文档库 最新最全的文档下载
当前位置:文档库 › 光纤传感技术复习题

光纤传感技术复习题

光纤传感技术复习题
光纤传感技术复习题

第一章

1.下面哪种常见物品不属于传感器 ( )

A.数码摄像机

B.液晶电视机

C.烟雾报警器

D.红外线感应门

2.下面哪种物品属于光纤传感器 ( )

A.光纤水听器

B.光纤光缆

C.光纤水晶灯

D.激光刀

3.目前,最常用光纤的纤芯和包层构成的材料主要是 ( )

A.多成分玻璃

B.半导体材料

C.石英晶体

D.塑料

4.以下哪种光纤不是根据横截面上折射率的径向分布形式划分的 ( )

A.阶跃型光纤

B.渐变型光纤

C.石英光纤

D.单模光纤

5.以下哪种说法是错误的()

A.在可见光范围内,大部分媒质的折射率大于1。

B.同一媒质对于不同波长的光有着不同的折射率。

C.红光和紫光的频率不同,所以它们在真空中的传播速度也不同。

D.紫光的频率高于红光,所以在水中紫色光的折射率大。

6.在下列因素中,不是引起光纤传输衰减的原因为 ( )

A.光纤弯曲

B.瑞利散射

C.杂质吸收

D.多模传输

7.在下列因素中,不是引起光纤传输色散的原因为 ( )

A.光纤弯曲

B.色度色散

C.偏振模随机变化

D.多模传输

1.光纤传感器的主要优势有哪些?

2.若某均匀光纤的纤芯折射率为:n1=1.50, 相对折射率差Δ=0.01,长度为1km,纤芯半径a=2.5um

计算(1)光纤的数值孔径NA

(2)由子午线的光程差引起的最大时延差

(3)若工作波长为1.55 um,此光纤工作在单模还是多模状态?

(4)若将此光纤的包层和涂覆层去掉,求裸光纤的NA和最大时延差。

3.某SIF光纤,n1=1.4258,n2=1.4205,工作在λ=1.3 um和λ=1.55 um两个波段,求光纤为单模时的最大纤芯直径?

4.已知2a=50um,相对折射率差Δ=0.01,n1=1.45,工作波长λ=0.85 um,折射率分别为SIF型和GIF型(g=2)的两种光纤,其导模数量为多少?若波长

变为1.31um,则导模数量又为多少?

第二章

1.半导体光源LED发光的机理是( )

A. 受激辐射

B. 自发辐射

C. 受激吸收

D. 自发吸收

2.以下哪种不是常见的激光光源()

A.固体激光器 B. 液体激光器

C. 半导体激光器

D. 黑体辐射激光器

3. 以下关于光隔离器的说法哪个是正确的 ( )

A.隔离器是互易元件

B.隔离器放在接收机之前

C.隔离器可以与偏振无关

D.隔离器是光耦合器的一种

4.以下哪种不是常见的激光光源()

A.固体激光器 B. 液体激光器

C. 半导体激光器

D. 黑体辐射激光器

5. 以下关于光耦合器的说法哪个是正确的 ( )

A.耦合器是互易元件

B.2dB耦合器将光功率等分

C.耦合器可以做成光透镜

D.隔离器是光耦合器的一种

6.以下哪种不是半导体激光光源发光的三要素()

A.受激辐射 B. 谐振腔正向反馈

C. 外界泵浦源

D. 半导体材料PIN区

7.关于光探测器的说法哪个是不正确的()

A.PD是目前使用最广泛的光电二极管

B. 光电二极管需要外部电源加上正向电压提供泵浦

C. APD雪崩光电管的雪崩效应引入附加噪声因子

D. 相比APD光电二极管,PIN光电二极管的响应度不够高

问答题:

半导体激光器采用GaAs材料,其禁带宽度E g=1.42eV,求它的发光波长。比较激光器LD和发光二极管LED的不同。

1.激光器的分类有哪些?激光的发光机理是什么?

2.常见的光检测器有哪几类,各自的特点是什么?

3.光电二极管和激光器的异同点是什么?

4.光隔离器和光耦合器的应用是什么?

第三章

1.光强调制型光纤传感器属于以下哪种分类方式()

A.光纤在传感器中的作用 B. 光受被测量调制的形式

C. 传感器中使用的解调方式

D. 传感器中光信号的检测方法

2.功能型光纤传感器属于以下哪种分类方式()

A.光纤在传感器中的作用 B. 光受被测量调制的形式

C. 传感器中使用的解调方式

D. 传感器中光信号的检测方法

3.干涉型光纤传感器属于以下哪种分类方式()

A.光纤在传感器中的作用 B. 光受被测量调制的形式

C. 传感器中使用的解调方式

D. 传感器中光信号的检测方法

4.以下哪种分类不属于非功能型光强调制传感器()

A.光束切割型 B. 松耦合型

C. 遮光片式

D.变折射率型

5.以下哪种传感器不属于按调制形式划分的光纤传感器()

A.光强调制型压力探测器 B. 相位调制型温度传感器

C. WDM分布式光纤传感器

D. 功能型光纤水听器

6.以下哪种分类不属于功能型光强调制传感器()

A.微弯损耗型 B. 变吸收特性型

C. 遮光片式

D.变折射率型

问答题:下图为双光纤液位传感器的结构示意图,请分析说明(1)此传感器属于何种调制型传感器件,它的工作原理(2)可采用哪些方式进一步提高响应度

2. 某光强调制型光纤传感器的结构如图所示,其中光源采用LED,发射功率为Pin=5mw,PIN管的接收灵敏度为Pr=0.1mw,已知此传感器的光敏元件的光损为α=3dB,则使用损耗系数为0.2dB/km的光纤传光的话,最远传输距离为多少?

第四章

1.关于多普勒频移的说法哪个是不正确的()

A.光的多普勒频移常用于光频率调制型光纤传感器

B. 在运动的波源前面,波被压缩,波长变得较短

C. 蓝移可以使得波长变得较长,频率变得较低

D. 双重多普勒频移是指光源和观测者有相对静止的二个位置

2.关于光的频率检测方法的说法哪个是正确的()

A.光的多普勒频移进行检测时可以直接检测返回散射光

B. 检测方式分为零差检测和外差检测两种方式

C. 相对于直接检测法,采用双光路检测和双波长检测方式可提高灵敏度

D. 光的多普勒频移检测是属于干涉型检测方式

问答题:1.什么是多普勒频移?红移和蓝移分别是在波的什么位置?

2.什么是光的频率调制,目前较多采用哪种调制方式?

3.下图为光纤多普勒测速装置的工作原理图,请分析说明(1)工作原理和工作流程(2)属于功能型还是非功能型(3)此传感器的调制类型(4)局限性和改进方法

4.以下为双重多普勒效应的简单示意图,若S 为光源,P 为被检测的运动液体,运动方向如箭头所示,Q 为光检测器。请回答下列问题

(1)分析其工作原理,给出双重多普勒频率方程表达式。给出一种频率检波方法。(画出简图并说明检波过程)

(2)使用的激光器为LD ,若工作物质为GaAs ,则它的发射波长是多少?工作物质为InGaAs ,发射波长又为多少?

(GaAs :E g =1.43eV InGaAs: E g =0.96eV )

第五章

1. 以下关于光纤光栅传感器的说法哪个是错误的 ( ) A .属于功能型传感器 B. 应用最为广泛 C. 常使用FBG 和LPG D. 只能测量单参量

2. 以下哪个属于均匀周期光纤光栅 ( )

A .啁啾光纤光栅 B. 相移光纤光栅 C. 取样光纤光栅 D. 闪耀光纤光栅

3. 以下哪个不属于均匀周期光纤光栅 ( )

Q

A.短周期光纤光栅 B. 相移光纤光栅

C. 长周期光纤光栅

D. 闪耀光纤光栅

4.为了进行不受干扰的单参量测量,需要对光纤光栅进行以下哪种封装

()

A.保护性封装 B. 增敏性封装

C. 减敏性封装

D. 补偿性封装

5. 关于提高光纤光栅传感器的测量灵敏度方法,以下哪种说法是不正确的

()A.腐蚀普通的FBG B. 抛磨FBG

C. 在光纤光栅上涂覆一层低折射率材料

D. 腐蚀多模光纤中的斜光栅

问答题:1下图为长周期光纤光栅折射率传感示意图,请分析其基本工作流程,并给出提高灵敏度的方法。

图LPG折射率传感示意图

2 请根据下图分别描述FBG 和LPG 两种光纤光栅传感器的工作原理及工作过程

3 下图为光纤PH 值传感器的典型示意图,1)请分析其基本工作流程(2)属于功能型还是非功能型 (3)此传感器的调制类型 (4)存在问题和改进方法

图 FBG 的模式耦合示意图

图 LPG 的模式耦合示意图

图 光栅的光谱

(a )FBG 的反射谱 (b )LPG 的透射谱

前向芯模

后向芯模

0 0.1

0.2 0.3

0.4

1500

1549

1548

1550 1551

1552 1580

1600

-18 -6 -8 -10 -12 -14

-16 -4 -2 0 (b )

(a )

反射率

透射光谱dB

图 光纤pH 值传感器的典型结构

光源

4下图为光纤磷光温度传感器的典型示意图,1)请分析其基本工作流程(2)属于功能型还是非功能型(3)此传感器的调制类型

图光纤磷光温度计

第六章

1.对于光相位调制型光纤传感器来说,以下哪种方式不可以改变光的相位

()A.热光效应 B. 应变效应

C. 光隙效应

D. 泊松效应

2.以下哪种是多光束光纤干涉仪()

A.马赫-增德尔干涉仪 B. 迈克尔逊干涉仪

C. 法布里—珀罗(Fabry-Perot)干涉仪

D. 斐索光纤干涉仪

3.以下哪种不是相位调制型光纤传感器的解调技术()

A.双波长检测法 B. 主动零差检测法

C. 合成外差检测法

D. 伪外差检测法

1. 以下为光纤陀螺原理示意图,采用光的萨格纳克效应,1)计算角速度Ω引

起的相位差ΔΦ。2)请列出相位调制型光纤传感器的解调方式。

2. 下图为Sagnac-MZ光纤干涉式传感器的原理图,请分析说明(1)此传感器

的工作原理和工作流程(2)属于功能型还是非功能型(3)此传感器的调制类

型(4)此传感器可用于什么场合?

图Sagnac-MZ干涉式光纤声发射传感器

3.以下为Michelson干涉式光纤声发射传感器的工作原理图

声信号S(t)

Michelson干涉式声发射传感器

(1)请分析其工作过程(描述外界声信号是如何影响光纤相位变化)

(2)使用的激光器为LD,若工作物质为GaAs,则它的发射波长是多少?工作物质为InGaAs,发射波长又为多少?

(GaAs:E g=1.43eV InGaAs: E g=0.96eV)

第七八章

1.以下哪种不属于准分布式光纤传感方式()

A.波分复用 B. 时分复用

C. 相分复用

D. 频分复用

2. 以下关于光的偏振调制中哪个说法是正确的()

A.Pockels效应使晶体的双折射性质发生改变

B. Kerr效应也称为一次电光效应,它发生在一切物质中

C. 弹光效应又叫做磁致旋光效应

D. 法拉第(Faraday)效应是一个非互易的光学过程

1、下图为光纤电流传感器的原理图,请分析说明(1)此传感器的工作原理和工作流程(2)属于功能型还是非功能型(3)此传感器的调制类型(4)此传感器可用于什么场合?

1-激光器;2-起偏器;3-物镜;4-传输光纤;5-传感光纤;6-电流导线;

7-光探测器;8-偏振棱镜;9-信号处理单元

光纤传感器基础实验

光纤传感器基础实验 王帅 (哈尔滨工程大学13-3班75号,黑龙江省哈尔滨市 150001) 摘要:光纤传感实验仪开发研制的目的是将光纤传感这一现代技术进行广泛的普及和渗透。了解光纤传感仪试验仪的基本构造和原理,学习和掌握其正确使用方法;了解光纤端光场的径向分布和轴向分布的特点;定量了解一种光纤的纤端光场的径向分布和轴向分布;学习掌握最基本的光纤位移传感器的原理。通过对光纤接受端电压的测量,可以间接测量光纤端轴向和径向的光场强度的分布。 关键词:光纤传感器;轴向;径向;光强分布 Optical Fiber Sensor Based Experiment Wang shuai (Harbin Engineering University, Harbin,150001,Chnia) Abstract:The purpose of the development of fiber optic sensing experimental kits is to make this technology popularization. Understanding the basic structure and principle of fiber optic sensing experimental kits,learning and mastering the correct using method; Understand the radial and axial distribution characteristic of the fiber end; Learning to master the basic principle of optical fiber displacement sensor. By measuring the voltage of the optical fiber acceptting, optical fiber end light field intensity distribution of the axial and radial can be measured indirectly. Key words:fiber optic sensing experimental kits;axial; radial; light intensity distribution 0 引言 光纤传感实验仪是由多种形式的光纤传感器组成,是集教学和实验于一体的传感测量系统。它具有结构简单,灵敏度高,稳定性好,切换方便应用范围广等特点。在实验过程中,我们用光纤传感实验仪构成反射式光纤微位移传感器,可用于测量多种可转换成位移的物理量。 1 实验原理 1.1光在光纤中传输的原理 光在光纤中的传输依据是光学中的全反射定律。普通石英光纤的结构包括纤芯、包层和

光纤传感技术的应用现状

2009.No364 摘要:介绍了提高光纤传输效率的两个途径,指出目前利用光纤通信来进行继电保护的三种方式:光纤纵联差动保护,分相允许式光纤纵联保护,过电压或失灵启动远跳。并简要介绍光纤测温技术的工作原理及其在变压器上的应用。 关键词:光纤维 继电保护 测温技术 由于光纤传感技术的传感与传输信号都是光学信号,而不是传统的电信号,因而具有许多独特的优点,对电绝缘,抗电磁干扰,适合高电压场所;精度高,能远距离传输信号;尺寸小、重量轻,有利于微型化;寿命长、长期可靠性好,适合大型工程长期安全监测等。因此,光纤传感技术得到了高度重视和快速发展,成为国家重大工程、重大装备、武器系统等国民经济诸多领域急需的关键技术之一。 一、提高光纤传输效率的两个途径 (一)40Gbit/s 传输系统的发展、挑战与应用。准同步传输体系(PDH)利用光纤的单一波长传输速率从8Mbit/s、4Mbit/s140bit/s,同步传输体系(SDH)利用光纤的单一波长传输速率从155Mbit/s、622Mbit/s、2.5Gbit/s 到10Gbit/s。从实际应用来看,40Gbit/s 传输系统必须采用外调制器,目前具备足够输出电压能够驱动外调制器的驱动集成电路还不成熟;沿用多年的NRZ调制方式能否有效、可靠地工作于40Gbit/s 系统还不确定,可能需要转向性能更好的普通归零(RZ)码乃至调制效率更高的其他调制方式。除了技术因素外,经济上是否可行也是必须考虑的关键因素。尽管目前我国干线网络的波道利用率已经超过70%,但是光纤利用率不到30%,SDH 电路利用率不到50%,因此只需在波分复用层面上扩容即可,光缆网的总体容量依然有余,并不需要立即全面升级到40Gbit/s速率。另需认真考虑的因素是光缆的极化模色散特性。对于短距离传输,无须色散补偿、光放大器和外调制器,40Gbit/s传输系统具有很低的单位比特成本,上述问题不是障碍。因此,40Gbit/s传输系统完全可以由短距离互连应用开始,包括端局内路由器、交换机和传输设备间的互连,乃至扩展至城域网范围和短距离长途应用。 (二)粗波分复用系统(CWDM)技术的发展与应用。随着技术和业务的发展,利用光纤的多个波长进行复用就是WDM 技术。目前,160波系统已经成熟商用。它正从长途传输领域向城域网领域扩展,作为进一步提高光纤传输效率的另一个主要途径。尽管城域WDM 系统的建设成本明显低于长途网WDM 系统,但是目前的绝对成本仍然较高,特别是需要使用光纤放大器的长距离应用成本较高。此外,当前在网络边缘需要整个波长带宽的用户和应用毕竟很少,WDM 多业务平台主要适用于核心层,特别是扩容需求较大、距离较长的应用场合。为了进一步降低城域WDM 多业务平台的成本,出现了CWDM 粗波分复用系统(Coarse Wave Di-vision Multiplexer)。这种系统的典型波长组合有4、8和16三种,波长通路间隔达20nm,允许波长漂移±6.5nm,大大降低了对激光器的要求,成本也大为降低。此外,由于CWDM 系统对激光器的波长精度要求较低,无需制冷器和波长锁定器,不仅功耗低、尺寸小,而且封装可以采用简单的同轴结构,比传统碟型封装成本低,激光器模块的总成本可以减少2/3。从滤波器角度看,典型的100GHz 间隔的介质薄膜滤波器需要150层镀膜,而20nm 间隔的CWDM 滤波器只需要50层镀膜,其成品率和成本都可以获得有效改善。 二、光纤通信在继电保护中的应用 继电保护装置信号的物理传输通道有光纤、微波、电力线载 波等,微波和电力线载波易受气候变化影响,传输质量较差,而光纤通道不怕超高压与电磁干扰,传输容量大,绝缘性能好,衰耗低,可靠性高,在继电保护领域中得到了日益广泛的应用。 (一)光纤通信来进行继电保护。当被保护的线路长度较长时,为了补偿光功率损耗,把RCS-931系列光纤纵差保护装置的光信号传入MUX-2M继电保护信号数字复接接口装置,再转化为电信号通过75Ω的同轴电缆连接通讯SDH设备的2048k bit/ s口传到对侧,如图1中的( b)。SDH环网采用的是155M以上速率的传输设备,传输容量大,具有强大的保护恢复能力。当被保护线路发生故障时,装置根据对两侧电流的幅值和相位比较启动光纤纵联差动保护动作使两侧跳闸,所有装置都处理后动作时间一般在30ms以内,能够快速切除故障,有效保护线路全长。 假设线路发生A相区内故障时,本侧RCS-902C系列分相允许式纵联保护装置发出“A相允许跳闸”电信号开入到FOX-41A型继电保护光纤通信接口装置, FOX-41A内部把此电信号转为光信号传输到对侧的FOX-41A,本侧与对侧之间光纤传输根据线路长度不同有两种传输方式。 对侧的FOX-41A光电转换后再把“A相允许跳闸”电信号开入到对侧的RCS-902C,对侧的RCS-902C保护装置已判断是A相区内故障并收到对侧“A相允许跳闸”信号则保护动作跳对侧A相断路器。同理,对侧发允许跳闸信号到本侧过程也是一样,B或C相故障也与A相故障分析过程一样。所有装置都处理后保护动作时间一般在30ms左右,快速有效,如图2所示。 当被保护线路本侧过电压保护跳闸并启动对侧断路器跳闸时,可以把远跳信号通过FOX-41A传输到对侧;当被保护线路本侧保护跳闸但是断路器失灵没有跳开时,为了避免故障发展扩大,也可以把失灵信号通过FOX- 41A传输到对侧启动对侧断路器跳闸,如图3所示。 (二)工程中实际应用问题。1、通道故障检测。光纤纵差保护安全可靠,在使用和运行当中主要是光纤通道的维护。如果光纤通道告警,可以进行逐段自检来确认装置和通道是否正常,另外需仔细观察与光电通道相关的告警指示灯和装置控制字,还可以用光功率计测试光收发功率与光衰耗。部分厂家提供的SDH设备也可以实现实时的光功率在线检测,为网络的维护提供了极大的便利性。2、光纤纵差保护旁路切换。目前通信速率一般是2048kbit/s,也有少部分是64kbit/s,这给光纤纵差保护的旁路代线路切换运行来了一定问题,根据现在通信的发展情况,通信速率可以都统一到2048kbit/s。与电力线载波高频保护的旁路代线路切换运行需要切换高频载波电缆通道一样,光纤纵差保护的旁路代线路切换运行需要切换光纤通道。 三、光纤测温技术在变压器上的应用 使用光纤探头测量绕组温度时, 将其嵌入垫块或直接附在需要温度监测的导线上,这种使用方式, 首先必须拆开局部导线绝缘, 并在安装光纤测温探头后再恢复导线绝缘。更普遍的方法是 光纤传感技术的应 用现状 ◇ 刘云圣

光纤传感技术

光纤传感器技术的概况及其特点 常见光纤温度传感器基本原理 1. 荧光式温度光纤传感器 1.1 基本原理 荧光式温度传感探头具有抗电磁干扰、稳定可靠、微小尺寸、长寿命及绝缘性好等特点,光纤温度传感器是利用物质的荧光辐射现象设计的。通常设在光纤的一端固结着微量稀土磷化合物,受紫外光照射后,激励其发出荧光。此荧光强度或余辉时间长度会随温度变化而变化,成为温度的函数,从而计算出被测温度。 1.2荧光式温度传感原理 荧光式温度传感探头是由普通多模光纤和在其顶部安装的荧光物质体(膜)组成。荧光物质接受一定波长(受激谱)的光激励后,受激辐射出荧光能量。激励消失后,荧光发光的持续性取决于荧光物质特性、环境因素,以及激发状态的寿命。这种受激发荧光通常是按指数方式衰减的,称衰减的时间常数为荧光寿命或荧光衰落时间(ns)。因为在不同的环境温度下,荧光寿命也不同. 因此通过测量荧光寿命的长短,就可以得知当时的环境温度。 2. 光纤法布里-彼罗特(Fabry – Perot)传感器 2.1 法布里-彼罗特(Fabry – Perot)腔 法布里-彼罗特(Fabry –Perot)腔是一个常见的光学器件。它是光纤法布里-彼罗特传感器的核心,同时也被应用到光纤光栅传感器当中。了解它的原理和特点将有助于理解以上两种传感器的工作原理和不同应用。 在讨论技术细节之前,读者需要明确以下两点: 1.光在任何界面都会发生反射,在大多数情况下会发生折射。比如光会在水面反射,再比如当光线穿过一块玻璃的时候,会分别在一块玻璃的上下表面同时发生反射。 2.光具有波粒二象性。也就是说光拥有波长λ,相位θ等表征物理量。光在真空中所经过的路程叫做光程 L,当光经过介质,比如玻璃时,光程变为L=n*d。 n 为介质的折射率(均大于1), d 为光线经历的几何长度。同一单一光源发出的两束光(具有同样起始相位,且频率相同)如果再相遇,将发生干涉。如果他们的光程差是波长的整数倍,意味着他们的相位相等,则干涉的结果是强度增大(最大值)。如果他们的光程差是波长的整数倍+半波长,则干涉的结果是强度减弱(最小值)。对于其余情况,干涉后的强度在最大值与最小值之间。如果同样的干涉发生多次,最终一个均匀的宽频光,在绝大多数波长范围内的光强将变成0,而主要的强度将集中在光程差为整数倍的波长范围内。 所谓法布里-彼罗特(Fabry – Perot)腔就是一个两端为光反射界面的空腔。入射光在两个界面分别发生反射,这两束反射光的光程差就是 L=2Lc*n.? Lc是空腔的长度。由此可见,空腔长度决定光程差,光程差决定相位差,相位差又决定是干涉加强还是干涉减弱。当空腔长度变化的时候,对于同样波长的光,原先的相位差将改变。原先干涉加强极大的两束光将不再达到干涉极大。相反的,波长与原先不同的另外两束光将满足相位差是波长整数倍的条件,因而产生干涉极大。如果能够探测出前后两个干涉极大相应的波长差Δλ,便可计算出空腔长度的变化,从而实现传感。同时,如果两个界面的反射系数很高,也就是说光线在腔内将发生多次干涉,最终只有满足相干极大条件的波长分量得以不为0,其余分量都将

传感器与检测技术复习客观题

一、判断题 1.传感器的传感元件通常情况下直接感受被测量;√ 2.对于所有的二阶传感器,总是希望其固有频率越高越好;× 3.一般情况下,设计弹性敏感元件时,若提高灵敏度,则会使其线性变差、固有频率提高; × 4.应变片的基长越长,则应变片的动态特性越好;× 5.变磁阻式电感传感器属于互感型的电感传感器;× 6.压电式传感器不能测量恒定不变的信号;√ 7.惯性式振幅计,在设计时尽量使其固有频率低。√ 8.传感器的重复性误差是属于系统误差;× 9.传感器的敏感元件通常情况下不直接感受被测量;× 10.传感器实现波形测试不失真的条件是:传感器的幅频特性和相频特性均是常数;× 11.传感器弹性敏感元件的固有频率越高,则传感器的灵敏度越低,线性度越差;× 12.应变式传感器采用半桥连接时,若供桥电源波动的误差为2%,则由此引起的电桥信号 输出波动的误差为1% 。× 13.压电片采用并联连接后,更适合于测量快速变化的信号;× 14.圆柱形弹性元件受力产生的应变大小与圆柱的长度无关;√ 15.驱动电缆法实际上是一种等电位屏蔽法;√ 16.差动变压器采用差动整流电路后,次级电压的相位和零点残余电压都不必考虑;√ 17.希望压电传感器的电阻率高,介电常数小;× 18.半导体光吸收型光纤温度传感器是属于传光型光纤传感器;√ 19.传感器的动态灵敏度就是传感器静态特性曲线的斜率;× 20.按照能量关系分类传感器可分为结构型传感器和物性型传感器;× 21.激波管产生激波压力的恒定时间越长,则可标定的下限频率越低;√ 22.压阻效应中由于几何形状改变引起的电阻变化很小;√ 23.光导摄像管是一种固态图像传感器;× 24.热释电型红外传感器必须进行调制。√ 25.传感器的幅频特性为常数,则传感器进行信号的波形测量时就不会失真。× 26.等截面梁的不同部位所产生的应变是不相等的。√ 27.一般来说,螺管型差动变压器的线性范围约为线圈骨架长度的二分之一。× 28.压电常数d32所表示的含义是:沿着z轴方向受力,在垂直于y轴的表面产生电荷;× 29.涡流式电感传感器属于互感型的电感传感器;× 30.金属丝的电阻应变效应中,引起电阻改变的主要原因是电阻率的改变;× 31.压电常数d ij中的下标i表示晶体的极化方向,j表示晶体受力的性质;√

光纤传感器的位移特性

光纤传感器的位移特性实验报告 一、实验目的 了解光纤位移传感器的工作原理和性能。 二、基本原理 本实验采用的是传光型光纤,它由两束光纤混合后,组成Y型光纤,半园分布即双D型一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。两光束混合后的端部是工作端亦称探头,它与被测体相距X,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,而光电转换器转换的电量大小与间距X有关,因此可用于测量位移。 三、需用器件与单元 光纤传感器、光纤传感器实验模板、数显单元、测微头、直流源、反射面。 四、实验步骤 1、根据图1-6安装光纤位移传感器,二束光纤插入实验板上的座孔上。其内部已和发光管D及光电转换管T 相接。 图1-6光纤传感器安装示意图

2、将光纤实验模板输出端V O1与数显单元相连,见图1-7。 图1-7光纤传感器位移实验接线图 2、调节测微头,使探头与反射面圆平板接触。 3、实验模板接入±15V电源,合上主控箱电源开关,调R W、使数显表显示为零。 4、旋转测微头,被测体离开探头,每隔0.1mm读出数显表值,将其填入表1-4。 表1-4光纤位移传感器输出电压与位移数据 5、根据表9-1数据,作光纤位移传感器的位移特性,计算在量程1mm时灵敏度和非线性误差。 五、实验数据处理 1、实验数据:

2、光纤传感器位移与输出电压特性曲线: 3、1mm时的灵敏度与非线性误差:

用最小二乘法拟合的直线为: 灵敏度为0.1458V/mm 在0.45mm处取最大相对误差为:0.07V 非线性误差为: 六、思考题 光纤位移传感器测位移时对被测体的表面有些什么要求? 答:表面要干净没有污点,而且光洁度要好;再因为一定要可以反射光,因此一定不能出现黑色表面的情况。

光纤传感技术在物联网中的应用_叶宇光

信息安全与技术·2013年1月1引言 物联网是通过射频识别技术(RFID )、红外感应器、全球定位系统、激光扫描器等信息传感设备按照约定的协议把一些有联系的实体通过互联网相互连接到一起进行信息的传输和传递,可以实现智能化识别、定位、跟踪、监控和管理的一种网络实现概念。这种概念是在互 联网的概念基础上发展起来的,是将用户端延伸并扩展到任何物品与物品之间进行通信和信息交换的网络概念。近年来,随着光纤通信技术的不断发展,进而出现了光纤传感技术。 自光纤传感技术开始发展以来,光纤传感器因具有多种优点而得到了快速发展,例如体积偏小、灵敏度非常高、抗干扰能力强等,现如今,已经被广泛应用到很多 叶宇光 (福建省泉州师范学院数学与计算机科学学院 福建泉州362000) 【摘 要】现如今,物联网已经发展成为了一个研究热点,而光纤传感技术在物联网的发展中也得到了广泛的应用, 并引起了广泛的关注。物联网的核心部件为传感器,特别是光纤传感器,它和其它的类型的传感器所不具有的优势,而物联网主要有四个技术构层,它们是应用接口、数据处理技术、数据传输网络和传输网络,在物联网中我们将会看到有大量的各种各样的传感器的存在,这些传感器可以用来感知不同的环境参数,比如温度、重力、光电、声音、震动和位移,这些传感器为物联网提供最原始的数据信息。当前,光纤传感技术在物联网中的应用引起社会各界的高度关注。本文主要对物联网的界定、构成以及光纤传感器的原理和发展现状进行了深入的探讨和分析,并且重点是对光纤传感技术在物联网中的应用加以详细阐述。希望可以通过本文的论述,能够对今后光纤传感技术在物联网中的应用产生一些积极影响。 【关键词】光纤传感技术; 物联网;原理与现状;应用;传感网络O ptical Fiber S ensing Technology in the A pplication of the Internet of Things Ye Yu-guang (Fujian Province,Quanzhou Normal University Mathematics and Computer Science FujianQuanzhou 362000) 【A bstract 】N ow adays,Internet has becom e a research hotspot,and optical fiber sensing technology in the developm ent of Internet of things have been w idely used,and has aroused w ide concern.N etw orking core com ponents as sensor,particularly for optical fiber sensor,it and other types of sensors have m any advantages,but the Internet has four m ain technical structure layer,w hich is the application of interface,data processing,data transm ission netw ork and transm ission netw ork,the joint netw ork w e w ill see a large num ber of a variety of sensors,the sensor can be used to perceive different environm ental param eters,such as tem perature,gravity,photoelectric,sound,vibration and displacem ent,these sensors for netw orking w ith the original data inform ation.C urrent,optical fiber sensing technology in netw orking application causes the height of social all circles pay close attention to.This paper focuses on the Internet of things,w hich define and fiber-optic sensor principle and developm ent present situation has carried on the thorough discussion and analysis,and thefocusis ontheoptical fiber sensing technology in netw orking applications to elaborate.H ope that through this paper,to the future of optical fiber sensing technology innetw orkingapplications havesom epositiveeffects. 【K e ywords 】optical fiber sensingtechnology;netw orking;principleandstatus;application;sensor netw ork 光纤传感技术在物联网中的应用 物联网·技术应用·TechnologyApplication 65··

光纤传感器实验报告

实验题目:光纤传感器 实验目的: 掌握干涉原理,自行制作光线干涉仪,使用它对某些物理量进行测量, 加深对光纤传感理论的理解,以受到光纤技术基本操作技能的训练。实验仪器: 激光器及电源,光纤夹具,光纤剥线钳,宝石刀,激光功率计,五位调 整架,显微镜,光纤传感实验仪,CCD及显示器,等等 实验原理:(见预习报告) 实验数据: 1.光纤传感实验(室温:24.1℃) (1)升温过程 (2)降温过程

2.测量光纤的耦合效率 在光波长为633nm条件下,测得光功率计最大读数为712.3nw。数据处理: 一.测量光纤的耦合效率 在λ=633nW,光的输出功率P1=2mW情况下。在调节过程中测得最大 输出功率P2=712.3nW 代入耦合效率η的计算公式: 3.56×10-4 二.光纤传感实验 1.升温时 利用Origin作出拟合图像如下: B 温度/℃由上图可看出k=5.49±0.06

根据光纤温度灵敏度的计算公式,由于每移动一个条纹相位改变 2π,则 Δφ=2π×m (m 为移动的条纹数) 故灵敏度即为 因l=29.0cm 故其灵敏度为±1.30)rad/℃ 2.降温时 利用Origin 作出拟合图像如下: -40 -20 A B 由上图可看出k=7.45±0.11 同上: 条纹数 温度/℃

灵敏度为 因l=29.0cm 故其灵敏度为±2.38)rad/℃ 由上述数据可看出,升温时与降温时灵敏度数据相差较大,这是因为在升温时温度变化较快,且仪表读数有滞后,所以测出数据较不准确,在降温时测出的数据是比较准确的。 思考题: 1.能否不用分束器做实验?替代方案是什么? 答:可以,只要用两个相同的相干波波源分别照射光纤即可,这样也可造成光的干涉。 2.温度改变1℃时,条纹的移动量与哪些因素有关? 答: (1)与光纤的温度灵敏度有关 (2)与光纤置于温度场的长度有关 3.实验中不可用ccd是否能有办法看到干涉条纹?替代方案是什么? 答:可以。可以用透镜将干涉条纹成像在光电探测器上进行测量。 实验小结: 1.光纤的功能层非常脆弱,光纤剥离过程中要使力均匀,不可用力过猛, 否则易造成光纤的断裂,必要时可分段进行剥离。 2.使用宝石刀进行切割时,要轻轻划一下,再将光纤弹断,直接切断会 造成光纤断面不平滑,导致测出的光纤耦合系数较低。 3.光纤传感实验时记录移动的条纹数时可自行在显示器上寻找参照点, 保证记录的准确即可。

光纤传感技术

光纤传感器的应用与发展趋势 学生:王超 学号:1049721103105 专业:物理电子学 光在传输过程中,光纤易受到外界环境的影响,如温度、压力等,从而导致传输光的强度、相位、频率、偏振态等光波量发生变化,通过监测这些量的变化可以获得相应的物理量,这就是光纤传感技术。该技术是随着光纤及通信技术的发展而逐步发展起来的一门崭新技术。密集波分复用D W D M 技术、掺铒光纤放大器EDFA 技术和光时分复用OTDR 技术的不断发展成熟,使得光纤传感技术以其在抗电磁干扰、轻巧、灵敏度等方面独一无二的优势,获得了飞速的发展,各种光纤传感器系统层出不穷。 光纤传感器系统的原理 由于光纤不仅作为光波的传播介质,而且光波在光纤中传播时,光波的特征参量( 振幅、相位、偏振、波长等) 会因外界因素(温度、压力、应变、电场、位移等)间接或直接的发生变化,从而可将光纤用作传感元件探测物理量。根据光纤在传感器中的作用,光纤传感器可分为功能型、非功能型、拾光型三大类。 1、功能型光纤传感器中光纤不仅作为导光介质也是敏感元件,光在光纤内受到被测量物理量的调制。它的特点是结构紧凑、灵敏度高,但它须用特殊光纤和先进的检测技术,因此成本高。光纤陀螺即是典型的功能型光纤传感器。 2、非功能型光纤传感器中光纤仅起导光作用,光照到非光纤型敏感元件上受被测量物理量调制。因其无需特殊光纤及特殊技术,易实现、成本低,但灵敏度也相应较低,常用于灵敏度要求不太高的场合。目前的光纤传感器大多是该类型的。 3、拾光型光纤传感器中光纤作为探头,接收由被测对象辐射的光或被其反射、 散射的光。如光纤激光多普勒速度计、辐射式光纤温度传感器等。 光纤传感器的特点 由光纤传感器的原理我们可以很容易理解它有如下几个特点: (1 )光纤具有宽波长范围、低衰减的特性,光源、检测器和光学元件的选择余地大,可以适用于不同的应用场合。

东南大学传感器技术复习要点

绪论 1传感器的基本概念:能感受规定的被测量,并按一定的规律转换成可用信号的器件或装置,通常由敏感元件和转换元件组成。 2传感器构成法: 自源型、辅助能源型、外源型、相同敏感元件的补偿型、差动结构补偿型、不同敏感元件的补偿型、反馈型 3传感器按照传感机理分类:结构型,以敏感元件结构参数变化实现信号转换; 物性型,以敏感元件物性效应实现信号转换。 第一章传感器技术基础 1传感器的一般数学模型:静态模型、动态模型 2传感器的特性和指标 传感器的静态模型:线性度、回差(滞后)、重复性、灵敏度、分辨力、阀值、稳定性、漂移、静态误差; 传感器的动态模型:频率响应特性、阶跃响应特性、典型环节的动态响应、幅频特性、相频特性。 3改善传感器性能的技术途径: 结构、材料与参数的合理选择,差动技术,平均技术,稳定性处理,屏蔽、隔离与干扰控制,零示法、微差法与闭环技术,补偿、校正与“有源化”,集成化、智能化与信息融合。 4合理选择传感器的基本原则和方法: 依据测量对象和使用条件确定传感器类型、线性范围和量程、灵敏度、精度、频率响应特性、稳定性。 5传感器的标定和校准 静态标定:静态标定主要用于检测、测试传感器的静态特性指标,如:静态灵敏度、非线性、回差、重复性等; 动态标定:动态标定主要用于检测、测试传感器的动态特性指标,如:动态灵敏度、频率响应和固有频率等。 第二章电阻式传感器 1概念:通过电阻参数的变化来实现电测非电量的目的。 2电阻应变计的主要特性 静态特性:灵敏系数、横向效应及横向效应系数、机械滞后、蠕变和零漂、应变极限 动态特性:对正弦应变波、阶跃应变波的响应,疲劳寿命。 3温度效应及其补偿 热补偿原因:在实际应用应变计时,工作温度可能偏离室温,甚至超出常温范围,导致工作特性改变,影响输出。(这种单纯由温度变化引起应变计电阻变化的现象,叫应变计的温度效应。)在工作温度变化较大时,这种热输出干扰必须加以补偿。

光纤传感器位移特性实验

光纤传感器位移特性实验报告 一、实验目的: 了解反射式光纤位移传感器的原理与应用。 二、实验仪器: 光纤位移传感器模块、Y型光纤传感器、测微头、反射面、直流电源、数显电压表。三、实验原理: 反射式光纤位移传感器是一种传输型光纤传感器。其原理如图36-1所示:光纤采用Y型结构,两束光纤一端合并在一起组成光纤探头,另一端分为两支,分别作为光源光纤和接收光纤。光从光源耦合到光源光纤,通过光纤传输,射向反射面,再被反射到接收光纤,最后由光电转换器接收,转换器接收到的光源与反射体表面的性质及反射体到光纤探头距离有关。当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。显然,当光纤探头紧贴反射面时,接收器接收到的光强为零。随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。 图36-1 反射式光纤位移传感器原理图36-2 光纤位移传感器安装示意图四、实验内容与步骤 1.光纤传感器的安装如图36-2所示,将Y型光纤安装在光纤位移传感器实验模块上。探头对准镀铬反射板,调节光纤探头端面与反射面平行,距离适中;固定测微头。接通电源预热数分钟。 2.将测微头起始位置调到14cm处,手动使反射面与光纤探头端面紧密接触,固定测微头。 3.实验模块从主控台接入±15V电源,打开实验台电源。 4.将模块输出“Uo”接到直流电压表(20V档),仔细调节电位器Rw使电压表显示为零。 5.旋动测微器,使反射面与光纤探头端面距离增大,每隔0.1mm读出一次输出电压U值,并记录。 五、数据记录与分析 1、数据记录表格 X(mm)0.10.20.30.40.50.60.70.80.9 1.0 Uo(V)0.080.180.280.400.520.640.750.870.97 1.06

一文深度了解光纤传感器的应用场景

一文深度了解光纤传感器的应用场景 文| 传感器技术(WW_CGQJS)光纤传感器与测量技术是当今传感器技术领域新的发展引应用,其测量用的光纤传感器有很多种类,有很多种工作方式。国内市场上光纤传感器应用主要在以下四种:光纤陀螺、光纤光栅传感器、光纤电流传感器和光纤水听器。下面对这四种产品分别介绍一下。光纤传感器应用种类一、光纤陀螺。 光纤陀螺按原理可分为干涉型、谐振型和布里渊型,这是三代光纤陀螺的代表。第一代干涉型光纤陀螺,目前该项技术已经成熟,适合进行批量生产和商品化;第二代谐振型光纤陀螺,暂时还处于实验室研究向实用化推进的发展阶段;第三代布里渊型,它还处于理论研究阶段。 光纤陀螺结构根据所采用的光学元件有三种实现方法:小型分立元件系统、全光纤系统和集成光学元件系统。目前分立光学元件技术已经基本退出,全光纤系统用在开环低精度、低成本的光纤陀螺中,集成光学器件陀螺由于其工艺简单、总体重复性好、成本低,所以在高精度光纤陀螺很受欢迎,是其主要实现方法。 二、光纤光栅传感器 目前国内外传感器领域的研究热点之一光纤布拉格光栅传感器。传统光纤传感器基本上可分为两种类型:光强型和干

涉型。光强型传感器的缺点在于光源不稳定,而且光纤损耗和探测器容易老化;干涉型传感器由于要求两路干涉光的光强同等,所以需要固定参考点而导致应用不方便。 目前开发的以光纤布拉格光栅为主的光纤光栅传感器可以避免出现上面两种情况,其传感信号为波长调制、复用能力强。在建筑健康检测、冲击检测、形状控制和振动阻尼检测等应用中,光纤光栅传感器是最理想的灵敏元件。光纤光栅传感器在地球动力学、航天器、电力工业和化学传感中有广泛的应用。三、光纤电流传感器 电力工业的迅猛发展带动电力传输系统容量不断增加,运行电压等级也越来越高,电流也越来越大,这样测量起来就非常困难,这就显现出光纤电流传感器的优点了。在电力系统中,传统的用来测量电流的传感器是以电磁感应为基础,这就存在以下缺点:它容易爆炸以至引起灾难性事故;大故障电流会造成铁芯磁饱和;铁芯发生共振效应;频率响应慢;测量精度低;信号易受干扰;体积重量大、价格昂贵等等,已经很难满足新一代数字电力网的发展需要。这个时候光纤电流传感器应运而生。 四、光纤水听器 光纤水听器主要用来测量水下声信号,它通过高灵敏度的光纤相干检测,将水声信号转换为光信号,并通过光纤传至信号处理系统进行识别。与传统水听器相比,光纤水听器具有

光纤传感技术与应用复习提纲66

第二章 多传感器的光网络技术 2.2.1 网络损耗的主要来源 1.弯曲引起的光纤损耗(弯曲损耗) 弯曲损耗: 宏弯损耗 微弯损耗 1)光纤的宏弯损耗:曲率半径在一个临界值 c R ,c R R >时附加损耗可以忽略不计;否则, 弯曲损耗指数增加。确定R 值是很重要的。多模光纤cm R 1≥时,附加损耗可以忽略不计。 2)光纤的微弯损耗(1)多模光纤的微弯损耗多模光纤在微弯时,主要是相邻模之间发生耦合 弯波矢量 c k k ='(微弯周期c l l =)时,损耗最大。 c l l =处的主衰减峰的谱宽为L l c /22, 主衰减峰两侧还有次极大出现。③损耗与微弯振幅2 d A (平方)成正比(这一点可以加以利 用)。④损耗与微弯总长度L 成正比。 (2)单模光纤的微弯损耗 模斑半径越小,损耗越小。 2.光纤和光源的耦合损耗 1)半导体激光器和光纤的耦合损耗 半导体激光器发出的光不是圆的光班,其发散角在互为垂直的方向上也不一样大。 ()()?? ?????? ????????? ???? ? ??+???? ?? -=2 2 2exp ,,y x y x z A z y x I ωω 其中 x z x 0πωλω= , y z y 0πωλω= (1)直接耦合的损耗 直接耦合:将光纤端面直接指向激光器发光面(点)。 举例:光纤NA=0.14,其孔径角 c θ2约为16°半导体激光管发散角//2θ(平行于PN 结) 仅为5°~6°,距离很近时,可以全部耦合;⊥θ2大于c θ2,不能保证全部的光都能进入光纤。 耦合效率的计算: ()()() ∞=?? ????? ? ????????????? ? ??+??? ? ??-==? ??? ∞ ∞ ∞ ∞ Berf dxdy y x s A dxdy z y x I P y x 002 2 0002exp 2,,2ωω ()?∞???????????? ??-???? ??=022exp 22dx x s A b x y ωωπ ()? ???? ??-???? ??=A y dt t A erf 022exp 22ωπ 误差函数y y t ω2= , y dy dt ω= 在 s z =平面内,B 为常数。显然,包含在光纤孔径角// 2θ 内的光功率是 ()?? ???????=???? ??-???? ? ? =?? ? ??????????????????? ??+???? ??-=πλθπωλθωπωω202 02 2tan 22exp tan 222exp 20 c oy c oy x y y x berf dt t B dxdy y x s A P 估算,光纤端面损5%, 则 ()[] []%95/tan 2%950max ?∞=?=erf erf P P c oy λθπωη m oy μω05.0=,m μλ85.0=的激光和14.0=NA (?=8c θ)的直接耦合,max η约为 20%。 (2)透镜耦合的损耗 ①光纤端面磨成球面的耦合 ②柱透镜耦合 ③凸透镜耦合(也可用自聚焦透镜代替) ④圆锥表透镜耦合 2)半导体发光二极管和光纤的耦合损耗 发光管不同于激光器,其发光相当于余弦发光体。后者相光强分布相当于高斯形。用朗伯发光面(见固体光电子学),半球空间发出的总功率为 ?==20 02cos sin 22π πθθθπE E BA d BA P E A ——发光 面积,B ——光源亮度(单位面积向某方向单位立体角发出的光功率); 通常,半导体二极管发光点的面积比光纤端面积小。 Ω=d BA dP E θcos ?==c c E E BA d BA P θθπθθθπ0 2sin 2cos sin 22 直接耦合时的最 大效率为 ()2 20 m a x s i n NA P P c == θη 举例:当14.0=NA 时,效率为2%,功率为5mW 的发光二极管,耦合入光纤的功率仅为 几十微瓦。采用透镜耦合,与激光管类似。 3.光纤和光纤的直接耦合损耗 1)多模光纤和多模光纤的直接耦合损耗 (1)轴偏离对耦合损耗的影响 (2)两光纤端面之间的间隙对耦合损耗的影响 (3)两光纤轴之间的倾斜对耦合损耗的影响 (4)光纤端面的不完整性对耦合损耗的影响 ①端面倾斜 ②端面弯曲 (5)光纤种类不同对耦合损耗的影响 ①芯径不同 ②折射率不同: 2)单模光纤和单模光纤直接耦合的损耗 (1)离轴和轴倾斜引起的损耗 (2)两光纤端面间的间隙引起的耦合损耗 (3)不同种类光纤引起的耦合损耗 2.2.2 光网络常用无源及有源光纤器件 属于有损耗器件:光连接器、光耦合器、光开关、光衰减器、光隔离器、光滤波器、波分复 用/解复用器等。1.熔锥型单模光纤光分/合路连接器2.磨抛型单模光纤定向耦合 3.光开关 1)机械式光开关(1)微光机电系统光开关微光机电系统MEMOS (2)金属薄膜光开关 2)电光效应光开关 4.掺杂光纤激光器与放大器(略) 5.光纤放大器(略) 2.3 光网络技术 2.3.2 成网技术 复用技术:光波分复用(OWDM )、光时分复用技术(OTDM )、光码分复用技术(OCDMA )、 光频分复用技术(OFDM )、光空分复用技术)OSDM )、光副载波复用技术(OSCM )。名词的英文全称。1.光纤时分复用网络 时分复用(time domain multiplexing )——依时间顺序依次访问一系列传感器。 2.光纤频分复用网络 频域复用:调制频域复用(modulation frequency domain multiplexing, MFDM ) 波分复用(wavelength division multiplexing, WDM ) 1)调制频域复用 2)波分复用 3.光纤空分复用网络 如同打电话方式,一对电缆只供一对电话使用。长距离上用一对电缆同时供许多人通话——复用。如10芯×组×10带光缆 =5120芯,每缆可传1000Tb/s 2.4 光传感网实例——光纤光栅在传感中的应用 光纤光栅在使用中的问题: ① 波长微小位移检测(设备昂贵) ②宽光谱、高功率光源(不易获得)③光检测器波长分辩率的提高(直接关系到光纤光栅灵敏度的发挥) ④交叉敏感的消除(被测量和非被测量之间的相互影响) ⑤光纤光栅的封装(写光栅时去除了保护层,机械强度变差)⑥光纤光栅的可靠性(机械和光学特性抗拉、抗弯、反射率、透射率规定时间内无变化) ⑦光纤光栅的寿命(光栅在高温下会发生退火) 2.4.2 光纤光栅的传感网络 1.光纤光栅的波分复用 2.光纤光栅的时分复用 3.光纤光栅的时分复用和空分复用(略) 4.光纤光栅的空分复用和波分复用(略) 5.光纤光栅的空分、波分和时分复用的组合布 局 第三章 光电传感器中的光纤技 3.4 光纤的损耗 3.5 光纤的色散 (1)多模色散(群速不同) (2)波导色散(模的群速随波长变化) (3)材料色散(材料本身的色散)4)偏振(模)色散(轴不对称HE11x 模与HE11y 正交,光纤的轴不对称,两模群延迟不同。 3.6 光纤的耦合技术(略) 3.7 光纤中光波的控制技术 3.7.1 光纤偏振器 1.光纤偏振控制器 光纤中可利用光弹效应改变偏振态。光纤弯曲时,由应力作用引起折射率的变化 2 133.0? ? ? ??-=?-?=R a n n n y x δ 快轴——弯曲平面内 慢轴——垂直于弯曲平面。 当 m NR n λ πδ= 2|| ( 、、、321=m ),为 m /λ波片。例:m μλ63.0=的红 光, m a μ5.62=的光纤绕成mm R 6.20=的一个圈时,成为4/λ波片,两圈时,成为2/λ波片。 2.保偏光纤偏振器

光纤传感器的位移特性实验

实验二十五光纤传感器的位移特性实验 一、实验目的 了解光纤位移传感器的工作原理和性能。 二、实验内容 用传光型光纤测位移。 三、实验仪器 光纤传感器、光纤传感器实验模板、数显单元、测微头、直流源、反射面(用电涡流传感器的铁测片做反射面)。 四、实验原理 本实验采用的是传光型光纤,它由两束光纤混合后,组成Y型光纤,半园分布即双D 型一束光纤端部与光源相接发射光束,另一束端部与光电转换器相接接收光束。两光束混合后的端部是工作端亦称探头,它与被测体相距X,由光源发出的光纤传到端部出射后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,而光电转换器转换的电量大小与间距X有关,因此可用于测量位移。 五、实验注意事项 1、实验时注意光纤探头与反射面保持平行,调整光纤探头使其位于反射面的圆心上。 2、实验前应用纸巾擦拭反射面,以保证反射效果。 六、实验步骤 1、根据图9-1安装光纤位移传感器,二束光纤插入实验板上的座孔上。其内部已和发光管D及光电转换管T 相接。 图9-1 光纤传感器安装示意图 2、将光纤实验模板输出端VO1与数显单元相连,见图9-2。

图9-2光纤传感器位移实验接线图 3、调节测微头,使探头与反射面圆平板接触。 4、实验模板接入±15V电源,合上主控台电源开关,调RW使数显表显示值最小,然后微调测微头使数显表显示为0.000(电压选择置2V档)。 5、旋转测微头,被测体离开探头,每隔0.05mm读出数显表值,将其填入下表:(实验结论:1、本实验每隔0.05mm是相对位置,起始值看做0.05mm即可,无需从测微头上读绝对位置值。每旋转0.05mm,输出的电压的增量应该大致相等。2、由于学生做实验可能不能正确的找到起始点,导致采集的数据不在线性范围内,从而影响数据采集的线性度,可以让学生从选取的起始点开始计数,多计几组数据,然后选取线性度较好的十组数据,填入下表。3、如果只看本实验的线性情况,可选取十组较好的数据填入下表,若要看到光纤传 感器的整个变化趋势,则至少应该记录25组数据,其V—X曲线见思考题答案) 6、根据上表数据,作光纤位移传感器的位移——输出曲线图。计算在量程1mm时灵敏度和非线性误差。 七、实验报告 在实验报告中填写《实验报告二十五》,详细记录实验过程中的原始记录(数据、图表、 波形等)并结合原始记录进一步理解实验原理。 八、实验思考题 根据实验步骤(6)中的光纤位移传感器的位移——输出曲线图,分析其原理。 答:由光源发出的光经发射光纤传输后入射到被测物表面,经反射体反射后再经接收光 纤接收并传输至光敏元件。由于光纤有一定的数值孔径,当光纤探头紧贴反射体时,发射光 纤中的光不能发射到接收光纤中,因此接收光纤中无光信号;当光纤探头逐渐远离被测体时, 接收光纤中的光强越来越大,当整个接收光纤被全部照亮时,接收光强达到峰值;当反射体 继续远离时,将有部分反射光没有反射进Y型光纤束,接收到的光强逐渐减小。位移特性 如下图所示。

相关文档
相关文档 最新文档