,对坡上岩土体的稳定性有一定的影响。场地内地下水主要为基岩裂隙水,主要赋存于场地内强风化及下伏岩层的风化裂隙中,主要含水层属弱含水、弱透水地层,水量贫乏。 二、沉降、位移观测技术依据 1、《城市测量规范》(CJJ8-99); 2、《建筑变形测量规程》(JGJ/T8-97); 3、《建筑边坡工程技术规范》(GB50330-2002); 4、《岩土锚杆(索)技术规程》(CECS 22:2005),中国工程建设标准化协会标准; 5、《深圳市宝安区松岗街道洪桥头好利万、米诺厂边坡地质灾害勘察报告》,深圳市勘察研究院有限公司,2009年02月。 三、沉降、位移观测方案 (一)、沉降观测 1、沉降观测的点位布设 (1)沉降观测点: 根据甲方提供并确认的监测布置图进行沉降观测点布设,观测点布设在能全面反边坡周边沉降特征的地面上,共布设沉降观测点约26点。

位移监测方案

铁路局职工集资建房二工黄土山高层住宅小区深基坑支护 工程位移监测方案 1 工程概况及周围环境 1.1工程概况 拟建的铁路局职工集资建房二工黄土山高层住宅小区深基坑支护工程为乌鲁木齐铁路住房建设管理办公室投资建设,其场地基坑支护由新疆建华地质工程有限公司负责设计,勘察单位为新疆建华地质工程有限公司。 铁路局职工集资建房二工黄土山高层住宅小区深基坑支护工程位于乌鲁木齐市长春南路东侧,华春苏杭明珠花园小区旁。 拟建场地A地块拟建建筑物为3栋地上18层住宅楼,1栋地上16层住宅楼,1栋地上9层住宅楼,部分住宅楼带一层地下车库,建筑面积约76886㎡,建设用地面积约26406 m2。拟采用框架剪力墙结构。 拟建场地B地块拟建建筑物为1栋地上18层住宅楼,1栋地上4层住宅楼,部分住宅楼带一层地下车库,建设用地面积约6418.75 ㎡。拟采用框架剪力墙结构。 拟建场地A地块设计±0.000标高相当于黄海高程751.80m,地下二层各部分的楼板标高均有错位,基础筏板底板板面标高分别为-8.3m、-8.7m、-9.4m、-9.7m、-10.1m。地下车库近似长方形状,预计基坑支护周长574m左右。场地周边开阔,四周建筑物情况简单。 拟建场地B地块设计±0.000标高相当于黄海高程754.35m,地下一层各部分的楼板标高均有错位,基础筏板底板板面标高分别为-8.05m。地下车库近似长方形状,预计基坑支护周长313m左右。场地周边管线密布,四周建筑物情况复杂。 根据现场踏勘,本次基坑侧壁临时支护结构拟采用挡土桩与土钉墙锚喷支护相结合的支护结构。

A地块 基坑周边侧壁支护采用逆作法土层土钉施工,边开挖边支护,开挖深度到2.0米时,进行挡土桩施工。剩余部分每开挖3米,进行一次支护,具体施工位置及支护处理方法详见施工图。 B地块 沿基坑南侧和西侧预先用旋挖机打一排桩径800的钢筋混凝土挡土桩,桩间距1.2m,排间距1.0m,上端用混凝土冠梁连接,下端嵌固在圆砾层中,嵌固深度不小于4.0m,局部不下于6.5m。基坑南侧局部地段增加一排桩径1000的钢筋混凝土挡土加强桩,并做止水帷幕加固处理,及对周边挡墙做加固处理。基坑北侧同A地块,东侧同已开挖基坑相连。 2 工程地质条件 2.1、地层概况 根据《岩土工程勘察报告》(新疆建华地质工程有限公司) A地块:地层主要由①杂填土、②粉土、③灰绿色粉土及④圆砾层组成。 ①杂填土:杂色,松散,稍湿,场区均有分布。主要由生活垃圾、建筑垃圾、植物腐殖质、素填土等组成,该层分布于地表,厚度2.3m~7.6m。 ②粉土:土黄色,可塑,稍湿-饱水,湿润时用刀切,无光滑面,切面较粗糙,手捻摸感觉有细颗粒存在,有轻微粘滞感,粘性差,湿土能搓成2-3mm的土条,干土用手很易捏碎,孔隙发育一般。局部含有粉细砂、砾石薄夹层及透镜体。该层埋深在2.3m~7.6m,厚度3.5m~7.9m。 ③灰绿色粉土:以灰绿色为主,硬塑,稍湿-饱水。有臭味,局部含有少量植物腐殖质,并有少量植物根系腐烂后的空管道。该层埋深在4.7m~16.5m,厚度1.2m~7.5m。 ④圆砾:以青灰色为主,中密,饱水,该层多呈圆形状、次圆形状,骨架颗粒质量大于总质量的50%,粒径多在10mm左右,充填物主要为粉土、中粗砂,级配一般,该层层顶埋深在11.0m~18.9m,最大勘探深度(-25.5m)内未揭穿该层 B地块:地层主要由①杂填土、②粉土及③圆砾层组成。

基坑深层水平位移监测方案

基坑深层水平位移监测方案 1概述 深层水平位移主要用于大地运动,如可能产生在不稳固的边坡(滑坡)或挖土工程周围的测向运动等,也可以用来监测软土地基处理,堤坝,芯墙稳定性,钻孔设置的偏差,打桩引起的土体位移,以及回填筑堤和地下工程的土体沉陷,也可用于沿海、江边重力存放物场的土层变化等。 2 仪器设备 测斜仪(一般测斜仪由探头、电缆、数据采集仪(读数仪)组成。探头的传感器型式有伺服加速度计式、电阻应变片式、钢弦式、差动电阻式等多种型式,目前使用最多的是伺服加速度式。国内有航天部33 所生产的CX 系列,国外有美国SINCO 公司的数字测斜仪,瑞士的PRIVEC 等) 内壁有导槽的测斜管(测斜管道由以下几部分组成:测斜管、连接管、管座、管盖。测斜管是用聚氯乙烯、ABS 塑料、铝合金等材料制成,管内有互成90 度四个导向槽,国产塑料测斜管尺寸多为:内径Φ58mm,径Φ70mm、长度分2m,3m,4m 三种。塑料连接管多采用市场上出售的聚氯乙烯塑料管制成,还可用软的万能接头相连。连接管的尺寸为内径Φ70mm,外径Φ82mm,长度分300,400mm两种。在管壁的两端铣制有滑动槽各4 条或仅一端铣制滑动槽4 条,各槽相隔90 度。管座位于测斜管底端,与管外径匹配,防止泥砂从管底端进入管内的一个安全护盖。管盖用于保护测斜管管口,防止杂物从管口掉入管内影响正常观测工作也由聚氯乙烯制成,其外形尺寸同管座。) 3监测仪器工作原理 测斜仪的工作原理是测量测斜管轴线与铅垂线之间的夹角变化量,从而计算出土层各点的水平位移大小。通常在坝内埋设一垂直并互成90°四个导槽的管子,当管子受力发生变形时,将测斜仪探头放入测斜管导槽内,逐段(一般50cm 一

相关文档
相关文档 最新文档