文档库 最新最全的文档下载
当前位置:文档库 › 除氧器水位三冲量调节

除氧器水位三冲量调节

除氧器对锅炉水位的影响及对策

除氧器对锅炉水位的影响及对策 贾志刚1,董 刚2 【摘 要】中冶京诚(营口)中试基地锅炉房为全厂生产提供蒸汽保障.其中2台低压锅炉存在汽包水位周期性波动问题,经常造成锅炉误动作停炉,影响生产.分析除氧器对其影响并提出解决方案:利用现有设备,调整自动化系统多个参数及相关工艺过程,在不花费任何费用的情况下,保证锅炉的稳定生产. 【期刊名称】辽宁师专学报(自然科学版) 【年(卷),期】2011(013)004 【总页数】3 【关键词】锅炉;水位;调节阀;PID;控制 1 概述 中冶京诚(营口)装备技术有限公司锅炉房是该厂重要的生产单位,其产出的中压蒸汽提供给炼钢厂VD真空精炼炉、VC真空浇铸炉生产,低压蒸汽为制氧站、液化气站、制气厂、锻造厂、铆焊厂及办公楼等单位提供生产用气及采暖用气.锅炉房为全公司正常生产提供基本保障. 锅炉房目前拥有低压锅炉2台,与其配套使用25t除氧器2台.2台低压锅炉及2台除氧器液位的测量采取双室平衡容器和差压变送器配合测量.除氧器所用蒸汽量的瞬间大幅度变化,经常会引起锅炉汽包蒸发量的瞬间大幅度变化,这将直接导致液位的大幅波动,从而引起锅炉给水调节误动作,甚至造成低水位停炉,影响生产.另外,这种波动直接导致除氧器温度不达标,影响除氧效果.本文针对这些问题对除氧器自动化系统及相关工艺进行改造及调整,从而有效地解决了锅炉误动作停炉等问题 ,收到了良好的效果. 2 测量原理 差压变送器测量水位的原理是通过测量一段未知高度的水柱压力,再通过已知水的密度和重力加速度推算水柱的高度. 在标准状态下,水的密度为1×103 kg/m3,根据公式P=ρg H可以计算出锅炉水位.众所周知,中高压锅炉由于压力引起的密度变化对水位波动影响很大,但在低压范围下(低压锅炉工作压力 0.30~0.55MPa),由表1可以看出,密度对液位的影响十分微小[1]. 3 液位波动的成因 首先分析蒸发量变化对水位的影响:当锅炉蒸发量急剧增加时,锅炉管道过热度较大,管内逐步有气泡产生,系统空泡率增加,使得汽水容积增加,导致汽包水位上升.下面我们看一下锅炉的实际情

除氧器水位问题

除氧器水位急剧下降的事故处理预案 一、事故前工况: 凝泵单台工作,除氧器水位自动调节正常,两台电泵工作,汽包水位自动调节正常,机组运行正常。 二、除氧器水位急剧下降事故现象: 1、除氧器OS画面水位、电接点水位、就地水位计水位一个或全部指示降低。 2、凝汽器水位可能升高,汽包水位可能升高。 3、水位降到OS画面水位低报警发出。 4、水位降到水位低II值时,将使给水泵掉闸。 5、凝泵电流、出口压力、流量、给水泵转速、给水流量可能发生大幅变化。 三、除氧器水位急剧下降事故原因: (一)、凝水系统有故障,包括: 1、主凝水调门机构故障使调门关闭。 2、除氧器水位自动调节系统失灵。 3、A凝泵跳闸(或变频器故障跳闸)备用B泵未及时联起。 4、加热器跳闸后水侧阀门动作不正常使凝水中断。 5、凝水启动再循环门、凝水再循环门误开,自动调整跟踪不及时或除氧器水位设定块误设定时。 (二)、给水系统扰动,包括: 1、给水泵故障,转速飞升,除氧器水位跟踪不及时。 2、其他故障使锅炉需水量急剧增加,除氧器水位跟踪不及时。 (三)、除氧器系统有故障,包括: 1、除氧器溢流阀、事故放水阀误开不关或联开后不关。

2、水位测量部分故障,发水位假信号。 3、机组启动过程中,操作不当使除氧器与凝汽器连通。 4、高负荷时高加事故疏水开启,凝水补充不及时。 四、除氧器水位急剧下降事故处理: 1、发现除氧器水位急剧下降,应首先根据两个OS画面水位和一个电接点水位的变化情况进行故障确认,如为控制用变送器故障,应退出除氧器水位自动调节改为手动调整,如为指示用变送器故障应加强监视通知热工,如为电接点故障,应联系热工短接闭锁电泵启动接点并及时处理。 2、如所有水位计指示均急剧下降,应根据凝水主调门开度(变频器控制块开度)、凝泵电流、出口压力、凝水流量进行判断,迅速查明原因,进行相应处理。如为主调门故障关闭,表现为凝泵电流减小,出口压力升高,流量下降等,此时应立即开启主调门旁路电动门补水,观察凝水流量,使用凝水再循环辅助调整流量,必要时手动调整旁路电动门;如为加热器故障跳闸,水侧阀门切换不正常引起断水,则故障阀门闪黄,凝泵电流减小,出口压力升高,流量下降,此时应就地手动开启故障电动门维持上水;如为除氧器水位自动调节失灵,应立即改为手动调节;如变频器跳闸或A凝泵电机跳闸备用泵未及时联起,应手起备用泵;如为系统阀门误开应检查关闭,设定操作失误应汇报机长立即恢复;如为炉侧扰动,应以炉侧为主,必要时启动备用泵上水,防止事故扩大;除氧器系统阀门误开等原因引起的水位下降,应及时关闭,如为溢流阀故障应关闭手动门;启动过程中应认真检查除氧循环泵系统阀门及凝水启动循环门位置,防止除氧水箱的水窜到凝汽器,一旦发生水位下降现象应立即进行系统隔离;高负荷时高加事故疏水开启应根据情况适当减负荷使事故疏水关闭,否则通知热工关闭。 3、处理除氧器水位急降事故过程中,炉侧应进行减负荷操作以减缓水位下降速度,同时可以暂时减小锅炉上水量。如果处理不及时水位下降到保护值应按炉灭火处理,以防止损坏设备。 一、事件经过 ×年×月×日,××发电有限责任公司,夜班时,某值运行值班员在设定除氧气水位时,本想设定为2260mm,却误设定为2600mm,当时并没有发现。运行工况:负荷指令450MW,四台磨煤机运行,两台汽泵运行,电泵处于热备用,除氧器供汽由四抽带,除氧器压力0.51Mpa,温度154℃,滑压运行。 误设定值后水位上升,发了除氧器水位高Ⅰ值报警(大于2530mm),检查除氧器水位已经达到2540mm,除氧器溢流阀没有开。除氧器上水调门开度52%比正常是大(正常是约为40%),除氧器上水流量增大,除氧器水温下降,低加水位开关发高Ⅰ报警,凝结水泵出口压力降低为2.9MPa,凝汽器水位降低到650mm,凝汽器补水调门已经全开。经检查除氧器水位设定值位2600mm,且除氧器水位有升高的趋势,立刻解除水位设定自动,关小。处理如下: 1. 除氧器水位高Ⅰ值(大于2530mm),发报警,联开溢流阀。高Ⅱ值(大于2640mm)联开危机疏水门,除氧器事故疏水门开启后,要注意放水管路的振动情况。高Ⅲ值(大于2900mm)会引起保护关四段抽汽逆止门,由于小机也由四抽供汽。因此若除氧器水位高Ⅲ值,注意给水泵汽源由四抽供汽自动切为冷再供汽,由于冷再压力较高,此时小机有可能发生转速上升甚至超速,引起汽包水位过高,应对汽包水位及时调整,做好小机超速引起RB、汽包水位高MFT、甚至汽机进水的预想;

汽轮机除氧器水位控制逻辑优化

汽轮机除氧器水位控制逻辑优化 随着当今社会的迅速发展,人们对电力能源的需求不论在工作方面还是生活方面都是不可或缺的。而在我国电力能源的主要产出方式还是以火力发电为主,在火电厂的发电过程中,除氧器是其重要的辅机设备,其工作状态以及水位是否在其正常的工作范围,将直接决定火力电厂发电机组的运行是否安全和稳定。因此,对汽轮机除氧器水位控制逻辑的优化是保证电厂发电机组合理运行的必要手段。 标签:除氧器水位控制逻辑优化 前言 电厂发电机组的安全稳定性的要求决定汽轮机除氧器水位的控制在一定合理的范围内,除氧器能够对锅炉的给水進行合理有效地除氧和去不凝结气体处理,从而提高了锅炉给水的品质,保证给水中没有氧气,避免含氧对所接触的金属设备造成腐蚀影响,从而对设备性能产生影响。所以,本文主要针对汽轮机除氧器水位控制逻辑优化进行分析,从而推动发电机组的稳定发电。 一、汽轮机除氧器水位控制的现状 1.汽轮机除氧器水位调节阀控制 汽轮机除氧器水位控制主要有其相关调节阀进行水位的正常控制,调节阀采用一主一辅的方式进行控制,当汽轮机除氧器的水位发生较大变化时,调节阀就会根据变化的程度是增高还是降低的一定范围,进行合理的调节作用。在启停机的过程中,需要根据发电机组具体的参数变化和工况进行汽轮机除氧器水位的合理控制,当发电机组启机时间,先启动辅助调节阀进行调节,并网运行后再选择主调节阀进行调节。往往在汽轮机除氧器调节阀控制中有手动调节和自动调节两种方式,在运行调节过程中,要保证手动调节和自动调节互不干扰影响,而在其自动调节的自动化水平还有待提高,所以手动调节的运用比较频繁。 2.汽轮机除氧器具有复杂性 在火力发电机组中,对汽轮机除氧器水位的控制是重要任务。除氧器具有很强的复杂性,它的状态会随着运行时间的变化而变化,而且没有一定的规律,多种变量也对其存在影响,因此传统的控制方法对它来说存在一定的局限性,所系需要引进先进的控制理念和技术优化。在火电厂发电中,就有用到除氧器水位多变量模糊PID控制和除氧器水位多变量神经元PID控制,就很有效地解决了传统除氧器PID控制的弊端和存在的不足,因此可以看出这两种先进控制技术具有很好的前景和潜力[1]。 二、汽轮机除氧器水位控制意义

汽包水位三冲量给水调节的工作原理

汽包水位三冲量给水调节系统 1、所谓冲量,是指调节器接受的被调量的信号; 2、汽包水位三冲量给水调节系统由汽包水位测量筒及变送器、蒸汽流量测量装置及变送器、给水流量测量装置及变送器、调节器、执行器等组成; 3、在汽包水位三冲量给水调节系统中,调节器接受汽包水位、蒸汽流量和给水流量三个信号,如图所示。其中,汽包水位H是主信号,任何扰动引起的水位变化,都会使调节器输信号发生变化,改变给水流量,使水位恢复到给定值;蒸汽流量信号qm.S是前馈信号,其作用是防止由于“虚假水位”而使调节器产生错误的动作,改善蒸汽流量扰动时的调节质量;蒸汽流量和给水流量两个信号配合,可消除系统的静态偏差。当给水流量变化时,测量孔板前后的差压变化很快并及时反应给水流量的变化,所以给水流量信号qm.w作为介质反馈信号,使调节器在水位还未变化时就可根据前馈信号消除内扰,使调节过程稳定,起到稳定给水流量的作用。 4、在大、中型火力发电厂锅炉汽包水位的变化速度比较快,“虚假水位”现象较为严重,为了达到生产过程中对汽包水位调节的质量要求,因而广泛采用了三冲量汽包水位调节系统。

5、关于测量信号接入调节器的极性说明:当信号值增大时要求开大调节阀,该信号标以“”号;反之,当信号值减小时要求关小调节阀,该信号标以“-”号。在给水调节系统中,当蒸汽流量信号增大时,要求开大调节阀,该信号标以“”号;给水流量信号增大时,要求关小调节阀,该信号标以“-”号;当汽包水位升高时,差压减小,水位测量信号减小,要求关小调节阀,则该信号标以“”号。 直流炉没有三冲量啊,没有汽包,在直流状态下给多少水就产生多少汽的,是通过中间点温度来调整锅炉燃水比的! 单冲量三冲量切换条件:一般用给水流量来划分,小于200t/h(30%,我们300MW机组就是这样)时为单冲量,大于则为三冲量 为啥要到30%负荷时,电泵由单冲量切到三冲量啊?要防止汽包的虚假水位。在低负荷的时候,单冲量主要是给系统上水,在高负荷时,给水的任务就是维持汽包水位。

除氧器水位急剧下降处理

七、除氧器水位急剧下降的事故处理预案 一、事故前工况: 凝泵单台工作,除氧器水位自动调节正常,两台电泵工作,汽温汽压自动调节正常,机组运行正常。 二、除氧器水位急剧下降事故现象: 1、除氧器DCS画面水位、电接点水位、就地水位计水位一个或全部指示降低。 2、凝汽器水位可能升高,汽温汽压可能升高。 3、水位降到DCS画面水位低报警发出。 4、水位降到水位低II值时,将使给水泵掉闸。 5、凝泵电流、出口压力、流量、给水泵转速、给水流量可能发生大幅变化。 三、除氧器水位急剧下降事故原因: (一)、凝水系统有故障,包括: 1、主凝水调门机构故障使调门关闭。 2、除氧器水位自动调节系统失灵。 3、A凝泵跳闸(或变频器故障跳闸)备用B泵未及时联起。 4、加热器跳闸后水侧阀门动作不正常使凝水中断。 5、凝水启动再循环门、凝水再循环门误开,自动调整跟踪不及时或除氧器水位设定块误设定时。 (二)、给水系统扰动,包括: 1、给水泵故障,转速飞升,除氧器水位跟踪不及时。

2、其他故障使锅炉需水量急剧增加,除氧器水位跟踪不及时。 (三)、除氧器系统有故障,包括: 1、除氧器溢流阀、事故放水阀误开不关或联开后不关。 2、水位测量部分故障,发水位假信号。 3、机组启动过程中,操作不当使除氧器与凝汽器连通。 4、高负荷时高加事故疏水开启,凝水补充不及时。 四、除氧器水位急剧下降事故处理: 1、发现除氧器水位急剧下降,应首先根据两个DCS画面水位和一个电接点水位的变化情况进行故障确认,如为控制用变送器故障,应退出除氧器水位自动调节改为手动调整,如为指示用变送器故障应加强监视通知热工,如为电接点故障,应联系热工短接闭锁电泵启动接点并及时处理。 2、如所有水位计指示均急剧下降,应根据凝水主调门开度(变频器控制块开度)、凝泵电流、出口压力、凝水流量进行判断,迅速查明原因,进行相应处理。如为主调门故障关闭,表现为凝泵电流减小,出口压力升高,流量下降等,此时应立即开启主调门旁路电动门补水,观察凝水流量,使用凝水再循环辅助调整流量,必要时手动调整旁路电动门;如为加热器故障跳闸,水侧阀门切换不正常引起断水,则故障阀门闪黄,凝泵电流减小,出口压力升高,流量下降,此时应就地手动开启故障电动门维持上水;如为除氧器水位自动

除氧器水位控制简介

除氧器水位控制简介 目前超临界压力机组运行中,除氧器水位控制是工厂自动控制中的一部分。其特点是由于机组的热力系统及运行特性决定了除氧器水位控制在不同的工况下可以自动先择单冲量或三冲量控制。 一、除氧器水位调节工艺流程。 工艺流程如图(一)所示,单台凝结水泵出力及单台汽动给水泵出力均为50%MCR。电动给水泵通过液力偶合器变速运行,出力为30%MCR。除氧器水箱正常水位2875mm,水容量425T。机组在干态下(即160MW-600MW区间)滑压运行。正常时高压加热器疏逐级自流到除氧器水箱。#2~4低压加热器疏水逐级自流到低加疏水箱经低加疏水泵打入#3低加水侧入口,#1低加疏水直接流凝汽器扩容器。除氧器的水位控制是通过轴封加热器出口的除氧器水位调节阀的节流从而改变进入除氧器的凝结水流量来调节的。

FT1:#4低加出口流量变送器;FT2:锅炉给水流量变送器;LS:除氧器水位开 关;LT:除氧器水位变送器;I/P:电流压力转换器;SV:电磁阀;ZT:除氧器水 位调节阀位置变送器. 图 (一) 二、除氧器水位调节控制部分 除氧器水位控制简图如图(二)所示,系统采用了三冲量串控制和单冲量控制两种方式,以适应不同工况的需要。 测量元件: a)LT:除氧器水箱的运行参数相对比较低(额定: p=0.97MPa、t=176℃),所以在水位的测量部分并没有如 汽泡水位测量一样有测量误差修正。但是为了提高系统可 靠性而采用了三个水位变送器取其三者平均值为除氧器 的水位反信号。 b)LS:水位开关用来检知水位低1值、水位低2值、水位高 1值、水位高2值、水位高3值并触发报警或启动相关保 护。 c)FT1:给水流量测量信号来自锅炉协调控制中的给水流量

锅炉汽包水位三冲量控制系统仿真

xxxx大学 本科生课程设计论文 题目:锅炉汽包水位三冲量控制系统仿真学生姓名: 学号: 专业: 班级: 指导教师: 时间:2013年12月8日

内蒙古科技大学课程设计任务书

目录 第一章汽包水位控制的概述.................................................................................................... - 1 - 1.1 锅炉汽包水位的动态特性........................................................................................... - 1 - 1.1.1 给水流量W对汽包水位H的影响 ................................................................. - 1 - 1.1.2汽包水位在蒸汽流量D扰动下的影响 ............................................................ - 2 - 第二章三冲量串级给水控制系统设计.................................................................................... - 4 - 2.1 单冲量水位控制系统的介绍....................................................................................... - 4 - 2.2 双冲量水位控制系统的介绍....................................................................................... - 5 - 2.3 三冲量汽包水位控制原理........................................................................................... - 5 - 2.3.1 三冲量控制方案之一........................................................................................ - 5 - 2.3.2三冲量控制方案之二......................................................................................... - 7 - 2.3.3三冲量控制方案之三......................................................................................... - 8 - 第三章汽包三冲量控制算法的MATLAB仿真设计 ........................................................... - 10 - 3.1 控制系统模型图的绘制............................................................................................. - 10 - 3.1.1 Simulink模块的调用 ....................................................................................... - 10 - 3.1.2 PID子系统的建立以及封装 ........................................................................... - 10 - 3.2 PID控制器的参数整定 .............................................................................................. - 12 - 第四章总结.............................................................................................................................. - 15 - 参考文献.................................................................................................................................... - 16 -

除氧器水位单回路控制系统设计

课程设计报告 ( 2014-- 2015年度第二学期) 名称:控制装置及仪表课程设计 题目:除氧器水位单回路控制系统设计院系:自动化系 班级:1204班 学号:201209010313 学生姓名:沈一鸣 指导教师:韦根源老师 设计周数:一周 成绩:

日期:2015年6月26日

《控制装置与仪表》课程设计 任务书 一、目的与要求 认知控制系统的设计和控制仪表的应用过程。 1.了解过程控制方案的原理图表示方法(SAMA图)。 2.掌握数字调节器KMM的组态方法,熟悉KMM的面板操作、数据设定器和KMM 数据写入器的使用方法。 3.初步了解控制系统参数整定、系统调试的过程。 二、主要内容 1.按选题的控制要求,进行控制策略的原理设计、仪表选型并将控制方案以SAMA 图表示出来。 2.组态设计 2.1KMM组态设计 以KMM单回路调节器为实现仪表并画出KMM仪表的组态图,由组态图填写 KMM的各组态数据表。 2.2组态实现 在程序写入器输入数据,将输入程序写入EPROM芯片中。 3.控制对象模拟及过程信号的采集 根据控制对象特性,以线性集成运算放大器为主构成反馈运算回路,模拟控制对 象的特性。将定值和过程变量送入工业信号转换装置中,以便进行观察和记录。 4.系统调试

设计要求进行动态调试。动态调试是指系统与生产现场相连时的调试。由于生产 过程已经处于运行或试运行阶段,此时应以观察为主,当涉及到必需的系统修改 时,应做好充分的准备及安全措施,以免影响正常生产,更不允许造成系统或设 备故障。动态调试一般包括以下内容: l)观察过程参数显示是否正常、执行机构操作是否正常; 2)检查控制系统逻辑是否正确,并在适当时候投入自动运行; 3)对控制回路进行在线整定; 4)当系统存在较大问题时,如需进行控制结构修改、增加测点等,要重新组态下装。 三、进度计划

三冲量汽包水位控制原理及应用教程

锅炉汽包水位是锅炉生产过程的主要工艺指标,同时也是保证锅炉安全运行的主要条件之一。汽包水位过高,使蒸汽产生带液现象,不仅降低蒸汽的产量和质量,而且还会使过热器结垢,或使汽轮机叶片损坏;当汽包水位过低时,轻则影响水汽平衡,重则烧干锅炉,严重时会导致锅炉爆炸事故的发生。所以锅炉水位是一个极为重要的被控变量。在具体工艺生产过程中,常常由于蒸汽负荷的波动和给水流量的变化打破汽包内的平衡状态,对汽包水位造成干扰,最终导致假液位。所谓“冲量”实际就是变量,多冲量控制中的冲量,是指引入系统的测量信号。在锅炉控制中,主要冲量是水位。辅助冲量是蒸汽负荷和给水流量,它们是为了提高控制品质而引入的。 1、三冲量控制的引入 目前锅炉汽包水位调节常采用单冲量、双冲量及三冲量等三种调节方案,现分别对它们的基本原理和特性加以讨论。 ①单冲量水位调节系统 单冲量水位调节系统的原理如图1所示。由图1可知,这种类型的水位调节系统,是一个典型的单回路调节系统,被调参数是汽包水位,调节参数是锅炉的给水量。它适用于停留时间较长(亦即蒸发量与汽包的单位面积相比很小),负荷变化小的小型锅炉(一般为10t/h以下)。但对于停留时间较短,负荷变化大的系统就不适应了。

图1 单冲量水位调节原理图2 单冲量水位调节系统控制策略 从图2可以看出:单冲量水位调节系统控制策略由汽包水位测量差压变送器、PID调节器和调节阀(或变频器)构成。 当蒸汽负荷突然大幅度增加时,由于汽包内蒸汽压力瞬间下降,水的沸腾加剧,汽泡量迅速增加,汽泡不仅出现于水的表面,而且出现于水面以下,由于汽泡的体积比水的体积大许多倍,结果形成汽包内液位升高的现象。因为这种升高的液位不代表汽包内储液量的真实情况,所以称为“假液位”。此时PID调节器会错误地认为测量值升高,从而关小给水调节阀,减小给水量。等到这种暂时汽化现象一旦平稳下来,由于蒸汽量的增加,给水量反而减少,会使水位严重下降,甚至降到液位危险区,造成事故。 为了克服由于蒸汽负荷量波动造成“假液位”的现象,我们把蒸汽流量的信号引

锅炉水位三冲量控制及调节

汽包水位三冲量调节系统是指汽包水位、蒸汽流量和给水流量三个信号作用于调节器上, 即三个被控变量对应一个调节器。 工作原理:汽包水位作为主信号,水位变化,调节器输出发生变化,继而改变给水流量,使水位恢复到给定值;蒸汽流量作为前馈信号,防止“虚假水位”使调节器产生错误的动作;给水流量作为反馈信号,使调节器在水位还未变化时就可根据前馈信号消除内扰, 使调节过程稳定,起到稳定给水流量的作用。 锅炉汽包水位三冲量调节系统是火电厂锅炉核心控制之一。汽包水位三冲量调节系统的给水调节阀动作频繁,锅炉水位对给水调节阀执行机构的动作比较敏感,稍有不慎就可能出现严重的危险情况,汽包水位三冲量调节系统关系到整个机组的安全运行:若汽包水位过高,会造成蒸汽带水;若汽包水位过低,会造成锅炉“干锅”,可能严重烧坏锅炉设备。汽包水位三冲量调节系统的重要性由此可见一斑,所以汽包水位的相关保护要完善可靠、汽包水位自动调节系统运行要平稳。 目前,汽包水位三冲量自动调节控制策略已经相当成熟,但在实际锅炉运行中会各种原因导致水位自动调节系统投入困难,甚至自动不能投入。这种现象让人对串级三冲量调节系统的调节能力和控制策略产生疑问。为此云润与大家交流运用心得,对级三冲量调节系统进行定性分析,并对一些异常情况的处理办法进行探讨。 1、水位三冲量调节控制策略 汽包水位三冲量调节系统使用的三个冲量分别是汽包水位、给水流量和蒸汽流量。 汽包水位作为主调(PID调节器)的输入信号,去抑制水位本身的偏差。副调(外给定调节器)使用了一个反馈信号(给水流量)和一个前馈信号(蒸汽流量),以消除扰动和虚假水位。各种介绍汽包水位三冲量调节系统的书籍中,都有对传递函数的计算,这些计算对系统设计很重要。如果用经验调节法对于系统维护,则完全可以抛开理论计算。在此只对其物理意义进行定性思考和作一番揣测。 1.1?反馈信号 反馈信号指给水流量信号,也叫内扰。 水位三冲量调节系统中被调量发生变化的时候,PID 经过运算,去控制执行机构进行合理的动作,执行机构改变给水调节阀的开度,阀门控制介质变化,达到控制给水流量的目的。可是给水调节阀执行机构特性、水位三冲量调节系统的运行状况存在很多差异,这些差异主要有: (1)执行机构线性:执行机构改变开度后,流量随之改变的大小。 (2)执行机构死区:PID 输出每变化多少,执行机构才能动作一次。 (3)执行机构空行程:执行机构在改变动作方向的时候,改变多少开度,给水流量才发生变化(减去死区的值)。 (4)执行机构回差:执行机构进行开、关两个方向的动作的时候,流量变化不相等,这个流量变化绝对值的差叫回差。 (5)执行机构及阀门的特性曲线改变:阀门线性改变,阀门每变化1%,流量变化量与以往不同。 (6)水位三冲量调节系统软故障:偶尔发生的系统故障使得给水流量变化不均匀,或者时有停顿。 (7)系统介质参数发生变化:指因给水压力、蒸汽压力变化导致给水流量变化。

除氧器水位调节阀喘动原因分析及处理

除氧器水位调节阀喘动原因分析及处理 除氧器水位调节阀在进行易损件更换后的校验时,阀门在手动控制给定信号下TZID定位器供气压力表和控制信号输出压力表指针大幅波动,流量放大器间歇排气,阀位出现喘动。论文对此进行分析,并定位故障点为61H流量放大器密封面泄漏,供气压力与输出压力连通。通过更换新备件,消除了故障。 【Abstract】In the calibration of deaerator water control valve after the replacement of wearing parts,TZID positioner’s air supply and control signal output pressure gauges fluctuated widely under manually given signals,and the flow amplifier intermittently exhaust,the valve position is panting while the 61H booster exhausted intermittently and valve position varied. This paper analyzed the phenomenon and found out that the fault point is the sealing surface leakage of 61H flow amplifier,and the gas supply pressure is connected with the output pressure. The failure is eliminated by replacing the new spare parts. 标签:TZID;61H Booster;阀门喘动;密封泄漏 1事件描述 在CPR1000機组某次大修中,除氧器水位调节阀完成易损件更换后进行校验时,发现在给定25%、50%、75%开度信号后,定位器气源压力表和输出压力表均存在大幅波动现象,同时伴随有明显的流量放大器(Booster)间歇式排气声音,真实阀位在指令开度附近喘动。 2 原因分析及处理 2.1 阀门功能及原理介绍 除氧器水位调节阀的控制信号,由实测水位与给定水位的偏差信号,经控制器运算后给出,通过改变阀门开度调整除氧器入口给水流量,保持除氧器水位在给定值。若出现阀门调节异常,除氧器水位低则将直接导致蒸发器主给水泵跳闸,除氧器水位高时导致除氧器隔离。 除氧器水位调节阀是双缸进气,带有失气保持功能的气动调节阀,采用TZID 智能型定位器,调节阀的控制回路管线布置图如图1所示。下面将对仪控部件的功能逐一介绍。 ①调节阀所使用的TZID智能定位器,是ABB公司生产的,广泛用于CPR1000机组常规岛的调节阀。TZID定位器内部可以分为三个部分,a IP及集成电路板,用于将接收到的4~20mA信号转换为气压控制信号输出;b操作面板,用来进行阀门参数调整和校验、设置定位器工作模式;c信号接线端子接收4~20mA控制信号,同时送出4~20mA阀位信号指示就地阀门开度。

论锅炉汽包液位的三冲量调节(新版)

论锅炉汽包液位的三冲量调节 (新版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0843

论锅炉汽包液位的三冲量调节(新版) 介绍了锅炉汽包液位的控制方法,讨论了三冲量调节系统的原理和适用条件及其应用。 0引言 锅炉是化工生产中重要的动力设备。汽包液位是锅炉运行中的一个重要监控参数,它反映了锅炉负荷与给水的平衡关系。汽包液位过高会造成蒸汽带水影响过热器运行,影响汽水分离效果;水位过低会造成锅炉水循环的破坏,影响省煤器运行,容易使水全部汽化烧坏锅炉甚至爆炸。这就要求汽包液位在一定范围内,适应各种工况的运行。影响汽包液位的因素除了加热汽化这一正常因素外,还有蒸汽负荷和给水流量的波动。当负荷突然增大,汽包压力突然降低,水就会急剧汽化,出现大量气泡,形成了“虚假液位”。 如果使用简单的锅炉汽包液位的单冲量控制系统(如图1所示),

一旦负荷急剧变化,虚假液位的出现,调节器就会误以为液位升高而关小供水阀门。影响了生产甚至造成危险。 为此,图2采取了锅炉汽包液位的双冲量控制,它在单冲量的基础上,再加一个蒸汽冲量,以克服“虚假液位”。其中调节阀为气关阀,液位调节器采用正作用,调节器输出信号在加法器内与蒸汽流量信号相减。双冲量实际上是前馈与反馈调节相结合的调节系统。当负荷突然变化时,蒸汽的流量信号通过加法器,使它的作用与水位信号的作用相反;假液位出现时,液位信号a要关小给水阀,而蒸汽信号b 是开大给水阀,这就能克服“虚假液位”的影响。但是如果给水压力本身有波动时,双冲量控制也不能克服给水量波动的影响。 这就要用如图3所示的锅炉汽包液位的三冲量调节系统。即再加一个给水流量的冲量c,使它与液位信号的作用方向一致,这种调节系统由于引进了液位、给水流量及蒸汽流量三个参数,叫做三冲量调节系统。 1原理 根据三个冲量在调节系统中引入位置不同,三冲量调节系统有

除氧器运行调整

除氧器异常运行调整方案 燃机车间王鹏除氧器作为发电流程中的一个关键设备,需要工作人员认真仔细,熟练掌握设备性能和处理突发事故的能力,才能保证其安全经济稳定运行。下面就除氧器运行中经常出现的异常情况确定调整方案。 1、除氧器水箱水位保持在1.2m——1.6m之间,为保证除氧器水箱最大变化容量,水位宜保持在1.4±0.1m。除氧器压力保持0.03±0.01Mpa。并列除氧器汽平衡门全开,保证并列除氧器压力平衡。温度尽量调整其在工作压力下的饱和温度下工作。低温,水质起不到除氧作用易对设备氧化腐蚀,高温则易造成给水泵气蚀的危险。 2、发现水位、压力变化,要及时调整。调整时阀门开关幅度要尽量小一些,正常调整严禁大开大关。高水位时严禁用放水门调整水位,以防止带来除氧器断水,造成停炉的危险。除氧器并列运行时禁止用开关下水门来平衡水位,防止水压不稳和锅炉上水不畅。 3、并列除氧器出现互相压水,应及时关小压力较高的除氧器进汽门。若调整无效或压水情况较严重,应全关所有运行除氧器进汽门,通知热化车间开大除盐水补水量,待压力下降后,再进行调整。 4、除氧器压力出现大幅度波动,且调整无效时,应立即关闭进汽门,检查集中供热凝结水量、热化除盐水量是否波动。 5、正常运行中,除氧器溶氧不合格,应检查水温是否是相应压力下的饱和温度,压力是否波动,集中供热凝结水来水是否稳定,3台除氧器除盐水进水总量是否在20T/h以内。 6、除氧器最主要的设备缺陷就是振动。运行中主要注意以下几点:(1)防止高水位高压力。(2)除氧器和汽动泵投运时抽汽管道充分疏水。(3)除氧器长期振动很可能就是除氧器内部问题,例如

零部件脱落、喷嘴堵塞、筛盘倾斜等,应及时联系检修处理。0正常运行中,除氧器出现振动,应关小进汽门直至全关,检查进水是否波动,待振动消除后,再逐渐开启进汽门。 7、正常运行中,除氧器水封冲开,应查明原因,此时须将除氧器压力降至零后,水封才能封住。 8、针对引起除氧水溶解氧量升高的原因,应根据参数运行情况,采用试验的手段逐个排除,最后针对确定的原因制定出解决措施。 常见的引起溶解氧量增高的原因,大多是化学补充水温度低、进水量不稳定,造成除氧器压力变化、除氧器各种进水量过大,超过除氧器的设计值、除氧水箱内给水产生过冷、水位过高,淹没液汽网,减少除氧面积、排气阀开度过小、加热压力不足、加热蒸汽压力调整不稳定等。 9、运行中,如需解列单台除氧器,若时间较短,可关闭所有进水门后,随即关闭进汽门,关闭下水门,保持水箱内有正常水位。汽平衡门可以暂时不关,对除氧器进行热保护;若长时间停运,可关闭所有进水门,关小进汽门,压力略高于运行除氧器,使停运除氧器内的水缓慢压至运行除氧器内,待水箱水位降至1.m以下,再关闭进汽门、下水门、汽平衡门。

除氧器水位控制

课程实验总结报告 实验名称:除氧器水位控制系统实践 课程名称:专业综合实践:大型火电机组热控系统设计及实现(3)

1 概述 1.1 除氧器工作原理 除氧器的主要作用是除去锅炉给水中的氧气和其它不凝结气体,以保证给水的品质。若水中溶解氧气,就会使与水接触的金属被腐蚀,同时在热交换器中若有气体聚积,将使传热的热阻增加,降低设备的传热效果。因此水中溶解有任何气体都是不利的,尤其是氧气,它将直接威胁设备的安全运行。在火电厂采用热力除氧,除氧器本身又是给水回热系统中的一个混合式加热器,同时高压加热器的疏水、化学补水及全厂各处水质合格的高压疏水、排汽等均可汇入除氧器加以利用,减少发电厂的汽水损失。 在双鸭山600MW火电机组中使用的是旋膜式除氧器(又称膜式除氧器及水膜式除氧器),这是一种新型热力除氧器,是用汽轮机抽汽将锅炉给水加热到对应除氧器工作压力下的饱和温度,除去溶解于给水的氧及其它气体,防止和降低锅炉给水管、省煤器和其它附属设备的腐蚀。可用于定压、滑压等方式运行,并且具有运行稳定,除氧效率高,适应性能好等特点。适用于各类电力系统锅炉、工业锅炉给水及热电厂补给水的除氧旋膜改进型除氧器是近年来研究并推广的一种全新结构除氧器。其设计主要是将原射流式改为旋射膜式,是集旋膜及泡沸缩合为一体的高效能新型除氧器,具有除氧效率高,换热均匀,耗气量小,运行稳定,适应性能好,对水质、水温要求不苛刻等优点,而且可超出运行。 除氧器水位过高:大量水从溢水管排出,造成工质和热量损失;造成除氧器内工作压力不稳定及设备安全;水位过高可能会淹没除氧头,影响除氧效果。除氧器水位过低:使给水泵进口压力降低,造成给水泵汽化,严重时会造成给水泵损坏危及机组安全。因此维持除氧器水位稳定十分重要。 1.2 定压运行滑压运行 除氧器的定压运行即运行中不管机组负荷多少,除氧器始终保持在额定的工作压力下运行。定压运行时抽汽压力始终高于除氧器压力,用进汽调节阀节流调

除氧器水位控制的课程设计

课程设计用纸 教师批阅: 目录 一、任务要求 (01) 二、除氧器工作原理 (02) 三、总体设计方案 (03) 四、差压变送器的选择 (04) 1.工作原理 (05) 2.变送器的功能及特点 (06) 五.执行机构的选择 (07) 1.工作原理 (07) 2.执行器的选用及特点 (08) 六.KMM可编程调节器 (09) 七.控制系统SAMA图 (11) 八.组态图 (12) 九.参考文献 (13) 十.体会和小结 (14) 十一.致谢 (15)

教师批阅:一.设计题目内容及要求 1.设计题目 600MW超临界机组除氧器水位控制系统设计 2.设计课题要求 针对机组运行要求,利用所学知识,设计除氧器水位控 制系统的总体方案,合理选择传感器、变送器、调节器和执 行器等。并根据自己方案编写主要模块的组态,实现对除氧 器水位的控制。该控制系统要求的功能: 1)维持除氧器水位为要求值,并实现保护调节功能; 2)能显示除氧器水位测量值; 3)能记录除氧器水位测量值; 4)能显示和记录执行器阀位值; 5)可在线设置或修改参数和组态,实现控制功能设计内容。 3.设计内容: 1) 选择传感器,执行器、调节器等,设计总体方案; 2) 画出系统框图及接线图; 3) 设计调节器组态; 4) 设计模拟量输出/输入通道; 5) 画出控制系统SAMA图; 6) 撰写设计说明书,要求字迹清楚,图表规范。

教师批阅:二.除氧器工作原理 在火电厂中,除氧器主要用于去除凝结水中的溶解氧, 并为主给水泵提供足够的吸入压头,为蒸汽发生器提供一定 装量的应急水源。在机组正常运行时,需控制凝结水流量, 并与蒸汽发生器的给水,抽气,疏水相匹配,保证维持稳定 的液位。除氧器液位要求在1172-1204mm之间,而且除氧器 的工作方式连续式工作。除氧器内的水是不停的在流动的, 上水量要求能够和出水量达到平衡。如果采用工频给水方 式,水量的冲击会很大,液位很难控制。而且不利于电机水 泵正常工作,经常的冲击启动容易造成电机水泵机械损坏。 采用回流控制的方法,水泵长期工作在工频状态下,不利于 能降耗,故选用变频驱动。 系统框图 岗位操作人员可以在液位控制器K上直接输入控制液位 数值L,液位控制器K将给定值与液位变送器LE传来的液位 信号(4-20mA)进行运算比较后,送出一个控制信号(4-20mA) 至变频器Q,由就频器一个可变频率,来控制电机M的转数, 从而达到控制上水量的目的。当水位升高,L1>L超过设定

三冲量控制系统原理

锅炉三冲量控制原理及调节过程。 原理:冲量控制系统从结构上来说,是一个带有前馈信号的串级控制系统。液位控制器LC与流量控制器FC构成串级控制系统。汽包液位LIA2104是主变量、给水流量是副变量。副变量的引入使系统对给水压力的波动有较强的克服能力。蒸汽流量的波动是引起汽包液位LIA2104变化的因素,是干扰作用,蒸汽波动时,通过引入FC,使给水流量FA2101作相应的变化,所以这是按干扰进行控制的,是把蒸汽流量信号作为前馈信号引入控制的。 调节过程:根据串级控制系统选择主、副控制器的正、反作用的原则,水位控制器LC反作用选反作用,流量控制器FC为正作用,调节器为气关阀。当水位由于扰动而升高时,因LC反作用,它的输出下降,进入加法器后,使FC给定值减小而输出增加,调节阀的开度减小,给水流量FA2101减小,水位下降,保持在设定值上;当蒸汽流量FAQ2102增加时,FC给定值增加而输出减小,调节阀的开度增加,给水流量增加,保持水蒸汽平衡,使水位不;副回路克服给水自身的扰动,要进一步地稳定了水位的自动控制;给水流量FA2101增加,FC输出增加,调节阀的开度减小,给水量减小,从而保持水蒸汽平衡。 汽包水位三冲量调节系统是指汽包水位、蒸汽流量和给水流量三个信号作用于调节器上, 即三个被控变量对应一个调节器。 工作原理:汽包水位作为主信号,水位变化,调节器输出发生变化,继而改变给水流量,使水位恢复到给定值; 蒸汽流量作为前馈信号,防止“虚假水位”使调节器产生错误的动作; 给水流量作为反馈信号,使调节器在水位还未变化时就可根据前馈信号消除内扰, 使调节过程稳定,起到稳定给水流量的作用。 汽包水位三冲量给水调节系统 1、所谓冲量,是指调节器接受的被调量的信号; 2、汽包水位三冲量给水调节系统由汽包水位测量筒及变送器、蒸汽流量测量装置及变送器、给水流量测量装置及变送器、调节器、执行器等组成; 3、在汽包水位三冲量给水调节系统中,调节器接受汽包水位、蒸汽流量和给水流量三个信号,如图所示。其中,汽包水位H是主信号,任何扰动引起的水位变化,都会使调节器输信号发生变化,改变给水流量,使水位恢复到给定值;蒸汽流量信号qm.S是前馈信号,其作用是防止由于“虚假水位”而使调节器产生错误的动作,改善蒸汽流量扰动时的调节质量;蒸汽流量和给水流量两个信号配合,可消除系统的静态偏差。当给水流量变化时,测量孔板前后的差压变化很快并及时反应给水流量的变化,所以给水流量信号qm.w作为介质反馈信号,使调节器在水位还未变化时就可根据前馈信号消除内扰,使调节过程稳定,起到稳定给水流量的作用。 4、在大、中型火力发电厂锅炉汽包水位的变化速度比较快,“虚假水位”现象较为严重,为了达到生产过程中对汽包水位调节的质量要求,因而广泛采用了三冲量汽包水位调节系统。 5、关于测量信号接入调节器的极性说明:当信号值增大时要求开大调节阀,该信号标以“+”号;反之,当信号值减小时要求关小调节阀,该信号标以“-”号。在给水调节系统中,当蒸汽流

除氧器水位控制及凝汽器热井水位控制

除氧器水位及凝汽器热井水位控制系统策略的优化除氧器是整个单元机组给水加热系统中唯一的缓冲环节,其水位是机组运行需监控的几个最重要的参数之一,除氧器水位过高,影响除氧效果;水位过低又将危及给水泵的安全运行。因此,精确控制除氧器水位对单元机组的正常运行是必须的,而好的控制策略和对应策略内的参数整定精准是实现单元机组除氧器水位正常的保证。 一、一般意义的除氧器水位控制方案: 除氧器水位,一般是通过直接改变进入除氧器的凝结水流量来控制的。在以往的除氧器水位的控制组态中,除氧器水位控制系统原理图如左图所示: 这是一个单冲量和串级三冲 量相结合的控制系统。以 DEA1_PID和DEA2_PID为核心 组成串级三冲量控制系统, DEA1_PID是主调器,DEA2_PID 是副调器;以DEA3_PID为核心 组成单冲量控制系统。除氧器水 位(三选中)是主信号,该信号 与运行人员设置的水位定值信号 的偏差,分别送到单冲量和串级 三冲量主调器的入口,给水流量 和凝结水流量是系统的辅助信 号:给水流量为除氧器的所有流 出量的总和,为省煤器入口给水 流量与过热器一、二级喷水流量 之和;凝结水流量是除氧器的流 入量。在三冲量模式下,主调器 DEA1_PID接受除氧器水位设定 值与检测值(三选中)的偏差信 号,经比例积分运算后的输出与 给水流量的前馈量之和,减去凝 结水流量,其偏差值送至副调器 DEA2_PID,副调器的输出去控制 除氧器入口的凝结水流量调节阀 开度,作用于凝结水流量的改变以稳定除氧器水位;在单冲量模式下,DEA3_PID直接根据水位的偏差信号控制凝结水流量以调节除氧器的水位。 三冲量与单冲量模式的切换逻辑是: 1、当凝结水流量<200T/H,为单冲量模式; 2、当凝结水流量>300T/H,为串级三冲量模式; 3、当200T/H<凝结水流量<300T/H,维持当前的控制模式不变 二、一般意义的凝汽器热井水位控制方案: 与除氧器一样,凝汽器水位也是机组运行必须监控的重要参数之一:凝汽器水位过高,将直接影响凝汽器的真空,严重时将导致汽轮机低压缸进水;凝汽器热井水位过低,也将危及凝结水泵的安全运行和整个热力系统的水循环,因此必须对其进行自动控制,确保机组的安全高效运行。

相关文档
相关文档 最新文档