文档库 最新最全的文档下载
当前位置:文档库 › 地下结构震害类型及机理研究

地下结构震害类型及机理研究

地下结构震害类型及机理研究
地下结构震害类型及机理研究

地下结构震害类型及机理研究

王秀英 刘维宁 张 弥

(北京交通大学土木建筑工程学院)

学科分类与代码:62011030

【摘 要】 地下结构由于受到周围岩体或土体的约束,一直被认为具有良好的抗震性能。但是,随着地下结构数量的增多和地下结构震害的频繁出现,地下结构的震害问题日益受到世界各国地震工作者的高度重视,笔者通过对大量地下结构震害的分析研究,对地下结构震害进行了分类,并研究了震害的影响因素及机理,以期为地下结构的抗震设计提供科学依据和有益的参考。

【关键词】 地下结构 震害类型 震害机理

Study on the Categorization and Mechanism of Seismic Damage

of Underground Structures

W ang Xiuying Liu Weining Zhang Mi

(School of Civil&Architecture Engineering,Beijing Jiaotong University)

Abstract: Underground structures,being confined by the surrounding rock or soil,have long been assumed to have good anti2seismic ability.However,as the number of underground structures and frequency of seismic damage increase, earthquake professionals all over the world are more and more concerned about this problem.After investigating the seis2 mic damage of many underground structures,the author suggests a method for categorizing these underground damage, and the influential factors and mechanism of seismic damage are studied.All these would provide scientific criteria and beneficial references to the anti2seismic design of the underground structures.

K ey w ords: Underground structures Categorization of Seismic Damage Mechanism of Seismic damage

1 引 言

地下结构由于受到周围岩体或土体的约束,一直被认为具有良好的抗震性能(相对于地面结构而言),因而在很长时期之内,对地下结构的震害问题远不如地面结构那样受到重视。但是随着地下结构数量的增多和地下结构震害的频繁出现,地下结构的震害问题日益受到世界各国地震工作者的高度重视,特别是1995年日本阪神大地震后,由于神户市地铁结构发生严重破坏,引起众多地震学者的关注,使地下结构震害研究出现了前所未有的热潮。

笔者通过对大量地下结构震害的分析研究,对地下结构震害进行了分类,并研究了震害的影响因素及机理,以期为地下结构的抗震设计提供参考。

2 地下结构震害的主要类型

2.1 概 述

20世纪60年代以来,从我国地震历史的震害资料可知,我国约有1582km的铁路曾经受了7~11度地震的考验,当地震烈度为7度时,就有隧道发生轻微破坏的先例,而且洞身破坏极难修复,中断行车,造成巨大经济损失。

1983年5月19日,震中距上海市150km以外的洋面上发生里氏6级地震时,上海市打浦路管片隧道出现了5条可见裂缝,泥水挤入隧道与竖井的结合部,经及时堵塞,才未造成祸患。

1995年在日本阪神大地震中,地铁结构发生了很大破图1 神户高速铁道大开站的震害情况

坏,车站结构破坏尤为明显。

图1所示为神户高速铁道大开车站的震害情况,该车站用明挖法于1964年建成,中间柱(B400×D1000mm,3.5m)

第13卷第11期2003年11月

中国安全科学学报

China Safety Science Journal

Vol.13No.11

Nov.2003

约30根完全破坏,顶板下沉约3m ,隧道断面变成M 形。隧道的中柱上端或下端混凝土剥落,钢筋弯曲。在线路方向及垂直方向上,轴向钢筋鼓出,箍筋也有许多破坏的,在侧壁的隅角部分也发生裂缝及变位但无显著破坏。

在阪神大地震中,山岭隧道也遭到了严重的破坏。主要是侧壁的压溃裂纹及拱部剪切剥落及环向开裂。许多建于

20世纪60年代的隧道,由于设计时未考虑浅埋地层变形的影

响,隧道结构的变形性能不能承受这次大地震,拱顶部分发生较严重的剪切裂纹及剥落,隧道横断面方向发生混凝土片的剥落。如山阳新干线的六甲隧道,长16235m ,横切六甲断层系,地震后隧道的水泥内壁有众多裂缝,裂缝长达数十米的地方有3处,隧道的检查通道在百米范围内出现裂缝。

1999年9月21日,我国台湾省台中地区发生了里氏7.3级地震,那次大地震造成2375人死亡,10000多人受

伤,30000多座建筑物倒塌。地震发生后,通过对台中地区

57座山岭隧道进行调查,发现除了8座隧道未受损坏外,其

余49座都有不同程度的损坏,而且表现出不同形式的损坏,如衬砌开裂、衬砌剥落、洞门破坏、地下水涌入、钢筋鼓出及弯曲、衬砌移位、底板开裂及由于边坡破坏造成的隧道坍塌。

地下管线的震害也是一个不可忽视的问题,例如:

1975年海城地震中,营口市150多公里供水管道破坏372处,平均震害率为24处/公里,经一个多月抢修才恢复正

常供水。

1976年唐山地震中,唐山市给水系统全部瘫痪,秦京输

油管道发生5处破坏。

1985年墨西哥地震中,地震引起不同质材的各种管道

均遭到破坏(其中包括钢管道),其中煤气干管断裂引起煤气爆炸,市政管网煤气管道断裂引起火灾,且因供水管网损坏,救火很困难。

1995年日本阪神地震中,神户市及阪神地区几座城市

的供水系统和污水排放系统受到严重破坏,其中神户市供水系统完全破坏并丧失其基本功能。

2.2 地下结构震害的主要表现形式

通过对地下结构的震害进行调查分析,归纳出地下结构震害的主要表现形式有地下管道的破坏和隧道的破坏。

2.2.1 地下管道的破坏形式

地下管道主要由管段和管道附件(弯头、三通和闸门等)组成,地震时一般有3种基本破坏类型:

①管道接口破坏;②管段破坏;

③管道附件以及管道与其他地下结构连接处破坏。其中以管道接口(或接头)破坏居多。与管段本身强度相比,接口是抗震薄弱环节。管道接口通常分刚性接口和柔性接口两种。其中刚性接口有焊接、丝扣连接等,采用橡胶圈的承插式接口和法兰连接接口属于柔性接口。震害表明,柔性接口的震害率明显低于刚性接口,其原因是前者可以产生较大的变形,具有良好的延性。接口破坏形式有接头拉开(或拔

脱)、松动、剪裂、坍塌等。管段的破坏形式有管段开裂(纵向裂缝、环向裂缝和剪切裂缝等)、折断、拉断、弯曲、爆裂,管体结构坍塌,管道侧壁内缩,管壁起皱等。管道破坏率及破坏形式因管道材料、接头形式等管道本身特点而有差异,并与周围场地土壤条件有关。

2.2.2 隧道的破坏形式

(1)衬砌的剪切移位。当隧道建在断层破碎带上时,常

常会发生这种形式的破坏。在“9?21”地震中,位于断层带上的一座输水隧道就发生了这种破坏。由于断层的移位,该输

水隧道在进水口下游180m 处发生了剪切滑移,如图2所示,隧道在竖直方向分开4m ,在水平方向分开

3m ,整个隧道发生严重破坏。

图2 衬砌剪切移位图

(2)边坡破坏造成的隧道坍塌,如图3所示。

图3 边坡破坏造成的隧道坍塌

(3)衬砌开裂。在地震中,衬砌开裂是最常发生的现

象。这种形式的衬砌破坏又可分为纵向裂损(见图4)、横向裂损(见图5)、斜向裂损(见图6)、

斜向裂损进一步发展所致的环向裂损(见图7)、底板裂损(见图8)以及沿着孔口如电缆槽、避车洞或避人洞发生的裂损(见图9)。

图4 衬砌纵向裂损图

(4)边墙变形。如图10所示为由于显著的边墙向内变

?

65?中国安全科学学报China Safety Science Journal

第13卷

2003年

图5 衬砌横向裂损图

图6 衬砌斜向裂损图图7 衬砌环向裂损图

图8 底板裂损图

图9 孔口附近衬砌裂损图图10 边墙变形形造成的隧道破坏。这种变形可以造成边墙衬砌的大量开裂,甚至导致边沟的倒塌。

2.3 地下结构震害的主要类型

通过对地下结构震害表现形式及具体发生条件的研究,人们将因地震造成的地下结构破坏分为两种类型:

一种是由于围岩变位而在地下结构中产生强制变形所引起的破坏,如衬砌的剪切移位;

另一种是结构在地震惯性力作用下而产生的破坏。

其中,第一种类型的破坏多数发生在岩性变化较大、断层破碎带、浅埋地段或隧道结构刚度远大于地层刚度的围岩中;第二种类型的破坏多数发生在洞口附近,这时地震惯性力的作用表现的比较明显。

有时,在地下结构的洞口附近和浅埋地段可能还会受到上述双重类型的破坏作用。前述神户大开车站的破坏即属此种,由于竖向地震作用比较大,车站中部呈A字形向上顶起,随之的反作用力将车站顶板向下压,形成V形沉陷,结果中柱承受不了由此而产生的荷载,同时又由于地震时地层产生水平振动,地铁车站随之振动,而车站顶、底板处的地层水平位移不一致,在车站的顶、底板处产生相对位移,使中柱在剪切力和弯矩的作用下剪切破坏,两方面的综合作用使得柱子丧失承载力,导致顶板塌陷。

3 地下结构震害的机理分析

现场调查表明,地下结构震害形态的差异与地震强度、震源距、地震波的特性、地震力的作用方向、地质条件、衬砌条件、隧道与围岩的相对刚度、施工方法、施工的难易程度以及施工过程中是否出现坍方等有密切关系。根据以往地下结构在地震中所表现的行为可知,地震的主要或次要效应均可使隧道结构遭受破坏。这些效应包括两个方面:

(1)围岩失稳,主要指围岩的变形、差异位移、震害和液化;

(2)地震惯性力,主要指强烈的地层运动在结构中所产生的惯性力所造成的破坏。

因此,围岩失稳和地震惯性力作用是地下结构震害的两种主要原因。

对于同一程度的大地摇动而言,如果仅论及结构的惯性力,地下结构要比地面结构安全的多。这是因为地下结构处于周围地层的约束之中,并与地层一起运动。因而,地下结构在地震运动过程中,仅仅按照其相对于地层的质量密度和刚度分担一部分地震变形和荷载,而不像地面结构那样,承担全部的惯性力。

就地下结构的横截面而言,在岩石地层中,由于地下结构的质量密度和岩石相比并没有显著差异,所以,地下结构洞身遭受地震惯性力破坏的发生概率较低,而处于地层约束较弱的洞口及浅埋地段,破坏发生的概率一般较高。洞身结构之所以有惯性力破坏的现象发生,主要是由于地下结构与地层之间出现了较大的空隙而消弱了地层的约束作用,因而

?

7

5

?

第十一期 王秀英等:地下结构震害类型及机理研究

实际上相当于提高了衬砌结构的相对质量密度,造成其分担的地震惯性力超过了极限。

因此,实验和实测都表明回填密实有利于结构抗震。在土质地层中,由于地下结构的刚度一般比地层大,往往形成对地层变形的约束。因此,衬砌刚度越大,其吸收的变形能就越大,所以地下结构的震害往往表现为由于地层的地震动变形所致。故此得出结论,衬砌越柔,越有利于抗震,这一点在铁道部科学研究院关于强地震作用下铁路隧道衬砌耐震性的试验研究中得到了充分的验证。于是围岩自身的稳定性往往成为控制因素,因此,在地下结构抗震设计中,只验算地下结构本身的抗震稳定性是不够的,还需要验算围岩自身的地震稳定性。

就隧道结构的纵向而言,隧道是一种长线形结构物,地震波的相位衍生应力和变形在隧道轴线方向上会发生很大变化,这实际上构成了隧道结构破坏的重要方面,而且表现为埋深越浅,破坏作用越显著。这可解释为,假设隧道和围岩在地震波通过时一起运动,且随着地震波的传播,振动能量沿隧道轴线从一点移动到另一点,则在隧道结构内部同时产生纵向的拉压和横向的剪切两种作用,如果这两种作用的结果超过隧道本身的抗力极限,那么结构自然就会产生破坏。

需要强调指出的是:这种地震破坏作用往往与惯性力的相关性不明显。以往的研究表明,隧道结构抵抗这种相位衍生应力和变形的能力,并不因结构体的加强而有很大改变。所以,隧道结构的抗震设计原则应当考虑这种破坏作用,使设计的结构应有足够的韧性以吸收地震所产生的相位衍生应力和相对变位,同时又不损害其承受静载的能力。一味加强结构,试图让结构去抵抗相当大的强制变位所产生的内力是不现实的。

4 小 结

地下结构的震害表现形式多样,影响因素较多,机理复杂,人们对其认识的程度也在不断发展之中。因此,要作好地下结构的抗震研究,笔者认为需要进行以下几方面的工作:

(1)建立既有地下结构的基本信息库。包括地下结构

所处位置的地形条件、地质条件、衬砌条件、隧道与围岩的相对刚度、施工方法、施工的难易程度以及施工过程中是否出现坍方等。建立该数据库可以使人们对震害的评价更准确、客观,而且也便于进行震害机理分析。

(2)建立统一的地下结构抗震设计体系。地下结构的

震害原因不同于地面结构,主要表现为围岩失稳破坏。也就是说,对于地下结构,其抗震能力的重要问题在于围岩的地震变形和结构对于这种变形的适应性。目前,国家不同行业的地下结构采用的抗震设计方法也不同:例如,核电站抗震规范规定,核电站地下结构应采用反应位移法或多点输入的近似地震动力分析进行检算;而铁路隧道的抗震设计一直沿用地震惯性模型进行抗震设计,这对于明洞和隧道的洞口部位比较合适,但对于隧道洞身部位,已经不能反映地震破坏的主要原因。因此,充分研究地下结构的震害机理,建立统一的地下结构抗震设计体系已势在必行。

(3)笔者结合对震害形式和机理的研究,认为地下结构

的抗震设计应该分3个部分考虑:

①断层破碎带处的抗震设计;②洞口和浅埋段的抗震设计;③洞身结构的抗震设计。

(收稿:2003年2月;作者地址:北京市西外上园村;北京交通大学土木建筑工程学院;邮编:100044)

参考文献

1 胡聿贤.地震工程学.北京:地震出版社,1988

2 骆文海.强地震作用下铁路隧道衬砌耐震性研究.铁道科学研究院研究报告,19903 周德培.地铁抗震设计准则.世界隧道,1995(2):36~45

4 刘维宁等.高速铁路桥隧结构抗震措施研究.北方交通大学研究报告,1998

5 W.L.Wang ,etal.Assessment of damage in mountain tunnels due to the Taiwan Chi 2Chi Earthquake.Tunnelling and un 2derground space technology ,2001(16):133~150

6 郑永来,杨林德.地下结构震害与抗震对策.工程抗震,1999(4):23~28

7 王瑞民,罗奇峰.阪神地震中地下结构的破坏现象浅析.灾害学,1998(2):63~66

?

85?中国安全科学学报China Safety Science Journal

第13卷

2003年

人防地下室口部结构设计

本文针对人防地下室口部,综合分析了我院及几个人防审图单位近年来人防地下室施工图设 计中发现的问题,就扩散室以及出入口常见问题进行分析,并针对这些问题给出解决建议, 以利于提高人防地下室结构设计的质量。 1 出入口 人防地下室的口部包括出入口、通风口以及其他孔口( 排烟口、给排水孔口、电气孔口等) 。其中出入口设计是人防工程口部防护和结构设计中的重要内容。 1. 1 防倒塌棚架梁箍筋间距问题 1) 常见问题。 防倒塌棚架梁箍筋间距统一按照大于等于150mm 考虑; 2) 原理分析。 从防护角度来说,防倒塌棚架顶板承受两个方面的荷载,一部分是由于房屋倒塌产生的垂 直等效静荷载,第二部分是空气冲击波产生的水平等效静荷载。由于要考虑这两部分荷载的 作用,防倒塌棚架梁的构造要求应该同人防地下室其他部分梁。根据 GB 50038—2005《人民防空地下室设计规范》第4. 11. 10 条,加密区其箍筋间距不宜大于 h0/4(h0为梁截面有效高度) ,且不宜大于主筋直径的 5 倍[3]。 同时京施审专家委房建[2015]结字第 1 号文件,防倒塌棚架也要求按照对应抗震等级的 抗震措施设计[4],而在 GB 50011—2010《建筑抗震设计规范》表 6. 3. 3 也有类似要求[5]。 3) 设计建议。 对出入口的防倒塌棚架尽量采用不小于400 mm 的梁高,同时注意钢筋直径不小 于 20 mm。为配合这些调整,可以适当加大防倒塌棚架的柱距。 1. 2 楼梯式主要出入口四周墙体荷载取值及构造要求问题 1) 常见问题。 楼梯式主要出入口周围墙体不考虑人防等效静荷载和相关构造要求; 2) 原理分析。 随着城市地下空间需求越来越高,人防地下室在地下空间中的位置也呈现多样性,而地下 空间使用情况的多样性造成楼梯周围墙体情况的多样性,有时出现非人防地下室与人防地下 室共用楼梯的情况。 对于与土紧邻的墙体,由于内压( 空气冲击波)与外压( 土中压缩波) 的作用时间、大小均难 于用简单的方法计算确定,为安全计,规范规定可不考虑内压作用,按土中压缩波产生的爆 炸动荷载计算[3]。对于与普通地下室相邻的墙体,只考虑进入主要出入口内的空气冲击 波的作用; 对于在普通地下室设有洞口,普通地下室与人防地下室共用楼梯间的情况,虽然 空气冲击波通过洞口会有扩散作用,但由于无相关试验依据,在实际设计过程中对空气冲击 波荷载不做折减。 3) 设计建议。 楼梯式主要出入楼四周墙体,当与土体直接接触时,该墙全高按照土中外墙考虑人防等效 静荷载;当与普通地下室相邻,不论是否在该墙开有洞口均按照临空墙确定其等效静荷载; 相 应的楼梯式主要出入口周围墙体均要遵守人防相关构造要求。 1. 3 钢结构防护密闭门荷载导算的问题 1) 常见问题。

工程结构设计原理试卷及答案

()成人高等教育本科课程考试试卷 (A)卷 一、单项选择题 1.配螺旋箍筋的钢筋混凝土柱,其其核心混凝土抗压强度高于单轴混凝土抗压强度是因为【】 A. 螺旋箍筋参与混凝土受压 B. 螺旋箍筋使混凝土密实 C. 螺旋箍筋横向约束了混凝土 D. 螺旋箍筋使纵向钢筋参与受压更强 2.钢筋混凝土轴心受拉构件极限承载力Nu有哪项提供【】 A. 混凝土 B. 纵筋 C. 混凝土和纵筋 D. 混凝土、纵筋和箍筋 3.混凝土在空气中结硬时其体积【】 A. 膨胀 B. 收缩 C. 不变 D. 先膨胀后收缩 4.两根适筋梁,其受拉钢筋的配筋率不同,其余条件相同,正截面抗弯承载力Mu【】 A. 配筋率大的,Mu大 B. 配筋率小的,Mu大 C. 两者Mu相等

D. 两者Mu接近 5.钢筋混凝土结构中要求钢筋有足够的保护层厚度是因为【】 A. 粘结力方面得考虑 B. 耐久性方面得考虑 C. 抗火方面得考虑 D. 以上3者 6.其他条件相同时,钢筋的保护层厚度与平均裂缝间距、裂缝宽度(指构件表面处)的关系是【】 A. 保护层愈厚,平均裂缝间距愈大,裂缝宽度也愈大 B. 保护层愈厚,平均裂缝间距愈小,裂缝宽度也愈小 C. 保护层愈厚,平均裂缝间距愈小,但裂缝宽度愈大 D. 保护层厚度对平均裂缝间距没有影响,但保护层愈厚,裂缝宽度愈大 7.钢筋混凝土梁截面抗弯刚度随荷载的增加以及持续时间增加而【】 A. 逐渐增加 B. 逐渐减少 C. 保持不变 D. 先增加后减少 8.减小预应力钢筋与孔壁之间的摩擦引起的损失σs2的措施是【】 A. 加强端部锚固 B. 超张拉 C. 采用高强钢丝 D. 升温养护混凝土 9.预应力混凝土在结构使用中【】 A. 不允许开裂 B. 根据粘结情况而定 B.C. 有时允许开裂,有时不允许开裂 D. 允许开裂 10.混凝土结构设计中钢筋强度按下列哪项取值【】 A. 比例极限 B. 强度极限 C. 弹性极限 D. 屈服强度或条件屈服强度

工程结构荷载与可靠度设计原理_复习资料

荷载与结构设计原理总复习题 一、判断题 1.严格地讲,狭义的荷载与直接作用等价,广义的荷载与间接作用等价。(N) 2.狭义的荷载与直接作用等价,广义的荷载与作用等价。(Y) 3.广义的荷载包括直接作用和间接作用。(Y) 4.按照间接作用的定义,温度变化、基础不均匀沉降、风压力、地震等均是间接作用。(N) 5.由于地震、温度变化、基础不均匀沉降、焊接等引起的结构内力变形等效应的因素称为间接作用。(Y) 6.土压力、风压力、水压力是荷载,由爆炸、离心作用等产生的作用在物体上的惯性力不是荷载。(N) 7.由于雪荷载是房屋屋面的主要荷载之一,所以基本雪压是针对屋面上积雪荷载定义的。(N)8.雪重度是一个常量,不随时间和空间的变化而变化。(N) 9.雪重度并非一个常量,它随时间和空间的变化而变化。(N) 10.虽然最大雪重度和最大雪深两者有很密切的 关系,但是两者不一定同时出现。(Y) 11.汽车重力标准是车列荷载和车道荷载,车列荷 载是一集中力加一均布荷载的汽车重力形式。 (N) 12.烈度是指某一地区遭受一次地震影响的强弱程度,与震级和震源深度有关,一次地震有多个烈度。(Y) 13.考虑到荷载不可能同时达到最大,所以在实际工程设计时,当出现两个或两个以上荷载时,应采用荷载组合值。(N) 14.当楼面活荷载的影响面积超过一定数值需要 对均布活荷载的取值进行折减。(Y) 15.土的侧压力是指挡土墙后的填土因自重或外 荷载作用对墙背产生的土压力。(Y) 16.波浪荷载一般根据结构型式不同,分别采用不同的计算方法。(Y) 17.先张法是有粘结的预加力方法,后张法是无粘结的预加力方法。(Y) 18.在同一大气环境中,各类地貌梯度风速不同,地貌越粗糙,梯度风速越小。(N)19.结构构件抗力R是多个随机变量的函数,且近似服从正态分布。(N) 20.温度作用和变形作用在静定结构中不产生内力,而在超静定结构中产生内力。(Y) 21.结构可靠指标越大,结构失效概率越小,结构越可靠。(Y) 22.朗肯土压力理论中假设挡土墙的墙背竖直、光滑、填土面水平无超载。(Y) 23.在朗肯土压力理论的假设中,墙背与填土之间既无摩擦力也无剪力存在。(Y) 24.在朗肯土压力理论的假设中,墙背与填土之间虽然无摩擦力,但仍有剪力存在。(N) 25.土的自重应力为土自身有效重力在土体中引起的应力。(Y) 26.不但风的作用会引起结构物的共振,水的作用也会引起结构物的共振。(Y) 27.平均风速越大,脉动风的幅值越大,频率越高。(N) 28.风压是指风以一定的速度向前运动受到阻塞时对阻塞物产生的压力。(Y) 29.地震作用中的体波可以分为横波和纵波,两者均可在液体和固体中传播。(N) 30.如果波浪发生破碎的位置距离直墙在半个波 长以内,这种破碎波就称为近区破碎波。(Y)31.远区破碎波与近区破碎波的分界线为波浪破 碎时发生在一个波长的范围内。(N) 32.在实际工程设计时,当出现可变荷载,应采用 其荷载组合值。(N) 33.对于静定结构,结构体系的可靠度总大于或等 于构件的可靠度。(N) 34.对于超静定结构,当结构的失效形态不唯一 时,结构体系的可靠度总小于或等于结构每一失效形态对应的可靠度。(Y) 35.结构设计的目标是确保结构的承载能力足以 抵抗内力,而变形控制在结构能正常使用的范围内。(Y) 36.对实际工程问题来说,由于抗力常用多个影响 大小相近的随机变量相乘而得,则其概率分布一般来说是正态的。(N) 37.结构可靠度是指结构可靠性的概率度量,是结 构在规定的时间内,在规定的条件下,完成预定功能的概率。

隧道震害特点、分析方法及减震措施

隧道震害特点、分析方法及减震措施 摘要: 目前,我国地铁建设迅速发展,了解地铁区间隧道的抗震性能十分必要,本文将综合论述地铁区间的震害特点及减震措施,并简要阐述目前地铁区间隧道地震反应分析的方法,提出存在问题,以期更好地为地铁结构设计及抗震设防提供依据。 关键词:地铁,地震,分析方法,减震 0引言 地下铁道是城市现代化交通工具,且是战时重要的人防工程,虽然地下工程结构有周围土体对变形位移的约束作用,使其在受震时所产生的振幅大为减少,受震害的程度较地面建筑为轻,但强震给地下结构带来的影响不容忽视,这一点已被1995年日本阪神大地震所证实,日本这次地震使得地铁区间隧道及地铁车站受到严重破坏,甚至出现地铁车站完全倒塌的先例,地铁结构一旦发生破坏由于其修复困难,往往造成严重的经济损失,所以加强研究地下结构的抗震性能,对地下结构地震反应分析方法及减震措施提出响应的建议十分必要,本文将针对这些问题进行初步探讨。 1 地铁区间隧道震害特点 地铁区间隧道属于线性结构,在地震荷载的作用下,由于周围介质的存在,其动态反应会呈现出与地面建筑不同的特性,主要表现为: (1)地铁隧道的振动变形受周围介质的约束作用明显,受震害程度较轻,结构的动力反应一般不明显表现出自震特性,特别是低阶模态的影响。 (2)地震荷载的作用下,地铁区间隧道和其周围介质一起产生运动,当结构存在明显惯性或周围介质与结构间的刚度失配时,结构会产生过度变形而破坏。 (3)地铁区间隧道的震害多发生在地质条件有较大变化的区域,如土质由硬质到软质的过渡

带,该地带地层间的相对位移较大直接导致结构发生破坏,相反如果地质条件均匀,即便震级较大,结构也较安全。铁路总监 (4)地铁区间隧道如果穿过地质不良地带,如断层、沙土液化区等也易遭震害。 (5)结构断面形状及刚度发生明显变化的部位,如隧洞进出口,隧洞转弯部位及两洞相交部位均为抗震的薄弱环节。 (6)区间隧道的破坏形式主要是弯曲裂缝、竖向裂缝,及混凝土脱落,钢筋外露等。 2 地铁区间隧道地震反应分析方法 2.1地震反应分析方法 以上震害特点是通过实际的震害分析得出的,在进行地铁抗震设计时,十分有必要通过数值分析了解其具体的动力行为,如何对地铁区间隧道及其周围土体这一结构复合系统进行地震反应分析是很值得探讨的一个问题。通过网上检索该方面研究很少。若地下结构物的下方存在这一个实际基岩层,或在相当深处存在这一个假想的基岩层,则认为基岩面以上的介质及结构在地震力作用下,对于基岩层面发生相对运动,整个体系由于基岩面的运动而引起震动。由于地铁区间隧道沿纵向较长,分析其动力响应问题可简化为平面应变问题,首先进行体系离散,根据分析方法的不同,可将体系离散成两种计算网格,一种是使用八结点平面等参元对区间隧道结构及周围土体进行离散,如图1所示;第二种方法用八结点平面等参元与六结点单向无限元及四结点双向无限元耦合进行分析,计算网格如图2所示,左、右、下边界无限延伸,上边界为自由边界。根据达朗贝尔原理,建立体系的运动方程为式中,[M]、[K]分别为体系的总体质量矩阵和总体刚度矩阵,由各单元的质量矩阵和刚度矩阵组合而成;体系的单元刚度矩阵为

地下室人防结构施工

鲁JJ-005 工程名称午山馨苑公共租赁住房及商业工程施工单位中建三局集团有限公司 交底部位地下室结构工序名称人防结构施工 交底提要: 午山馨苑公共租赁住房及商业工程地下室人防结构施工技术交底 交底内容: 一、结构工程 1、不得采用冷轧带肋钢筋、冷拉钢筋等冷加工处理的钢筋,钢筋除锈不能冷拉。 2、底板、侧墙、顶板双层钢筋网片之间的拉结钢筋应梅花形布置(见下图),并拉在纵筋与横筋的结点处,两处弯钩为135°,且绑扎牢固。 3、底板、侧墙、顶板钢筋的排距一定达到设计要求(允许偏差5mm)。 4、模板对拉固定与对拉螺杆的防水、密封处理。防空地下室的外墙、临空墙、密闭墙、单元隔墙 等墙体固定模板的对拉螺杆不能使用套管及混凝土预制件。外墙上使用的对拉螺杆中间要焊上方形止水钢板(三防段处为密闭肋),止水钢板(密闭肋)两面要满焊,其焊缝应饱满、均匀、严密。方形钢板尺寸为80*80mm。 5、后浇带不能穿过三防段和人防门框;施工缝不能留在三防段处;三防段处墙体和顶板需整 体浇筑混凝土。施工缝宜留成企口缝,如果留平缝则需设置止水钢板。止水钢板留设区域两侧拉接钢筋应与钢板焊接。

鲁JJ-005 工程名称午山馨苑公共租赁住房及商业工程施工单位中建三局集团有限公司 交底部位地下室结构工序名称人防结构施工 交底提要: 午山馨苑公共租赁住房及商业工程地下室人防结构施工技术交底 钢筋与钢板焊接,焊接长度不小 于10d,双面焊接。 顶板上留设的伸缩缝不得影响防空地下室的防护密闭功能。染毒集水坑混凝土应一次浇筑到位。混凝土水箱不能在顶板上留施工洞,施工洞宜留设在墙上的人孔处,施工洞应按后浇带的做法,在墙上埋设止水钢板,做蓄水试验。 6、人防门上方的卧梁应锚入两侧的墙或柱内。 7、当矩形洞口边长大于300mm,圆形洞口直径大于300mm时,均要在洞口四周留设加强筋(严 格按照图纸要求设置)。 战时使用的混凝土水箱应随防空地下室主体的施工同步制作。除按照现行规范留置混凝土抗压强度试块和抗渗试块外,每个口部(风井、扩散室、除尘滤毒室、防毒通道、密闭通道) 须各留一组(抗压、抗渗)同条件和标养试块。 8、顶板中使用的箱体材料,须符合设计要求,并有相应的检测报告等证明文件。 9、防空地下室主体验收前,须对防空地下室进行结构抽检(超声回弹),单独出具检测报告。结构抽检(超声波回弹)选点要求:每1000㎡选一个点,且每个防护单元不少于3个点(一般情况下,人员掩蔽防护单元选3个点,物资掩蔽单元选4个点,电站选3个点),防倒塌楼梯(坡道)所对 的防护密闭门门框墙、单元隔墙防护密闭门门框墙为必选部位,选点方案须经项目责任监督员同意。 二、孔口防护工程 1、人防门框: (1)防护门框浇筑完混凝土后垂直度允许偏差为5mm,平整度允许偏差为2mm,所

结构设计原理计算方法

结构设计原理案例计算步骤 一、单筋矩形截面受弯构件正截面承载力计算 计算公式: ——水平力平衡 ()——所有力对受拉钢筋合力作用点取矩() ()——所有力对受压区砼合力作用点取矩()使用条件: 注:/,&& 计算方法: ㈠截面设计yy 1、已知弯矩组合设计值,钢筋、混凝土强度等级及截面尺寸b、h,计算。 ①由已知查表得:、、、; ②假设; ③根据假设计算; ④计算(力矩平衡公式:); ⑤判断适用条件:(若,则为超筋梁,应修改截面尺寸或提 高砼等级或改为双筋截面); ⑥计算钢筋面积(力平衡公式:); ⑦选择钢筋,并布置钢筋(若 ,则按一排布置); 侧外 ⑧根据以上计算确定(若与假定值接近,则计算,否则以的确定值作 为假定值从③开始重新计算); ⑨以的确定值计算; ⑩验证配筋率是否满足要求(,)。 2、已知弯矩组合设计值,材料规格,设计截面尺寸、和钢筋截面面积。 ①有已知条件查表得:、、、; ②假设,先确定; ③假设配筋率(矩形梁,板); ④计算(,若,则取); ⑤计算(令,代入); ⑥计算(,&&取其整、模数化); ⑦确定(依构造要求,调整); ⑧之后按“1”的计算步骤计算。 ㈡承载力复核 已知截面尺寸b、,钢筋截面面积,材料规格,弯矩组合设计值,

所要求的是截面所能承受的最大弯矩,并判断是否安全。 ①由已知查表得:、、、; ②确定; ③计算; ④计算(应用力平衡公式:,若,则需调整。令, 计算出,再代回校核); ⑤适用条件判断(,,); ⑥计算最大弯矩(若,则按式计算最大弯矩) ⑦判断结构安全性(若,则结构安全,但若破坏则破坏受压区,所以应以受压区控制设计;若,则说明结构不安全,需进行调整——修改尺寸或提高砼等级或改为双筋截面)。 二、双筋矩形截面梁承载力计算 计算公式: , ,()+() 适用条件: (1) (2) 注:对适用条件的讨论 ①当&&时,则应增大截面尺寸或提高砼等级或增加的用量(即 将当作未知数重新计算一个较大的);当时,算得的即为安全要 求的最小值,且可以有效地发挥砼的抗压强度,比较经济; ②当&&时,表明受压区钢筋之布置靠近中性轴,梁破坏时应变较 小,抗压钢筋达不到其设计值,处理方法: a.《公桥规》规定:假定受压区混凝土压应力的合力作用点与受压区钢筋合力作用 点重合,并对其取矩,即 令2,并 () 计算出; b.再按不考虑受压区钢筋的存在(即令),按单筋截面梁计算出。 将a、b中计算出的进行比较,若是截面设计计算则取其较小值,若是承载能力复核则取其较大值。 计算方法: ㈠截面设计 1.已知截面尺寸b、h,钢筋、混凝土的强度等级,桥梁结构重要性系数,弯矩组合 设计值,计算和。 步骤: ①根据已知查表得:、、、、; ②假设、(一般按双排布置取假设值); ③计算;

地下建筑结构抗震性能分析 陈荣生

地下建筑结构抗震性能分析陈荣生 发表时间:2018-12-19T15:09:16.173Z 来源:《防护工程》2018年第27期作者:陈荣生[导读] 地下建筑抗震性能分析和地震计算方法的讨论起步较晚。在1995年日本神户地震之前,地下结构缺乏抗震设计。林州中天建设有限公司河南安阳 456550 摘要:随着城市化进程的推进,对地下结构的抗震性能提出了更高的要求。特别是与地上建筑结构相比,抗震性能优越,地震破坏较小,但与西方发达国家相比,我国地下建筑结构抗震设计理论仍处于相对落后的阶段。因此,本文将分析地下建筑结构的抗震性能。 关键词:建筑结构;抗震;安全性能引言:地下建筑抗震性能分析和地震计算方法的讨论起步较晚。在1995年日本神户地震之前,地下结构缺乏抗震设计。这是因为地下建筑结构不同于普通地面建筑结构,地下建筑结构受到围岩的约束,地震时没有明显的自震特征。这是因为地下建筑结构的动力响应主要受周围岩石介质相对变形的影响,而地下建筑结构也对周围岩石介质产生相对影响,从而形成土-结构相互作用现象。人们对地下结构的抗震性能缺乏了解和理解,对地下建筑的抗震性能并没有给予足够的重视。直到最近,地下建筑结构的抗震研究逐渐出现并逐步形成。在下面的文章中,我们将简要讨论地下建筑结构的抗震性能分析和地震计算方法。 1地下建筑结构的基本概述 1.1地下建筑结构的类型分析。现阶段,以实用功能为依据对地下建筑结构主要可分为七类,即:公共建筑、交通建筑、居住建筑、地下工业建筑、建筑综合体、防护建筑以及仓储建筑等。若以空间形状为依据,其又包括空间地下建筑与长线性地下建筑。若从地下结构型式分,其又可分为附建式结构、浅埋式结构、沉井法结构、地道式结构、连续墙结构等。 1.2地下建筑结构特点分析。作为地下结构的一部分,地下建筑结构可理解为在岩层或土层间建造的构筑物与建筑物。相比地面结构,地下建筑结构具有自然防护能力强、受外界因素影响小、地质条件影响大、施工条件特殊且需要进行照明、防排水、防潮以及通风等处理。 1.3地下结构震害特性分析。以我国1976年唐山地震所造成的地下人防工程破坏、1999年台湾地震中地下工程的破坏、1995年日本阪神地震地下商场、隧道以及通道等破坏为例,对地下结构震害的特性可总结为:第一,与地上结构相比,其地震破坏程度较低。第二,相比岩石中结构,土中的地下结构容易被破坏。第三,地下结构破坏程度主要受强震持时的影响。第四,受边坡失稳影响,地下隧道的地面处会受到严重破坏。 2地下建筑结构抗震性能分析方法研究 2.1地下建筑结构的结构设计问题分析。地下建筑结构设计过程中首先应考虑一定的问题,具体包括抗震等级、材料等级、活荷载值、地基承载能力、实际施工过程中需注意的事项以及相关信息是否通过施工图表达出来等。而且其作为基本的建筑类型,在结构安全等级与建筑物使用年限方面也应着重考虑,特别在地下建筑结构中所涉及的钢筋混凝土结构抗震等级以及建筑结构的地基基础等级等方面。同时,地下建筑结构设计过程中还需考虑地基土层与持力层的承载能力、地基土冻结深度以及不良地质作用等问题。另外,地下建筑结构设计过程中对结构构件的耐火等级也有具体的要求。实际施工过程中应注意遵循基本的规范要求并做好验收工作,避免因设计或施工存在的问题导致地下建筑结构抗震性能不高的情况发生[2] 2.2框架式地下建筑结构抗震性能分析方法 2.2.1.静力法。静力法的应用主要指对不断发展变化的地震力通过等代的静地震荷载进行代替,然后对地震荷载下结构内力利用静力计算模型综合分析。其中等代的地震荷载可分为结构自身的惯性力、主动侧向土压力的量以及洞顶处土柱的惯性力等。这种方式一般适用于对结构横断面的抗震计算。 2.2.2.地基抗力系数法。在对横断面进行地震反应分析过程中,常利用以互相作用计算模型为基础的地基抗力系数法,尤其对于全埋设或半埋设的地下建筑结构也比较适用。这种方式会将地下建筑结构岩土介质作用以多点压缩弹簧或剪切弹簧代替。具体计算主要分为三个步骤:第一,计算代替岩土介质的弹簧常数。第二,计算岩土地震变位。第三,计算地震结构地震反应。另外,计算岩土抗力弹簧时,所利用的方式主要为静力有限元法取其近似值,而对与应变幅度对应的地基弹性常数需根据地震反应进行分析。为确保孔洞上方承受的荷载保持均匀,需计算地基抗力基数,最后再利用弹簧常数替换地基抗力系数。 2.2. 3.反应变位法。据以往实践表明,地下建筑结构可能发生共振响应的概率很小,在计算过程中可将结构发生振动过程中产生的惯性力进行忽略。因此,对地震反应动力分析过程中可直接利用拟静计算公式,使土壤介质变位对地震效应起决定性作用。但利用反应变位法时,需对抗力系数、地震变位予以明确,这样才可保证计算结果更为合理。 2.2.4.有限元方法。对地下建筑结构进行抗震性能分析时,为使抗震特性、特殊位置抗震的研究更加深入,经常采用有限元方法。例如,对地下室转弯部位或地下室其他分支等都需利用这种方式。另外,模型边界需利用如叠加边界、透射边界以及粘性边界等能量传递边界[3]。 2.3衬砌整体式地下建筑结构抗震性能分析。衬砌整体式的结构抗震性能可从四方面进行概括:第一,在地震作用下,其构件内力与变形程度相比地面结构反应较小。但结构督办或底层梁等结构部位的内力相比地面结构较大。第二,结构自振周期与地震动卓越周期间不同的匹配程度对衬砌整体式地震响应会产生不同的影响。第三,地震响应受围岩性质影响较大,特别在围岩过于软弱的条件下,地震响应将逐渐增大,结构抗震性能也会随之降低。第四,地震响应会随洞室尺寸的增大而逐渐变大。因此,进行抗震设计过程中应从这四方面进行抗震性能的分析。 2.4衬砌分离式地下建筑结构抗震性能分析。衬砌分离式的结构相比同条件地面结构,地震变形及结构内力较小,一般抗震设计过程中只需以地面结构抗震水平便可实现结构的安全性。而在地震响应方面,其主要影响因素为土层的厚度,土层对不同基岩地震动很可能产生放大或衰减作用。同时,围岩性质对地震响应产生一定的影响,在围岩性质较为软弱的情况下,结构地震响应会逐渐增大。另外,区别于衬砌整体式结构,衬砌分离式结构受洞室尺寸影响较小。因此对衬砌分离式地下建筑结构的抗震性能进行分析过程中,也需综合考虑各方面的影响因素。

2020年人防地下室主体结构验收自评报告解读x

圣联香御公馆地下室人防工程 (主体结构) 评 报 告 编制人 常核人 常批人 安徽庐南建设投资集团建筑安装有限公司 2014年6月15日 —、工程概况 圣联香御公馆地下室工程位于合肥市习友路与香樟大道交口。 建设单位合肥远拓置业有限公司 设计单位广州智海建筑设计有限公司 勘察单位冶金工业部华东勘察基础工程总公司 监理单位安徽国合工程咨询有限责任公司 施工单位安徽庐南建设投资集团建筑安装有限公司 监督单位合肥市人民防空工程质量监督站 本地下室工程为二层,框架结构。总建筑面积 25216 nf,本工程耐火等级为一级,抗震设防烈度为七度。 本工程负二层地下室为人防工程,战时为附建式核 6级平战结合人防工程,平时功能为地下单层小汽车停车库,战时为二等人员掩蔽部。人防建筑面积4462平方米。战时划分为三个二等人员掩蔽部。防火等级为丙级。 本工程战时划分为三个二等人员掩蔽部,其中第一防护单元人防建筑面

积1457平方米,设计掩蔽700人,战时划分为三个抗爆单元;第二防护单元人防建筑面积1397平方米,设计掩蔽700人,战时划分为三个抗爆单元;第三防护单元人防建筑面积1608平方米,设计掩蔽750人,战时划分为四个抗爆单元。 本工程防水等级为一级,基础底板、墙柱和顶梁板采用C35防水混凝土, 其抗渗等级为P8,混凝土内掺5%防水剂。工程外侧迎水面涂涮聚氨酯防水涂料二遍,其厚度为3颇。防水涂料外侧粘贴20厚的挤塑聚苯板保护层, 聚苯板外侧1000宽范围内分层回填2 : 8灰土夯实。其施工缝、变形缝部位均采用钢板止水带。 本工程分为十六个防火分区。疏散楼梯均为防烟楼梯,合用前室设白带消防水喉的消火栓。同时设感烟探测器。每个防火分区至少两个室外出口。 所有楼梯间及前室,疏散通道、暗走廊、地下车库、空调风机房、消防泵房、变配电室的墙面、楼面及顶棚用料的燃烧性能均按 A级控制。 二、施工及竣工验收依据 1、由广州智海建筑设计院设计的本工程人防地下室施工图纸; 2、招标答疑、图纸会审、设计变更通知单; 3、施工合同约定的工程质量目标; 4、施工组织设计; 5、国家有关强制性标准及现行建筑安装工程施工验收规范; 6、〈〈建筑地基与基础工程施工质量验收规范》 GB50202-2002; 7、〈〈混凝土结构工程施工及验收规范》 GB50204-2011; 8、《砌体工程施工质量验收规范》GB50203-2011; 9、〈〈建筑电气工程施工质量验收规范》 GB50303-2011; 10、〈〈建筑给排水及采暖工程施工质量验收规范》GB50242-2002; 11、《工程测量规范》GB50026-2007; 12、〈〈混凝土强度检验评定标准》 GB50107-2010;

福州大学地下建筑结构试卷汇编

福州大学2013~2014学年第2学期考试A 卷 课程名称 地下建筑结构 考试日期 考生姓名 学号 专业或类别 土木工程 考生注意事项:1、本试卷共 6 页,请查看试卷中是否有缺页。 2、单数码页均应填写姓名、专业等信息。 3、考试结束后,考生不得将试卷、答题纸和草稿纸带出考场。 一、问答题(共5题,每题8分) 1、计算侧向土压力的理论有哪两种。列出其基本公式,它们在计算假定上有什么区别。 郎肯理论假定: 挡土墙背垂直光滑;填土表面水平;墙体为刚性体。 其主动土压力为a a a K c zK 2-=γσ,其中)2 45(tan 2? -= a K 。其被动土压力为 p p p K c zK 2-=γσ,其中)2 45(tan 2? += p K 。 库仑理论假定:理想的散粒体;墙背粗糙;滑动破坏面为平面;楔体整体滑动且处于极限平衡状态。 其主动土压力为2 22)cos()cos()sin()sin(1)cos(cos ) (cos ? ? ? ???-+-+++?-==βαδαβ?β?δααα?γγσz zK a a 。 其被动土压力为2 22] )cos()cos()sin()sin(1)[cos(cos ) (cos βαδαβ?δ?δααα?γγσ-?-+?++-?+==z zK p p 。 2、简述地下建筑结构设计中的两大类计算模型。 荷载结构模型认为地层对结构的作用只是产生作用在地下建筑结构上的荷载(包括主动地层压力和被动地层抗力),衬砌在荷载的作用下产生内力和变形,与其相应的计

算方法称为荷载结构法。 地层结构模型把地下结构与地层作为一个受力变形的整体,按照连续介质力学原理来计算地下建筑结构以及周围地层的变形;不仅计算出衬砌结构的内力及变形,而且计算周围地层的应力,充分体现周围地层与地下建筑结构的相互作用。 3、列出弹性力学(平面应力问题)的三大方程与边界条件。简述应力解法(以应力为基本未知量)求解这些偏微分方程组的基本过程。 平衡微分方程???? ???=+??+??=+??+??00y y xy x xy x F y x F y x σττσ, 几何方程???? ???????+??=??=??=y u x v y v x u xy y x γεε,本构方程??? ??? ???=-=-= 1)(1)(1xy xy x y y y x x G E E τγμσσεμσσε, 位移边界条件在S u 上:???==v v u u ,应力边界条件在S σ上:???=+=+y y xy x xy x p m l p m l σττσ。 在体力为常数时,通过求导、叠加、代入等方法将三大方程改写为:0)(2=+?y x σσ。 引入含待定系数的埃雷函数Φ使之满足04 =?Φ,则各应力分量可写成:22y x ??=Φσ,2 2x y ??=Φ σ,y x xy ???-=Φ τ2。使这些应力分量满足应力边界条件可求出待定系数,最终完全确定整个求解域内的 应力,进而确定整个求解域内的应变与位移。 4、对常规错缝拼装的圆形盾构法隧道的衬砌结构,按照荷载结构法计算其内力时,其基本作用荷载有哪几种,其结构简化形式有哪几种? 自重:δγh g =;竖向土压(浅埋):∑==n i i i h q 1γ;

《工程结构荷载与可靠度设计原理》复习题

《工程结构荷载与可靠度设计原理》复习题 第一章荷载类型 1.荷载:由各种环境因素产生的直接作用在结构上的各种力称为荷载。 2.作用:能使结构产生效应(结构或构件的内力、应力、位移、应变、裂缝等)的各种因素总称为作用。 3.荷载与作用的区别与联系. 区别:荷载不一定能产生效应,但作用一定能产生效应。 联系:荷载属于作用的范畴。 第二章重力 1.土是由土颗粒、水和气体组成的三项非连续介质。 2.雪压:单位面积地面上积雪的自重。 3.基本雪压:当地空旷平坦地面上根据气象记录资料经统计得到的在结构使用期间可能出现的最大雪压值。 第三章侧压力 1.根据挡土墙的位移情况和墙后土体所处的应力状态,土压力可分为静止土压力、主动土压力和被动土压力。 三种土压力的受力特点: (1)静止土压力:挡土墙在土压力作用下,不产生任何方向的位移或转动而保持原有的位置,墙后土体处于弹性平衡状态。 (2)主动土压力:挡土墙在土压力的作用下,背离墙背方向移动或转动时,墙后土压力逐渐减小,当达到某一位移量值时,墙后土体开始下滑,作用在挡土墙上的土压力达到最小值,滑动楔体内应力处于主动极限平衡状态。 (3)被动土压力:挡土墙在外力作用下向墙背方向移动或转动时,墙体挤压土体,墙后土压力逐渐增大,当达到某一位移时,墙后土体开始上隆,作用在档土墙上的土压力达到最大值,滑动楔体内应力处于被动极限平衡状态。 2.水对结构物的力学作用表现在对结构物表面产生静水压力和动水压力。静水压力可能导致结构物的滑动或倾覆;动水压力,会对结构物产生切应力和正应力,同时还可能引起结构物的振动,甚至使结构物产生自激振动或共振。 3.(1)冻胀力:在封闭体系中,由于土体初始含水量冻结,体积膨胀产生向四面扩张的内应力,这个力称为冻胀力。(2)冻土:具有负温度或零温度,其中含有冰,且胶结着松散固体颗粒的土,称为冻土。 (3)冻胀原理:水分由下部土体向冻结锋面迁移,使在冻结面上形成了冰夹层和冰透镜体,导致冻层膨胀,底层隆起。(4)影响冻土的因素:含水量、地下水位、比表面积和温差。 第四章风荷载 1.基本风压:按规定的地貌、高度、时距等量测的风速所确定的风压称为基本风压。通常应符合以下五个规定:标准高度的规定(10m)、地貌的规定(空旷平坦)、公称风速的时距(10分钟)、最大风速的样本时间(1年)和基本风速重现期(30-50年)。 2.风效应可以分为顺风向结构风效应和横风向结构风效应两种。 3.速度为的风流经任意截面物体,都将产生三个力:物体单位长度上的顺风向力p D、横风向力P L以及扭力矩P M。 第五章地震作用 1.地震按其产生的原因,可分为火山地震、陷落地震和构造地震。 2.(1)震源:即发震点,是指岩层断裂处。 (2)震中:震源正上方的地面地点。 (3)震源深度:震中至震源的距离。 (4)震中距:地面某处到震中的距离。 (5)震级:衡量一次地震规模大小的数量等级。 (6)地震能:一次地震所释放的能量。 (7)烈度:某一特定地区遭受一次地震影响的强弱程度。 (8)地震波:传播地震能量的波 3.地震波分为在地球内部传播的体波和在地面附近传播的面波。 第七章荷载的统计分析 1.平稳二项随机过程荷载模型的假定为:

东南大学工程结构设计原理习题题库

第一套习题 一、选择题 1. 高碳钢筋采用条件屈服强度,以σ0.2表示,即 (A)取极限强度的20% (B)取应变为0.002时的应力 (C)取应变为0.2时得应力 (D)取残余应变为0.002时的应力 2. 砼在双向应力下 (A)双向受压的强度基本等于单向受压 (B)双向受拉下,一向的抗拉强度随另一向拉应力的增加而提高 (C)双向受压下,一向的抗压强度随另一向压应力的增加而提高 (D)双向受拉下,一向的抗拉强度随另一向拉应力的增加而下降 3. 用螺旋筋约束砼,使 (A)砼的强度和延性均提高 (B)强度能提高,延性并不能提高 (C)延性可以提高,强度不能提高 (D)强度和延性均不能提高,计算中也不考虑 4. 我国砼规范以何种概率法为基础? (A)半概率 (B)近似概率 (C)全概率 (D)伪概率 5. 结构的功能包括 (A)强度, 变形, 稳定 (B)实用, 经济, 美观 (C)安全性, 适用性和耐久性 (D)承载能力,正常使用 6.金属锰可提高钢材的强度,对钢材的塑性 (A)提高成分 (B)提高较多 (C)降低不多 (D)降低很多 7.建筑钢材单向受拉时屈服点f y与单向受压的屈服点f yˊ之间满足 (A)f y> f yˊ (B) f y< f yˊ (C) f y= f yˊ (D) f y= 0.58f yˊ 8. 实腹式压弯构件在弯矩作用平面外的失稳是 (A)弯扭屈曲 (B)弯曲屈曲 (C)扭转屈曲 (D)局部屈曲 9. 钢结构有哪三种常用的连接方法 (A)搭接、对接和T型 (B)焊接、铆接及螺栓 (C)焊接、对接及螺栓 10. 梁刚度不足的后果为 (A)不满足承载力要求 (B)不满足使用要求 (C)耐久性较差 (D)易脆性破坏 11、轴心受压RC柱在长期荷载下发生徐变, 使: (A)混凝土压应力减小, 钢筋压应力增大 (B)混凝土压应力增大, 钢筋压应力增大 (C)混凝土压应力减小, 钢筋压应力减小 (D)混凝土压应力增大, 钢筋压应力减小 12、适量间接配筋柱进入极限状态的标志是 (A)混凝土压碎, (B)外层混凝土剥落 (C)间接钢筋屈服 (D)纵筋屈服 13.受弯构件的变形和裂宽计算是以哪个阶段作为计算依据的 (A)Ⅰa (B)Ⅱ (C)Ⅱa (D)Ⅲa 14、超筋梁破坏时,受拉钢筋应变εs和压区边缘混凝土应变ε c (A)εs>εy, εc=εcu (B)εs<εy, εc=εcu (C)εs<εy, εc>εcu (D)εs>εy, εc<εcu 15、条件相同的无腹筋梁, 由于剪跨不同发生剪压、斜压和斜拉破坏, 其承载力 (A)剪压>斜压>斜拉 (B)斜压>剪压>斜拉

地下结构地震破坏形式与抗震分析方法综述

地下结构地震破坏形式与抗震分析方法综述 摘要:随着人口的在激增以及经济的发展,人们的需求也开始狂飙式的增长。然而,城市的空间有限,地面空间已经被充分利用,人们的视线开始转为地下,地下结构的开发缓解了城市的地面压力。然而,由于地下结构的抗震技术的发展还并不成熟,在地震后,往往会造成地下结构的损坏甚至直接丧失继续工作的能力,给人们的财产安全带来威胁,影响人们的正常生活。因此在此文中对地下结构的震害形式以及近年来地下结构抗震分析的研究成果进行展示。以加深对地下结构震害的了解,并引起人们对地下结构抗震减震的重视。 关键词:地下结构抗震,震害形式,抗震分析,抗震减震 0 引言 地震是自然界自然界一种常见的自然灾害,地球上每年约发生500多万次地震,即每天要发生上万次地震。其中绝大多数太小或太远以至于人们感觉不到。真正能对人类造成严重危害的地震大约有一二十次,能造成特别严重灾害的地震大约有一两次。然而,这种地震不仅仅会给损害人们的财产安全,更有甚者会威胁到生命安全。 以往的抗震研究主要集中在地上建筑。认为地下结构受到的外界环境较少,各方向约束较多,刚度较大,且高度较小,加之过去地下结构的建设规模相对较少,地下结构受地震作用引起的结构的严重破坏的相关资料也较少,因此地下结构的工程抗震研究及设计长期未得到足够的重视。 1923年日本关东大地震(M8.2),震区内116座铁路隧道,有82座受到破坏;1952 年美国加州克恩郡地震(M7.6),造成南太平洋铁路的四座隧道损坏严重;1976年唐山地震(M7.8),唐山市给水系统完全瘫痪,秦京输油管道发生五处破坏;1978年日本伊豆尾岛地震(M7.0)震后出现了横贯隧道的断裂,隧道衬砌出现了一系列的破坏;特别是1995年日本阪神大地震(M7.2)中,神户市及阪神地区几座城市的供水系统和污水排放系统受到严重破坏,其中神户市供系统完全破坏,并基本丧失功能。神户市部分地铁车站和区间隧道受到不同程度的破坏,其中大开站最为严重,一半以上的中柱完全倒塌,导致顶板坍塌和上覆土层大量沉降,最大沉降量达2.5m。 地震对地下结构造成大规模破坏的同时,地震对地下结构的安全性构成的威胁也开始引起了人们的重视,地下结构工程抗震从业者在震后获取了大量的地震动作用在地下结构上产生的动力特性及影响结构动 力响应的影响因素等宝贵资料,对地下结构工程抗震减震领域的发展具有极大的推动作用。 近年来,关于地下结构的工程抗震分析方法的文献大量涌现。学者从不同角度对地下结构抗震进行阐述,并且有不少理论转化为工程技术,在工程实践中得到了论证。笔者试图综合前人的研究成果,在本文中简要介绍地下结构在地震作用下的破坏形式以及地下结构抗震分析方法,以便加深对地下结构工程抗震的了解,也可增加人们对地下结构工程抗震的重视程度。 1 地下结构震害 由于所处环境、约束情况等的差异,地下结构的破坏形式与结构破坏的影响因素与地上结构有很多不同之处。 1.1 地下结构震害形式 以下以日本阪神地震为主要对象,结合其他地震造成的震害,总结了地铁车站、地下管道、地下隧道的主要震害形式。

《地下建筑结构》考试重点

第一章 衬砌结构的作用:承重和围护。 结构形式影响因素:受力条件、使用要求、施工方案。 结构形式:浅埋式结构、附建式结构、沉井结构、地下连续墙结构、盾构结构、沉管结构、桥梁基础结构、其他结构。 拱形结构的优点: 1.地下结构的荷载比地面结构大,且主要承受垂直荷载。因此,拱形结构就受力性能而言 比平顶结构好。 2.拱形结构的内轮廓比较平滑,只要适当调整拱曲率,一般都能满足地下建筑的使用要求, 并且建筑布置比圆形结构方便,净空浪费也比圆形结构少。 3.拱主要是承压结构。适用于采用抗拉性能较差,抗压性能较好的砖、石、混凝土等材料 构筑。材料造价低,耐久性良好,易维护。 地下建筑与地面建筑结构的区别: 1.计算理论、设计和施工方法。 2.地下建筑结构所承受的荷载比地面结构复杂。 3.地下建筑结构埋置于地下,其周围的岩土体不仅作为荷载作用于地下建筑结构上,而且 约束着结构的移动和变形。 岩石地下建筑结构形式 (一)拱形结构:1.贴壁式拱形结构:(1)半衬砌结构(2)厚拱薄墙衬砌结构(3)直墙拱形衬砌(4)曲墙拱形衬砌结构2.离壁式拱形衬砌结构 (二)喷锚结构 (三)穹顶结构 (四)连拱隧道结构 (五)复合衬砌结构 第二章 荷载种类: 静荷载:是指长期作用在结构上且大小、方向和作用点不变的荷载。 动荷载:原子武器和常规武器的爆破冲击波;地震波作用下的动荷载。 活荷载:指在结构物施工和使用期间可能存在的变动荷载,其大小和作用位置都可能变化。其他荷载:混凝土收缩、温度变化、结构沉降、装配误差等。 按其作用特点及使用中可能出现的情况分为以下三类:永久(主要)荷载、可变(附加)荷载和偶然(特殊)荷载。 软土地区浅埋地下工程采用“土柱理论”进行计算。 第三章 弹性地基梁与普通梁的区别: 1.超静定的次数是有限,还是无限。 2.普通梁的支座通常看作刚性支座,即略去地基的变形,只考虑梁的变形;弹性地基梁必 须同时考虑地基的变形。 第四章 国际隧协认为可将其归纳为以下四种模型: 1.以参照已往隧道工程的实践经验进行工程类比为主的经验设计法;

人防地下室结构设计经验总结 人防地下室结构设计规范

人防地下室结构设计经验总结人防地下室结构设计规范广东建材2009年第11期建筑设计与装饰 人防地下室结构设计经验 卓毅刚 摘 (广州市人防建筑设计研究院有限公司) 要:本文较系统的结合规范介绍了人防地下事结构设计特点和设计原则,对人防地下室结构设 计中的主要构件进行了设计分析,并对设计中应注意的几个问题进行了探讨,供同行参考。 关键词:人防地下室;结构设计;经验;经济性 随着经济建设的迅速发展,高层、超高层建筑在全国各大中等城市拔地而起,地下停车库、地下商场等地下建筑物的大量兴建,人防工程建设逐步走向与城市建设相结合的道路。特别在经济发达的地区

和城市,繁华的商业地段成为地下空间开发的热点和焦点,其地下空间的利用离不了以防灾救灾为目的的人防工程。本文就人防工程中最常见的低抗力等级人防地下室(核5,常5级以下)为例子,进行结构设计经验总结。 1材料 人防地下室在有人防荷载参与结构计算过程中,应注意乘以材料强度综合调整系数Yd。详见GB50038-2005《人民防空地下室设计规范》(以下简称《人防规范》)4.2条。 1.1混凝土 人防地下室选用混凝土的强度等级一般为C30C35。笔者不建议选用C40以上的混凝土,原因有二:(1)C40--一C55混凝土中受拉钢筋的最小配筋率为0.3,而C25~C35混凝土中受拉钢筋的最小配筋率为0.25。由于人防地下室考虑防辐射及密闭防毒作用,墙体及顶板较厚,所以对于低抗力等级的人防地下室,结构设计计算中会出现较多构造钢筋就能满足受力要求的情况。故在抗力等级及平时荷载不大的情况下,采用强度等级低于C40的混凝土,可降低工程的含钢量,其经济性是显而易见的。(2)人防

《地下建筑与结构》试题

一、填空题(共32分,每空2分) 1.地下建筑分为两大类:一类是修建在___________地下建筑;另一类是修建在___________地下建筑。 2.弹性地基梁可分为___________、___________、___________等三大类。 3.初始地应力一般包括___________和___________。 4.基坑支护结构通常可分为___________和___________两大类。 5.喷锚支护的主要作用是__________。 6.直墙拱结构一般由__________、__________和__________组成。 7.按顶管管道内径大小可分为__________、__________和__________三种。 二、名词解释题(共12分,每题3分) 1.地下建筑结构: 2.重合墙: 3.端墙式洞口: 4.半衬砌结构: 三、单选题(共6分,每题2分) 1.穹顶直墙衬砌分离式结构主要用于无水平压力或水平压力较小的围岩中,()验算环墙的强度 A. 必须 B.不需 C.根据情况决定是否需要 2.半衬砌结构包括半衬砌结构和()衬砌结构。 A.厚拱薄墙 B.直墙拱形 C.曲墙 D.复合 3.根据我国管道施工的实际情况,中口径顶管一般指介于()口径范围的顶管。 A.500-800mm B.800-1800mm C.1800-2500mm 四、简答题(6分) 地下连续墙设计计算的主要内容包括哪些方面? 五、问答题(共24分,每题8分) 1.顶管技术可用于哪些特殊地质条件下的管道工程? 2.结合基本建设修建防空地下室与修建单建式工事相比有哪些优越性? 3.在进行地下建筑结构工程可靠性分析时,应考虑哪些主要方面? 六、计算题(20分) 验算大型圆形沉井的“抗浮系数”。 已知沉井直径D=68m,地板浇毕后的沉井自重为650100KN,井壁土壤间摩擦力f0=20KN/㎡,5m内按三角形分布,沉井入土深度为h0=26.5m,封底时的地下水静水头H=24m。

相关文档
相关文档 最新文档