文档库 最新最全的文档下载
当前位置:文档库 › 柴油机曲轴臂距差检验

柴油机曲轴臂距差检验

柴油机曲轴臂距差检验
柴油机曲轴臂距差检验

1 引言

在机器的正常运作中,曲轴直接决定着采油机运作寿命的长短。曲轴的运行状态常常存在不同之处,例如曲轴工作时常常会受到曲轴动力原料的影响,曲轴所处环境的影响,以及曲轴在运作过程中受到各种不同惯性的影响。曲轴在运作时,他的转速十分快,同时柴油机承受着巨大的液体和气体压力。同时,柴油机在运作时与曲轴之间常常存在摩擦力。因此,曲轴运作状态是多变的,在运作过程中,曲轴不能始终保持着绝对润滑。例如,在曲轴运作过程中,曲轴中的润滑油料的耗尽或者曲轴中润滑油料中存在其他杂质时,则会直接造成曲轴运作磨损。曲轴的动力若是柴油机混合动力,则会出现严重的内外部压力不同情况,同时这种压力使得曲轴的运作出现较为严重的应力效应。曲轴采取柴油机作为原动力,应力过度集中常常会损害曲轴的曲轴颈和曲轴臂。在曲轴运作过程中,最容易出现的事情就是曲轴臂出现裂缝或者曲轴臂出现严重的扭曲。当油道开口润滑油料减少或者缺损,则会造成油道处于严重磨损阶段,此时若是再次强行运作则会造成曲轴臂直接出现裂缝。所以,我们若是想保护曲轴臂不受到伤害,则需要保证柴油机器的正常运行,同时设计正确的曲轴臂损害距离差,保证足够的润滑油料的使用。

2 柴油机曲轴臂距差

2.1 臂距差检测的意义

通过观察机器整体结构可知,曲轴在运作时的支撑主要位于机器上的主轴进行承受,同时需要多方面的因素同时不发生问题才能保证整个曲轴的正常运行。在曲轴运作时,若是可以保证曲轴不受磨损,则可以保证曲轴不会出现玩去或者裂缝的存在。但是在实际的运作过程中,常常会出现曲轴与主轴之间存在中心线不一致的情况。也就是说,由于曲轴与主轴之间存在中心线不一致所以导致曲轴的曲拐值出现误差。在曲轴工作中,曲拐值的经常性改变导致的结果则是曲轴臂容易发生扭曲或者出现裂缝的情况,同时也会出现曲轴臂出现其他的意外情况。通过研究我们发现,曲轴臂在严重疲劳的情况下极易出现损坏。通过详细的计算我们得出:曲轴颈出现损害的几率较小,曲轴柄出现损害的几率大于曲轴颈,

而曲轴臂出现损害的几率是曲轴颈出现损害几率的五倍,是曲轴臂出现损害几率的三倍。所以,若是要保证曲轴得到正常的运行,则需要保证柴油机可以正常的运行。柴油机的正常运行是曲轴得到正常运行的重要保证。在下面的表1中,则是由于曲轴臂在出现应力过于集中后导致的曲轴臂直接断裂的实际事例。

在现在的科技发展阶段,最直接保证曲轴正常运行的检测方法是检查曲轴与曲轴线之间的实际差距。在检测的过程中,曲轴臂差是检测曲轴运转状态的一个重要标准,他可以十分精确的反映出曲轴在运作过程中出现的一系列错误运行工作状态,同时通过值之间的差距显示曲轴整体的工作运行状态的好坏。

通过上面的论述我们可以得知,的曲轴臂之间的误差直接影响着曲轴臂的寿命和曲轴运行时间的长短。但是在取值时常常存在取值不准确的现象,同时取值不能直接反应曲轴塑弯变形的情况,因此,需要曲轴与轴系之间的准确度量值需要一个专业的数据来显示,这个数据称为跳动量 [5][6][7]。

表1 曲臂出现断裂的几种晴朗分析

主机型号功率转速出厂年月断轴时间断轴原因(kW) (r/min)

6160A-13 164 1000 1985.9 1988.10 轴系对中误

差较大

6200Z-1 257 1000 1992.2 1986.8 主机前端输

出轴对中不

6018ZCL-1 220.6 750 1986.5 1990.2 机舱平板龙

骨与机座变

形第六缸臂

距差超大

8E150C-A 260 1000 1993.6 1998.5 机座变形致

使第三缸臂

距差较大2.2 臂距差的概念

曲轴常常由多个部分组成,其中较为重要的部分主要有以下几个方面:如图1

所示:

图1 曲轴结构

在图中我们可以观察到曲轴臂与曲轴臂之间的距离则是曲轴臂差距值,在曲轴臂与曲轴柄之间常常会存在一定的角度,这种角度主要有以下几个值:0o、180o 90o、270o。当出现刚才描述的几个值时,则称为臂距差。

现在对于臂距差的准确描述还没有达成共识,也就是说对于臂距差在国际上没有一个统一的标准来叙述。通常情况下,我们常常使用使用以下统计方法对臂

,距差进行计量:当曲柄与曲臂之间的度数为0o时,则他们的臂距差可以记为L

上当他们之间的角度差为180o时,则他们之间的臂距差为△⊥=L上-L下。以此可以类推出曲柄与曲臂之间的度数为270o时,则他们之间的臂距差△-=L左-L右。.当△>0时,臂距差值为零[8]。

在曲轴工作时,常常是以较快的速度进行运转,而在运转的过程中,常常存在臂距差一直改变的情况。同时我们在计算时得出曲轴的弯曲度与曲轴臂之间存在正比例关系 [9]。

3 臂距差检测工具及方法

3.1 测量工具

依据我国现在的科学技术来说,常常使用拐档表作为测量曲轴臂之间存在差距的精准仪器。在实际的测量过程中,我们可以首先观察到拐档表主要的零部件有图 3.1所示。我们在这里详细的介绍一下拐档表各个零件的主要作用:测量头的主要作用是调节拐档表测量误差的长度,同时可以通过与接管之间进行合作

最终测量到不同型号柴油机曲轴臂之间的误差值。通过改变测量值我们常常可以测量不同型号的柴油机中曲轴臂之间的误差值,但是通过这样的测量并不一定可以测量的十分精准。此时,我们则需要通过与柴油机型号相匹配的同等型号的拐档表来进行测量。与柴油机同等型号的拐档表不仅可以对曲轴臂差进行精确的测量,同时还可以根据曲轴臂之间的不断变化算出曲轴变化的先对值与绝对值。我们通常将曲轴中心向上玩去时的取值成为负取值,此时取值与弯曲的角度呈现负相关。也就是说,弯曲的角度越大,则度量表得出的结果则越小,而弯曲的角度越小,得出的数值则越大。与之同理,向下弯曲则称之为正值,此时取值与弯曲的角度呈现正相关。弯曲的角度越大,则度量表得出的结果则越大,而弯曲的角度越小,得出的数值则越小。

图2 机械式拐档表

3.2 测量位置的选择

现在我国在市面上通常使用的拐档表为机械形式,在本篇文章中,我们也是以机械拐档表为研究对象进行了详细的研究。此表一般来讲是安装在曲轴的曲柄臂的中轴线上,也就是说测量点选在此处,在工程实际中,由于曲轴是在不停的工作运动中,因此测量点在会因为曲轴的负荷的变化在中轴线上发生位移,因此测量的距离也是随着不停变化的。若是拐档表安的离曲轴的曲柄销中轴线比较远,那么就会导致测量的距离变大,因此所计算的值也会与真值有出入。因为在

何处测距有一定的争议,全球范围内的大多数国家都在执行统一的标准,也就是说如今我们所采用的臂距值是根据一系列的严格规范的选择测量点的方法来确定出的,这种严格的规范是如今国内外多个有关部门共同讨论而制定出的结果。正因如此,如今的很多关于船舶的书籍或是关于柴油机以及内燃机的一些技术文献中,不仅要标明臂距值,而且还要按照严格的标准来支出测量点应该处于的位置,并且应做好标记。(图3)。测量点应该所处的位置a 为: 2S D +

图3 测量拐档表位置示意图

现在市面上能够见到的较大型的中低速的双冲程柴油机采用的曲轴大部分都是半套合式的曲轴,因为机器的功率需要较大,因此这种曲轴的占地也非常之大,因此,在将上述a 点作为拐挡差的测量点的时候会因为此点处在的位置不合适,对我们的测量和安装带来诸多不便。由于以上的原因存在,厂家另选了一个测拐挡的测量点b ,选取此店的优势在于此点离曲轴的曲柄臂的开口比较近,与中心线距离则远一些,因此,将测量点选在这个地方是非常合适的。由于测距离中心线比较远,在上一段的论述中作者已经针对此问题做过了讨论,因此我们应该寻求办法来将在新加点的测量值转化成为在原点的测量值才行。使用如下公式: oa ob a b =

3.3结果记录及计算

3.3.1臂距差的记录方法

图4(a)(b)所示为:当如图构建还没有连接时,读数时应该先把曲轴旋转一周,并且记录下待测部位分别在O o,9O o,18O o,27O o这4个角度的技术,并且录入对应的表内。

图4(c)(d)所示为:若是图上的装置已经连接完毕,若要记录数据,应遵循如下方法:当活塞的连接部位,也就是曲柄销运动到最底端时,图示构建正在居中的位置上,因此时没有办法去安装测量表,所以我们在真正的测量中应该在连接构建的曲柄销左右的15o,测出点a和点e的值,并且计算出平均值(a+e)/2来取代臂距值,所以c=(a+e)/2。盘车至曲柄销位于195o处安装臂距表,将表的指针调零后依次测量195o、270o、0o、90o、165o五个位置的臂距值并将读数记录于表格中。

图4 曲轴臂距差记录图

3.3.2臂距差的计算

因世界上各个国家检测部门以及机械制造厂家的标准不一,我们此节所述的计算的方法也不一而是,具体可以参见附录章节表1和表2。

4 船舶柴油机曲轴臂距差影响因素分析

4.1 轴系校中对臂距差的影响

如今的厂家在设计船舶的主动力装置时所采取的理念以及方式不同,因此柴油机的曲轴的设计也是各有差别,我们可将曲轴连接的方式分为两类,分为两类

的根据是看轴系里的轴承是否有轴向推力来区分,如图5中所示,轴系中有推力轴承的系统以及图6没有推力轴承的系统。

对于图5所示的曲轴系统来讲,为了保证整个系统良好地运行,应该对系统进行提前的校中。现在被广泛地使用的方法是将曲轴与推力轴各自放到两个支架之上,先对齐两个法兰垫片,继而用相应的设备进行较为精细的调整。若是法兰盘的与轴心线未能重合则代表了同轴度有些偏差,按照规定,柴油机曲轴和推力轴位移偏差不能大于0.05毫米,曲折偏差不能大于0.1毫米。[16]。

图5 有推力轴承的柴油机

图6 无推力轴承的柴油机

法兰片连接起来了曲轴和推力轴,根据前文所述可以知道法兰之间的偏差以及中轴线的曲折反映了系统同轴度的偏差,有偏差就意味着有微观变形,且离法兰片近的一边会受到较大的影响。

4.2 主轴承磨损不均匀对臂距差的影响

在设计以及制造的过程中机器的各个部分会出现一些偏差或是瑕疵,因此机器的每一个气缸不会达到输出功率全部一样,因此没个气缸承受的压力不同,对曲轴的反作用力也就不同,因此曲轴的每个支撑部件以及轴承承受的压力也各有差异,在使用时间过长后,会导致主轴承不均匀的被磨损,被磨损后的轴承因为

其不均匀性,有的轴承磨损严重,有的磨损的轻一些,磨损严重的轴承出曲轴会下沉幅度很大,磨损轻的轴承处曲轴也会下沉,但是幅度会轻一些,因此会引起曲轴有剪切力以及扭转力,造成曲轴的曲拐以及臂距差变化。

4.3 大重量飞轮对臂距差的影响

重量较大的飞轮一般情况下是配备在较大型的双冲程的柴油机上,当飞轮的质量变大,曲轴的臂距差也会随之变大。当较大质量的飞轮作用于曲轴上后,离飞轮比较近的一端会因为重量过大发生微观的弯曲,从而造成飞轮端下沉,导致整个曲轴发生向下的如图7所示的弯曲变形。这样就使得臂距差变小。不仅如此,质量较大的飞轮还会影响其他的曲拐,因为在飞轮的作用下,曲轴会产生脱空的现象,但是只会影响离飞轮比较近的曲拐,然而对其他的曲拐却没有什么影响。当拆除飞轮够,臂距值势必会变。

图7 飞轮重量对臂距差的影响

4.4 气体力与活塞运动装置对臂距差的影响

安装柴油机的曲轴的流程应该如下:曲轴应该先被安装自机座上,接着将活塞连杆结构进行吊装。有可能在还未吊装活塞结构之前,曲轴就会因为自身质量过大或者飞轮的重量过大而产生曲轴的中轴线向下弯曲的现象,并且在安装了活塞连杆机构之后此种状况会更甚。不仅如此,机器内部在经过燃烧室中的燃油汽

化压缩冲程过程后,活塞会产生巨大的推力,这种推力会通过连杆传导,最后将作用到曲轴上,在此种推力的作用下,曲轴也会发生中轴线下沉的问题。综上所述,造成曲轴中轴线下沉的原因时因为曲轴自重或是因为发动机冲程过程中产生的巨大的推力,造成了曲轴的不可逆的弯曲,使中心线下沉。

4.5 机座塑性变形对臂距差的影响

因机器的机座是安装曲轴的地方,机座又是直接固定在船板上的,倘若船板发生了不可逆转的变形会使柴油机发生偏移。因此船舶发生船体的塑性变形将直接导致柴油机中心线发生改变,从而影响柴油机曲轴臂距差值。船体塑性变形不易发生,多是由于猛烈撞击等突发性事故或者是由于对柴油机具有长期力的作用的缺陷引起,例如:船舶擦底、坐滩,船舶相撞,贯穿螺栓由于柴油机长期运行过程中震动而发生松动引起柴油机机座受力不均匀,地脚螺栓松动,机座垫块磨损等。以上事故或缺陷都会引起柴油机机座变形而导致柴油机曲轴臂距差值超出标准值。

5 柴油机曲轴臂距差影响因素的解决措施

5.1 轴系校中对臂距差影响的解决措施

我们可以使用刀口直尺测量同轴度偏差确定曲轴曲拐变形,方法为:将刀口直尺安放于曲轴和推力轴的外表面,分别在0o、90o、180o、270o四个位置,用眼观察两者接触点处是否有光线露出,外部环境光亮较强时可在刀口直尺背侧用手电照射,用塞尺测量有光线泄露出处的间隙值,将所得间隙值经相关计算后可得出偏差值[17]。偏差值决定了曲轴中心线的状态,曲轴的中心线的形变将直接影响相应曲拐曲柄臂距差值。

5.2 主轴承磨损不均匀对臂距差影响的解决措施

因主轴承被磨损的因素非常之多,并且这些因素的很难被管理这些设备的人员全部了解,并且总结出相应的规律。然而管理轮机的人员应该对某一个单独的柴油机有足够的了解,并且经过长时间,反复地与之相处,工作人员应该能够对这台机器出现的问题总结出一定的规律,并且在相同的问题出现时能够较为快速地解决之。针对本节问题上,我们需要将工作人员总结的经验施用这个问题上。

然而,一个人的经验也仅仅只能针对某一台特定的机器,或许工作人员总结的规律或是经验对其他的机器并不通用。若是工作人员在保养,维修或是管理机器时发现曲轴的臂距差太大,并且已经超出了正常的范围,应该想到时否是因为金属机座发生了不可逆的变形。并且可以通过测定相应的数据来查看是否发生不可逆变形,方法将在下节叙述。

5.3 大重量飞轮对臂距差影响的解决措施

使用把轴承的高度改变的措施,能够使曲轴即使安装了一定质量的飞轮以后也能使得形变不大,使得臂距差不超过范围。或是将飞轮往曲轴的中间靠近,使其靠近主轴承,然而这样会有使主轴承旁边的轴承发生脱空现象的可能性。5.4 气体力与活塞运动装置对臂距差影响的解决措施

对于以上两种影响因素,无论是曲轴自重、柴油机活塞运动装置部分的附加重量还是柴油机在运行过程中产生的巨大的推力,在实际生产、管理过程中我们都无法避免。若是针对第一种因素,在生产机器的曲轴之前就将之考虑进去,再设计时反复计算和校核,对有可能发生的变形做出预算以及预防措施,就能够缓解气体力的影响。第二种影响我们可以使用针对每一个不同的机器的气缸进行调节油量的方法来解决,但是此种方法比较麻烦,而且还会影响机器工作的性能,因此会对机器的影响更坏,因此第二种因素我们尚且得不到比较优秀的解决办法。

5.5 机座塑性变形对臂距差影响的解决措施

桥规值和臂距差能够清晰地反映出机座是否发生了不可逆转的变形,因此人们可以使用测此两个参数的方法加以验证。若是两者数据不同,说明机座已经发生了不可逆地变形。

第五章总结与建议

本篇论文主要研究柴油机曲轴臂距差检测及影响因素分析,介绍臂距差产生机理、测量意义、检测工具和方法等。从柴油机垫块、大重量飞轮、主轴承磨损不均匀、气体力与活塞运动装置、船舶装载、柴油机温度状态、机座变形下沉九个方面详细分析了影响柴油机曲轴臂距差的因素。由于船舶自身工作状况和航行条件的复杂性,因此还有很多其它影响臂距差的因素,如船舶自身不同位置温度差异、船舶内部和船舶外部空气和水的温度差异、船舶坞修时支撑物的反作用力、自然灾害事故等都会导致曲轴臂距差数值发生变化。因此无法找到适用于所有船用柴油机的经验数值和通用公式,也无法对臂距差的影响因素做定量分析,只能

做定性分析。轮机管理人员只能对于某一型号特定的柴油机或者对于某一特定情况总结变化规律,从而开展预防工作,使船舶柴油机臂距差保持在标准值内,保证船舶安全航行。

柴油机曲轴拐挡差测量方法

柴油机曲轴状态测试与分析 曲轴是一个结构复杂、刚性差的重要零件,容易产生弯曲变形,即便是自重也可使其产生弯曲变形。运转中的柴油机主轴承有微量高低不等的状态使坐与其上的曲轴产生弹性变形,整根曲轴的变形为宏观的整体变形,在每个曲柄上的变形为局部的微量变形。曲柄上的微量变形使曲柄臂之间的距离在曲轴回转一周中产生的微量变化,可通过测其微量变化来了解曲轴整体的轴线状态。 (1)、测量部位:中国船级社标准,在《海上营运船舶检验规程》(1984)中规定了曲轴臂距差测量点在(S+D)/2处(S为活塞行程、毫米;D为主轴直径、毫米)。 (2)、中国修船标准:《中华人民共和国船舶行业标准》GB3364-91对船舶柴油机曲轴臂距差作出规定,曲轴臂距差测量点在(S+D)/2处,曲轴在冷态时臂距差标准: ·正常值不大于0.000125S,即1.25 S/10000; ·修理中飞轮端控制值不大于0.00015S,即1.5 S/10000; ·飞轮端如为弹性连轴节可适当放宽至不大于0.000175S, 即1.75 S/10000; (3)、测量要求:一次装表完成全部测量,拐档表安装后应完成曲轴旋转一周中各要求位置臂距差值的测量,测量过程中不允许改动拐档表的位置。当曲轴未装活塞连杆运动件时,测量曲柄0度、90度、180度、270度四个位置臂距差值,再回原位检查有无误差,完成一个拐档的测量;当曲轴已装有活塞连杆运动件时,则测量0度、90度、165度、195度、270度五个位置的臂距差值,完成一个拐档的测量。 (4)、检查方法

·检查拐档表的灵敏度。检查无误后,根据臂距值L的大小选择并调整拐档表测量杆的长度,使之比臂距值L大2毫米左右,并装上重锤。 ·盘车使曲柄在适当的位置,清洁两曲柄臂上的测量孔,将拐档表装入两曲柄臂的测量中。如找不到测量孔,应在距曲柄销轴中心线为基准的S+D/2处的曲柄臂两边打上冲孔。安装正确后,要锁紧固定螺母;将拐档表指针调“0”位,并摆动拐档表,拐档表的指针在“0”位不变为好。 ·正盘车转动曲轴,分别转至左平、上止点、右平和下止点四个位置,即曲柄销自0度、90度、180度、270度再回原位检查,共五个位置记录各位置拐档表读数。 ·曲轴拐档差值的计算与轴线状态分析 上下拐档差值Δ 上下为:Δ 上下 =L 上 -L 下 左右拐档差值Δ 左右为:Δ 左右 =L 左 -L 右 拐档差值Δ 上下 为正“+”时,曲轴轴线呈下弧线弯曲,即呈“︶”形,表明 该曲柄两端的主轴承比其相邻的主轴承偏低;拐档差值Δ 上下 为负“-”时,曲轴轴线呈向上弯曲,即呈“⌒”形,表明该曲柄两端的主轴承比其相邻的主轴承偏 高。同样,拐档差值Δ 左右 为正“+”时,轴线在水平面呈右弧线弯曲;反之,拐 档差值Δ 左右 为负“-”,轴线在水平面上呈左弧线弯曲。 曲轴臂距差值的大小表明曲轴弯曲变形的程度;臂距差值的符号表明曲轴轴线弯曲变形的方向。 ·绘制曲轴轴线状态图

推荐-柴油机曲轴加工工艺及夹具设计 精品

柴油机曲轴加工工艺及夹具设计

目录 摘要 1 Abstract 2 0 引言 1 1 R180柴油机曲轴工艺设计 3 1.1 分析零件图 3 1.2 确定生产类型 3 1.3 确定毛坯 3 1.4 机械加工工艺过程设计 3 1.5 选择加工设备与工艺装备 6 1.6 确定工序尺寸 7 1.7 确定切削用量及时间定额 9 1.8 填写工艺规程卡 15 2 R180柴油机曲轴第一套夹具设计 16 2.1 明确设计任务、收集分析原始资料 16 2.2 确定夹具的结构方案 17 2.3 绘制夹具结构草图 19 3 R180柴油机曲轴第二套夹具设计 21 3.1 明确设计任务、收集分析原始资料 21 3.2 确定夹具的结构方案 22 3.3 夹具定位误差分析 22 3.4 拟订夹具总装图的尺寸、公差与配合及技术要求 22 3.5 绘制夹具总装图 23

4 结论 24 致谢 25 26 附件清单 27 摘要 本文主要介绍了R180柴油机曲轴工艺设计及其中两道工序的夹具设计。本文作者是在保证产品质量、提高生产率、降低成本、充分利用现有生产条件、保证工人具有良好而安全劳动条件的前提下进行设计的。在工艺设计中,作者结合实际进行理论设计,对曲轴传统生产工艺进行了改进,优化了工艺过程和工艺装备,使曲轴的生产加工更经济、合理。在夹具设计部分,作者在收集加工所用机床、刀具及辅助工具等有关资料后,对工件材料、结构特点、技术要求及工艺分析的基础上,按照夹具设计步骤设计出符合曲轴生产工艺及夹具制造要求的夹具。 关键词:柴油机曲轴工艺夹具 Abstract This text introduce R180 diesel engine crankshaft technological design and two of them jig of process design mainly. The author of this text is guaranteeing product quality, boost productivity, lower costs, utilize existing working condition, guaranteeing worker to have good work prerequisite of terms to design . In technological design, the author bine carrying on theory design, improve the traditional production technology of the crankshaft actually, optimize craft course and craft equip, enable economy rational even more of production and processing of the crankshaft. Designing in the jig , the author collect the relevant materials, such as lathe, cutter and handling tool,etc. At the foundation of the analyse of work piece material, specification requirement and craft, and make jig of request according to jig measure design and cankshaft production technology and jig.

柴油机曲轴设计

1前言 1.1柴油机与曲轴 1.1.1柴油机的工作原理 柴油机的每个工作循环都要经历进气、压缩、做功和排气四个过程。 四行程柴油机的工作过程:柴油机在进气冲程吸入纯空气,在压缩冲程接近终了时,柴油经喷油泵将油压提高到10MPa以上,通过喷油器以雾状喷入气缸,在很短时间内与压缩后的高温空气混合,形成可燃混合气。压缩终了时气缸内空气压力可达3.5~4.5MPa,温度高达476.85℃~726.85℃,极大地超过柴油的自燃温度,因此柴油喷人气缸后,在很短的时间内即着火燃烧,燃气压力急剧达到6~9MPa,温度升高到1726.85℃~2226.85℃。在高压气体推动下,活塞向下运动并带动曲轴旋转做功。废气同样经排气门、排气管等处排出。 四行程柴油机的每个工作循环均经过如下四个行程: (1)进气行程在这个行程中,进气门开启,排气门关闭,气缸与化油器相通,活塞由上止点向下止点移动,活塞上方容积增大,气缸内产生一定的真空度。可燃混合气被吸人气缸内。活塞行至下止点时,曲轴转过半周,进气门关闭,进气行程结束。 由于进气道的阻力,进气终了时气缸内的气体压力稍低于大气压,约为0.07~0.09MPa。混合气进入气缸后,与气缸壁、活塞等高温机件接触,并与上一循环的高温残余废气相混合,所以温度上升到96.85℃~126.85℃。 (2)压缩行程进气行程结束后,进气门、排气门同时关闭。曲轴继续旋转,活塞由下止点向上止点移动,活塞上方的容积缩小,进入到气缸中的混合气逐渐被压缩,使其温度、压力升高。活塞到上止点时,压缩行程结束。 压缩终了时鼓,混合气温度约为326.85℃~426.85℃,压力一般为0.6~ 1.2MPa。 (3)做功行程活塞带动曲轴转动,曲轴通过转动把扭矩输出。 (4)排气行程进气口关闭,排气口打开,排除废气。 由上可知,四行程汽油机或柴油机,在一个工作循环中,只有一个行程作功,其余三个行程作为辅助行程都是为作功行程创造条件的。因此,单缸发动机工作不平稳。现代汽车都采用多缸发动机,在多缸发动机中,所有气缸的作功行程并不同时进行,而尽可能有一个均匀的作功间隔,因而多缸发动机曲轴运转均匀,工作平稳,并可获得足够大的功率。例如六缸发动机,在一个工作循环中,曲轴要旋转720°,曲轴转角每隔120°就有一个气缸作功。

船舶建造质量检验-第七章 柴油主机和辅机的安装检验

第七章柴油主机和辅机的安装检验 第一节柴油主机安装检验 船用小型柴油机,通常采用整机吊装工艺进行安装,大型船舶的柴油机,在起重能力及码头设施具备条件的情况下,也可采用整机吊装。目前大多数船厂由于受起得能力、运输和码头条件等方面的限制,对大型柴油主机大多采取组装吊运办法。即主机在制造厂经验船师、船东代表验收后,将主机拆成若干大部件,经油封保养后装箱发往造船厂,船厂再按工艺阶段将部件吊到船上进行组装。本节主要介绍组装检验,按安装顺序进行阐述。 一、主机基座加工检验 船舶柴油主机的基座要承受柴油主机的全部重量。除此之外,它还要承受柴油主机运转时运动部件所产生的不平衡的惯性力和反作用力矩所引起的力,以及船舶运行中(如摇摆时)所产生的柴油主机倾倒的力。因此,基座应具有足够的刚性和强度。 中小型柴油机的基座通常是钢板焊接结构件,并焊接在船体双层底上;大型柴油机基座,通常依靠双层底结构作为基座。 (一)检验前应具备的条件 1.基座使用的材料应有船检证书; 2.基座的安装、焊接质量已符合规定的技术要求。 (二)检验内容和方法 1.接触检验 (1)将小平板放到基座的面板上,用0.05mm的塞尺进行检验,一般不应插入,但局部允许插入,其深度不大于10mm。用0.10mm塞尺检验,不应插入。 (2)在平板上涂上一层薄薄的色油,然后放到面板上来回拖动,平板拿掉后检验面板上的色油点,要求在每25×25(mm2)面积内不少于3点,接合面大于75%。 2.基座面板倾斜度检验 将直尺横放在基座上,用塞尺检查直尺与面板之间倾斜度。倾斜度通常应小于1:100,且要求向外倾斜,便于今后配制垫片。 3.螺栓孔质量检验 (1)用内径千分尺或气缸表检验螺栓孔直径,要求圆柱度和圆度符合图样要求。 (2)螺栓孔的表面粗糙度应符合图样要求。 二、主机机座安装检验 主机机座有以下几方面作用: 1.在机座上面安装机架、连杆、活塞、气缸盖等部件,能承受这些部件的重量。 2.机座上装有主轴承,用以安装曲轴。机座与机架作为曲轴旋转的空间。 3.机座可作油池用,收集和盛储滑油。 4.机座能承受各运动部件所产生的惯性力。 为了满足上述用途,要求机座有足够的强度、刚度。如果机座变形,将导致上述运动件发生故障或加速磨损。 (一)检验前应具备的条件 机座须有验船部门的合格证书和钢印。 (二)检验内容和方法 1.机座平面平面度检验 对机座平面平面度的检验方法有许多种,通常,工厂采用何种方法施工,检验时就采用与这种施工方法相应的检验方法。现将几种常用的方法介绍如下: (1)拉钢丝检验法 如图7-1所示,在机座平面的一定高度处,拉四根钢丝L1、L2、L3、L4。钢丝直径一般为Φ0.3mm至Φ1.00mm,拉力为钢丝拉断力的70~80%(如MAN-B&W50-95MC/MCE机采用Φ0.5mm钢丝,拉紧力为40kg的负重)。 检验机座平面平面度时,测量L1、L2、L3、L4两根钢丝至机座平面之距离,以确定机座平面的平面度。

柴油机曲轴飞轮组开题报告

河南科技大学(论文)开题报告 (学生填表) 院系:车辆与动力工程学院2013年4月15日课题名称Z398柴油机(曲轴飞轮组)设计 学生姓名刘新胜专业班级热发092班课题类型工程设计 指导教师刘建新职称教授课题来源生产 1.设计(或研究)的依据与意义 柴油机具有良好的经济性、动力性及较高的热效率等显著优点, 在汽车节能等方面有较大的潜力。经过多年的研究和新技术的应用,现代柴油机的现状已与往日不可同日而语。随着电控喷射、高压共轨、涡轮增压、中冷等先进技术的应用,柴油机在重量、噪音、烟度等方面已取得了重大的突破。最先进技术的柴油机,升功率可达到30~ 50kWh/L,扭矩储备系数可达到0.35以上,最低燃油耗可达到198g/kWh,标定功率油耗可达到204g/kWh;柴油机被广泛应用于船舶动力、发电、灌溉、车辆动力等广阔的领域。我国小缸径多缸增压柴油机已取得了较快的发展,但整个市场的需求还在增长。 农用车是我国的一个特色的运输车品种,农用车投资非常少、产品运输能力强、产出大,正好满足了建设节约型社会、提高资源使用效率的需求,从整个国家来讲,具有长远的战略意义。而此次研究的Z398柴油机以其设计紧凑,启动轻便,维修简便,技术经济指标先进,能为手扶拖拉机、水泵、电站、运输及多种农副业加工机械和设备作配套动力,在工农业生产中得到广泛的应用,具有很大的农村市场。 随着全球性能源短缺和环境污染问题的日益突出,降低燃油消耗率和排气中的有害气体成分越来越成为了内燃机燃烧系统研究的重要课题。直喷式燃烧系统由于具有良好的燃油经济性,结构简单、启动容易等优点,因此本次设计的Z398柴油机采用直喷式燃烧系统。 曲轴是发动机中最重要的零件之一,发动机的全部功率都是通过它输出的。而且曲轴是在不断周期性变化的力、力矩(包括扭矩和弯矩)的共同作用下工作的,极易产生疲劳破坏。曲轴形状复杂,应力集中严重,因此设计中必须使曲轴有足够的疲劳强度,以保证正常工作。由以上所述可以看出曲轴设计的重要性。本课题主要通过Z398柴油机曲轴的设计研究,设计出合理的曲轴。

柴油机曲轴臂距差检验分析

1 引言 在机器的正常运作中,曲轴直接决定着采油机运作寿命的长短。曲轴的运行状态常常存在不同之处,例如曲轴工作时常常会受到曲轴动力原料的影响,曲轴所处环境的影响,以及曲轴在运作过程中受到各种不同惯性的影响。曲轴在运作时,他的转速十分快,同时柴油机承受着巨大的液体和气体压力。同时,柴油机在运作时与曲轴之间常常存在摩擦力。因此,曲轴运作状态是多变的,在运作过程中,曲轴不能始终保持着绝对润滑。例如,在曲轴运作过程中,曲轴中的润滑油料的耗尽或者曲轴中润滑油料中存在其他杂质时,则会直接造成曲轴运作磨损。曲轴的动力若是柴油机混合动力,则会出现严重的内外部压力不同情况,同时这种压力使得曲轴的运作出现较为严重的应力效应。曲轴采取柴油机作为原动力,应力过度集中常常会损害曲轴的曲轴颈和曲轴臂。在曲轴运作过程中,最容易出现的事情就是曲轴臂出现裂缝或者曲轴臂出现严重的扭曲。当油道开口润滑油料减少或者缺损,则会造成油道处于严重磨损阶段,此时若是再次强行运作则会造成曲轴臂直接出现裂缝。所以,我们若是想保护曲轴臂不受到伤害,则需要保证柴油机器的正常运行,同时设计正确的曲轴臂损害距离差,保证足够的润滑油料的使用。 2 柴油机曲轴臂距差 2.1 臂距差检测的意义 通过观察机器整体结构可知,曲轴在运作时的支撑主要位于机器上的主轴进行承受,同时需要多方面的因素同时不发生问题才能保证整个曲轴的正常运行。在曲轴运作时,若是可以保证曲轴不受磨损,则可以保证曲轴不会出现玩去或者裂缝的存在。但是在实际的运作过程中,常常会出现曲轴与主轴之间存在中心线不一致的情况。也就是说,由于曲轴与主轴之间存在中心线不一致所以导致曲轴的曲拐值出现误差。在曲轴工作中,曲拐值的经常性改变导致的结果则是曲轴臂容易发生扭曲或者出现裂缝的情况,同时也会出现曲轴臂出现其他的意外情况。通过研究我们发现,曲轴臂在严重疲劳的情况下极易出现损坏。通过详细的计算我们得出:曲轴颈出现损害的几率较小,曲轴柄出现损害的几率大于曲轴颈,

柴油机曲轴工艺过程及夹具毕业设计论文

重庆大学网络教育学院 毕业设计(论文) 柴油机曲轴零件加工工艺及夹具设计 学生所在校外学习中心江苏张家港校处学习中心批次层次专业111 专升本机械设计制造及其自动化学号 w11107861 学生 指导教师 起止日期 2013.1.21--2013.4.14

摘要 曲轴是发动机上的一个重要的旋转机件,装上连杆后,可承接活塞的上下(往复)运动变成循环运动。曲轴主要有两个重要加工部位:主轴颈和连杆颈。主轴颈被安装在缸体上,连杆颈与连杆大头孔连接,连杆小头孔与汽缸活塞连接,是一个典型的曲柄滑块机构。发动机工作过程就是:活塞经过混合压缩气的燃爆,推动活塞做直线运动,并通过连杆将力传给曲轴,由曲轴将直线运动转变为旋转运动。而曲轴加工的好坏将直接影响着发动机整体性能的表现。曲轴的材料是由碳素结构钢或球墨铸铁制成的,有两个重要部位:主轴颈,连杆颈。 这次毕业设计介绍柴油机曲轴加工工艺规程及相关夹具的设计,及曲轴的规程制定中遇到问题的分析,经济性分析,工时定额,切削用量的计算。同时还介绍曲轴加工中用到的两套夹具的设计过程。在工艺设计中,结合实际进行设计,对曲轴生产工艺进行了改进,优化了工艺过程和工艺装备,使曲轴的生产加工更经济、合理。 根据现阶段机械零件的制造工艺和技术水平,本着以制造技术的先进性,合理性,经济性进行零件的形状、尺寸、精度等级、表面粗糙度、材料等技术分析。并根据以上分析来选择合理的毛坯制造方法,设计工艺规程,夹具设计。 关键词:柴油机曲轴工艺夹具

目录 中文摘要…………………………………………………………………………………………I 1.引言 (1) 2.曲轴的生产纲领 (2) 3.零件的分析 (2) 3.1曲轴的用途及工作条件 (2) 3.2分析零件上的技术要求,确定要加工的表面 (3) 3.3加工表面的尺寸和形状精度 (4) 3.4尺寸和位置精度 (4) 3.5加工表面的粗糙度及其它方面的质量要求 (4) 3.6热处理要求 (4) 4.曲轴材料和毛坯的定 (4) 4.1确定毛坯的类型 (4) 4.2确定毛坯的生产方法 (4) 4.3确定毛坯的加工余量 (4) 5.曲轴的工艺过程设计 (5) 5.1粗、精加工的定位基准 (5) 5.1.1粗加工 (5) 5.1.2粗加工 (5) 5.2工件表面加工方法的选择 (5) 5.3曲轴机械加工的基本路线 (5) 5.4加工余量及毛坯尺寸 (6) 5.5工序设计 (6) 5.5.1加工设备与工艺装备的选择 (8) 5.5.2机械加工余量、工序尺寸及公差的确定 (9) 5.6确定工时定额 (11) 5.7机械加工工艺规程卡片和机械加工工序卡片 (12) 5.7.1机械加工工艺过程卡片 (12) 5.7.2机械加工工序卡片 (12) 6.柴油机曲轴加工键槽夹具设计 (13) 6.1.1夹具类型的分析 (13) 6.1.2工装夹具定位方案的确定 (13) 6.1.3工件夹紧形式的确定 (13) 6.1.4对刀装置 (13) 6.1.5分度装置的确定以及补补助装置 (14) 6.1.6夹具定位夹紧方案的分析论证 (14) 6.1.7夹具结构类型的设计 (15) 6.2夹具总图设计 (16) 6.4绘制夹具零件图 (16)

柴油机曲轴拐挡差测量方法

曲轴是一个结构复杂、刚性差的重要零件,容易产生弯曲变形,即便是自重也可使其产生弯曲变形。运转中的柴油机主轴承有微量高低不等的状态使坐与其上的曲轴产生弹性变形,整根曲轴的变形为宏观的整体变形,在每个曲柄上的变形为局部的微量变形。曲柄上的微量变形使曲柄臂之间的距离在曲轴回转一周中产生的微量变化,可通过测其微量变化来了解曲轴整体的轴线状态。 (1)、测量部位:中国船级社标准,在《海上营运船舶检验规程》(1984)中规定了曲轴臂距差测量点在(S+D)/2处(S为活塞行程、毫米;D为主轴直径、毫米)。 (2)、中国修船标准:《中华人民共和国船舶行业标准》GB3364-91对船舶柴油机曲轴臂距差作出规定,曲轴臂距差测量点在(S+D)/2处,曲轴在冷态时臂距差标准: ·正常值不大于,即 S/10000; ·修理中飞轮端控制值不大于,即 S/10000; ·飞轮端如为弹性连轴节可适当放宽至不大于, 即 S/10000; (3)、测量要求:一次装表完成全部测量,拐档表安装后应完成曲轴旋转一周中各要求位置臂距差值的测量,测量过程中不允许改动拐档表的位置。当曲轴未装活塞连杆运动件时,测量曲柄0度、90度、180度、270度四个位置臂距差值,再回原位检查有无误差,完成一个拐档的测量;当曲轴已装有活塞连杆运动件时,则测量0度、90度、165度、195度、270度五个位置的臂距差值,完成一个拐档的测量。 (4)、检查方法 ·检查拐档表的灵敏度。检查无误后,根据臂距值L的大小选择并调整拐档表测量杆的长度,使之比臂距值L大2毫米左右,并装上重锤。

·盘车使曲柄在适当的位置,清洁两曲柄臂上的测量孔,将拐档表装入两曲柄臂的测量中。如找不到测量孔,应在距曲柄销轴中心线为基准的S+D/2处的曲柄臂两边打上冲孔。安装正确后,要锁紧固定螺母;将拐档表指针调“0”位,并摆动拐档表,拐档表的指针在“0”位不变为好。 ·正盘车转动曲轴,分别转至左平、上止点、右平和下止点四个位置,即曲柄销自0度、90度、180度、270度再回原位检查,共五个位置记录各位置拐档表读数。 ·曲轴拐档差值的计算与轴线状态分析 上下拐档差值Δ 上下为:Δ 上下 =L 上 -L 下 左右拐档差值Δ 左右为:Δ 左右 =L 左 -L 右 拐档差值Δ 上下 为正“+”时,曲轴轴线呈下弧线弯曲,即呈“︶”形,表明 该曲柄两端的主轴承比其相邻的主轴承偏低;拐档差值Δ 上下 为负“-”时,曲轴轴线呈向上弯曲,即呈“⌒”形,表明该曲柄两端的主轴承比其相邻的主轴承偏 高。同样,拐档差值Δ 左右 为正“+”时,轴线在水平面呈右弧线弯曲;反之,拐 档差值Δ 左右 为负“-”,轴线在水平面上呈左弧线弯曲。 曲轴臂距差值的大小表明曲轴弯曲变形的程度;臂距差值的符号表明曲轴轴线弯曲变形的方向。 ·绘制曲轴轴线状态图 ①按气缸中心距成比例地画出各缸曲柄都向上的曲柄示意图。 ②在曲柄示意图的下方作与轴线平行的横坐标轴线,根据臂距差为正值则主轴承偏低、臂距差为负值则主轴承偏高,将正臂距差值取在横坐标轴线下,将负臂距差值取在横坐标轴线上。

缸柴油机曲轴》

材料力学课程设计 学号:41091307 姓名:吴茂坤 题目:单缸柴油机曲轴的强度设计及刚度计算、疲劳强度校核指导老师:李锋 2011.10.20

目录 一、课程设计的目的 (2) 二、课程设计的任务和要求 (2) 三、设计题目 (3) 四、设计过程 (4) 1、画出曲轴的内力图 (4) 2、设计曲轴颈直径d和主轴颈直径D (6) 3、校核曲柄臂的强度 (7) 4、校核主轴颈H-H截面处的疲劳强度 (9) 5、用能量法计算A-A截面的转角yθ,zθ (9) 五、设计的改进措施及方法 (13) 六、程序计算部分 (13) 七、设计体会 (15) 八、参考文献 (15)

一、课程设计的目的 材料力学课程设计的目的是在于系统学习材料力学后,能结合工程中的实际问题,运用材料力学的基本理论和计算方法,独立地计算工程中的典型零部件,以达到综合运用材料力学的知识解决工程实际问题之目的。同时,可以使我们将材料力学的理论和现代计算方法及手段融为一体。既从整体上掌握了基本理论和现代的计算方法,又提高了分析问题,解决问题的能力;既把以前所学的知识综合应用,又为后继课程打下基础,并初步掌握工程中的设计思想和设计方法,对实际工作能力有所提高。 1)使所学的材料力学知识系统化,完整化。让我们在系统全面复习的基础上,运用材料力学知识解决工程实际问题。 2)综合运用以前所学的各门课程的知识(高等数学、工程图学、理论力学、算法语言、计算机等),使相关学科的知识有机地联系起来。 3)使我们初步了解和掌握工程实践中的设计思想和设计方法,为后续课程的学习打下基础。 二、课程设计的任务和要求 要系统复习材料力学课程的全部基本理论和方法,独立分析、判断设计题目的已知所求问题,画出受力分析计算简图和内力图,列出理论依据并导出计算公式,独立编制计算程序,通过计算机给出计算结果,并完成设计计算说明书。

主机拐档测量工艺

南通中远船务工程有限公司通用工艺 NTS-L04003 主机拐档测量工艺 编制: 校对: 审核: 审定: 2005年月日实施

1、适用范围. 主机拐档差的测量适用于厂修所有修理船舶的拐档差测量。具体以下的船舶需作主机拐档差的测量: 1.1主机进出坞前需作拐档差的测量. 1.2主机修理项目涉及到以下工程时,修理前后需作拐档差的测量.(主机活塞拆检,主机缸套拆检,主机十字头轴承拆检,主机曲柄销轴承拆检,主机主轴承拆检,主机推力轴承拆检,主机底脚螺丝以及贯穿螺丝的上紧等) 2、主机拐档差测量前施工的准备及确认工作. 2.1主机需处于停车状态,并且主机滑油泵已停止工作相当长的时间,主机温度已下来.(气, 燃油阀已处于关闭状态) 2.2 盘车机需处于啮合状态. 2.3 需在盘车机处挂牌,所挂警示牌上需注明: “主机在施工中,未经许可,严禁盘车”.(将总管小组所挂的警示牌取下)同时,在机仓明显位置处也需挂牌,需在警示牌上注明:主机在施工中. 2.4拐档差测量前,需征得总管小组成员的同意. 2.5在施工前,需进一步确认,主机盘车时,与坞修车间施工工程无任何冲突. 2.6施工前,施工小组需作好工前交底工作,并且在盘车时,一定要落实好监护人. 2.7主机拐档差测量所需用的拐档表需检查,组装并调节好.拐档表无论是船方的还是厂方的,均需记录好型号,表号. 2.8在测量拐档差时,所需的照明需到位.(尽可能不用船方的照明灯,可用36V的防爆照明灯或防爆手电筒)

3、主机拐档差的测量. 3.1将主机一侧各缸的曲拐箱道门的固定螺丝松开,逐步打开曲拐箱道门,并需将曲拐箱道门的保险保好,以防道门突然的关闭,砸伤人.(如有可能,尽量将曲拐箱两侧的所有道门打开,以防万一发生事故时,多出一处逃生通道) 3.2需将盘车机作正反转各二至三次,每次盘车后需暂停一会,如果在盘车停止后,曲轴也同时停止而不继续转动,说明盘车机是正常的.在确认盘车机正常后,操作人员才能进入曲拐箱内部. 3.3需检查主机曲拐箱油底壳内部滑油情况,如果油底壳上滑油过多,人员进入时,一定需要作好防滑,防污染措施. 3.4将所需测量缸的曲拐沿正车方向转到偏离下死点右45度处后,人员进入曲拐箱内部,将拐档表安装到该曲拐安装拐档表处. 注:一般来说,将拐档表安装在曲柄臂内侧离曲柄销轴线为:R+d/2 (其中R为曲轴半径,d为主轴颈直径)的位置,该位置上一般打有洋冲眼。3.5安装好拐档表后,曲拐箱内部操作人员需将拐档表的百分表指示对在“O”位.(在人员进入曲拐箱时后,需有一人作指挥,一人拿好盘车机控制盒,一人作记录) 注:拐档表的读数与一般百分表的读数相反. 3.6在曲拐箱内部操作人员发出指令后,指挥人员才能发出盘车的命令.操作盘车机的施工人员,一定需在听到指挥人员的命令后,才能沿着上部曲轴转动的方向操作盘车机,正车方向转动曲拐需在左右水平位置,上死点处,下死点前后各45度总共五处停留,读出并记录所测出的数据. 3.7在各缸曲拐测量后,施工人员需作一个大概的结论,即该主机拐档差正常与否,如果觉得拐档差偏差太大,最好需再复测一次.以求准确.(最

柴油发动机曲轴机械加工工艺规程设计及夹具(毕业设计)

柴油发动机曲轴机械加工工艺规程设计及夹具设计 由吴祖德t053329 于星期五, 2009/06/19 - 12:41下午发表 ?学士学位 ?机电与汽车工程学院 学号: 05120332 专业: 机械设计制造及其自动化 研究方向: 机械设计与制造 导师姓名: 曾宏达 中图分类号: TH16 论文总页码: 47 参考文献总数: 20 曲轴是柴油发动机的重要零件。它的作用是把活塞的往复直线运动变成旋转运动,将作用在活塞的气体压力变成扭矩,用来驱动工作机械和柴油发动机各辅助系统进行工作。曲轴在工作时承受着不断变化的压力、惯性力和它们的力矩作用,因此要求曲轴具有强度高、刚度大、耐磨性好,轴颈表面加工尺寸精确,且润滑可靠。 本设计是根据被加工曲轴的技术要求,进行机械工艺规程设计,然后运用夹具设计的基本原理和方法,拟定夹具设计方案,完成夹具结构设计。主要工作有:绘制产品零件图,了解零件的结构特点和技术要求;根据生产类型和所在企业的生产条件,对零件进行结构分析和工艺分析;确定毛坯的种类及制造方法;拟定零件的机械加工工艺过程,选择各工序的加工设备和工艺设备,确定各工序的加工余量和工序尺寸,计算各工序的切削用量和工时定额;填写机械加工工艺过程卡片、机械加工工序卡片等工艺卡片;设计指定的专用夹具,绘制装配总图和主要零件图。 中文关键字: 机械制造,加工工艺,曲轴,夹具 英文题目: Technological process design and fixture design of diesel engine crankshaft 英文摘要: Crankshaft is a very important parts of diesel engine. Ist action is change the to

柴油机曲轴拐档差的测量与轴线状态分析

柴油机曲轴拐档差的测量与轴线状态分析 评估要点: 评估时间:15min 评估标准: 1、量具的选取、使用,正确得当5分 2、盘车方向,装表位置确定操作5分 3、拐挡表调校,安装正确5分 4、拐挡值测量与读取15分 5、拐挡值记录方法正确10分 6、测量数据分析,结论正确10分 总分50分 每超时1分钟扣 2.5分 曲轴臂距差测量(一只缸) 在大中型柴油机检修中,经常用测量拐挡差的办法来检查曲轴轴线的状态和主轴承的磨损情况。当曲柄的两主轴承低于相邻主轴承时,该曲柄的主轴线弯曲呈塌腰形∪+。如果将曲柄销转至上止点位置两曲柄臂向外张开,间距增大;将曲柄转至下止点位置曲柄臂向内收扰,其曲柄臂间距减小。 当曲柄的两主轴承高于相邻主轴承时,该曲柄的主轴线弯曲呈拱腰形∩-。如果将曲柄销转至上止点位置两曲柄臂向收扰,间距减小;将曲柄转至下止点位置曲柄臂向外张开,其曲柄臂间距增大。 同样,将曲柄销分别转至左、右水平位置,两臂间距亦会发生同样在的变化。 拐挡表的使用方法(重点) 1、检查拐挡表(曲轴量表)的灵敏度。用手指按动拐表一端的顶头,看表上的脂针摆动是否灵活,放松后指针能否回到原来位置上。检验无误后,根据臂距差的大小选择并调整好拐挡表测量杆的长度,使之比臂距大1~2mm。 2、配重式拐挡表。当将 表两端的顶尖两端压装入两 曲柄臂的冲孔之后,应将整 个表用手慢慢来回摆动2~ 3次,检查是否装置稳固; 其次观察表盘指针有无摆动 动作,若有摆动也许是由于 孔不正或两端的表杆不直而 引起的,要修正冲孔或校检 表杆,消除之后再测量;再 确认安装好后,转动表盘将 表的指针调到“0”位。 3、读取拐挡表数值。由 于结构不同测量臂距增减时 拐挡表指针的方向不尽相 同,因而要在使用前,注意 观察,认真识别。当将拐挡 表的触头向表内压入时,表 面上的读数应减小,在作记

柴油机曲轴工艺设计方案[]

0 引言 本次毕业设计是关于R180柴油机曲轴的工艺设计及其中两道工序的夹具设计。 曲轴是柴油机中的关键零件之一,其材质大体分为两类:一是钢锻曲轴,二是球墨铸铁曲轴。由于采用铸造方法可获得较为理想的结构形状,从而减轻质量,且机加工余量随铸造工艺水平的提高而减小。球铁的切削性能良好,并和钢制曲轴一样可以进行各种热处理和表面强化处理,来提高曲轴的抗疲劳强度和耐磨性。而且球铁中的内摩擦所耗功比钢大,减小了工作时的扭转振动的振幅和应力,应力集中也没有钢制曲轴来的敏感。所以球墨铸铁曲轴在国内外得到广泛采用。本次设计中曲轴的材质为球铁。 从目前整体水平来看, 毛坯的铸造工艺存在生产效率低,工艺装备落后,毛坯机械性能不稳定、精度低、废品率高等问题。从以下几个工艺环节采取措施对提高曲轴质量具有普遍意义。①熔炼国内外一致认为,高温低硫纯净铁水的获得是生产高质量球铁的关键所在。为获得高温低硫磷的纯净铁水,可用冲天炉熔化铁水,经炉外脱硫,然后在感应电炉中升温并调整成分。②球化处理③孕育处理冲天炉熔化球铁原铁水,对铜钼合金球铁采用二次孕育。这对于防止孕育衰退,改善石墨形态,细化石墨及保证高强度球铁机械性能具有重要作用。④合金化配合好铜和钼的比例对形成珠光体组织十分有利,可提高球铁的强度,而且铜和钼还可大大降低球铁件对壁厚的敏感性。⑤造型工艺气流冲击造型工艺优于粘土砂造型工艺,可获得高精度的曲轴铸件,该工艺制作的砂型具有无反弹变形量的特点,这对于多拐曲轴尤为重要。⑥浇注冷却工艺采用立浇—立冷,斜浇—斜冷、斜浇—反斜冷三种浇注方式较为理想,其中后一种最好。斜浇—反斜冷的优点是:型腔排气充分,铁水充型平稳,浇注系统撇渣效果好,冒口对铸件的补缩效果好,适应大批量流水线生产。 目前,国内大部分专业厂家普遍采用普通机床和专用组合机床组成的流水线生产,生产效率、自动化程度较低。曲轴的关键技术工程仍与国外相差1~2个数量级。国外的机加工工艺大致可归纳为如下几个特点。①广泛采用数控技术和自动线,生产线一般由几段独立的自动化生产单元组成,具有很高的灵活性和适应性。采用龙门式自动上下料,集放式机动滚道传输,切削液分粗加工与精加工两段集中供应和回收处理。②曲轴的主要加工工序基准中心孔,一般采用质量定心加工方式,这样在静平衡时,加工量很少。③轴颈的粗加工一般采用数控铣削或车拉工艺。工序质量可达到国内粗磨后的水平,且切削变形小、效率高。铣削和车拉是曲轴粗加工的发展方向。④国外的曲轴磨床均采用CNC控制技术,具有自动进给、自动修正砂轮、自动补偿和自动分度功能,使曲轴的磨削精度和效率显著提高。⑤油

第二节_气缸盖和曲轴的疲劳破坏

第二节气缸盖和曲轴的疲劳破坏 一、气缸盖的疲劳破坏 1.气缸盖底面裂纹 柴油机运转过程中气缸盖底面在其工作条件下可能产生高温疲劳、蠕变和热疲劳破坏。 气缸盖底面即触火面承受着高温高压燃气的周期重复作用。高温下高压燃气作用使底面发生弯曲变形产生机械压应力,并随柴油机工作循环周期重复变化。一般情况下,气缸盖底面温度达400~500℃,有时可能超过0.5Tm (灰铸铁的熔点)。当气缸盖冷却不良时就会超过0.5Tm,从而引起高温疲劳破坏。当底面温度超过0.3Tm时,底面产生显著蠕变,从而使底面性应力大大降低。 气缸盖底面和冷却面的温差可达300~400℃,在底面和冷却面分别产生压、拉热应力,在柴油机停车或负荷突降时会使气缸盖底面压应力进一步降低、消失,甚至产生残余拉应力。另外,柴油机运转过程中零件长期受到高温作用,使材料的疲劳极限下降,所以低频热应力过大时就会在气缸盖底面产生疲劳裂纹。 因此,当气缸盖底面产生裂纹时不能简单地视为热疲劳裂纹,因为底面裂纹可能是热疲劳裂纹,也可能是高温疲劳裂纹或蠕变裂纹,或者是三者共同作用产生的裂纹。但是当发现龟裂裂纹时,则可断定为热疲劳裂纹。 2.气缸盖冷却面裂纹 气缸盖冷却侧分布着环形或其他形状的冷却水通道,在通道筋的根部产生机械疲劳裂纹,并向触火面扩展。裂纹是气缸内最大爆发压力引起的周期性脉动应力作用的结果。 气缸内最大爆发压力作用在缸盖底面上使其发生弯曲变形,在冷却面上产生最大拉应力。当冷却水通道筋的根部过渡圆角过小或者存在铸造缺陷时,在这些应力集中的部位就会产生裂纹或使铸造缺陷裂纹扩展,以致在周期脉动应力作用下裂纹自冷却面向触火面逐渐扩展,最终使缸盖裂穿。 零件在腐蚀介质和交变载荷共同作用下产生腐蚀疲劳破坏。由于腐蚀与疲劳加速零件上的裂纹形成与扩展,所以是更严重的破坏。气缸盖冷却面在冷却水中不可避免地产生微观电化学腐蚀;冷却面局部区域的冷却水还可能处于沸腾状态,使冷却水中可溶性盐类的酸根离子Cl-、SO42- 等与冷却面金属发生电化学腐蚀;当冷却水中溶解一定量氧时,冷却面金属被氧化,水温越高,氧化腐蚀越严重。在以上腐蚀条件下零件材料的疲劳强度显著下降,在气缸中燃气的循环交变应力作用下产生腐蚀疲劳破坏。 综合以上分析,气缸中的燃气温度和压力对于气缸盖底面和冷却面上产生疲劳裂纹均有很大影响。气缸盖乃至燃烧室的其他组成零件能否产生疲劳裂纹均与轮机员的管理工作密切相关。为了避免产生热疲劳裂纹就不能产生过大的热应力,也就要求气缸盖等零件不能热态时急冷和冷态下急剧加热或使其过热。例如,柴油机起动前不暖机或暖机不充分,起动后又立即增速增负荷;停车时过早中断冷却水,使机件散热不良或局部过热;长期超负荷;气缸盖冷却水腔结垢严重等。 二、曲轴的疲劳破坏 柴油机在运转中发生曲轴裂纹和断裂事故不为鲜见,尤其是发电柴油机曲轴疲劳破坏较多。曲轴在回转中受到各缸交变的气体力、往复惯性力和离心力,以及由其所引起的弯矩、扭矩的作用,这些力不仅随曲轴转角变化,也随负荷变化。因此曲轴在这些力的作用下发生弯曲和扭转变形,产生复杂的交变应力和引起曲轴的弯曲振动、扭转振动,从而又产生很大的附加应力。曲轴的形状复杂,截面变化较多,刚性很差,存在严重的应力集中,容易产生疲劳破坏。 曲轴裂纹和断裂是属于高周低应力疲劳破坏。其断裂应力甚至仅为l/3屈服极限,循环

发动机曲轴加工工艺分析与设计

发动机曲轴加工工艺分析与设计 摘要 曲轴是汽车发动机的关键零件之一,其性能好坏直接影响到汽车发动机的质量和寿命.曲轴在发动机中承担最大负荷和全部功率,承受着强大的方向不断变化的弯矩及扭矩,同时经受着长时间高速运转的磨损,因此要求曲轴材质具有较高的刚性、疲劳强度和良好的耐磨性能。发动机曲轴的作用是将活塞的往复直线运动通过连杆转化为旋转运动,从而实现发动机由化学能转变为机械能的输出。 本课题仅175Ⅱ型柴油机曲轴的加工工艺的分析与设计进行探讨。工艺路线的拟定是工艺规程制订中的关键阶段,是工艺规程制订的总体设计。所撰写的工艺路线合理与否,不但影响加工质量和生产率,而且影响到工人、设备、工艺装备及生产场地等的合理利用,从而影响生产成本。 所以,本次设计是在仔细分析曲轴零件加工技术要求及加工精度后,合理确定毛坯类型,经过查阅相关参考书、手册、图表、标准等技术资料,确定各工序的定位基准、机械加工余量、工序尺寸及公差,最终制定出曲轴零件的加工工序卡片。 关键词:发动机,曲轴,工艺分析,工艺设计 目录 第一章概述1 第二章确定曲轴的加工工艺过程3 2.1曲轴的作用3 2.2曲轴的结构及其特点3 2.3曲轴的主要技术要求分析4 2.4曲轴的材料和毛坯的确定4 2.5曲轴的机械加工工艺过程4 2.6曲轴的机械加工工艺路线5 第三章曲轴的机械加工工艺过程分析 6 3. 1曲轴的机械加工工艺特点6 3. 2曲轴的机械加工工艺特点分析7 3. 3曲轴主要加工工序分析 (8) 3.3.1铣曲轴两端面,钻中心孔 (8) 3.3.2曲轴主轴颈的车削 (8) 3.3.3曲轴连杆轴颈的车削 (8) 3.3.4键槽加工 (9) 3.3.5轴颈的磨削 (9) 第四章机械加工余量、工序尺寸及公差的确定9 4.1曲轴主要加工表面的工序安排9 4.2机械加工余量、工序尺寸及公差的确定10 4.2.1主轴颈工序尺寸及公差的确定10 4.2.2连杆轴颈工序尺寸及公差的确定10 4.2.3φ22 -00.12外圆工序尺寸及公差的确定10 4.2.4φ20 0-0.021外圆工序尺寸及公差的确定11 4.3 确定工时定额11 4.4 曲轴机械加工工艺过程卡片的制订12 谢辞13

轮机修理与维护题库数字题(新)

轮机修理与维护数字题 1、统计分析,目前共有种故障率曲线。 2、到目前为止,船舶机械的维修方式有。 3、船龄的船舶,修理后.应达到保持原设计性能。 4、根据规定,远洋货船小修的时间间隔应为。 5、经轮机长核定的修理单应一式份,其中一份留船,其余的应按时上报给公司船技处。 6、“PMS”作为轮机证书附加的标志之一,其含义是。 7、“RCM”的含义是。 8、实行螺旋桨轴状态监控的船舶,其轮机证书的附加标志是。 9、轮机船级证书的附加标志SCM表示含义。 10、轮机船级证书的附加标志ECM表示含义。 11、轮机船级证书的附加标志CMS表示含义。 12、轮机船级证书的附加标志PMS表示含义。 13、微动磨损是一种复合型磨损,它包含着种磨损机理。 14、柴油机汽缸套处于正常工作状态时,其最大磨损量在范围之内(D为汽缸套内径)。 15、正常磨损时,铸铁汽缸套的磨损率应小于。 16、运动副磨合良好可使摩擦表面的实际接触面积增大,可达以上。 17、为了防止出现低温腐蚀磨损,船舶船舶柴油机汽缸套冷却水出口温度一般应控制在。 18、船舶柴油机燃用重油,当燃油的含硫量为1.5%时,汽缸油的总碱值(TBN)应为。 19、柴油机正常运转时活塞环的正常磨损率一般为。 20、一般用低速柴油机燃用低质燃油对汽缸套的磨损较燃用低硫燃油高倍。 21、燃油中的含硫量超过时,柴油机汽缸套的磨损急剧增加。 22、在边界润滑中,边界油膜的厚度一般。 23、据统计,由于磨损造成的零件失效,占失效零件的。 24、全世界每年钢产量的被腐蚀浪费。 25、发生高温腐蚀的零件除因柴油机燃用重油外,必定是零件温度达以上。 26、柴油机燃用重油时,燃烧室零件的温度在以上,足以钒、钠化合物处于熔化或软化状态附着在零件表面上发生高温腐蚀。 27、碳钢零件在560℃以下被腐蚀,其产物是。 28、高温下材料的疲劳强度用规定的循环周次下的疲劳强度表示,一般取次。 29、零件受热表面产生热疲劳时,一般有个疲劳裂纹源。 30、柴油机运转时,铸铁汽缸盖底面温度超过时将发生显著蠕变,使底面压应力大大降低。 31、磁粉探伤时采用磁化电流的电压一般在以下。 32、超声波的频率范围。 33、超声波探伤迅速、灵敏度高,探测厚度可达。 34、润滑油理化性能长采用常规化验法进行检测,这是一种定期定量的检测方法。柴油机润滑油系列一般每隔取样检测一次。 35、入级船舶依规范应定期进行尾轴润滑油检验,规定润滑油取样检验间隔期应不超过。 36、自然界中,任何高于的物体都是辐射源。 37、按照中国船级社的规定,对于采用状态监控系统的无键安装的螺旋桨轴,如果监控记录参数都在正常范围内,则螺旋桨轴抽出检验的间隔期可延长至不超过。 38、一般情况下,若修复费用新零件制造成本或购买新零件费用,就认为此种修复工艺是经济可取的。 39、镀铬层的厚度一般为毫米,最大不超过毫米。

曲轴臂距差

二、曲轴臂距差 曲轴是一个结构复杂、刚性爱的重要零件,容易产生弯曲变形,即便自重也可使其产生弯曲变形。新造柴油机曲轴安放在机座主轴承上,因各道主轴承孔中心在同一直线上,落坐于主轴承上的曲轴轴心线也呈直线状态。经长时间运转,其他情况正常,仅各道主轴承下瓦产生不同程度磨损,各道主轴承中心不等高,落坐其上的曲轴其轴线发生弯曲变形,引起曲轴产生附加弯曲应力。因此,柴油机正常运转情况下,曲轴轴线状态主要取决于主轴承下瓦的高低;反之,曲轴轴线状态也反映了各道主轴承的高低,也就是反映了各道主轴承下瓦的磨损情况。 1.曲轴臂距差的概念 1)曲轴的变形 运转中的柴油机主轴承高低不等便坐于其上的曲轴产生弹性变形,整根曲轴的变形为宏观的整体变形,在每个曲柄上的变形为局部的微量变形。曲柄微量变形是曲柄臂之间的距离在曲轴回转一周中产生的微量变化。 2)运转中的曲柄 研究曲轴变形时,为了便于分析曲柄的微量变形,简化问题,对运转中的曲柄进行以下假定: (1)主轴颈与曲柄臂之间为刚性连接,夹角为90o。并保持不变; (2)主轴颈、曲柄销颈和曲柄臂均为刚性件,运转中形状不变: (3)曲柄销颈与两曲轴臂之间夹角α、β不仅相等且变化相同,即保持 α=β如图8-27所示。 3)曲柄微量变形、曲轴整体变形与主轴承高低的关系 当曲轴发生整体变形时,即发生轴线的弯曲变形时,分析曲轴的任一曲柄微量变形。 图8-28(a)所示:当曲柄的两个主轴承低千相邻主轴承时,该曲柄的两个主轴颈轴线向下弯曲呈塌腰形。此时,将曲柄销转至上止点位臵时,曲柄的两臂张开,臂距增大;曲柄销转至下止点位臵时,曲柄的两臂收拢,臂距减小。同样,将曲柄销分别转至左、右平位臵时,曲柄臂距亦有相同变化。

相关文档
相关文档 最新文档